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A framework for focal and connectomic mapping of
transiently disrupted brain function
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The distributed nature of the neural substrate, and the difficulty of establishing necessity

from correlative data, combine to render the mapping of brain function a far harder task than

it seems. Methods capable of combining connective anatomical information with focal dis-

ruption of function are needed to disambiguate local from global neural dependence, and

critical from merely coincidental activity. Here we present a comprehensive framework for

focal and connective spatial inference based on sparse disruptive data, and demonstrate its

application in the context of transient direct electrical stimulation of the human medial frontal

wall during the pre-surgical evaluation of patients with focal epilepsy. Our framework for-

malizes voxel-wise mass-univariate inference on sparsely sampled data within the statistical

parametric mapping framework, encompassing the analysis of distributed maps defined by

any criterion of connectivity. Applied to the medial frontal wall, this transient dysconnectome

approach reveals marked discrepancies between local and distributed associations of major

categories of motor and sensory behaviour, revealing differentiation by remote connectivity

to which purely local analysis is blind. Our framework enables disruptive mapping of the

human brain based on sparsely sampled data with minimal spatial assumptions, good sta-

tistical efficiency, flexible model formulation, and explicit comparison of local and distributed

effects.

https://doi.org/10.1038/s42003-023-04787-1 OPEN

1 UCL Queen Square Institute of Neurology, London, UK. 2 National Hospital for Neurology and Neurosurgery, London, UK. 3Max Planck Institute for Human
Cognitive and Brain Sciences, Leipzig, Germany. 4 Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénérative, University of Bordeaux,
Bordeaux, France. 5 Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France. 6 UCL Institute of Cognitive Neuroscience, London, UK.
✉email: michael.elmalem@ucl.ac.uk; p.nachev@ucl.ac.uk; ashwani.jha@ucl.ac.uk

COMMUNICATIONS BIOLOGY |           (2023) 6:430 | https://doi.org/10.1038/s42003-023-04787-1 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04787-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04787-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04787-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04787-1&domain=pdf
http://orcid.org/0000-0002-6191-9809
http://orcid.org/0000-0002-6191-9809
http://orcid.org/0000-0002-6191-9809
http://orcid.org/0000-0002-6191-9809
http://orcid.org/0000-0002-6191-9809
http://orcid.org/0000-0001-6248-7203
http://orcid.org/0000-0001-6248-7203
http://orcid.org/0000-0001-6248-7203
http://orcid.org/0000-0001-6248-7203
http://orcid.org/0000-0001-6248-7203
http://orcid.org/0000-0002-0329-1814
http://orcid.org/0000-0002-0329-1814
http://orcid.org/0000-0002-0329-1814
http://orcid.org/0000-0002-0329-1814
http://orcid.org/0000-0002-0329-1814
http://orcid.org/0000-0002-2718-4423
http://orcid.org/0000-0002-2718-4423
http://orcid.org/0000-0002-2718-4423
http://orcid.org/0000-0002-2718-4423
http://orcid.org/0000-0002-2718-4423
http://orcid.org/0000-0003-2835-6837
http://orcid.org/0000-0003-2835-6837
http://orcid.org/0000-0003-2835-6837
http://orcid.org/0000-0003-2835-6837
http://orcid.org/0000-0003-2835-6837
mailto:michael.elmalem@ucl.ac.uk
mailto:p.nachev@ucl.ac.uk
mailto:ashwani.jha@ucl.ac.uk
www.nature.com/commsbio
www.nature.com/commsbio


Three decades into the human brain mapping revolution
ushered by functional magnetic resonance imaging (MRI),
large swathes of the neural landscape remain shrouded in

darkness. Two cardinal aspects of the task are increasingly
recognised to inhibit progress: the distributed, connective nature
of the neural substrate1,2, and the difficulty of establishing
necessity from predominantly correlative data3,4. Each aspect on
its own presents formidable difficulties: characterising distributed
substrates requires explicit modelling of remote interactions
intractable without large-scale data and mathematical models
embrittled by their complexity; establishing necessity requires
disruptive evidence typically obtained naturally, through the
behavioural consequences of uncontrolled focal pathological
lesions confounded by their incidental—and heterogeneously
distributed—characteristics5,6. Combined, these difficulties are
reciprocally amplified: data of sufficient scale and quality to
support complex models is especially hard to acquire in the
clinical domain, and distributed patterns of pathological damage
become entangled with the comparably distributed underlying
patterns of neural dependence (with rare exceptions7). Yet it is
precisely distributed substrates that are most in need of disruptive
evidence, for the plurality of neural support makes inferences
from correlative data all the harder.

Methodological innovation at the intersection of connective
and disruptive mapping of brain function is therefore urgently
needed, with close attention not only to the practicalities of
scaling current techniques, but also to diminishing the need for
data volumes that will always be hard to achieve. Here we ela-
borate conceptually, implement technically, and demonstrate
empirically, a simple, principled approach to connective dis-
ruptive mapping of human brain function in the clinical context
of direct cortical electrical stimulation (DCS).

Theoretically, the ideal approach is to register the functional
consequences of transient disruption applied at single point loci,
individually and in combination, across the entire brain. DCS,
commonly employed as a localising clinical tool in patients
undergoing evaluation for resective surgery of (typically epi-
leptogenic) lesions, approximates this ideal arguably closer than
any other available tool. Focal, transient disruption can thereby be
achieved, enabling causally more robust examination of the
relationship between a well-defined neural substrate and an
observed, or reported, behavioural outcome8. Though clinical
imperatives inevitably constrain the choice of locations and
sampling density, the ability to evaluate multiple loci in each
patient, dynamically, yields higher volumes of informative data
than the bare number of surveyed patients suggests. The
approach has already been extensively used to derive maps of
functional dependence9 in surgical settings10,11, including
connectivity12, but outside a formal framework that allows both
focal and connective effects to be robustly quantified without
dependence on predefined regions of interest.

