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learning based on mobile phone diary
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Abstract

Introduction: Triggers, premonitory symptoms and physiological changes occur in the preictal migraine phase and may

be used in models for forecasting attacks. Machine learning is a promising option for such predictive analytics. The

objective of this study was to explore the utility of machine learning to forecast migraine attacks based on preictal

headache diary entries and simple physiological measurements.

Methods: In a prospective development and usability study 18 patients with migraine completed 388 headache diary

entries and self-administered app-based biofeedback sessions wirelessly measuring heart rate, peripheral skin temper-

ature and muscle tension. Several standard machine learning architectures were constructed to forecast headache the

subsequent day. Models were scored with area under the receiver operating characteristics curve.

Results: Two-hundred-and-ninety-five days were included in the predictive modelling. The top performing model, based

on random forest classification, achieved an area under the receiver operating characteristics curve of 0.62 in a hold-out

partition of the dataset.

Discussion: In this study we demonstrate the utility of using mobile health apps and wearables combined with machine

learning to forecast headache. We argue that high-dimensional modelling may greatly improve forecasting and discuss

important considerations for future design of forecasting models using machine learning and mobile health data.
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Introduction

Migraine is the leading cause for disability in the age

range of 15–55 (1) and almost all sufferers experience

functional impairment during the attack (2). The dis-

order is for many unpredictive and the uncertainty of

when a new attack occurs is associated with anxiety

and further functional impairment (3). The usual treat-

ment strategy for migraines is to abort attacks after

their occurrence or commence preventative treatments

in order to reduce the frequency of attacks (4). In addi-

tion, so-called preemptive treatment—in which drugs

are administered specifically on days with increased risk

of headache—is a promising option (5). The notion of
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preemptive treatment is further supported by the fact
that abortive treatment seems to be more effective if
administered early in the course of an attack (6). It is
therefore of great interest to be able to predict the onset
of a migraine headache.

Triggers and premonitory symptoms preceding
migraine headache have been extensively studied and
are suggested to be good predictors for attacks by sev-
eral researchers (5,7–10). Triggers are defined as endog-
enous or exogenous events associated with an increased
probability of attack within a short time window, while
premonitory symptoms are cognitive, behavioral, sen-
sory or physical symptoms or factors preceding the
attack by up to 48 hours (8,11). However, both are
elusive, reliant on subjective reporting and prone to
methodological issues (8). In addition to the subjective
changes several neurophysiological changes occur in
premonitory phase of the migraine attack (12). Even
easily accessible physiological changes, reflecting
altered autonomic tone, seem to precede the migraine
attack (13). The emergence of mobile health (mHealth)
apps and wearables allows for effective capture of both
the headache characteristics, the premonitory symp-
toms and the physiological changes. Nevertheless, at
present, there is limited utilization of the premonitory
biophenotype to forecast migraine attacks.

Owing to the complex underlying neurobiology, it is
probable that sophisticated models are required to
accurately forecast migraine attacks (8,9). High-
dimensional machine learning models are able to
handle a wide array of covariates (features) meaning
they can absorb and utilize the complex biological
and physiological changes preceding an attack, thus
yielding greater accuracy. The aim of this study was
to explore the utility of machine learning models to
predict headache attacks based on headache diary
entries combined with physiological measurements
from wireless wearable sensors.

Methods

Study design and participants

The data for this exploratory machine learning analysis
was collected in a prospective development and usability
study at St. Olavs University Hospital in Trondheim,
Norway, from December 2019 to March 2020. The
results of the development and usability is reported else-
where (14). We here present the results of an exploratory
machine learning analysis utilizing data from the devel-
opment and usability study.

Eighteen adults with migraine were recruited from
the outpatient headache clinic and from the local com-
munity using the hospital intranet and advertisement in
the news. All diagnoses were confirmed by a consultant

neurologist with headache expertise. Participants com-
pleted four weeks of headache diary entries and self-
administered biofeedback training on an app connected
to wearable wireless sensors. The collected data was
used to make predictive models to forecast headache.
The study was approved by the regional committee for
medical and health research ethics (REK Midt 7166)
and the Norwegian Medicines Agency for trials of
medical equipment (19/11730-9).

