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A B S T R A C T 

This is an exciting era for e xo-planetary e xploration. The recently launched JWST, and other upcoming space missions such as 
Ariel, Twinkle, and ELTs are set to bring fresh insights to the convoluted processes of planetary formation and evolution and 

its connections to atmospheric compositions. Ho we ver, with ne w opportunities come ne w challenges. The field of exoplanet 
atmospheres is already struggling with the incoming volume and quality of data, and machine learning (ML) techniques lands 
itself as a promising alternati ve. De veloping techniques of this kind is an inter-disciplinary task, one that requires domain 

knowledge of the field, access to rele v ant tools and expert insights on the capability and limitations of current ML models. These 
stringent requirements have so far limited the developments of ML in the field to a few isolated initiatives. In this paper, We 
present the Atmospheric Big Challenge Database (ABC Database), a carefully designed, organized, and publicly available data 
base dedicated to the study of the inverse problem in the context of exoplanetary studies. We have generated 105 887 forward 

models and 26 109 complementary posterior distributions generated with Nested Sampling algorithm. Alongside with the data 
base, this paper provides a jargon-free introduction to non-field experts interested to dive into the intricacy of atmospheric 
studies. This data base forms the basis for a multitude of research directions, including, but not limited to, developing rapid 

inference techniques, benchmarking model performance, and mitigating data drifts. A successful application of this data base is 
demonstrated in the NeurIPS Ariel ML Data Challenge 2022. 
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 C O N T E X T  

he field of exoplanet has come a long way since the discovery of the
rst exoplanet in 1994 (Wolszczan & Frail 1992 ). With the launch
f dedicated telescopes for the detection of exoplanets, such as the 
onvection, Rotation et Transits plan ́etaires ( CoRoT ; P ̈atzold et al.
012 ), the Kepler (Borucki et al. 2010 ), and the Transiting Exoplanet
urvey Satellite ( TESS ; Ricker et al. 2015 ) space telescopes, we now
ave basic characteristics, such as planetary radii or masses, for 
ore than 5000 alien worlds. From the observed population, we 

educed that, while exoplanets are ubiquitous (Cassan et al. 2012 ; 
atalha 2014 ), the architecture of our Solar system does not appear

o be a typical outcome of planetary formation. For instance, the first
etected exoplanet around a sun-like star is classified as a hot Jupiter
Mayor & Queloz 1995 ), a planet of a similar size to Jupiter (e.g.
bout 10 times the size of Earth) but orbiting so close to its host star
hat it completes a full revolution in about 4 d. Such planet does not
xist in our Solar system and so are the majority of the observed
lanets, referred as sub-Neptunes due to their size being between the 
ize of Earth and Neptune (Howard et al. 2010 ; Fulton et al. 2017 ;
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etigura et al. 2022 ). To answer the most fundamental questions of
he field, such as ‘what are exoplanets made of?’ or ‘how do planets
orm?’, one must obtain complementary information to planetary 
asses and radii. 
In the last decade, astronomers have therefore turned their attention 

o exoplanetary atmospheres, or exo-atmospheres, in the quest for 
urther constraints on these worlds (Charbonneau et al. 2002 ; Tinetti
t al. 2007 ; Swain, Vasisht & Tinetti 2008 ; Kreidberg et al. 2014 ;
chwarz et al. 2015 ; Sing et al. 2016 ; Stevenson et al. 2017 ; de
it et al. 2018 ; Hoeijmakers et al. 2018 ; Tsiaras et al. 2018 , 2019 ;
rogi & Line 2019 ; Welbanks et al. 2019 ; Edwards et al. 2020 ;
hangeat & Edwards 2021 ; Roudier et al. 2021 ; Yip et al. 2021a ;
hangeat et al. 2022 ; Chen et al. 2022 ; Edwards et al. 2022 ; Estrela,
wain & Roudier 2022 ; Mikal-Evans et al. 2022 ). The study of
xoplanet atmospheres has been enabled by the use of space-based 
nstrumentation, such as the Hubble Space Telescope ( HST ), the
etired Spitzer Space Telescope , and ground-based facilities such as 
he Very Large Telescope (VLT). Many discoveries were made. We, 
or instance, know that water vapour is present in many hot Jupiter
tmospheres, and we have recently reco v ered evidence for links
etween atmospheric chemistry and formation pathways. Ho we ver, 
ith the recent launch of the N ASA/ESA/CSA J ames Webb Space

elescope ( JWST ; Greene et al. 2016 ), and the upcoming ESA Ariel
ission (Tinetti et al. 2021 ) and BSSL Twinkle Mission (Edwards
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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t al. 2019b ), the field of exoplanetary atmosphere will undergo a
evolution. The quality and quantity of atmospheric data will be
ultiplied exponentially, bearing many new challenges. 
One of the main challenge in the study of exo-atmospheres,

ven today, concerns with the reliable extraction of information
ontent from observed data. Atmospheres are complex dynamical
ystems, involving many physical processes (chemical and cloud
eactions, energy transport, fluid dynamics) that are coupled, poorly
nderstood, and difficult to reproduce on Earth. Astronomers have
herefore attempted to interpret observations of atmospheres using
etrie v al techniques: simplified models (or reduced order models)
or which the parameter space of possible solutions is explored
sing a statistical framework (Irwin et al. 2008 ; Madhusudhan &
eager 2009 ; Line et al. 2012 , 2013 ; Waldmann et al. 2015a,b ;
avie et al. 2017 ; Gandhi & Madhusudhan 2018 ; Molli ̀ere et al.
019 ; Zhang et al. 2019 ; Min et al. 2020 ; Al-Refaie et al. 2021 ;
arrington et al. 2022 ). With current observational data, state-of-

he-art retrie v al models use sampling based Bayesian techniques,
uch as MCMC or Nested Sampling, with non-informative (uniform)
riors to obtain the posterior distributions of between 10 and 30 free
arameters (Changeat et al. 2021a ). The number of free parameters
epends on the information content available in the observational
ata and the chosen atmospheric model. As of today, there is no
onsensus on the most appropriate atmospheric model to employ,
nd we cannot obtain in-situ observations (e.g. we cannot travel
here). Sampling-based techniques typically require between 10 5 and
0 8 forward model calls to reach convergence, meaning that only
odels providing spectra of the order of seconds are viable. With the

ncrease in data quality, thanks to JWST , Ariel, and Twinkle, it will
nable a wider range of atmospheric processes to be probed by the
bservations, implying that forward models must grow in complexity
nd so does the dimensionality of the problem (The JWST Transiting
xoplanet Community Early Release Science Team et al. 2022 ). As
uch, interpreting next-generation telescope data is currently a real
ssue, which has been highlighted multiple times by studies relying
n simulations, that will require a revolution in both our models
nd information extraction techniques (Rocchetto et al. 2016 ; Caldas
t al. 2019 ; Changeat et al. 2019 ; Taylor et al. 2020 , 2021 ; Yip et al.
020 ; Changeat et al. 2021a ; Al-Refaie et al. 2022a ; Yip et al. 2022a ).
In recent years, the community started to e xplore alternativ e

pproaches to circumvent the bottleneck with sampling based ap-
roaches. Machine learning (ML) models land itself as a promising
andidate with its high flexibility and rapid inference time. Wald-
ann ( 2016 ) pioneered the use of deep learning network in the

ontext of atmospheric retrie v al, training a Deep Belief Network
o identify molecules from simulated spectra. On the other end,
 ́arquez-Neila et al. ( 2018 ) led the first attempt to train a Random
 orest re gressor to predict planetary parameters directly. Since then,

he field has started to look at different ML methodologies to
ypass the lengthy and computationally intensi ve retrie v al process
Soboczenski et al. 2018 ; Zingales & Waldmann 2018 ; Cobb et al.
019 ; Hayes et al. 2020 ; Nixon & Madhusudhan 2020 ; Oreshenko
t al. 2020 ; Ardevol Martinez et al. 2022 ; Haldemann et al. 2022 ;
imes et al. 2022 ; Yip et al. 2022a ). Pushed by astronomers’ need

or explainable solutions, other groups have also looked into the
nformation content of exoplanetary spectra with AI (Guzm ́an-Mesa
t al. 2020 ; Yip et al. 2021b ). 