For all its theoretical power, the use of DCS for spatial infer-
ence is complicated by its sparsity. Although it is common
practice to evaluate multiple loci in each individual patient—and
grid electrodes may offer locally dense coverage—comprehensive
sampling at high resolution across the brain is infeasible. The
traditional solution is to adopt an a priori region of interest (ROI)
parcellation, and report behaviour averaged across each sampled
region13–15. Informing regional parcellations by richer repre-
sentations of neural similarity such as histology, functional, and
structural connectivity (e.g. ref. 16,) increases our confidence in
their fidelity, but only as far as these characteristics may rea-
sonably be taken as indicators of functional homology: a question
that can be definitively settled only by disruptive techniques itself.
Moreover, this approach to anatomical inference has six defects.
First, it assumes that the constituents of each ROI are

homogeneous and interchangeable, a simplistically modular,
“Lego” vision of the brain not sustainable on close examination17.
Second, it assumes that the ROI allocation of a given stimulated
locus is both certain and invariant to its distance from the ROI
boundary, neither of which is plausible. Third, the resultant
inference presupposes the topology it is supposed to reveal, for it
is expressed in a parcellation defined before the data is even
acquired. Fourth, no regional difference will register where the
true functional boundary is orthogonal to the a priori one. Fifth,
where a functional pattern exhibits a finer anatomical organisa-
tion than the a priori parcellation, it will be invisible through it.
Sixth, both continuous and discrete spatial variations in function
will appear equally abrupt.

These defects have motivated us to develop a different
approach, analogous to meta-analytic mapping18,19, that enables
inference to the spatial characteristics of sparsely sampled critical
areas without any prior assumptions on their structure beyond a
reasonable degree of local smoothness20. Consider in illustration
a target anatomical domain—the dorsal medial wall, represented
in 2D for simplicity—where a set of N discrete loci registered on a
common grid are associated with two different deficits (Fig. 1).
Though the data is in anatomical register, we cannot perform a
statistical test at every point on the grid, for no point is suffi-
ciently sampled. The conventional solution is to aggregate the
observed deficits within pre-defined ROIs, and report statistics in
regional terms (Fig. 1a). Framed as count regression, for example,
the task is to predict the number of instances observed within an
ROI (the dependent variable) given the behavioural parameters
(the independent variables), iterating across ROIs. This yields a
map structured by the chosen parcellation, sensitive to the cor-
respondence between the parcellation and the underlying func-
tional substrate. Where the two correspond poorly (Fig. 1b) the
inference will be distorted or fail altogether.

Our alternative approach is to transform each sparse location
from a single point to a dense spatial distribution, thereby
enabling point-wise mass univariate inference on a regular grid.
In the simplest, focal form, this is achieved by convolving each
point with a Gaussian of predetermined width, assuming that
each sampled point is drawn from an underlying spatial dis-
tribution that a random Gaussian field can approximate21. The
locus of disruption is thus represented not as a point but as a
continuous spatial distribution whose density gracefully captures
the uncertainty of each disrupted location across the entire ana-
tomical domain (Fig. 1c). Now framed as linear regression, the
task is to predict the density observed within each voxel (the
dependent variable) given the behavioural parameters (the inde-
pendent variables), iterating across voxels in mass-univariate
fashion. Though it may seem counterintuitive to designate loca-
tion density as the dependent variable and disrupted behaviour as
an independent variable, the choice here is motivated by the task
of spatial inference in the context of mass-univariate analysis, and
is aligned with established practice in other domains, such as
voxel-based morphometry and functional imaging. For example,
in voxel-based morphometry, the dependent variable is tissue
concentration, and behaviour is amongst the independent
variables.

In the more complex, connective form, the transformation is
achieved by a probabilistic projection of the distributed con-
nectivity of each locus, incorporating not just the uncertainty but
also the network distribution of the disruption22. In both cases,
this transformation allows us to use the well-established, prin-
cipled approach to mass univariate spatial analysis embodied in
the statistical parametric mapping (SPM) platform23.

To demonstrate the practical application of our approach, we
investigate the focal and connective organisation of the medial
frontal wall in the context of sensorimotor behaviours. Surveying
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Fig. 1 ROI-based vs Random Field-based Spatial Inference. a ROI-based spatial inference. Simulated stimulation points resulting in two hypothetical deficits
—A (blue) and B (red)—are counted across pre-defined ROIs, here represented in 2D space for simplicity. A statistical test is then performed on the counts
to infer the spatial distribution of function in terms determined by the ROI boundary. b Parcellation-induced mislocalisation. When there is a poor
correspondence between the parcellation and the underlying functional substrate, the inference either fails completely (left) or is distorted (middle and
right). c Random field-based spatial inference. Here each stimulation point is convolved with a predefined Gaussian kernel, so that each location is now
supported across the entire domain, enabling the application of voxel-wise inference on a regular grid. A statistical test is then performed at each voxel to
retrieve the substrates associated with the observed deficits A and B. The colourmap is the negative decimal log of each p-value. Thresholding following
multiple comparisons correction is not shown here for simplicity.
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the literature on the medial frontal cortex reveals an inferential
landscape dominated by correlative studies24–28, disclosing a
remarkable diversity of cognitive and behavioural associations,
many of them conflicting. Disruptive studies are rare here for
three reasons. First, stroke—the commonest source of focal lesion
data—rarely involves the medial wall, and when it does, the size
and morphology of the injury limit its spatial resolving power5.
Second, natural lesions are never truly local: they enclose larger
areas of tissue than are plausibly functionally uniform, resulting
in confounding from collateral damage that is hard to remove
(e.g. ref. 29). Third, non-invasive disruptive methods such as
repetitive transcranial magnetic stimulation are either limited to
the dorsal surface, or in reaching deeper presuppose its con-
founding collateral disruption along the way8. Inferences from
pathological forms of focal injury are in any event complicated by
plasticity and reorganisation over time30, limiting generalisability.