Inclusion criteria were age between 18 and 65 years;
migraine with or without aura diagnosed according to
the International Classification of Headache Disorders
3 (15); two to eight attacks per month; experience with
using an iPhoneVR (Apple Inc.); and signed written
informed consent. No inclusion criterion of number
of headache days was made, thus both individuals
with a retrospective history of episodic and chronic
migraine were eligible for inclusion. Exclusion criteria
were lack of proficiency in the Norwegian language;
reduced vision, hearing, or sensibility to a degree that
hampered study participation; or if they had any seri-
ous neurological or psychiatric disorders.

Dataset and data pre-processing

The Cerebri app (Nordic Brain Tech AS, Oslo,
Norway) was used as biofeedback setup prompting
participants to complete a headache diary entry and a
10-minute biofeedback session daily. Users were free to
complete the biofeedback session and diary entry at
any timepoint during the day regardless of the presence
of headache. However, the diary entry had to be com-
pleted to start a biofeedback session. The app included
a daily reminder as a pop-up message that could be set
at a timepoint specified by the user. The headache diary
assessed presence of headache (not distinguishing
between migraines and non-migraine headaches),
peak headache intensity, average headache intensity,
impact on daily functioning, use of abortive medica-
tion, the presence of 13 predefined premonitory symp-
toms and the amount of sleep and exercise within the
last 24 hours. Migraine headaches versus non-migraine
headaches were not recorded. During the biofeedback
session a small surface electromyography sensor was
used for measuring muscle tension from the upper tra-
pezius muscle fibers, and a combined thermistor and
photoplethysmography was attached to the right index
finger to measure peripheral skin temperature and
heart rate. Sensors transmitted signals to the app via
BluetoothVR Smart.

We calculated the session-wise maximal and mini-
mal heartrate, temperature, and SEMG-voltage as the
median of the ten lowest and ten highest data samples
during each biofeedback session. We also calculated
the mean heartrate, mean temperature and the root
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mean square SEMG-voltage for each session. The full

list of covariates (features) is provided in online

Supplementary Material 1.

Primary outcome

The primary outcome was a dichotomized presence or

absence of any headache the day following a complete

headache diary entry and a completed biofeedback ses-

sion. Samples with a missing diary entry the day after a

completed diary entry and biofeedback session were

removed from the dataset as these did not enable

prediction.

Predictive modelling

The predictive models were constructed and evaluated

by applying several standard machine learning architec-

tures, including logistic regression; support vector

machines; random forest classifiers; gradient boosting

machines; adaptive boosting and extreme gradient

boosting. We split the dataset in a randomized manner

into stratified training, validation, and test sets, with a

4:1 ratio training to test, and a 4:1 ratio training to val-

idation. The stratification divided individuals so that no

individual had samples in more than one of the training,

validation, and test sets. Partitions were kept separate

during training. Data was scaled by subtracting the

mean and dividing by the standard deviation.
We modelled all features and optimized model hyper-

parameters with a three-fold cross-validation Bayesian

search strategy with 50 iterations (16). Online

Supplementary Material 2 summarizes the hyperpara-

meter tuning. All models were trained on the training

set and performance was continuously evaluated on the

validation set. The average area under the receiver oper-

ating characteristics curve (AUC) was used as a scoring

metric. The top performing model was decided based on

a combination of cross-validated and validation set per-

formance and was finally applied on the test set to quan-

tify out-of-sample AUC. We also report out-of-sample

accuracy, sensitivity and specificity.
For the top performing model, we calculated shap-

ley values and constructed a SHAP (Shapley Additive

exPlanations) summary plot. SHAP is a framework uti-

lizing shapley values to explain machine learning model

predictions (17). SHAP assigns each feature an impor-

tance value, which enables interpretation of how each

feature contributes towards a particular prediction.