The publicly available Atmospheric Big Challenge (ABC)
atabase of forward models and retrie v als aims to provide the

esources to address aforementioned issue via participation of ex-
ernal communities and encourage no v el, cross-disciplinary solu-
ions. It is constructed as a permanent data repository for further
ASTAI 2, 45–61 (2023) 
nvestigations. The data base is accessible at the following link:
ttps:// doi.org/ 10.5281/ zenodo.6770103 . 
Since the creation of similar data base constitutes a major barrier

o anyone interested in applying ML in the domain of exoplanet
tmospheres, we emphasize on its release as a community asset. The
rganization and creation of this data set poses a challenge on its
wn because of the following: 

(i) It requires a cross-disciplinary collaboration. The problem
equires domain knowledge (atmospheric chemistry, radiative trans-
er, atmospheric retrie v als) to ensure the data product represents
 meaningful science case rather than a trivial example. At the
ame time, it requires ML expertise to ensure the data product is
epresentative of the problem at hand, and ideally, one that adequately
eflects the reality. 

(ii) It requires access to the rele v ant tools which is often e xclusiv e
o communities in exoplanet: atmospheric retrie v al and chemistry
odes as well as instrument noise simulators. 

(iii) It requires significant computing resources. For this project,
ore than 2000 000 CPUh were used. Simulations of this scale have

ever been attempted before. 

This paper is written to (1) provide non-field experts with a light-
eighted introduction to the science behind the data generation
rocess, (2) document the steps involved in the creation of the ABC
ata base, and (3) to provide a carefully curated, well-organized,
nd scientifically rele v ant data set for any research community. This
anuscript complements the data challenge proposal description

Yip et al. 2022b ) accepted as a NeurIPS 2022 data challenge. It
s intended to provide the required domain knowledge for non-field
xperts. We present a simplified jargon-free introduction to the most
ommonly employed techniques in the field of exo-atmospheres in
ppendix A . 

 DA  TA  G E N E R A  T I O N  

or the data generation, we employed ALFNOOR (Changeat et al.
021a ), a tool built to expand the forward model and atmospheric
etrie v al capabilities of TauREx 3 (Al-Refaie et al. 2021 ) to
arge populations of exo-atmospheres. ALFNOOR allows to automatize
he generation or telescope simulations and perform large-scale
tandardized atmospheric retrie v als. A lightweight description of
he main concepts behind atmospheric studies of exoplanets are
escribed in Appendix A . In the context of ESA-Ariel, we gen-
rated 105 887 simulated forward observations as well as 26 109
tandardized retrie v al outputs. 

.1 Source of input parameters 

o model those extrasolar systems, some preliminary assumptions
ere required. In particular, all the parameters that are not linked

o the atmospheric chemistry needed to be fixed to realistic values.
hose parameters include, but are not limited to, stellar radius ( R s ),
istance to Earth ( d ), star magnitude K ( K mag ), planetary radius ( R p ),
lanetary mass ( M p ), planet equilibrium temperature ( T ), and transit
uration ( t 14 ). 
The planetary objects in this data base were selected from the

ist of confirmed known exoplanets and the list of TESS exoplanet
andidates (TOIs). This list was constructed as part of the ESA-Ariel
arget list initiative (Edwards et al. 2019a ; Edwards & Tinetti 2022 ),
rozen to 2022 March 1 for this data base. For the TOIs, we are
ware that some of those objects will not be exoplanets; ho we ver, the
bservation of their transit by TESS and the first preliminary checks

https://doi.org/10.5281/zenodo.6770103
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Figure 1 Size of the considered planets versus the mass of their host 
star. We exclude planets that have radii below 1.5 R ⊕ marked in grey and 
approximately corresponding to the lower limit on the Radius Valley. 
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f their inferred properties make them compelling objects. Follow-up 
bservations will allow us to classify their nature, but for the purpose
f building this data base, they are as close as possible to what the
eality looks like. As radial velocity follow-ups cannot and is not 
ystematically conducted for all targets, the mass of some of those 
bjects is unknown. In this case, as in Edwards & Tinetti ( 2022 ), we
eplace the planetary mass by an estimate from the relation described 
n Chen & Kipping ( 2017 ). To those lists of objects, we filtered all
he planets with radius below 1.5 R ⊕, the conserv ati ve v alue for
he middle of the Radius Valley (Fulton et al. 2017 ; Cloutier &

enou 2020 ; Petigura et al. 2022 ). This is because the atmospheric
omposition of small planets would require a much more complex 
reatment (e.g. the assumption of hydrogen-dominated atmosphere is 
ot theoretically sound) than is proposed here. In total, we obtained 
ata for 2972 confirmed exoplanets and 2928 candidate exoplanets, 
hus bringing our total to 5900 unique objects. The list of selected
lanets for this database is shown in Fig. 1 . 
Fig. 2 shows the distributions of nine selected stellar and planetary 

arameters. These values are taken from the actual planetary system 

nd therefore follows the current observed demographics, these 
alues remains unchanged thorough the data generation process. 
o we ver, relying on currently known planets is a double-edged knife.
hile it saved us from making unverified assumptions, our data are 

rone to selection bias stemmed from the observation technique, 
trategy, and instrument specification. These biases can be easily 
pot from Fig. 2 . For instance, the distribution of orbital period tends
o be shorter (peaks around ∼3 d) as their proximity to the host star
akes them easier to disco v er. 

.2 The atmospheric forward model setup 

e produce batches of randomized observations for the population 
escribed in the previous section. For each planet, the stellar ( R s , d ,
 mag ), orbital ( t 14 ), and bulk parameters ( R p , M p , T ) are fixed to their

iterature values, while the chemistry of the atmosphere is randomly 
enerated. The thermal profile is assumed to be isothermal (constant 
emperature) at the equilibrium temperature of the planet, and we 
imulate the planet’s atmosphere from 10 to 10 −10 bar using 100 
ayers (divided uniformly in log-pressure space). 

For the chemistry, we assume a primary atmosphere made mainly 
rom hydrogen and helium (He/H 2 = 0.17), to which we add 
race gases. The trace gases are H 2 O (Polyansky et al. 2018 ),
H 4 (Yurchenko et al. 2017 ; Chubb et al. 2021 ), CO (Li et al.
015 ), CO 2 (Yurchenko et al. 2020 ), and NH 3 (Coles, Yurchenko
 Tennyson 2019 ), selected based on our current understanding of

xoplanetary chemistry (Ag ́undez et al. 2012 ; Venot & Ag ́undez
015 ; Drummond et al. 2016 ; Madhusudhan et al. 2016 ; Stock
t al. 2018 ; Woitke et al. 2018 ; Venot et al. 2020 ; Baeyens et al.
022 ; Al-Refaie et al. 2022a ). The mixing ratio, or trace abundance,
f those gases is randomly chosen using a Log Uniform law and
epends on the molecule considered. The Log Uniform law is 
hosen rather than a more informative law (such as equilibrium 

hemistry) because we are looking for solutions that are unbiased 
o our current, most likely limited, understanding of atmospheric 
hemistry. Such training set is suitable to produce ML solutions 
ehaving in a similar way to the so-called free chemistry retrie v als.
f correlation exists in a real population (e.g. between the chemistry
f the atmosphere and its thermal structure), such method should 
llow the extraction of this trend without the need to implicitly
ake a physical assumption. Note that this is required in the cases
here data have undergone a data shift (in this case, when the data

re generated using a different atmospheric assumption). Another 
mportant point to consider involves the detection capabilities of Ariel 
or each molecule and the de generac y between molecular species. For
nstance, CO shares similar features to CO 2 in Ariel but it is a much
arder molecule to detect due to its weaker absorption properties. 
ue to those differences in the strength of spectral features and
uided by the Ariel Tier-2 detection limits investigated in Changeat 
t al. ( 2020a ), we select different bounds for the randomized chemical
bundances. This process allows us to balance our data set and ensure
hat a significant fraction of the planets have detectable amount of
O. The bounds employed for this data set are as follows: 

(i) H2O: RandomLogUniform(min = −9, max = −3). 
(ii) CO: RandomLogUniform(min = −6, max = −3). 
(iii) CO2: RandomLogUniform(min = −9, max = −4). 
(iv) CH4: RandomLogUniform(min = −9, max = −3). 
(v) NH3: RandomLogUniform(min = −9, max = −4). 