Here we re-examine a previously reported set of thirty-seven
patients undergoing direct electrical cortical stimulation across
the medial wall in the context of clinical evaluation for surgical
treatment of non-lesional epilepsy20. The proximity of critical
medial motor areas and the propensity for seizures to involve
them justifies dense sampling of the area, achieved either by
placing surface electrode grids or with multiple depth electrodes.
We adapt the approach to focal voxel-wise inference pioneered by
meta-analytic mapping18,19 presented in our first report20,
reformulating it within SPM’s statistical framework, and extend it
to disruptive connective analysis31,32 of a transient kind, intro-
ducing the notion of transient dysconnectome mapping. We speak
of a ‘connectome’ because the inferred maps capture distributed
anatomical relations defined by any chosen index of connectivity,
and we prefix the term with ‘dys’ (rather than the usual ‘dis’)
because a transient intervention typically does not disconnect a
network but renders it dysfunctional. Our reformulation enhan-
ces the statistical efficiency and sensitivity of the core approach,
and its extension enables us to compare focal and distributed
effects, not just along the medial wall, but across remote brain
regions interconnected with it, establishing a comprehensive
platform for transient disruptive mapping of the human brain.

Results
Local disruptive mapping. A total of 477 disruption sites con-
fined to the medial frontal wall were obtained from 37 patients,
providing good sampling coverage across the medial wall (Fig. 2,
Supplementary Table 2).

Positive motor responses—the most common stimulation-
induced behaviour—were observed in 153 stimulations (32%)
(Fig. 3, Supplementary Table 3). They were associated with
disruptions in the right SMA and the precentral gyrus bilaterally.
Negative motor responses were observed in 41 stimulations (8%).
They were associated with disruptions in the SMA and the right
middle segment of the superior frontal gyrus. Sensory responses
were observed in 46 stimulations (9%). They were associated with
disruptions in the left middle cingulate gyrus, and the middle
segment of the precentral gyrus (bilaterally). Speech disturbances
were observed in 46 stimulations (9%). They were associated with
disruptions of the left superior frontal gyrus and pre-SMA. No-
responses (silent disruptions) were observed in 243 stimulations
(51%). They were associated with disruptions of the middle
cingulate gyrus and the middle segment of the superior frontal
gyrus. Results at the uncorrected threshold, are available in
Supplementary Fig. 1.

To verify the focal results are not dependent on the predetermined
smoothing kernel, we performed a sensitivity analysis using 8, 10,
and 12 kernels (Supplementary Fig. 3), revealing no significant
differences in the location and spread of the effects.

Dysconnectomic disruptive mapping. Positive motor responses
were localized to 14 clusters (Fig. 4, Supplementary Table 4).
Cortical grey matter regions included the precentral gyrus, superior
parietal lobule, superior frontal gyrus, posterior insula, central
operculum, and the superior occipital gyrus. Deep grey matter
regions included the thalamus, ventral diencephalon, caudate
nucleus, and pallidum. Cerebellar connectivity was evident in
regions falling within the fronto-parietal, foot, and hand sensor-
imotor cerebellar networks33. At the uncorrected threshold, con-
nectivity was also evident in the mid-brain, pons, and medulla, as
can be appreciated in Supplementary Fig. 2. Negative motor
responses were localized to 12 clusters, with the global maximum
located in the superior parietal lobule. Cortical grey matter regions
included the superior parietal lobule, SMA, superior and medial
frontal gyrus, and precentral gyrus. Significant clusters were also
found in the precuneus, and the cerebellar fronto-parietal and
dorsal attention networks. Sensory responses were localized to 5
clusters, with the global maximum falling within the precentral
gyrus. Significant areas were also obtained in the middle cingulate
cortex, thalamus, the fronto-parietal cerebellar network, and the
medulla. The absence of a response to disruption was associated
with 7 clusters, with global maxima falling in the medial segment of
the superior frontal gyrus. Other areas included the middle frontal
gyrus, medial orbital gyrus, precuneus, angular gyrus and the dorsal
attention cerebellar network. Note the connective maps here are
normalised by distance as outlined in the methods, potentially
resulting in departures from the focal maps above.

Predictive analysis results. The foregoing maps represent
population-level spatial inference to the anatomical substrate of
the elicited behaviours. Their utility lies in disclosing the general
anatomical organisation of the brain across the population rather
than capturing individual-level variation. Population-level maps
may nonetheless be useful as priors for individual localisation, in
conjunction with models specifically crafted for the task. We can
quantify the utility of such prior maps by examining their
individual-level predictive fidelity on held-out data. Note the
objective here is not to use the model as an individual-level
classifier—it is not designed for that—but rather to quantify the
localisation information in the resultant maps with a view to their
utility as priors for individual-level modelling.

Fig. 5 shows the average ROC curve (±1 standard deviation) for
100 bootstraps of the test set for classifying each stimulation

Fig. 2 Distribution of stimulation locations over the frontal medial wall.
The mean stimulation density (smoothed by a 10mm FWHM Gaussian
kernel) is shown overlaid onto the FA template. The colourbar shows the
density of electrode locations. A total of 477 stimulation points were
analysed.
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based on the spatial map inferred from the remaining data: either
SPM or ROI. Predictive performance was superior with the SPM
map for all behaviours. The average performance metrics in terms
of accuracy, balanced accuracy, precision, true positive rate
(recall), and false positive rate are provided in Supplementary
Table T5. The full results for each iteration are provided in the
online Supplementary Data.

Discussion
We have presented a framework for local and connective spatial
inference with sparsely sampled focal disruptive data and applied
it to transient direct cortical electrical stimulation of the medial

frontal wall. Here we review the characteristics of our approach,
and examine the empirical results drawn from its application to
illuminating the local and distributed organisation of the medial
frontal wall.