The values can be summarized in a plot visualizing to

what extent each feature contributes positively or neg-

atively towards the prediction.
To evaluate the impact of model dimensionality the

top performing model was entered into a recursive fea-

ture elimination with a three-fold cross-validation

(RFECV). The RFECV performs a stepwise removal
of features based on importance until performance
increase no longer is achieved. We report the optimal
number of features and visualize the impact of model
dimensionality on a line plot.

We also constructed a calibration plot for the top
performing model. Calibration plots are useful for eval-
uating machine learning classification problems.
Forecasting headache is a classification problem with
a binary outcome (absence or presence of headache),
but we also investigated how confident the predictions
are. Classification models usually provide probability
estimates, in addition to the class prediction, which can
be plotted against the true outcomes to visualize the
confidence of the predictions. The calibration plot
was constructed using the training data and the prob-
ability estimates were categorized into 10 bins.

This is the primary machine learning analysis of
data collected in this study. A priori we planned for
exploratory modelling of headache forecasting. Data
were reported as means, standard deviations (SD),
medians and interquartile ranges (IQR). All statistical
analyses were performed, and figures were made using
Python v3.10 (Python Software Foundation) with the
following open-source packages: matplotlib 3.6.1;
numpy 1.23.4; pandas 1.5.0; scikit-learn 1.1.2; scikit-
optimize 0.9.0; seaborn 0.12.0 and shap 0.41.0.

Results

Participants and demographics

Eighteen participants were recruited and completed a
total of 438 headache diary entries and 391 biofeedback
session. There was a total of 388 days with both a com-
plete headache diary entry and biofeedback session
data. Among these 93 days were not followed by a
headache diary entry the next day, and thus removed
from the dataset. Data from one participant was not
available for analyses because of unsuccessful transfer
of headache diary entries and biofeedback session data
to the data storage server. Patient demographics are
summarized in Table 1.

Predictive modelling performance

Two-hundred-and-ninety-five headache diary entries
and biofeedback sessions with a headache diary entry
the following day were included in the predictive
modelling. The top model was the random forest clas-
sifier with a mean cross-validated AUC of 0.68 (0.01)
and a validation set AUC of 0.56. The gradient boost-
ing classifier performed nearly identical with a mean
cross-validated AUC of 0.68 (0.02) and a validation
set AUC of 0.55). The random forest model achieved
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an AUC of 0.62 in the out-of-sample test set (Figure 1).

Accuracy, sensitivity, and specificity of the random

forest model was 0.56, 0.0 and 1.0 respectively.

Accuracy for each of the three individuals in the test

set was 0.56, 0.27 and 0.69. The test set AUC, accuracy,

sensitivity, and specificity of the gradient boosting

model was 0.62, 0.62, 0.21 and 0.95 respectively. The

respective cross-validated AUC for the other models

were: logistic regression 0.67 (0.03); support vector

machines 0.70 (0.04); adaptive boosting 0.65 (0.05);

extreme gradient boosting 0.66 (0.05).
The RFECV found the best performance to be

achieved when including all features. However, only

minimal improvement in model performance was seen

from approximately 15 features and upwards. Online

Supplementary Material 3 is a line plot demonstrating

the model performance relative to number of included

features.
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Figure 1. Receiver operating characteristics curve for the best model based on random forest classifier. Out-of-sample performance
on the test set scored an AUC of 0.62 (blue line). The dark gray line represents the mean ROC curve of the three-fold cross validation
with �1 standard deviation as the shaded gray area. The out-of-sample performance was faithful to the training. The dotted red line
represents AUC for classification by chance given a random and equal distribution of headache days. ROC¼ receiver operating
characteristics; AUC¼ area under the curve.

Table 1. Patient demographics.