For each parametrized atmosphere, we compute the radiative 
ransfer (see Appendix A) layer by layer, including the contributions 
rom molecular absorption, Collision Induced Absorption (CIA), and 
ayleigh Scattering. 
Each spectrum is first computed at a high resolution, 1 before being

onvolved with an Ariel instrument simulation. For each planet, we 
mployed the TauREx plugin for ARIELRAD (Mugnai et al. 2020 ), the
fficial Ariel noise simulator, to estimate the noise on observation 
t each wavelength. With ARIELRAD , we force each observation to
atisfy the criteria for Ariel Tier 2 observations (Tinetti et al. 2021 ),
eaning that the observations have a specific resolution profile (e.g: 
 ≈ 10 for 1.10 < λ < 1.95 μm; R ≈ 50 for 1.95 <λ < 3.90 μm; R ≈
5 for 3.90 < λ < 7.80 μm) and that the signal-to-noise ratio (SNR)
f the observations must be higher than 7 on average. The SNR is
ere defined on the atmospheric signal (e.g. the second part of equa-
ion A2 ). To produce the simulated spectra, we select the minimum
umber of transit that allow to reach this threshold, meaning that our
ample of observations contains a wide range of final SNR. Since
e used real objects for those simulations and that all planets are
ot fa v ourable targets for Ariel, this means that some targets require
RASTAI 2, 45–61 (2023) 
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R

Figure 2 Distribution of nine stellar and planetary parameters used to generate the synthetic spectra. These distributions follow closely to the actual demographic 
of the currently known population of exoplanets, and therefore they are also subject to biases presented in the original population. 
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n un-realistic number of observations to reach the SNR condition
f Tier 2. Ho we ver, this does not af fect the purpose of this data set,
roviding independent instances of realistic noise profiles. 
Following those steps, we obtain a realistic Ariel simulated

bservation for each planet and each randomized chemistry. We
how an example of such simulated observation in Fig. 3 . In total,
e produced 105 887 simulated observations for the ABC Database.

.3 The atmospheric retrieval setup 

or 26 109 (25 per cent) of the simulated observations generated
t the previous step, we perform the traditional inversion technique
sing ALFNOOR . 
For the model to optimize, we kept the same setup as presented in

he previous section and performed parameter search on the following
ree parameters: isothermal temperature (T), log abundances for
 2 O, CO 2 , CH 4 , CO, and NH 3 . The priors are made wide and un-

nformative, with the atmospheric temperature being fitted between
00 and 5500 K and the chemical abundances between 10 −12 and
0 −1 in Volume Mixing Ratios. The widely used Nested Sampling
ptimizer, MULTINEST (Feroz, Hobson & Bridges 2009 ), was em-
loyed with 200 live points and an evidence tolerance of 0.5. 
For a single example on Ariel data, we provide the best-fitting spec-

rum in Fig. 3 . From the optimization process, we are able to extract
he traces of each parameters and the weights of the corresponding

odels. This allows to construct the posterior distribution of the free
arameters with, for instance, corner . The posterior distribution of
he same example is shown in Appendix B, Fig. C1 . Processing of
he posterior distribution also allows to extract statistical indicators
ASTAI 2, 45–61 (2023) 
escribing the chemical properties of the planet, such as mean,
edian, and quantiles for each of the investigated parameters. 

.4 Data o v er view 

ollowing the data generation process outlined above, we have gen-
rated a total of 105 887 forward models in Ariel Tier-2 resolution.
f them, 26 per cent of them are complemented with results from

tmospheric retrie v al (follo wing a generic setting as described in
ection 2.3 ). 
Fig. 4 shows the distribution of mean transit depth (red) o v erlapped

ith the distribution of feature height (orange). The former served
s a proxy of the diverse planetary classes present in the data set.
he characteristic dichotomy stemmed from current demographics
tudies 2 and selection bias in our observation technique. 3 The latter is
alculated from the difference between the maximum and minimum
ransit depth of each spectrum, it served as a proxy of the ‘strength’
f the spectroscopic features presented in the spectra, e.g. the peaks
nd troughs as seen in Figs A2 and 3 . We note that an SED with linear
lope will also produce a non-negligible feature height value, which
s still considered as spectroscopic feature in our case. The two quan-
ities are closely linked to our targets of interest, which means that any
uccessfully model not only need to account for the inter-variation

art/rzad001_f2.eps
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Figure 3 Example of a simulated Ariel observation with errorbars (data points) for a randomized chemistry. The best-fitting model obtained using atmospheric 
retrie v al is also shown (solid line). The slope at the lowest wavelengths arises from Rayleigh Scattering, while most of the other spectral modulations in this 
example can be attributed to CH 4 . The data points around 4.5 μm are associated with CO and CO 2 absorption. Note the difference in wavelength coverage 
(0.5–7.8 μm) as compare to the HST spectrum (1.1–1.7 μm) in Fig. A2 , which allows us to extract precise information for many molecules. 

Figure 4 Distribution of the mean transit depth (red) o v erlapped with the 
distribution of the feature height (orange), both measured in a logarithm scale. 
The dichotomy displayed in mean transit depth distribution stemmed from 

the observational demographics of planet radius, showing the diversity of 
currently known exoplanets in our data set. On the other hand, the feature 
height documents the ‘strength’ of spectroscopic features in each spectrum 

(such as absorption features or strong trends induced by Rayleigh Scattering). 
Any successful model must be able to account for the variations in both scales. 
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etween different spectra, it also needs to take into account the intra-
ariation across wavelength channels, which is always one to three 
rders of magnitude smaller than the variation in mean transit depth. 
Next we will look at results from atmospheric retrie v al. The quality

f the retrieved product is closely related to the information content of 
ndividual spectrum, which is a function of the wavelength coverage, 
ize of the spectral bin, observational uncertainties and the abundance 
f the molecule. Fig. 5 compares the retrie v al results against the
nput values of the six targets of interest (H 2 O, CO 2 , CH 4 , CO, NH 3 ,
emperature). Each data point in every subplot represents a single 
pectrum and is coloured in accordance to the size of the inter-quartile 
ange (IQR). 4 Points lying along the diagonal line – those that are 
etrieved correctly – tend to have tighter constraint, while points that 
eviate from the diagonal line tend to entail larger uncertainties. 
or most gases there is a transition region where molecules at 
 Here we define IQR as the difference between the 84th and the 16th 
ercentile. 

 

t
t  
ertain abundance level starts to depart from the diagonal line. 
he extent and onset of the transition region is a function of the

nstrument specification (e.g. its detection limits), the composition 
f the atmosphere and the strength of the molecular absorption. 
hangeat et al. ( 2020a ) pioneered an initial study of this transition

egion and derived the detection limit for each gas based on the size of
he errorbar obtained. Here, we find similar results, and the detection
imits of Ariel correspond to the region where all the retrieved values
rom Fig. 5 deviate from the diagonal line (associated with colours
rom green to red). 

Appendix D continues our discussion into other aspects of the data
roduct. 

.5 Structure of the ABC data base 

he data base contains two levels of data product: The first level is
or general use and the second level is designed specifically for the
ompetition. We will describe each level next. 

.5.1 Level 1: cleaned data 

evel 1 contains data products for general use. As TauREx 3
erforms forward modelling and retrie v al on a planet-by-planet 
asis. The data are pre-processed to provide an unified structure 
or ef fecti ve data navigation and a foundation for further processing.
elow is the list of operations we performed: 

(i) Remo v ed an y spectra with NaN values. 
(ii) Remo v ed spectra with transit depth larger than 0.1 in any

avelength bins. 
(iii) Remo v ed spectra with transit depth smaller than 1 × 10 −8 in

n y wav elength bins. 
(iv) Standardized units and data formats. 
(v) Extracted all Stellar, Planetary and Instrumental metadata. 
(vi) Combined all instances into a single, unified file. 

