UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment

Fu, Dun Jack; Glinton, Sophie; Lipkova, Veronika; Faes, Livia; Liefers, Bart; Zhang, Gongyu; Pontikos, Nikolas; ... Balaskas, Konstantinos; + view all (2023) Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment. British Journal of Ophthalmology 10.1136/bjo-2022-322672. (In press). Green open access

[thumbnail of bjo-2022-322672.full.pdf]
Preview
Text
bjo-2022-322672.full.pdf - Published Version

Download (8MB) | Preview

Abstract

OBJECTIVE: To evaluate the role of automated optical coherence tomography (OCT) segmentation, using a validated deep-learning model, for assessing the effect of C3 inhibition on the area of geographic atrophy (GA); the constituent features of GA on OCT (photoreceptor degeneration (PRD), retinal pigment epithelium (RPE) loss and hypertransmission); and the area of unaffected healthy macula.To identify OCT predictive biomarkers for GA growth. METHODS: Post hoc analysis of the FILLY trial using a deep-learning model for spectral domain OCT (SD-OCT) autosegmentation. 246 patients were randomised 1:1:1 into pegcetacoplan monthly (PM), pegcetacoplan every other month (PEOM) and sham treatment (pooled) for 12 months of treatment and 6 months of therapy-free monitoring. Only participants with Heidelberg SD-OCT were included (n=197, single eye per participant).The primary efficacy endpoint was the square root transformed change in area of GA as complete RPE and outer retinal atrophy (cRORA) in each treatment arm at 12 months, with secondary endpoints including RPE loss, hypertransmission, PRD and intact macular area. RESULTS: Eyes treated PM showed significantly slower mean change of cRORA progression at 12 and 18 months (0.151 and 0.277 mm, p=0.0039; 0.251 and 0.396 mm, p=0.039, respectively) and RPE loss (0.147 and 0.287 mm, p=0.0008; 0.242 and 0.410 mm, p=0.00809). PEOM showed significantly slower mean change of RPE loss compared with sham at 12 months (p=0.0313). Intact macular areas were preserved in PM compared with sham at 12 and 18 months (p=0.0095 and p=0.044). PRD in isolation and intact macula areas was predictive of reduced cRORA growth at 12 months (coefficient 0.0195, p=0.01 and 0.00752, p=0.02, respectively) CONCLUSION: The OCT evidence suggests that pegcetacoplan slows progression of cRORA overall and RPE loss specifically while protecting the remaining photoreceptors and slowing the progression of healthy retina to iRORA.

Type: Article
Title: Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1136/bjo-2022-322672
Publisher version: http://dx.doi.org/10.1136/bjo-2022-322672
Language: English
Additional information: © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Keywords: Clinical Trial, Imaging, Macula, Retina
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology
URI: https://discovery.ucl.ac.uk/id/eprint/10168964
Downloads since deposit
10Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item