Participants (n¼ 18) Test set (n¼ 3)

Age, mean (SD) 40.6 (9.8) 46.7 (9.3)

Gender female (%) 17/18 (94.4) 3/3 (100.0)

Migraine subtype:

Migraine with aura (%) 7/17 (41.2) 1/3 (33.3)

Chronic migraine (%) 3/17 (17.6) 0/3 (0.0)

Comorbid headache disorders:

Tension type headache (%) 7/18 (38.9) 2/3 (66.6)

Trigeminal autonomic cephalalgias (%) 1/18 (5.6) 0/3 (0.0)

Self-reported monthly headache attacks, median (IQR) 4 (3.3–5) 5.3 (1.5)

Headache days during study period (SD) 8.6 (4.4) 9.0 (2.9)
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The contributions of the different features on model
prediction are visualized in the SHAP summary plot
(Figure 2). Almost all features contributed to some
degree towards the predictions, and both self-reported
and physiological measurements had significant SHAP
values. Figure 3 is a calibration plot indicating the con-
fidence of the predictions.

Discussion

Principal findings

Using data from a study of self-administered app-based
migraine biofeedback training and daily headache diary
entries, we have demonstrated a proof-of-concept for
forecasting individual headache days with machine
learning. The model correctly predicts the absence or
presence of a headache the next day, on almost two
out of three occasions in unseen individuals. Self-
reported headache parameters, premonitory symptoms,
and physiological measurements all play a significant
role in forecasting headaches. With future refinement,
high-dimensional machine learning models are likely to
forecast headaches days in individuals with migraine
with high accuracy.

Interpretation

The machine learning models presented in this paper
serve as an essential proof-of-concept for using machine
learning to forecast headaches from easily accessible
mHealth data but should be interpreted with caution
for several reasons. Firstly, the sample size is small for
machine learning. We included almost 300 samples in
the models, which provided decent power for prelimi-
nary analyses. Despite weak evidence (18), a common
rule-of-thumb is to include at least ten events per vari-
able for logistic regression, a criterion our models nearly
meet. Secondly, the model assumes a generalized frame-
work of mechanisms underlying the occurrence of head-
ache attacks. Assuming such a homogeneity might not
be the correct approach when forecasting headaches at
the individual level, as individual patterns may contain
information that is lost within a generalized framework.
Indeed, the discrepancy in prediction accuracy among
the individuals in the test set underpins such a heteroge-
neity and a larger sample size and longer observation
period would be necessary for more precise individual-
ized predictions. Moreover, not distinguishing between
headache attacks is likely to have hampered predictions
as migraine and non-migraine attacks have varying
premonitory symptoms and physiological properties.
Nonetheless, we kept individuals strictly separated
between the training and test sets. This mitigates data
leakage and overfitting, and increases generalizability

with a robust out-of-sample estimate. Thirdly, the cali-
bration plotting suggests low confidence in the predic-
tions underpinning the fragility of a model built on
limited data. Finally, our input covariates most likely
do not capture the full predictive capacity biologically
feasible. There is likely a wide range of other valuable
features that may improve future models.

Despite these drawbacks, the main contribution of
this work lies in demonstrating the importance of high-
dimensional modelling of mHealth data to forecast
migraine. The large number of features considered
important by the model, illustrated by the SHAP plot
and the RFECV curve, underpins that complex
patterns within a wide array of factors is required for
accurate predictions. One can note that both the pre-
monitory symptoms, today’s headache characteristics
and today’s biofeedback measurements all contribute
to predicting tomorrow’s headache. The most impor-
tant features were premonitory symptoms of craving,
swelling and feeling cold, the amount of sleep, the pres-
ence and intensity of headache, how much the head-
ache affected daily functioning, the length of the
biofeedback session, and mean heartrate. This stands
in contrast with a common patient belief that unitary
factors often trigger migraine attacks (19,20). Of note,
having a headache one day is a strong predictor for
having headache the next day, which is not surprising
given the fact that migraine attacks often span consec-
utive days. However, the small sample size of this study
means that interpreting individual features and their
direct relevance and causality towards the prediction
should be done with great caution.

The literature supports that both self-reported data,
physiological measurements and external data can be
used in headache forecasting. An important study by
Houle et al. (10) looked into predicting headaches
based on self-reported perceived stress. Perceived
stress has received attention as an important trigger
associated with the onset of headache (20–22). In the
study, a low-dimensional model using today’s level of
stress combined with the presence/absence of headache
was able to predict headache tomorrow with an out-
of-sample AUC of 0.65. The models presented in this
paper display similar performance. However, our
model has a much smaller sample size but higher
complexity indicating the value of high-dimensional
modelling for high forecasting accuracy. Houle et al.
(10) conclude that their model has a very
promising utility in predicting the future occurrence
of migraine attacks. Our findings corroborate this
and serve as additional evidence for forecasting
migraine attacks.