Level 1 data are organized into all data.csv , observa-
ions.hdf5 and all target.hdf5 . all data.csv con- 

ains information on the planetary system and the input values for
RASTAI 2, 45–61 (2023) 

art/rzad001_f3.eps
art/rzad001_f4.eps


50 Q. Changeat and K. H. Yip 

R

Figure 5 Comparison of the retrieved values against the input values for six different targets. Each data point represents a single instance and is colour-coded 
according to the respective size of the IQR. Ariel data at Tier-2 resolution are able to place tight constrain on the temperature and most molecules down to 
a certain abundance. Beyond that, the retrie ved v alues starts to deviate from the diagonal and becomes less constrained, highlighting the limitations of the 
telescope. 
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he generation process, observations.hdf5 contains informa-
ion on indi vidual observ ations and all target.hdf5 contains
he corresponding retrie v al results (posterior distributions of each
tmospheric targets). In total, there are 105 887 planet instances,
5 per cent of them (26 109) has complementary retrie v als from
ested Sampling. 

.5.2 Level 2: curated data for model training 

he following section is designed for statistical model training. In
rder to allow for the broadest possible participation and minimize
he o v erhead for non-field e xperts, we pre-processed the data set
ith our domain knowledge so that the end product is ready for
odel development. At the same time, we have tailored the train/test

plit procedure in order to allow a diverse array of solutions and
esearch directions. Here we outlined the list of operations we
erformed: 

(i) Remo v ed data with less than 1500 points in the tracedata. This
s to allow for more accurate comparison. 

(ii) Remo v ed un-informativ e and duplicated astrophysical and
nstrumental features. 5 
ASTAI 2, 45–61 (2023) 

 Including star magnitudeK, star metallicity, star type, planet type, 
tar type, star mass kg, star radius m, planet albedo, planet impact param, 
lanet mass kg, planet radius m, planet transit time, instrument nobs. 

3

W  

c  

c

(iii) Split data into training and test sets (more details in Ap-
endix E ). 

After performing the abo v e operations, the training data has
1 392 planet instances with 21 988 of them has complementary
etrie v als results. The test data have 2997 instances, all of which are
omplemented with retrie v al results. There is a notable difference
n terms of the volume of data between Level 1 and Level 2 data
ue to the pre-processing step and train/test split . We have devoted
 section in Appendix E to describe the Level 2 data in details. 

.6 Additional r esour ces 

ublished along with the data base, we provide a series of com-
lementary resources. In particular the data base is provided with a
upyter Notebook describing the data structure, how to load the data
et, and demonstrating its main characteristics. We also include a
edicated TauREx 3 tutorial for those eager to learn the practical
spects of building forward models and performing atmospheric
etrie v als. All those resources are available under the same link as
he data base. 

 OPEN  C H A L L E N G E S  

ith the constructed data set, we intended to accelerate and in-
enti vize dedicated ef forts to tackle a number of open challenges
ommon to both the exoplanet field and the ML field. 
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6 The main simulation code, TAUREX 3 , is open-source and publicly available 
at: ht tps://github.com/ucl-exoplanet s/TauREx3 public . 
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.1 Fast and accurate Bayesian Inference 

ne of the aims of the data base is to enable the development of
dvanced inference methods that are (1) able to produce posterior 
istrib utions, b ut at the same time, will not require as much
omputational resources compared to conventional sampling-based 
ethods. This activity is proposed as part of the goal of the NeurIPS

022 competition with simplified atmospheric cases and has already 
ro v en v ery successful (Yip et al. in preparation). 

.2 Estimating and mitigating the effect of data shifts 

L models are prone to potential performance degradation when 
he incoming data are different from the training distribution. This 
henomenon is commonly known as data shifts (e.g. Lu et al. 2018 ;
ayram, Ahmed & Kassler 2022 ). 
Any ML application to the study of exoplanetary atmosphere are 

ikely to experience data shifts. Most ML models in the literature 
re currently limited to simulation-based inference as the amount of 
ctual spectroscopic observations are fall short for model training, 
hich has to be supplemented by simulations. The discrepancy be- 

ween our simplistic atmospheric models and the actual atmosphere 
eans that data shift is inevitable (Humphrey et al. 2022 ). 
To emulate this situation, the test set in level 2 data are specifically

esigned to include chemical equilibrium forward models for which 
he provided ground truth from atmospheric retrie v als assumed free 
hemistry. In some cases, clouds are included in the forward model to
orce degenerate behaviours in the test set (Line & Parmentier 2016 ;
inhas & Madhusudhan 2017 ; Mai & Line 2019 ; Barstow 2020 ;
ukherjee, Batalha & Marley 2021 ; Changeat et al. 2021b ). Those

ffsets between training and test sets were voluntarily introduced to 
 v aluate whether the performance of ML solutions remain robust and
onsistent under ‘unseen’ distributions (this is typically the case in 
eal life since we know little about real exo-atmospheres) and if they
ad correctly learned to faithfully reproduce the Bayesian retrie v al 
echnique. 

.3 Adaptation to other atmospheric assumptions 

tmospheric models are physical models built on varying level of 
omplexities and modelling assumptions. ML models, ho we ver, are 
rained to optimize their performance with respect to the provided 
raining set/training assumptions. In this data set, we have included 
orward models built from two different modeling assumptions, 
imple chemsitry and Equilibrium Chemistry. It remains an open 
uestion as to how easy one can ‘switch’ from one model assumption
o another. In terms of ML terminology, this kind of learning falls
nder the umbrella of transfer learning/domain adaptation, where one 
trives to adopt to from source domain (original training set) to the
arget domain with a limited number of training examples (Wilson 
 Cook 2020 ). 

.4 Benchmarking different retrieval techniques 

he built data set can be used for more traditional code comparisons.
he TauREx retrie v al code was rigorously benchmarked against 
ther established codes (Barstow et al. 2020 , 2022 ). With this data
et, the exoplanet community now has access to a wide range of
ell-referenced forward models and retrie v al runs that can be used for

tandard benchmarking of atmospheric models (e.g. forward models) 
nd a diverse array of retrieval techniques (e.g. MCMC, Nested 
ampling, Normalizing Flows: F oreman-Macke y et al. 2013 ; Feroz
t al. 2009 ; Buchner 2021 ; Yip et al. 2022a ). 

 F U T U R E  EXPA NSI ON  O F  A B C  DATA BA SE  

he data base currently builds on highly simplified atmospheric 
odel assumptions (constant or equilibrium chemistry, isothermal 

emperature, clear atmosphere). This is done to (1) gauge the success
f such initiatives and (2) provide a rich data set to complete the
equired task. 