Spatial inference from sparsely sampled discrete data. Inferring
a dense map from sparsely sampled disruptive data inevitably
implies interpolation between unsampled regions of the target
space guided by the chosen method’s inductive bias. ROI-based
analysis assumes all voxels within any given region are equivalent,
changing function with implausible abruptness across regions16.
It yields maps that are discretised not by the data themselves, but

Fig. 3 Local disruptive mapping of behaviour. For each MNI voxel, a planned t-contrast was performed. Only voxels surviving the p < 0.05 FWE-corrected
threshold are shown, overlaid on the mid-sagittal plane, where higher t-statistics (brighter colour) represent a stronger association between the electrode
density value and the observed behaviour. 153 stimulation points were associated with positive motor responses, 41 with negative motor responses, 46
with sensory phenomena, 46 with speech disturbances and 234 were deemed silent contacts. R right, L left, (pre-)SMA supplementary motor area.
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on an assumption the inference rests on. If there is a spatial scale
at which this assumption is safe, it is yet to be discovered: current
parcellations of the brain are based on arbitrarily discretised
continuities. By contrast, the alternative approach we pursue here
merely assumes that the underlying substrate can be modelled by
a random Gaussian field. The one heuristic—the width of the
Gaussian with which point data is convolved—can be both
empirically informed by data from other modalities and corre-
sponds to the readily intelligible notion of chosen scale of spatial
analysis.

Representing the data in Gaussian-convolved form further-
more enables the application of voxel-wise mass-univariate
methods whose sensitivity and statistical efficiency makes them

preferable where, as here, a given locus may licitly be evaluated
independently21. SPM’s established statistical framework com-
bines flexibility in the framing of voxel-wise statistical
hypotheses with great fidelity in the context of marked noise.
Where multiple loci are disrupted together, as in natural lesions,
the assumptions of benignly structured local dependence are
broken, and mass univariate inference is not valid, whether with
dense or sparse data, and a multivariate approach becomes
necessary.

Representing stimulation data as a disrupted cortical network
of connections—a dysconnectome—naturally extends the eval-
uated neural support across the brain. Connectivity need neither
be structural—functional or meta-analytic indices, for example,

Fig. 4 Connective disruptive maps of behaviour. For each MNI voxel, a planned t-contrast was performed. Only voxels surviving the p < 0.05 FWE-
corrected threshold are shown, overlaid on the mid-sagittal, lateral, superior, and inferior planes, where higher t-statistics (brighter colour) represent a
stronger association between the connectivity value and the observed behaviour. Cerebellar subregions are labelled with reference to a priori known
cortical network associations33. R right, L left, SMA supplementary motor area, SPL superior parietal lobule, SM sensorimotor.
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are equally applicable—nor unitary: multiple dysconnectome
maps could theoretically be compared, within the same or parallel
models. Metrics of connectivity may be transformed to focus
attention on different spatial scales of interaction, such as the
distance-based normalisation employed in our study to highlight
long-range connectivity. Though group inference requires a
common space (at least implicitly), a dysconnectome may be
estimated from individual rather than template connectivity data.
Indeed, where multiple data pertain to a single individual, all
analysis may be conducted in the same, single native space, with
the objective of making inferences about that individual alone.
Dysconnectome maps are open to mass-univariate inference, with
the caveat that the interactions between distributed areas are left
unmodelled, just as they are when multiple regions are identified
in functional imaging. A full network analysis requires an explicit
model of the interactions between regions, for which a
dysconnectome map may serve as an initial feature selection
step. Equally, though the source data is disruptive—we are
observing the alteration of cognition and behaviour by stimula-
tion—its connective anatomical projection inevitably relies on
inferred architectural commonalities.

Our approach is analogous to lesion disconnectome mapping,
where a lesion is projected along the white matter tracts it
encloses, yielding a probabilistic representation of disrupted white
matter pathways delineated up to the boundaries of the cortical
areas they connect22. The difference is that our lesions are single
point loci falling entirely within grey matter, and the projection
we seek is to connected grey matter areas, not to the underlying
white matter. The inferred topology is then primarily in terms of
grey rather than white matter anatomy, defined by any chosen
mechanism of connectivity.

An obvious question is the optimal stage at which connective
inference should be performed. One could estimate a dyscon-
nectome from the regions a prior local analysis identifies as
significantly associated with the behaviour at the group level. This
alternative is suboptimal for two reasons. First, it precludes
modelling of individual variations in the distributed substrate that
individual connectivity maps could provide. More importantly, it
diminishes the spatial resolution of the inference: two sites of
disruption too close to be resolved within a focal map may exhibit
connectivity profiles that successfully distinguish them at the
dysconnectome level. One may conceive of a dysconnectome as a

Fig. 5 Average receiver operating characteristic curve (ROC) for predicting behavioural outcome from spatial maps. The performance of a simple
classifier of the behaviour based on an SPM map (red) or an ROI map (blue), both derived from held-out data, is presented as the average of the ROC
curves from 100 bootstraps of the test set. The standard deviation (± 1 SD) are plotted in shaded colours. Predictive performance was superior with the
SPM map for all behaviours. Note the purpose of this analysis is not to craft an optimal behavioural classifier based on stimulation data but to quantify the
comparative value of SPM vs ROI-based maps in providing spatial priors for downstream individual-level localisation.
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projection into a higher dimensional anatomical space, akin to an
anatomical support vector machine, that enhances the separ-
ability of the underlying patterns of dependence.

These generalities apply to the particulars of direct cortical
electrical stimulation data. Note that inter-subject variability, even
after precise non-linear registration, likely dwarfs the effects of
local current spread, rendering physics-informed spatial priors
unnecessary34. The method of inference naturally cannot over-
come the limitations of the data themselves, which here include
sparse and clinically biased sampling, non-linearities of induced
effects, clinically-determined variations in stimulation para-
meters, interactions—both enduring (e.g., coexisting structural
lesions) and dynamic (e.g., after-discharges)—with the pathology
that motivates intracranial study, confounding from other
interventions (e.g., anti-epileptic drugs), and the relatively narrow
repertoire of behaviours the clinical setting permits us to
evaluate35. That the disruption is localised to a comparatively
small volume, however, is a crucial advantage over natural
lesions, where the distributed nature of the damage enormously
complicates spatial inference, and where many of the foregoing
limitations apply equally.