The feasibility of using headache diary apps and
wearable biosensors for headache prediction has also
been demonstrated in several studies. In a study by

Stubberud et al. 5
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Connelly and Boorigie (23) it was shown that children

with migraine could use their smartphone to routinely

report headaches and daily activities, while wearables

could provide passive data monitoring for the majority

of the day on most days. The authors conclude that

such methods for data capture should be suited for

machine learning analytics, and should indeed be con-

sidered when designing future studies. A study by

Siirtola and colleagues (24) demonstrated that sleep

time data collected with a wearable sensor could be

used to predict migraine attacks the next day at the indi-

vidual level. Together with our findings, these studies

support the use of wearables in migraine forecasting.
In addition, several studies for prediction of

migraine attacks have been carried out by Pagán and

colleagues (25–27). While the studies mainly focus on

simulations and technological and methodological

development, they propose several concepts worth con-

sidering for future forecasting models. In the studies

two patients were included for continuous 24-hour

monitoring of heart rate, electrodermal activity, skin

temperature and peripheral capillary oxygen satura-

tion. The researchers suggest that, based on these fea-

tures, the migraine attack has a predictive horizon

limited to 40 minutes. The findings are not directly

comparable to ours, but they support that simple phys-

iological measurements should be used, and that con-

tinuous monitoring may improve accuracy.
When further developing forecasting models there is

a wide range of predictors that should be taken into

consideration. To date, potential predictors seem to fall

in one of three categories: self-reported and behavioral

predictors; biomarker and physiological predictors;

and extra-individual predictors (5,28). Self-reported

predictors such as triggers and premonitory symptoms

are generally considered important in forecasting

models (8–10). In spite of this, we made a choice to

leave out triggers, partly to reduce the number of ques-

tions in the diary, and partly because triggers appear

somewhat less reliable than premonitory symptoms in

forecasting attacks (8). Indeed, a study by Holsteen and

colleagues found that self-reported triggers included in

a multivariable forecasting model only performed

slightly better than chance (29). Nonetheless, it is con-

ceivable that our model could have benefited from

including triggers as they add to the complex high-

dimensional space the underlies forecasting. Future stud-

ies should include triggers as a part of comprehensive
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electronic diaries because we do not have the evidence to
discard their utility. One should also carefully distinguish
between different headache types and attacks as the var-
iance in their premonitory symptoms and trigger will
influence predictions. Such a distinction will allow for
separate predictive models of migraine versus non-
migraine attacks which could improve performance.
Next, evidence on biomarkers and physiological changes
occurring in the premonitory migraine phase is growing
(12). This group of predictors includes a wide variety of
factors, from simple heart rate measurements to complex
neuroimaging biomarkers. One example is a study in
which continuous wireless electroencephalography identi-
fied significant changes in delta and beta waves in the
hours preceding attacks (30). Another example is a func-
tional MRI study showing that the distance to the next
headache attack is predictable by the signal intensities in
the trigeminal spinal nuclei in the preictal phase (31). In
addition, continuous data monitoring and sleep time
data, as discussed above, also provides predictive value
(23,24). While these biomarkers and physiological meas-
urements are less accessible than simple self-reporting
predictors; they suggest that we should look for a
broad variety of biomarkers and phenotypic features to
include in high-dimensional models forecasting migraine
attacks. Finally, extra-individual predictors include fac-
tors not influenced by the individual such as weather
changes, pollen, and air pollution (32). Such factors can
easily be captured and temporally integrated with the
other factors.