Future iterations could explore more complex atmospheres with 
uch more limited amount of training examples. This is because, as
ore complexity is embedded into the model (e.g. GCMs, complex 

hemistry, stellar acti vity ef fects), the computation of a single sample
an take months. In this instance traditional parameter sampling is 
ot an option, and faster AI accelerated techniques will be required.
e therefore plan to further extend this data base over the coming

ears and provide new training/test sets to develop both exoplanet 
nd ML activities. For example, future instances of this data base
ould feature the following: 

(i) JWST and HST complementary data sets: This would allow to 
evelop telescope-independent ML techniques and evaluate infor- 
ation content between the different data sets. 
(ii) Other classes of exoplanets: The current set focuses on gaseous 

xoplanets. Future data releases could include small rocky exoplanets 
ith secondary atmospheres, or water worlds. 
(iii) More complex processes: Alternative chemical model (with 
ore complete species sets, with dis-equilibrium processes: Stock 

t al. 2018 ; Woitke et al. 2018 ; Venot et al. 2020 ; Al-Refaie et al.
022b ) could be provided to study retrie v al biases and develop
hemistry robust ML methods. Similarly, complementary sets could 
nclude stellar activity, for which the relevance of AI methods has
lready been shown (Nikolaou et al. 2020 ), or even complex cloud
odels (Ackerman & Marley 2001 ; Kawashima & Ikoma 2018 ; Gao

t al. 2020 ; Ma et al. 2022 ). 
(iv) More complex models: Eclipse observations or phase-curve 

bservations produced using Global Climate Model could be in- 
luded. This would allow to extend this to new observations as well
s studying three-dimensional effects (Cho et al. 2003 ; Rauscher 
t al. 2008 ; Dobbs-Dixon, Cumming & Lin 2010 ; Showman, Cho
 Menou 2010 ; Cho, Polichtchouk & Thrastarson 2015 ; Caldas

t al. 2019 ; Komacek & Showman 2020 ; Skinner & Cho 2022 ) and
o develop fast recovery techniques for phase-curve data. Current 
pproaches to retrieve phase-curve data are limited by computational 
esources (Feng, Line & F ortne y 2020 ; Irwin et al. 2020 ; Cubillos
t al. 2021 ; Changeat et al. 2021a ; Changeat 2022 ; Chubb & Min
022 ) and can require up to 10 million samples (e.g. weeks on
PC facilities) to fully explore the parameter space of solution with
ubble data (Changeat et al. 2021a ). 

 C O N C L U S I O N S  

e present here the publicly available ABC Database ( https://doi.or 
/ 10.5281/ zenodo.6770103 ), a data base of atmospheric forward and
nverse models dedicated to the development of ML approaches in 
he field of exoplanets. In this paper, we introduce, for a non-expert
ommunity, the basic physical and chemical processes involved in the 
reation of such data base, describing the utilized tools, 6 and clearly
RASTAI 2, 45–61 (2023) 
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tating the adopted hypothesis. The constructed set includes about
05 887 forward models and 26 109 atmospheric retrie v als from
onventional sampling techniques, and should serve as a community
sset to explore novel techniques to solve the inverse problem of
etrieving chemical composition from spectroscopic data. This data
ase was used to support the third instalment of the Ariel Data
hallenge, conducted as part of the NeurIPS Conference, 7 which led

o new inno vativ e ML-based solutions to infer posterior distributions
rom Ariel spectra. With this effort, and with future updates of this
ermanent data base, we hope to facilitate the development and
doption of ML solutions to a pressing issue for the next generation
f space telescopes. 
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R

Figure A1 Diagram of an observation of the transiting exoplanet KEL T -11 b 
(top panel) and the corresponding normalized flux from a real observation, 
also called a light curve (bottom panel). The phase, which labels the x -axis, is 
the position of the planet in its orbit with 0 (by convention) being the middle 
of the transit ( t mid ). The transit starts at the event t 1 and finishes at the event 
t 4 , spanning the transit duration t 14 . The transit depth ( � ) is the observed 
normalized flux between in and out of transit situations. The observation is 
adapted from Changeat et al. ( 2020b ). 
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PPENDIX  A :  I N T RO D U C T I O N  TO  

TMO SPH ER IC  STUDIES  O F  EXOPLANETS  

his section provides a summary of the domain knowledge required
o properly exploit the ABC Database. It is written as an introduction
or non-exoplanet audience. 

1 Obser v ations of transiting exoplanets 

xoplanets are detected using various methods, but the two most
opular techniques used today are radial velocity and transit. In
articular, transit is an indirect technique that relies on monitoring
he host star’s variations in brightness. A transit event occurs when
he planet passes in front of the star, blocking a fraction of the light
eceived here on Earth. Transit events can be observed, thus revealing
he presence of the planet and its important properties, such as radius.
 typical transit observation is described, along with the rele v ant
uantities, in Fig. A1 . Transit events are periodic, so they can easily
e disentangled from other astrophysical sources of noise (stellar
ariations, 8 instrument systematics and observing conditions) when
ong-term monitoring is employed. 

For most observatories, absolute measurements are challenging.
his is especially true when the required precision is high, as it is

he case for e xoplanets. As such, for e xoplanets, we prefer to rely
n differential quantities such as transit depth ( � ). The transit depth
s the normalized difference between the flux received from the star
hen the planet is out-of-transit ( F out ) and when the planet is in-

ransit ( F in ): 

 = 

F out − F in 

F out 
= 

(
R p 

R s 

)2 

, (A1) 

here R p is the radius of the planet and R s is the radius of the star. 
To first order, to account for the contribution of an atmosphere,

ne can simply replace the planetary radius R p by R p + h , where h is
ASTAI 2, 45–61 (2023) 

 F or e xample, stars’ brightness could vary from time to time. 9
he ef fecti v e size of the atmosphere. Ne glecting second order terms,
his gives 

 = 

(
R p 

R s 

)2 

+ 

2 R p h 

R 

2 
s 

. (A2) 

Now , crudely , the size of the atmosphere depends on the atmo-
pheric scaleheight H such that h = NH , where N is a scaling factor
ncoding information regarding the atmospheric compositions. The
caleheight is defined as 

 = 

k b T 

μg 
, (A3) 

here k b is the Boltzmann constant, T is the temperature, μ is the
ean molecular weight, and g is the gravity. 
From those simple expressions, which here serve an illustrative

urpose and are an o v ersimplification of the model used to build
he ABC Database, we can deduce some standard behaviours of
tmospheric properties. First, to extract information on the planet
nd its atmosphere, we will al w ays require some knowledge of the
ost star. This is because the planet is not observed directly and
he observed quantities ( � ) are a function of the stellar parameters
here the stellar radius R s ). In addition, we observe that for the more
assive planet (larger g ) the contribution of the atmosphere will be

iminished, as the atmosphere contracts under gravity. In contrast, if
he temperature increases the atmosphere will be inflated and thus the
tmospheric signal will be larger. The chemistry of the atmosphere
lays a part in the scaling factor N but their relation cannot be easily
educed here. Intuitively, molecules with larger abundance tend to
ake the atmosphere opaque at higher altitudes, therefore increasing

he apparent size of the atmosphere. 9 

Those concepts, while useful to acquire an intuitive understanding
f the behaviour of planetary atmospheres, are rather limiting and
roper modelling is required to correctly interpret exo-atmospheric
bservations. 

2 Modelling exoplanet atmospheres 

bserving exoplanetary transits at various wavelengths, meaning
btaining � as a function of λ, provides information about the
tmospheric properties. This is because a planetary atmosphere
ontributes to the transit depth by absorbing the incoming stellar light
slightly) differently at different wavelengths (e.g. the atmospheric
ontribution is wavelength-dependent). The absorption profile of
he atmosphere depends on its constituents (molecular species,
louds, hazes) and properties (thermal structure). To model the
bserved signal as a function of wavelengths, also called a spec-
rum, astronomers use simplified models of the rele v ant processes
ccurring in exoplanet atmospheres. In Appendix B , we describe the
athematical formulation of one such model for the transit geometry,

ommonly used as a parametrized 1D forward model. Put simply,
he light from the host star is propagated through an atmosphere
ayer by layer and impacted according to the absorption of the
tmosphere. In our case, the absorptions considered are absorptions
y molecular species, Rayleigh Scattering, and Collision Induced
bsorption (CIA). 
Through this process, from a parametrized one-dimensional de-

cription of an atmosphere controlled by a finite number of param-
ters, one can compute the theoretical spectrum of an exoplanet.
his process, called forward modelling, can be made relatively
 we cannot observe any non-opaque (transparent) part of the atmosphere. 
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ast (on the order of seconds), but due to the non-linearity of the
quations and the input spectroscopic data (cross-sections), it cannot 
e directly inverted. In the next section, we explain how traditional 
echniques (e.g. Bayesian sampling) are used to perform model fitting 
nd retrieve the properties of an exo-atmosphere from its observed 
pectrum. 

Before explaining the use of inversion techniques, or atmospheric 
etrie v als, applied in the context of exoplanet atmospheres, we wish
o present a series of simple models to illustrate further the sensitivity
nalysis made in the previous section. We have created a mock planet
ith a non-negligible atmosphere, and we will show how changing 

he values of some of the model parameters affects the observation 
e.g. the spectrum). 