Clinical constraints make it inevitable that only a comparatively
small number of areas can be sampled in any one patient. Just as
with structural lesions, such as ischaemic stroke, where each lesion
is associated with a single patient and is treated as an independent
datum, so here each disruption site is treated as a single lesion and
as an independent datum. Where multiple sites are drawn from
the same patient, however, each observation is no longer
independent, which needs to be accounted for in the statistical
model. Here we employ a single-level repeated measures design,
where linear variations in the mean of individual patients is
absorbed by a subject-level regressor, and the non-sphericity of the
error induced by within-subject correlations is modelled by
whitening the design matrix36. This manoeuvre, standard in SPM,
does not change the degrees of freedom of the model, unlike
alternatives such as the approximate Greenhouse-Geisser
correction37. A valid alternative is to adopt an approximate
hierarchical, two-level design where contrasts from individual
subject-specific models at the first level are evaluated by a one-
sample t-test at a second level. We favour the former approach
owing to its flexibility and power in the context of the imbalanced
data the present clinical context tends to compel.

Special attention must be given to the heterogeneity of the
neural effects of electrical stimulation. The effects at the single
neuron level may be excitatory or inhibitory, varying both over
time and distance, and need not correspond to effects at larger
scales that inevitably depend both on individual neuronal
responses and the configuration—local and remote—of physio-
logical excitatory and inhibitory neuronal functions. Nor can a
predominance of induced functional excitation or inhibition be
inferred from the elicited behaviour: the interruption of
movement need not be neurally inhibitory even if it is
behaviourally so, and vice versa. Equally, a movement may be
disrupted not because it has lost its substrate but because a
competing substrate has been driven to supplant it; and may fail
to manifest positively not because the substrate is not excited
but because the complexity of the movement demands a pattern
of excitation too elaborate for electrical stimulation to induce.
These considerations are especially pertinent to the interpreta-
tion of rostral effects where negative effects or silence reign: we
cannot conclude that these regions are inhibitory, only that the
behaviour that depends on them may be competitive or
complex. In short, electrical stimulation is correctly viewed as
transient, heterogeneous disruption, of value in localisation but
not necessarily the more detailed characterisation of the neural
substrate.

The framework we have described is designed to reveal
commonalities of functional anatomy across a population under
study, not to capture heterogeneities specific to individuals. It
permits principled inference to the regional organisation of the
brain, from which individuals may depart in a way more flexible
statistical models are required to capture. The flexibility of such—
necessarily multivariate—models makes them susceptible to
overfitting, especially in the low-data regimes characteristic of
the domain of cortical stimulation. Our task is not to create a
substitute for such models, but to provide maps that disclose the
general organisation of the brain and may be useful in individual-
level prediction as anatomical priors, constraining the flexibility
of the predictive model. We have shown that such priors are
superior when drawn from SPM rather than pre-defined ROIs
weighted by exactly the same data. This observation corroborates
the intuition, illustrated in Fig. 1, that data coerced into pre-
defined ROIs can be expected to yield a high-fidelity map only
where its boundaries naturally coincide with those of the chosen
parcellation, an assumption not substantiated by the facts here,
and implausible elsewhere.

Focal mapping of the medial frontal wall. Our analysis broadly
replicates the maps obtained from the original permutation-based
voxel-wise analysis of the same data20. A rostro-caudal organisation
of behavioural complexity is observed26,38–42, with positive motor
responses caudal to negative motor, speech, idiosyncratic phe-
nomena (‘other’ responses), and absence of any response. In pre-
supposing a task that is contextually interrupted, negative responses
can reasonably be expected to be more complex in their condition-
action association than positive ones. Speech elicited a locally dis-
tributed pattern likely reflecting the complex compositionality of
the task, including relatively low-level aspects of articulation43,44.

The crudity of the behavioural labels here is a reminder
anatomical inference is not to functions but to behaviours
speculated to depend on them. Obviously, no function corre-
sponds to the “silence” observed across of the vast expanse of the
medial wall where no response of any kind could be elicited. The
inference to be drawn is not that this region does nothing but that
the behavioural tasks commonly deployed to explore its function
in the clinical setting lack range and specificity.

Connectomic mapping of the medial frontal cortex with
transient dysconnectomes. Projecting disrupted cortical areas to
their grey-matter connections reveals a much richer picture of the
underlying neural substrate. Positive motor responses are centred
on the supplementary motor area, with extensive precentral gyrus
involvement plausibly reflecting strong connectivity with primary
motor cortex. There are extensive projections to subcortical targets
including thalamus, basal ganglia, pons, medulla, and cerebellum.
Negative motor responses show more rostral weighting on the
medial wall, and weaker connections to precentral and deep areas.
By contrast, SPL involvement was more prominent here, giving
context to recent evidence for direct parietal-motor functional
connectivity in the region45. Sensory responses highlight the middle
cingulate gyrus in keeping with its known behavioural associations
(e.g. refs. 46–49), and connectivity patterns50. The region we identify
is plausibly part of the caudal cingulate premotor area involved in
the multisensory orientation of the head and body in space47.

Special note should be made of cerebellar connectivity,
structured by its recently described network organisation33. Here
positive motor responses engage multiple areas including
cerebellar nodes of the fronto-parietal, hand and foot sensor-
imotor, and dorsal and ventral attention networks. Negative
responses are by contrast dominated by the fronto-parietal
network, as befits their more complex generative context. Sensory
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responses overlap with a component of the cingulo-opercular
network, in line with the strong association with the mid-
cingulate. The association of silent responses with cerebellar
connectivity within the dorsal attention network, shown to play a
role in memory and attention tasks previously thought to be
dominated by cortical regions51, suggests the category of tasks
more likely to be eloquently modulated by disruption of the
rostral medial wall. Our findings highlight the strongly structured
spatial organisation of the cerebellum, inviting future research to
further delineate its interaction with cortical and subcortical
regions.