Successfully predicting migraine attacks has several
benefits. First, there is a substantial benefit for both the
individual and society as one could reduce disease
burden, reduce anxiety about the unpredictability of
attacks, and aid in self-management of migraine.
Second, predicting an attack allows the patient to
take precautionary measures, administer abortive med-
ication at the right time, which is shown to be more
effective, or choose preemptive treatment (6,8). Still,
one should keep in mind that a high forecasting accu-
racy (AUC> 0.80) would be required for individuals
with high-frequency headache to avoid medication
overuse headache, because a low specificity would
increase the rate of false positive drug administrations
(5). Third, even though there is a belief among some
patients and health care provides that attacks are pre-
dictable based on subjective factors—few actually pre-
dict correctly. In one study, only 4% of participants
were able to predict the exact date of their next

attack (33), despite the fact that every second patient

can accurately predict the time of day or location of the

attack (34). Finally, in a thematic qualitative analysis

of the usability findings in this study, we have identified

that forecasting attacks is one of the primary desires for

an app-based treatment for migraine patients, indicat-

ing that there is a desire in the migraine population for

forecasting tools (14).

Limitations

Several limitations are discussed in the interpretation of

our findings, including the small sample size, the limi-

tations of a generalized model for individual predic-

tion, the absence of potentially important features,

and the uncertainty of the estimated SHAP values

and feature contributions. In addition, the study is lim-

ited by factors regarding the study population and data

collection. The study population was based on a con-

venience sample from a tertiary headache clinic, not

necessarily representative of the general migraine pop-

ulation. We also recruited only one male participant

and it is conceivable that physiological properties cor-

relating to sex could impact the model. Data was col-

lected through an app-based headache diary that has

not undergone formal validation, and all diary entries

were completely unsupervised. The participants only

used the equipment for a month, a shorter time

period than recommended by IHS guidelines (35),

and usability problems and acquiescence bias may all

have affected the data collection. Together, these limi-

tations reduce data size, reduce data fidelity and reli-

ability and thereby likely decrease the prediction

accuracy. Despite all limitations, the work presented

here is the most complex forecasting model based on

self-reporting and simple physiological measurements

to date. Further research is certainly warranted.

Conclusion

In this study, we developed a proof-of-concept machine

learning model to forecast headache with data from a

headache diary app and wearables. With this model we

demonstrate that high-dimensional models have the

potential for high forecasting accuracy. Further

research using a rich dataset of self-reporting data,

objective biomarkers, and external data is likely to pro-

duce forecasting models with high predictive accuracy.
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Clinical implications

• Mobile phone apps and simple wearables can be used to capture data relevant for headache forecasting.
• Self-reported headache symptoms, premonitory symptoms and physiological measurements can be used to

forecast headaches with machine learning.

Declaration of conflicting interests

The authors declared the following potential conflicts of

interest with respect to the research, authorship, and/or pub-

lication of this article: NTNU and St. Olavs Hospital,

Trondheim University Hospital may benefit financially

from the commercialization of the proposed treatment

through future possible intellectual properties. This may

include financial benefits to the authors of this article.
Anker Stubberud is a co-founder of the Nordic Brain Tech

AS, a spin-off company that was established based Cerebri

biofeedback concept used in this and previous studies at the

NTNU Norwegian University of Science and Technology.

Stubberud is a co-inventor of Cerebri and may benefit finan-

cially from a license agreement between Nordic Brain Tech

AS and NTNU Norwegian University of Science and

Technology.
Sigrid Hegna Ingvaldsen, Eiliv Brenner and Ingunn

Winnberg declare no potential conflicts of interest concerning

the research, authorship, or publication of this article.
Alexander Olsen is a co-founder of the Nordic Brain Tech

AS, a spin-off company that was established based Cerebri

biofeedback concept used in this and previous studies at the

NTNU Norwegian University of Science and Technology.

Olsen is a co-inventor of Cerebri and may benefit financially

from a license agreement between Nordic Brain Tech AS and

NTNU Norwegian University of Science and Technology.
Gøril Bruvik Gravdahl, Manjit Matharu and Parashkev

Nachev declare no potential conflicts of interest concerning

the research, authorship, or publication of this article.
Erking Tronvik is a co-founder of the Nordic Brain Tech AS,

a spin-off company that was established based Cerebri bio-

feedback concept used in this and previous studies at the

NTNU Norwegian University of Science and Technology.