For simplicity, we set the planet with an isothermal atmosphere, 
eaning the temperature of the atmosphere is constant with altitude 

e.g. constant at all pressure levels) and therefore can be defined 
y a single parameter ( T ). To this atmosphere, we add a single
race molecule (H 2 O) defined by its absolute abundance in volume 
volume mixing ratio), and we fill the rest remaining atmosphere with 
ydrogen and helium in standard solar ratios (H 2 /He = 0.17). 10 On
op of the molecular absorption from water vapour, we also consider 
hree additional absorption processes: CIA, Rayleigh scattering, and 
rey Clouds (not considered in this version of the ABC data base).
quipped with this model, we set the following cases for which the
pectra are available in Fig. A2 : 

(i) Case 1 (black): planetary radius R p = 1.0 R J , temperature T =
200 K, nixing ratio of H 2 O = 10 −3 , and no clouds. 
(ii) Case 2 (blue): same as Case 1 but the temperature is decrease

o T = 500 K. 
(iii) Case 3 (purple): same as Case 1 but the water content is

ecrease to H 2 O = 10 −5 , while the planetary radius is increased to
 p = 1.0085. 
(iv) Case 4 (red): same as Case 1 but with clouds (cloud top

ressure is set at 0.01 bar). 
(v) Case 5 (green): same as Case 2 but with an increased planetary

adius to R p = 1.013 R J . 

From those specifically designed case, one can compare Case 1 
nd 2, for which only the temperature is changed. As a consequence
f this change, the size of the atmosphere is decreased as explained
n Section 2.1 , and the atmospheric features are smaller, bringing the
hole spectrum down. In this case, distinguishing between Case 1 

nd Case 2 would be relatively easy. For Cases 3, 4, and 5, ho we ver,
he story can be a little more complicated as multiple parameters are
hanged, but those can be used to highlight degeneracies typically 
ncountered in the interpretation of exoplanet spectra, therefore 
ustifying the need for more sophisticated atmospheric retrie v al 
echniques. 

For those cases, the spectral features are reduced compared to 
ase 1, but they appear much closer in the 1–2 μm wavelength

ange. This is because Case 3 has less water compared to Case 1,
hich we expect to decrease the spectral features but thanks to the

lightly larger radius, the spectrum is brought back to a similar level.
ase 4 has opaque clouds, which ‘cuts’ the spectral features abo v e
0 The trace molecules (like H 2 O only accounts for a very tiny portion of 
he atmospheric composition, the rest is filled by gases like hydrogen and 
elium, this kind of atmosphere is also known as Primary Atmosphere (e.g. 
upiter has a Primary Atmosphere) as opposed to Secondary Atmosphere, 
hich is principally made of heavier elements (e.g. Earth has a Secondary 
tmosphere). 

E

1

 certain pressure level, making it look exactly like Case 3 in the 1–
 μm range. Finally, Case 5 has a lower temperature (600 K) and is
rought back to the same level by an increased in radius. With current
elescopes, such as HST , the wav elength co v erage is relativ ely small.
ne typical instrument onboard HST is the Wide Field Camera 3
ith its G141 Grism, which has a wavelength coverage from 1.1 to
.6 μm and reaches errors of the order of 30 ppm. 11 Highlighting
 typical observation with HST on the same figure, we show how
ifficult it would be to distinguish between Cases 3, 4, and 5. This
ighlight the requirement to next-generation space telescopes such 
s Ariel to constrain atmospheric properties. 

3 Solving the inverse problem for exo-atmospheres 

he study of exo-atmosphere relies on spectroscopic observations 
o infer fundamental atmospheric properties that cannot be directly 
bserved. This kind of problem is broadly described as the inverse
roblem (Potthast 2006 ), where one tries to unco v er the cause
atmospheric properties) from the effect (observations). However, 
ore often than not, the full effect is seldom observed, instead,

bservers often received a corrupted form of the effect, which is
he observations. In terms of exoplanetary spectra, there are several 
ources of corruption, such as the presence of noise and limited
pectroscopic co v erage. The loss of information often means that the
nverse mapping function M 

−1 is unknown and may no longer be
niquely defined, which generally give rise to more than one plausible 
auses, also known as model de generac y (see section abo v e). In some
 xtreme cases, sev ere loss in information (like e xtremely low S/N
bserv ations) ef fecti vely means that the cause may no longer be
eco v erable. See Fig. A3 for a typical setup of an inverse problem. 

Our goal is to estimate the set of parameters � that best explains
he observed spectrum D under a given atmospheric model M .
here are different ways to approach this ‘atmospheric retrieval’ 
roblem, but most of them involve a forward model (which includes
ur atmospheric assumptions) and an optimizer. Here we will briefly 
escribe the problem in terms of Bayesian framework, for a more
etailed discussion on Bayesian statistics, one can refer to Skilling 
 2006 ), Feroz et al. ( 2009 ), F oreman-Macke y et al. ( 2013 ), Sharma
 2017 ), Trotta ( 2017 ), Speagle ( 2020 ), and Buchner ( 2021 ) for more
nformation. 

Our goal is to find the conditional distribution of the model
arameters given the observation, also known as the posterior 
istribution ( P ( � | D, M ) = P ( D| �, M ) P ( � ) / P ( D) ) in Bayes’
heorem (Bayes & Price 1763 ). The posterior distribution can be
omputed via the following formulation: 

 ( � | D, M ) = 

P ( D| �, M ) P ( � ) 

P ( D) 
, (A4) 

here P ( D| �, M ) represents the likelihood function under a given
odel, P ( � ) represents the prior, and P ( D ) represents the normaliz-

ng constant, or the Bayesian Evidence. 
The (log-) Gaussian likelihood function is commonly used to 

ompare the observation D with the output from the forward model
 , i.e. 

 [ log P ( D| �, M ] = E [ log ( N ( D| S, σ )] (A5) 

= E 

[
log 

(
1 √ 

2 πσ 2 
exp 

(
−1 

2 

( D − S) 2 

σ 2 

))]
, 

(A6) 
RASTAI 2, 45–61 (2023) 

1 Parts per million, 10 −6 . 
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R

Figure A2 Spectra illustrating the sensitivity of atmospheric models to input parameters. In black: Model 1, in blue: Model 2, in purple: Model 3, in red: 
Model 4, and in green: Model 5. We also show in dashed grey line a model similar to Model 1 but without absorption of water, leaving only the continuum 

contribution of Rayleigh Scattering (short wavelengths) and CIA (long wavelengths). The red and yellow points represent a simulated observation with Hubble 
Space Telescope ( HST ) at 30 parts per million (ppm), highlighting the difficulty of constraining atmospheric properties from current data. 
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Figure A3 Schematic of a typical inverse problem setup. The forward 
process produces an effect (full spectrum, S ) from a hidden cause (e.g. 
atmospheric parameters, � ). Ho we ver, the full ef fect is often unavailable to 
the observer due to the loss of information (such as instrument systematics, 
limitation in spectroscopic co v erage, etc. ). Instead, observers can only receive 
the partial effect (or otherwise known as the observation, D ). The aim of the 
inverse problem is to recover the hidden cause that produces them in the first 
place. 
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here S is a simulated spectrum generated using the forward model
 and σ represents the observation uncertainty/noise. Thanks to

he forward model M , we have an unique mapping from a set of
arameters to a simulated spectrum S such that 

 = M ( � ) . (A7) 

The relation between the observed spectrum D and the simulated
pectrum S is 

 ≈ S + ε, (A8) 

here ε = N (0, σ 2 ). The approximation sign reflects the fact that the
odel remains an approximation of the real phenomena. 
As for the prior function P ( � ), it represents our prior belief on

he distribution of the random variables. With limited knowledge on
he exo-atmosphere, the community al w ays opt for an uninformative
rior ( also known as an uniform prior). 
Unfortunately, in most cases, equation ( A4 ) cannot be computed

nalytically. The main reason lies with the Bayesian Evidence, P ( D )
 

∫ 
P ( D , � )d � , the integral demands e v aluation of the proba-

ility for every possible combinations, which makes the quantity
ntractable for any meaning cases. 