Conclusion. We present—and apply to the medial frontal wall—a
random field-based approach to drawing spatial inferences about
the focal and distributed functional organisation of the brain
from sparsely sampled disruptive data. Our approach combines
minimal anatomical and physiological assumptions with a prin-
cipled framework for establishing disruption-behavioural asso-
ciations. Applied to the medial wall, it reveals marked differences
between focal and distributed maps, even in the context of rela-
tively constrained spatial sampling, with implications for our
understanding of the functional organisation of the region, and—
more generally—the optimal path to integrating local and dis-
tributed information in our models of the brain.

Methods
Published data from Trevisi et al.20 were reanalysed for this study. We performed
two sets of analyses. The first to derive cortical maps of focal regions critical for
specific categories of sensorimotor behaviours, the second to extend these maps to
connected regions across the brain within the same inferential framework.

Participants. Retrospective data from 147 consecutive drug-resistant focal epilepsy
patients undergoing intracranial recording between January 2008 and June 2015 at
the National Hospital for Neurology and Neurosurgery, London as part of clinical
assessment prior to epilepsy surgery were screened. The study was approved by the
hospital as a retrospective evaluation of routine clinical practice.

Thirty-seven patients (28 males, 9 females, aged 19–68 years,
mean= 33.86 years, SD= 11.11 years) were identified to have at least one
stimulation in the medial frontal region, spatially confined to the medial wall area
dorsal to the corpus callosum and rostral to the caudal bank of the marginal sulcus.
Five patients had minor lesions near the supplementary motor area (SMA), and
one had a lesioned SMA/paracentral lobule as evident on MRI. Table 1 summarises
the patients’ demographic and clinical characteristics [based on Trevisi et al.20].
Further details are provided in Supplementary Table 1.

Direct cortical stimulation procedures. As previously described20, depth elec-
trodes were implanted in 19 patients using a frameless stereoelec-
troencephalography (SEEG) technique52. In the remaining 18 patients, craniotomy
was performed for the placement of strips and/or grids with or without freehand
insertion of additional depth electrodes. In 14 patients, intracranial recording was
performed in the right hemisphere, in 18 patients in the left hemisphere, and in 5
patients bilaterally. Hemispheric dominance for language was inferred from fMRI
data, not re-examined here. In 19 (51%) cases, the recording was in the dominant
hemisphere, whereas in 18 (49%) cases, the electrodes were in the nondominant
hemisphere. Bilateral language dominance was noted in five patients. The location
of the electrodes was confirmed for all patients by post-implantation CT studies.

A clinical epileptologist and a physiologist performed one or more sessions of
DCS during simultaneous video-EEG recording. Stimulations were typically
performed after ictal recordings when patients were back on their baseline
antiepileptic medication. Bipolar or monopolar stimulation trains were delivered
with biphasic rectangular pulses of AC-current at 50 Hz, with a pulse width of
500 µs and a maximum duration of 5 s. The intensity was gradually increased from
0.5 to 7 mA in increments of 0.5–1 mA until the occurrence of a clinical sign or
until after-discharges were detected on EEG monitoring20,53. Full details on the
electrical stimulation intensities for each of the behavioural categories are provided
in Trevisi et al.20. Stimulations accompanied a stereotyped set of test actions—rest,
Barré and/or Mingazzini test, repeated movements of the upper and lower limbs,
and during counting, reading, or repetitive monosyllabic verbalisation—as
described in detail elsewhere20.

Behavioural analysis. Three clinicians classified the observed behavioural
responses as ‘positive motor’, ‘negative motor’ or ‘speech disturbances’. Positive
motor responses included involuntary, typically tonic or clonic, movements of the

eye, head, limb or trunk. Negative motor responses included slowed or inhibited
movement relative to experimentally specified movements, such as the inability to
maintain prescribed postures. Speech disturbances included speech arrest, altera-
tion in rhythm, involuntary speech, and hesitation. Live and post-hoc classifica-
tions (using video and audio telemetry recordings) were made by stimulating and
attending clinicians. A contact was deemed silent if no response was obtained at the
maximum stimulation intensity of 7 mA (‘no response’). Responses after a seizure
or after-discharges were excluded from the analysis.

Patients were also asked to report any evoked somatosensory responses such as
cutaneous paraesthesias (tingling, touch, heat, and pain). Responses that were
neither sensory nor motor, such as a reported urge to move or speak, or reported
perception of motion without observed movement, were elicited only three times
across the entire dataset and were therefore not modelled. Note that since each
locus was evaluated with multiple tasks, more than one class of response may be
associated with it: the classification is not anatomically exclusive.

Imaging data acquisition and processing. Preoperative structural T1-weighted
imaging with an isotropic resolution of ~1 mm was acquired on a 3 T magnetic
resonance imaging (MRI) scanner. After implantation, non-contrasted structural
whole-head CT scans with a resolution of 0.43 × 0.43 × 1.2 mm (SOMATA Defi-
nition 128-slice, Siemens Healthcare GmbH, Erlangen, Germany) were obtained to
confirm the location of electrode contacts. All image processing was performed
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/).

To facilitate group analysis, electrode locations were manually extracted from
the CT and non-linearly transformed into the Montreal Neurological Institute
(MNI) space template as described in Jha et al.7. In brief, for each patient, a rigid
body co-registration to the standard SPM12 tissue probability map was performed
for both preoperative T1-weighted MRI and postoperative CT, based on
normalised mutual information with adjustment by Procrustes analysis, weighted
by white and grey matter compartments. The algorithm brought each scan into an
approximately rigid register with the MNI template, making subsequent
transformations more robust. The standard co-registration algorithm in SPM12
was then applied to co-register each CT scan with its coupled T1-weighted MRI,
which enabled automatic replication of each subsequent transformation of the T1-
weighted images with their corresponding CT scans. Standard segmentation and
normalisation routines with default parameters were then applied to the T1-
weighted images to create segmented images in native space for each of the six
standard tissue classes, combined with a set of non-linear parameters, to transform
the resulting segments into MNI space. These parameters were then used to
transform the white matter and grey matter compartments of each T1-weighted
image and the corresponding CT scan into normalised MNI space. The location of
the electrodes in MNI space was determined by displaying the normalised T1-
weighted and CT images together in triplanar view using the SPM12’s ‘check
registration’ module. The location of the centre of each electrode was visually
judged by two independent observers to lie within the grey matter of the medial
wall. By locating the electrode contacts in MNI space after normalisation, the

Table 1 Demographic and clinical characteristics.