Tronvik is a co-inventor of Cerebri and may benefit finan-

cially from a license agreement between Nordic Brain Tech

AS and NTNU Norwegian University of Science and

Technology.

Funding

The authors disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: The study received funding for cooperative projects

between the Department of Neuromedicine and Movement

Science and Department of Psychology NTNU Norwegian

University of Science and Technology.

ORCID iDs

Anker Stubberud https://orcid.org/0000-0003-0934-9914

Gøril Bruvik Gravdahl https://orcid.org/0000-0001-7507-

2082
Manjit Singh Matharu https://orcid.org/0000-0002-4960-

2294

References

1. Stovner LJ, Nichols E, Steiner TJ, et al. Headache in the

Global Burden of Disease (GBD) Studies. In: Steiner T

and Stovner L (eds) Societal Impact of Headache. New

York: Springer, Cham, 2019, pp.105–125.
2. Lipton RB, Stewart WF, Diamond S, et al. Prevalence

and burden of migraine in the United States: data from

the American Migraine Study II. Headache 2001; 41:

646–657.
3. Minen MT, Begasse De Dhaem O, Kroon Van Diest A,

et al. Migraine and its psychiatric comorbidities. J Neurol

Neurosurg Psychiatry 2016; 87: 741–749.
4. Steiner TJ, Jensen R, Katsarava Z, et al. Aids to

management of headache disorders in primary care.

J Headache Pain 2019; 20: 57.
5. Turner DP, Lebowitz AD, Chtay I, et al. Forecasting

migraine attacks and the utility of identifying triggers.

Curr Pain Headache Rep 2018; 22: 62
6. Goadsby P, Zanchin G, Geraud Ga, et al. Early vs. non-

early intervention in acute migraine—‘Act when Mild

(AwM)’. A double-blind, placebo-controlled trial of

almotriptan. Cephalalgia 2008; 28: 383–391.
7. Lipton RB, Buse DC, Hall CB, et al. Reduction in per-

ceived stress as a migraine trigger: Testing the “let-down

headache” hypothesis. Neurology 2014; 82: 1395–1401.
8. Lipton RB, Pavlovic JM, Haut SR, et al. Methodological

issues in studying trigger factors and premonitory fea-

tures of migraine. Headache 2014; 54: 1661–1669.
9. Pavlovic JM, Buse DC, Sollars CM, et al. Trigger factors

and premonitory features of migraine attacks: summary

of studies. Headache 2014; 54: 1670–1679.
10. Houle TT, Turner DP, Golding AN, et al. Forecasting

individual headache attacks using perceived stress: devel-

opment of a multivariable prediction model for persons

with episodic migraine. Headache 2017; 57: 1041–1050.
11. Marmura MJ. Triggers, protectors, and predictors in epi-

sodic migraine. Curr Pain Headache Rep 2018; 22: 81.
12. Karsan N and Goadsby PJ. Biological insights from the

premonitory symptoms of migraine. Nat Rev Neurol

2018; 14: 699–710.
13. Gazerani P and Cairns BE. Dysautonomia in the patho-

genesis of migraine. Expert Rev Neurother 2018; 18:

153–165.

Stubberud et al. 9

https://orcid.org/0000-0003-0934-9914
https://orcid.org/0000-0003-0934-9914
https://orcid.org/0000-0001-7507-2082
https://orcid.org/0000-0001-7507-2082
https://orcid.org/0000-0001-7507-2082
https://orcid.org/0000-0002-4960-2294
https://orcid.org/0000-0002-4960-2294
https://orcid.org/0000-0002-4960-2294


14. Ingvaldsen SH, Tronvik E, Brenner E, et al. A biofeed-
back app for migraine: development and usability study.
JMIR Form Res 2021; 5: e23229.

15. Headache Classification Committee of the International
Headache Society (IHS). The International Classification
of Headache Disorders, 3rd edition. Cephalalgia 2018; 38:
1–211.