A common strategy is to sample the parameter space, and use
he distribution of the samples to compute the maximum likelihood
stimation (MLE) and the Bayesian Evidence. There are many
ptimizing strategies available, including grid sampling, optimal
stimation, Markov chain Monte Carlo models (MCMC), and Nested
ampling, amongst others. Those are ho we ver computationally

ntensive and require evaluation of millions of forward models. 
There have been efforts from the ML community to develop
ASTAI 2, 45–61 (2023) 
calable sampling algorithms. Stochastic Gradient MCMC (SG-
CMC) is a popular class of algorithms that utilizes data sub-

ampling techniques to reduce computational time to construct the
hain (Welling & Teh 2011 ; Ma et al. 2015 ; Baker et al. 2019 ; Nemeth
 Fearnhead 2019 ). Stochastic Gradient Descent (SGD)’s link to

pproximate Bayesian Inference has prompted further investigation
nto its statistical properties (Chen et al. 2016 ; Mandt, Hoffman &
lei 2017 ; Xing et al. 2018 ); it has since been shown that SGD
ith constant step size (Constant-SGD) can approximate Bayesian
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osterior Distribution. Other algorithms, such as Hamiltonian Monte 
arlo (HMC), incorporated information on the gradient within the 
roposal to impro v e the sampling efficiency (Neal 2011 ; Homan &
elman 2014 ). Chen, Fox & Guestrin ( 2014 ) introduced SG-HMC,
 fusion between SG-MCMC and HMC, to provide further speed up 
o the algorithm. 

Other approaches focuses on architectural design or post- 
rocessing techniques to incorporate elements of Bayesian Inference, 
uch as Dropout (Gal & Ghahramani 2015 ), Neural Network Ensem-
les (Lakshminarayanan, Pritzel & Blundell 2017 ; Cobb et al. 2019 ;
earce et al. 2020 ), SWA-Gaussian (SWAG Maddox et al. 2019 ),
F-Laplace (Ritter, Botev & Barber 2018 ), and temperature-scaling 

Guo et al. 2017 ). 
The availability of many state-of-the-art algorithms prompts the 

eed to benchmark their performances under different data sets and 
cenarios (Yao et al. 2019 ; Izmailov et al. 2021 ). Aligned with this
bjective, the aim of this data base and the machine learning (ML)
hallenge is to leverage recent developments in scalable Bayesian 
nference and identify potential solutions forward. 

PPENDIX  B:  ATMO SPH ER IC  TRANSMIS SI ON  

O D E L  IN  TauREx 

n this section, we describe the simplified transit (forward) model 
sed in the code TauREx 3 . The atmosphere of the planet is
eparated in N L homogeneous layers following a one-dimensional 
lane-parallel geometry (see Fig. B1 ). The light rays from the host
tar are propagated through the atmospheric layers, being impacted 
igure B1 Illustration of the transmission of stellar radiation (left-hand side) throu
 0 is the reference radius at which the atmosphere becomes fully opaque. A ligh
eparated in N L layers for size � z , which are labelled by the index l = j + k , where j
 l corresponds to the altitude at the lower boundary of the layer l . 
y extinction processes (absorption and scattering) at the different 
avelengths ( λ). 
The normalized differential flux ( � λ) or the transit depth at

avelength λ reaching the observer is simply the ratio of the surface
rea of the planet to the host star, which can be further simplified to
he planet-to-star radius squared: 

 λ = 

F out ,λ − F in ,λ

F out ,λ
= 

(
πR p ( λ) 

πR s 

)2 

= 

(
R p ( λ) 

R s 

)2 

, (B1) 

here F out, λ is the total flux received from the system out-of-transit,
 in, λ is the total flux received in-transit, R p ( λ) is the wavelength-
ependent radius that includes the atmospheric contribution, and R s 

s the stellar radius. In our case, the atmospheric contribution consists
n the absorption of the star light from the atmosphere (e.g. we do
ot include scattering processes), which follows the Beer–Lambert 
aw. 

The wa velength-dependent contrib ution of the atmosphere starts 
t the surface labelled R 0 . Note that for gaseous planets (e.g. without
olid surface), R 0 is a reference radius at which we consider the
tmosphere is fully opaque at all wavelengths. We obtain 

R p ( λ) 2 = C sur + C atm 

= 2 π
∫ R 0 

0 
rd r + 2 π

∫ ∞ 

R 0 

r 
(
1 − e −τ ( r,λ) 

)
d r, (B2) 

here C sur is the contribution to the planet surface, C atm 

is the
ontribution from the atmosphere, and r is the radial coordinate. In
ost cases, the former term is assumed to be completely opaque and

herefore can be simply e v aluated as the surface area of the planet at
RASTAI 2, 45–61 (2023) 

gh an exoplanet atmosphere (transit) towards an observer (right-hand side). 
t ray at altitude z propagates along the line-of-sight x . The atmosphere is 
 refers to the z- component and k to the x -component. The discretized altitude 
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adius R 0 , the latter term involves the computation of the optical depth
f the atmosphere at each layer, which summarizes the contribution
rom various processes happening within the atmosphere. 

The optical depth τ ( r , λ) is computed along the line of sight as
ollows: 

( r, λ) = 2 
∫ x f 

0 

N G ∑ 

i 

χi ( r 
′ ) ρ( r ′ ) σi ( r 

′ , λ)d x. (B3) 

ere, χ i is the mixing ratio (or abundance) of the i th species, ρ is
he number density, and σ i is the absorption cross-section of the i th
pecies. The number of gases is noted N G . The variable x f is the
aximum distance considered for the numerical integration. 
Considering the one-dimensional geometry, the integration of τ

long the x axis can be decomposed in unit elements τ ( j , k ), where j
epresents the y -axis inde x es and k are the inde x es along the x -axis.
hysical quantities (e.g. the altitude z , the mixing ratio χ ) defined
t a layer l can then be related to the j , k inde x es using l = j + k ,
nd noting that k can only span the values from j to N L . These are
nde x ed with an additional subscript, for instance, χ i , l is the mixing
atio of the i th species at layer l . 

It follows that the unit path integral, labelled � x ( j , k ) and identified
y the red element in Fig. B1 , can be expressed as 

x ( j,k) = 

√ (
R 0 + z j+ k+ 1 

)2 −
(

R 0 + z j + 

�z j 

2 

)2 

−
√ (

R 0 + z j+ k 

)2 −
(

R 0 + z j + 

�z j 

2 

)2 

, (B4) 

here z l is the altitude at layer l and � z l are the changes in altitude
t layer l . 

Since the layer are equally spaced in log-pressure, we also have 

z l = −H l log 

(
P l+ 1 

P l 

)
, (B5) 

here H l is the scaleheight at layer l and P l is the pressure at layer l .
Expressing the optical layer element as 

( j,k) = 

N G ∑ 

i 

χi,j+ k ρj+ k σi,j+ k ( λ) �x ( j, k) , (B6) 

one obtains the final contribution for the atmosphere as 
ASTAI 2, 45–61 (2023) 
 atm 

= 2 π
N L ∑ 

j= 0 

( R 0 + z j ) 

( 

1 − exp 

[ 

−2 
N L −j ∑ 

k= 0 

τ( j,k) 

] ) 

�z j , (B7) 

nd the transit depth as a function of wavelengths or the transmis-
ion spectrum can be computed following equation ( B1) . In this
nvestigation, we produced a grid of transmission spectra through a
andomized and uniform grid of free parameters. 

The absorbing properties of the different molecules (H 2 O, CO,
O 2 , CH 4 and NH 3 ) and processes (Rayleigh Scattering, CIA) are
ncoded in the cross-sections ( σ i in equation B3 ). Cross-sections are
emperature-, pressure-, and wavelength-dependent, and have a
ighly non-linear behaviour. In most codes, including the one used
ere, since the computation of cross-sections is a computationally
ntensive and complex process, they are pre-computed in tabulated
les that are then interpolated to obtain the absorbing profile of the
ele v ant molecules and processes at a given temperature, pressure,
nd wavelength. 