Demographics
Female (%) 9 (24)
Male (%) 28 (76)
Mean age, years (SD) 33.86 (11.11)

Clinical
Mean age of epilepsy onset, years (SD) 11.43 (9.01)
Mean duration of epilepsy, years (SD) 22.43 (10.05)

Type of study
Grid electrodes (%) 6 (16)
Grid & depth electrodes (%) 12 (33)
SEEG (%) 19 (51)

Side of study
Dominant (%) 18 (49)
Non-dominant (%) 14 (38)
Bilateral (%) 5 (13)

Epileptogenic zone involvement
Frontal lobe (%) 29 (78)
Medial frontal wall (%) 19 (51)

Abnormal MR imaging
Frontal lobe (%) 10 (27)
On or near medial wall (%) 5 (13)

Medial wall resection done or planned 14 (38)

Summary of demographic and clinical characteristics of the included patients with stimulations
in the medial frontal cortex, based on Trevisi et al.20. Site of study is given relative to the
language dominant hemisphere.
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potential bias due to anatomical differences between subjects was minimised
during manual labelling.

Local disruptive mapping. A total of 477 stimulation locations were extracted,
covering a larger region than the original study. For each location a corresponding
image (1.5 × 1.5 × 1.5 mm sampled) was generated with intensity of zero at all
locations except the stimulated location where the intensity was one. Each image
was convolved with a 3D Gaussian 10 mm full-width-half-maximum (FWHM)
kernel (truncated at 90% mass) to enable modelling of spatial uncertainty in the
location of the stimulation and approximate the local distribution of focally
induced disruption. The resultant image contained a single Gaussian located at the
stimulation point, representing location uncertainty as the density of this spatial
distribution across all voxels. This approach facilitated group analysis of sparse data
accounting for between-subject variation in functional-anatomical relationships
not captured by anatomical registrations, analogous to the approach used in meta-
analytic modelling of functional activation data18,19. The kernel size used here was
guided by empirical studies on spatial uncertainty modelling of functional neu-
roanatomical data12. Manipulating the kernel width from 4 to 16 mm in incre-
ments of 2 mm, Trevisi et al.20 reported similar results, suggesting that the choice
of the kernel size is not a critical step in the analysis. We do not claim that our
choice of kernel width is optimal or generally prescribable, though it can be—as
here—empirically informed by data from other modalities. Note also that the
kernel size is dominated by plausible inter-subject variability rather than the
comparatively much smaller scale of current spread34.

Trevisi et al. focus on the rostro-caudal organisation of the medial wall
motivated them to collapse the data across other planes20. Here the enhanced
efficiency of our approach allowed us to investigate bilateral effects. Data were
masked by applying a threshold where electrode density was >0.00001 to exclude
areas with poor sampling. The subsequent mask was confined to the frontal medial
wall, and extended laterally 22 mm to encompass its depths. For each behavioural
condition of interest, stimulation images were entered into a voxel-wise repeated-
measures general linear model with electrode density as the dependent variable and
subject and the binary behavioural effect as the independent variables. Within-
subject non-sphericity of errors was accounted for using standard procedures36. A
planned one-tailed voxel-wise t-test of each behavioural condition was performed
and thresholded at p < 0.05 FWE (peak voxel) to account for multiple comparisons.

Connective disruptive mapping. We used large-scale high-resolution diffusion
tensor imaging from the Human Connectome Project (HCP) to derive white
matter connectivity matrices54,55. The imaging acquisition protocols for the HCP
are described elsewhere54. In total, data from 945 participants were deemed suitable
for analysis. We used FSL pre-processed diffusion data supplied by the HCP
working group54. In brief, this pre-processing included b0 signal intensity nor-
malization across the six-diffusion series, and correction for echoplanar imaging
distortion, eddy current and subject motion distortion, and gradient nonlinearities.
Registration of the diffusion images to the native T1-weighted structural space
enabled non-linear registration to 2 × 2 × 2mm sampled isotropic MNI template
space via a deformation field derived with FNIRT from each individual’s T1-
weighted image. This included BEDPOSTX processing with the default deconvo-
lution model using sticks with a range of diffusivities.

Probabilistic tractography was applied to the diffusion data to derive local fibre
orientation information. Tractography was performed using the GPU Bayesian
implementation of probtrackx256, to derive a network representation of white
matter structural connections across all grey matter voxels at 2 × 2 × 2mm
resolution for each of the 945 participants. An image resolution lower than the
source acquistion was chosen owing to the considerable computational challenge of
estimating an network of this size. Our processing parameters included passing a
grey matter mask, 5000 samples, a curvature threshold of 0.2, 2000 steps with a
steplength of 0.5 mm, and a subsidiary fibre volume fraction threshold of 0.01, with
normalisation by the participant waytotal. The waytotal is the total number of
generated tracts that satisfy the inclusion/exclusion mask criteria: normalising by it
scales the estimated values to the local tract density, enabling better accounting of
connectivity variations with distance. The probabilistic tractography approach and
implementation are described elsewhere56,57.

Having derived a white matter tractography network of each grey matter voxel,
we averaged the streamline samples across all 945 patients to yield a large adjacency
matrix, which could be incorporated into an undirected weighted graph. The graph
comprised 125760 individual grey matter voxels, with 7907725920 unique edges
weighted by the mean normalised-streamline value, subsequently used to infer the
strength of the structural connection between grey matter voxels.