16. Bartlett P, Pereira F, Burges C, et al. Advances in Neural

Information Processing Systems 25 (NIPS 2012): 26th

Annual Conference on Neural Information Processing

Systems 2012, USA: Morgan Kaufmann Publishers,
Inc., 2012.

17. Guyon I, Von Luxburg U, Bengio S, et al. Advances in

Neural Information Processing Systems 30 (NIPS 2017),
2017.

18. van Smeden M, de Groot JA, Moons KG, et al. No
rationale for 1 variable per 10 events criterion for
binary logistic regression analysis. BMC Med Res

Methodol 2016; 16: 163.

19. Hougaard A, Amin F, Hauge AW, et al. Provocation of
migraine with aura using natural trigger factors.
Neurology 2013; 80: 428–431.

20. Stubberud A, Buse DC, Kristoffersen ES, et al. Is there a
causal relationship between stress and migraine? Current
evidence and implications for management. J Headache

Pain 2021; 22: 1–11.
21. Lipton RB, Buse DC, Hall CB, et al. Reduction in per-

ceived stress as a migraine trigger. Testing the “let-down
headache” hypothesis. Neurology 2014; 82: 1395–1401.

22. Houle TT, Butschek RA, Turner DP, et al. Stress and
sleep duration predict headache severity in chronic head-
ache sufferers. Pain 2012; 153: 2432–2440.

23. Connelly MA and Boorigie ME. Feasibility of using
“SMARTER” methodology for monitoring precipitating
conditions of pediatric migraine episodes. Headache

2021; 61: 500–510.
24. Siirtola P, Koskim€aki H, M€onttinen H, et al. Using sleep

time data from wearable sensors for early detection of
migraine attacks. Sensors (Switzerland) 2018; 18: 1374.

25. Pagán J, Zapater M and Ayala JL. Power transmission
and workload balancing policies in eHealth mobile cloud
computing scenarios. Fut Gen Comp Syst 2018; 78:
587–601.

26. Henares K, Pagán J, Ayala JL, et al. Advanced migraine
prediction hardware system. In: Simulation Series, 50th
Summer Computer Simulation Conference, SCSC 2018,
Part of the 2018 Summer Simulation Multi-Conference,
SummerSim 2018; Bordeaux; France; 9 July 2018
through 12 July 2018; Code 143375, 2018, pp.75–86.

27. Pagán J, Irene De Orbe M, Gago A, et al. Robust and
accurate modeling approaches for migraine per-patient
prediction from ambulatory data. Sensors 2015; 15:
15419–15442.

28. Pellegrino ABW, Davis-Martin RE, Houle TT, et al.
Perceived triggers of primary headache disorders: A
meta-analysis. Cephalalgia 2018; 38: 1188–1198.

29. Holsteen KK, Hittle M, Barad M, et al. Development
and internal validation of a multivariable prediction

model for individual episodic migraine attacks based on
daily trigger exposures. Headache 2020; 60: 2364–2379.

30. Martins IP, Westerfield M, Lopes M, et al. Brain state
monitoring for the future prediction of migraine attacks.
Cephalalgia 2020; 40: 255–265.

31. Stankewitz A, Aderjan D, Eippert F, et al. Trigeminal
nociceptive transmission in migraineurs predicts migraine
attacks. J Neurosci 2011; 31: 1937–1943.

32. Li W, Bertisch SM, Mostofsky E, et al. Weather, ambient
air pollution, and risk of migraine headache onset among
patients with migraine. Environ Int 2019; 132: 105100.

33. Hu XH, Golden W, Bolge SC, et al. Predictability of
future attacks by migraineurs: a prospective observation-
al study. Headache 2010; 50: 1296–1305.

34. Giffin N, Ruggiero L, Lipton RB, et al. Premonitory
symptoms in migraine: an electronic diary study.
Neurology 2003; 60: 935–940.

35. Tfelt-Hansen P, Pascual J, Ramadan N, et al. Guidelines

for controlled trials of drugs in migraine: third edition.
A guide for investigators. Cephalalgia 2012; 32: 6–38.

10 Cephalalgia