For a more complete description of the employed code, we refer
he reader to the original papers (Al-Refaie et al. 2021 , 2022a ) and
he NeurIPS TauREx tutorial available at Zenodo: https:// doi.org/ 10
5281/zenodo.6770103 . 

PPENDI X  C :  POSTERI OR  DI STRI BU TI ON  O F  

TMO SPH ER IC  RETRI EVAL  

ig. C1 shows an example of posterior distribution resulting from
 TauREx atmospheric retrie v al. This posterior distribution corre-
ponds to the data shown in Fig. 3 . 

The posterior distribution shows the correlation between the
ree parameters of the model (here atmospheric temperatures and
bundances of five gases). In particular, this inverse problem is
hallenging for ML solutions as, due to the high level of degeneracies
etween the parameters of interest, the exoplanet community is
nterested in obtaining full probability distributions rather than a
nique guess. Solutions to this inverse problem would be required
o (i) correctly identify the abundances of detectable molecules
see CO 2 , CH 4 , and CO); (ii) characterize the correlation between
arameters (see e.g. the ne gativ e correlation between temperature and
bundance of CH 4 ); (iii) constrain upper limits for the parameters
hat cannot be determined (see e.g. NH 3 distribution); and (4) identify

ultimodal solutions (not shown in this example). 

https://doi.org/10.5281/zenodo.6770103
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Figure C1 Example of posterior distribution obtained with TauREx 3 on a simulated Ariel observation. This correlation map is constructed using the Nested 
Sampling traces and weights, with the corner library. 
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PPENDIX  D :  DATA  OV ERVIEW  – C O N T I N U E D  

 strength of this large-scale data generation lies with the use of
urrently known demographics as the source of planetary candidates. 
lanet formation and evolution remains an actively researched area 
nd there are contrasting theories as to how and why certain planets
re more pre v alent than others. By relying solely on observed planets
e a v oided producing fictitious planets that are otherwise impossible

o form. Furthermore, the bi-model distribution of planet mass and 
adius contributes to the dichotomy seen in Fig. 4 . 

Due to the extremely low S/N ratio with exoplanetary obser- 
ation and non-linear instrument systematics, actual observations 
re usually accompanied with non-negligible measurement errors. 
hese errors are specific to the brightness of the host star, the
ata reduction process, the instrument onboard, and its separation 
rom us. ArielRad , an official radiometric simulator dedicated to 
he Ariel Space Mission, is designed specifically to account for 
he aforementioned effects and provide realistic estimation of the 
bservational uncertainties (Mugnai et al. 2020 ). Fig. D1 shows 
he distribution of (log-) observational uncertainties across the 
2 wavelength channels. All of them displayed a non-Gaussian 
istribution, some even presented a bi-model distribution. There 
re also noticeable difference in terms of the shape and magnitude
cross different channels. For instance, uncertainties associated with 
he blue end of the spectrum tend to be smaller than the red end
RASTAI 2, 45–61 (2023) 
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R

Figure D1 Distribution of (log-) uncertainty across different wavelength channels used by Ariel-Tier 2 resolution. These uncertainties are generated using 
ARIELRAD , which accounts for the different instrumentation onboard Ariel, stellar properties, as well as planetary properties. Since the SNR requirement of Ariel 
Tier-2 data is on the atmospheric signal, those distribution are approximately offset by one order of magnitude compared to the ‘Feature height’ distribution in 
Fig. 4 . 
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Table E1. Summary of the different configurations of the four subsets. 

Subset 1 Subset 2 Subset 3 Subset 4 

Planetary configuration In-Range Out-Range In-Range Out-Range 
Atmospheric properties In-Range In-Range Out-Range Out-Range 
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f the spectrum, as the blue end of the spectrum is coming from a
hotometer. 

PPENDIX  E:  LEVEL  2  DATA  – D ETAILED  

E SCRIPTIONS  

1 Structure 

evel 2 data are designed originally for the NeurIPS 2022 competi-
ion, but the data structure can be re-used for general model training.
t is consisting of a training and test set. The two sets shares the
ame structure and the aim is to allow better readability to non-field
xperts: 

(i) AuxillaryTable.csv: contains supplementary astro-
hysical parameters. 
(ii) SpectralData.hdf5: contains details of the spectro-

copic observations 
(iii) Ground Truth Package: contains the ground truth tar-

ets for the competition. 

(a) TraceData.hdf5 records the traces of the empirical
distribution obtained from Nested Sampling; it is primarily used
for the Regular Track. 

(b) QuartilesTable.csv records the 16th, 50th, and
84th percentile of the posterior distribution; it is mainly used as
a target for the Light Track. 

(c) FM Parameter Table.csv records the model values
that generate the spectra in the first place. While it could be
different from the ground truth; it can be used as a soft label. 

2 Train-test split 

ith our long separation from an y e xoplanets and limitations from
urrent technologies, it is almost impossible to ascertain the true
ature of the target exo-atmosphere. In other words, our test distri-
ution will always be different from the training distribution, also
nown as domain shift in ML literature (Wang & Deng 2018 ; Wilson
ASTAI 2, 45–61 (2023) 
 Cook 2020 ) To reflect this limitation, the train/test split is designed
o unco v er solutions that can maintain their performance ev en under
nknown situations (unseen atmospheric behaviour and/or unseen
lanets). 
To support this goal, we abandoned the usual practice of dividing

 data set randomly into training and test set, which tests the
odel’s ability to generalize under a homo g eneous distribution.

nstead, the test set is designed to contain In-Training Parameter
anges (In-Range) and Out-of-Training Range Parameters (Out-
ange) components. In-Range samples represent examples that come

rom the same distribution as the training data. Out-Range represent
amples that are unseen by the model during training, this includes
nseen planetary and atmospheric properties. 
As a result, some of the planets are purposely remo v ed from the

raining set to create unseen planetary properties, any theoretical
pectra created using from those planets are also tak en aw ay from
he training, causing a slight drop in the amount of available training
ata, as compared to Level 1 data. We further generated 5461 spectra
nder equilibrium chemistry scheme (Ag ́undez et al. 2012 , 2020 )
y assuming solar elemental ratios to create unseen atmospheric
roperties. As stated abo v e, these spectra are unseen and thus are not
ncluded in the training set. 

The test set is stratified into four subsets, each representing varying
egree of similarity to the training data. Table E1 summarizes the
ifferent configurations of the four subsets. Subset 1 is the most
imilar to the training set as all the components are In-Range, while
ubset 4 is the most dissimilar as all the components are Out-Range.
ll of them contain roughly the same proportion ( ∼25 per cent )in

he test set. 
All e xamples, re gardless of their initial atmospheric assumptions

r planetary properties, are homogeneously retrieved using the free
hemistry settings outlined in Section 2.3 . By doing so, our retrie v als
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ill be, on purpose, biased and will not be retrieving the input
hemistry (ground truth). Participants are tasked to reproduce the 
ame results from our biased retrie v als. 

The combined effect of these two changes means that any proposed 
olution will have to maintain reliable and consistent behaviour when 
xposed to distributions that are unknown and unseen to their training 
istribution. We explicitly did not include any spectra generated with 
quilibrium chemistry assumption in the training set, as a proxy of
he actual situation – our atmospheric models cannot adequately 
escribe the actual atmosphere. 
The stratification of test examples provides flexibility to future 

nvestigation. The test set can be used to test the trained model under
ifferent testing conditions, for instance, one can test their models 
n set 1 examples to understand the model’s performance under 
omogeneous cases. In any cases, spectra generated with either free 
hemistry and/or equilibrium chemistry is available online for any 
nterested parties to construct their own training and test set. 

The data set for NeurIPS 2022 competition contains a similar data
tructure, but featured more diverse, unseen atmospheric assumptions 
han the one presented here. A discussion of these atmospheric 
ssumption is outside the scope of this paper, and the readers are
dvised to refer to Yip et al. ( 2022b ) for a more detailed description
f the respective test set for the data challenge. 
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