Note that optimal approach to deriving white matter, amongst other,
connectivity maps is a subject of intense study58,59: for our purposes a widely used
exemplar is sufficient. Any alternative may be substituted, including subject-
specific maps derived from individual tractographic or resting state imaging. Note
also that the waytotal distance normalisation employed here deliberately magnifies
the remote effects it is the objective of this approach to reveal. Others may choose
to forego this step, or to explore its effects on the downstream statistics.

Given the set of stimulation coordinates, we used this structural connectome to
reconstruct brain maps depicting connection strength from a stimulation seed point
to all other grey matter voxels. The connection strength (edge weight) from the

stimulated voxel to each other grey matter voxel was rendered as an image volume
—one for each stimulation location—for subsequent analysis. We used intensity
clamping outside 0.1 and 99.9% of the intensity cumulative density to eliminate the
influence of presumably spurious extreme values.

As the resulting maps are already dense (in contrast with the sparse focal
disruption maps), for the dysconnectomic analysis we applied a smaller smoothing
kernel of 6 mm FWHM prior to assessing association for each behavioural outcome
with the same statistical design as used above for local disruption mapping. Again,
a voxel-wise repeated-measures general linear model with subject and the binary
behavioural effect as factors was used, and non-sphericity of errors was accounted
for36. Planned one-tailed voxel-wise t-tests were performed and thresholded at
p < 0.05 FWE (peak voxel)—now revealing dysconnectome maps.

Visualisation. Visualisation was done using the SurfIce toolbox (https://www.nitrc.
org/projects/surfice). We used FSL’s HCP1065 standard-space FA atlas to generate
a background FA template60 converted into a mesh using SurfIce’s volume-to-
mesh function.

The local disruption and normalised disconnectome maps were visualised at the
FWE corrected threshold in the mid-sagittal, lateral, superior, and inferior views.
The mid-sagittal laterality was determined by the x coordinated value of global
maxima of each map, so that for x < 0 the left hemisphere is shown, whereas for
x ≥ 0 the right hemisphere is shown. The nearest grey matter location to the
maxima of each statistical cluster was determined using SPM12’s
neuromorphometrics grey matter atlas for cortical regions. For cerebellar regions,
we used a well-established functional parcellation into distinct networks based on
resting state connectivity33. To illustrate the extent of the effects, the local
disruption and normalised dysconnectome maps were also visualised at a lower
statistical threshold (p= 0.001 uncorrected, t= 3.11) and are shown in
Supplementary Figs. S1 and S2 respectively.

Predictive analysis. Ours is a method for population-level spatial inference, not
individual-level prediction. Inferred spatial maps may nonetheless be used as
spatial priors for individual predictive models, where population anatomy may
helpfully constrain the space of individual variability. Here we therefore evaluate
the predictive performance of SPM-derived maps for each of the four classes of
elicited behaviour, with conventional ROI-derived maps for comparison.

We obtained bootstrap estimates of predictive performance for each behaviour,
resampling the data across 100 mapping and testing sets, with an 80–20 split. Each
mapping subset was used derive a spatial map of significant associations with either
SPM as described above, or Fisher’s exact test applied to an a priori ROI
parcellation. At test time, the corresponding map—SPM or ROI—was used to
assign a “weight” to each stimulation locus in the test set, indicating the strength of
its association with the corresponding behaviour as captured by the statistical test
on which the map is based. For the SPM maps, this weight was derived from the
statistic of each test voxel; for the ROI maps it was derived from the statistic of the
ROI enclosing each test voxel. In every case, the voxel-level weight was used as a
single predictor variable for classifying each behaviour, independently across
separate models. Performance was quantified in terms of standard classification
metrics—accuracy, balanced accuracy, precision, true positive rate (recall), and
false positive rate—with estimates of uncertainty from the boostrap.

Specifically, for the ROI models, we used Glasser’s grey matter atlas16 to create a
priori parcellation of the region of the medial-frontal wall sampled in our study.
The binarized sum image of all smoothed stimulation points (thresholded at
>0.0001) was multiplied voxel-wise with the original whole-brain atlas to identify
81 unique sub-regions intersecting with the sampled region. Each stimulation locus
was assigned to the ROI that enclosed it, and Fisher’s exact test was run for each
behaviour and each ROI on the data from each training-test split, yielding a set of
regional statistics (odds ratios and FDR-corrected asymptotic p-value) quantifying
the association between them. For each behaviour separately, test loci were
individually labelled as predicting the behaviour or not dependent on whether they
fell within ROIs significantly associated with that behaviour. The resultant
confusion matrix was used to derive performance metrics as above.

For the SPM models, we replicated the approach described in the preceding
sections with only subsets of the data, employing the same bootstrap splits as for
the ROI models. The resultant continuous maps were thresholded at the
corresponding FWE critical t-statistic, yielding binary maps that were then used as
predictors for the held-out test set of each fold. As for the ROI models, for each
behaviour separately, test loci were individually labelled as predicting the behaviour
or not dependent on whether they fell within the region significantly associated
with that behaviour. The resultant confusion matrix was used to derive
performance metrics as above.

Finally, we generated average ROC curves and AUC scores with unthresholded
predictors—t-values for SPM maps and ORs values for ROI maps—as input,
capturing the average performance of the models across folds and their standard
deviation.

Statistics and reproducibility. A total of 477 unique stimulation points were
analysed using SPM12 (see full list in Supplementary Table 2), following standard
procedures. The analysis was repeated with random behavioural vectors to verify
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the results can be attributed to the independent variable. Predictive analysis was
performed in Python, where standard classification metrices were computed across
all 100 bootstrap samples (raw data is available in the online version of this paper).
Code is available from the first author upon reasonable request.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Coordinate and behavioural data are available from the corresponding authors on
request by email. The raw imaging and video data is derived from clinical studies not
licensed for public dissemination by the host institution.

Code availability
Code can be obtained from the first author upon reasonable request (email:
skgts01@ucl.ac.uk).
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