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Background: Several studies have evaluated whether depressed persons have older appearing brains than their 
nondepressed peers. However, the estimated neuroimaging-derived “brain age gap” has varied from study to 
study, likely driven by differences in training and testing sample (size), age range, and used modality/features. 
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Depression 
ENIGMA consortium 
Biological aging 

To validate our previously developed ENIGMA brain age model and the identified brain age gap, we aim to 
replicate the presence and effect size estimate previously found in the largest study in depression to date (N =
2126 controls & N = 2675 cases; +1.08 years [SE 0.22], Cohen’s d = 0.14, 95% CI: 0.08–0.20), in independent 
cohorts that were not part of the original study. 
Methods: A previously trained brain age model (www.photon-ai.com/enigma_brainage) based on 77 FreeSurfer 
brain regions of interest was used to obtain unbiased brain age predictions in 751 controls and 766 persons with 
depression (18–75 years) from 13 new cohorts collected from 20 different scanners. Meta-regressions were used 
to examine potential moderating effects of basic cohort characteristics (e.g., clinical and scan technical) on the 
brain age gap. 
Results: Our ENIGMA MDD brain age model generalized reasonably well to controls from the new cohorts 
(predicted age vs. age: r = 0.73, R2 = 0.47, MAE = 7.50 years), although the performance varied from cohort to 
cohort. In these new cohorts, on average, depressed persons showed a significantly higher brain age gap of +1 
year (SE 0.35) (Cohen’s d = 0.15, 95% CI: 0.05–0.25) compared with controls, highly similar to our previous 
finding. Significant moderating effects of FreeSurfer version 6.0 (d = 0.41, p = 0.007) and Philips scanner vendor 
(d = 0.50, p < 0.0001) were found, leading to more positive effect size estimates. 
Conclusions: This study further validates our previously developed ENIGMA brain age algorithm. Importantly, we 
replicated the brain age gap in depression with a comparable effect size. Thus, two large-scale independent 
mega-analyses across in total 32 cohorts and >3400 patients and >2800 controls worldwide show reliable but 
subtle effects of brain aging in adult depression. Future studies are needed to identify factors that may further 
explain the brain age gap variance between cohorts.   

1. Introduction 

Recently, considerable literature has emerged around the theme of 
human aging. Aging is accompanied by complex biological changes, 
such as linear and nonlinear brain structural changes (Anderton, 2002). 
Machine learning algorithms can leverage these age-related brain pat-
terns to predict chronological age, to explain individual differences in 
aging. If (structural) magnetic resonance imaging (MRI) data are used as 
input for these algorithms, the output can be considered as an estimate 
of brain-based biological age, or, predicted brain age (Cole and Franke, 
2017). Over the past decade there has been an exponential increase in 
studies investigating brain age (Baecker et al., 2021), with this metric 
being used to quantify one’s brain health state, as well as risk for 
aging-related diseases and mortality (Cole et al., 2018). These are 
important indicators of neurodegenerative diseases such as Alzheimer’s 
or multiple sclerosis; however, these risks are also commonly increased 
(albeit to a lesser extent) in major depressive disorder (MDD) (Penninx, 
2017). 

The estimated neuroimaging-derived “brain age gap” (predicted 
brain age minus chronological age, i.e., brain-predicted age difference, 
or, brain-PAD) in depression varies across studies in terms of both effect 
size and statistical significance. These differences are likely driven by 
differences in sample properties (e.g., age range), but also training and 
testing sample (size), and methods used (e.g., modality/features). A 
recent systematic review and meta-analysis summarized that the ma-
jority (4 out of 7) of the existing studies of brain-PAD in depression did 
not establish a significant case-control difference (Ballester et al., 2022). 
Yet, effects were compatible across studies; thus, all studies identified a 
higher average brain age gap in depression compared to controls, with a 
pooled effect of approximately +1 year of added aging, although esti-
mated gaps ranged from 0.13 to 4.92 years. Our previous ENIGMA MDD 
consortium study, the largest study of brain age in depression to date (N 
= 2126 controls and N = 2675 patients), showed a +1.08 year higher 
brain-PAD in depression (Cohen’s d = 0.14), but with no evidence that 
this effect was driven by specific (clinical) characteristics such as age, 
age of onset, recurrence status, remission status, or antidepressant use 
(Han et al., 2021a). The subsequent addition of new cohorts to the 
ENIGMA MDD consortium since our previous brain age study provides 
us with an unique opportunity to perform an independent replication 
study in new data to validate our developed algorithm, as well as 
determine whether depression is consistently associated with older 
appearing brains (Wrigglesworth et al., 2021). Studying the impact of 
depressive psychopathology on age-related structural brain patterns 
may help to explain why persons with depression have an increased risk 

for poorer brain and physical health compared to their nondepressed 
peers. 

Our ENIGMA brain age algorithm was trained on 952 male and 1236 
female healthy controls from 19 cohorts. We used 77 FreeSurfer-derived 
ROI features (34 cortical thickness, 34 cortical surface area, 7 subcor-
tical volumes, lateral ventricles, and intracranial volume) to predict 
chronological age using ridge regression. While other existing (deep 
neural network) algorithms may potentially provide more accurate 
predictions (Lombardi et al., 2020), most of them rely on using 
higher-dimensional imaging data as input (e.g., raw scans, 
individual-level voxels, or vertices). Within the ENIGMA consortium, 
many cohorts have shared data in the form of brain-derived summary 
measures (i.e., FreeSurfer brain regions of interest, or ROIs). The current 
FreeSurfer ROIs method is thus one of the more practical ways to 
perform a large multisite brain age mega-analysis in depression, facili-
tated by the collaborative nature of the ENIGMA MDD working group. 
Our first study showed good out-of-sample generalization to new and 
unseen controls and patients from the same cohorts as the model was 
trained on, as well as completely independent controls from cohorts not 
included in training (i.e., ENIGMA Bipolar Disorder controls) (Han et al., 
2021a). Additionally, other ENIGMA studies have further demonstrated 
the validity of this model (Clausen et al., 2022), identifying a higher 
brain-PAD in schizophrenia (Constantinides et al., 2022). 

This study aims to further validate the ENIGMA FreeSurfer ROI- 
based brain age prediction method, by evaluating the performance of 
our algorithm in 13 new and unseen cohorts of individuals with 
depression collected from 20 independent scanners. Importantly, we 
aim to contribute to the growing area of brain age research by 
attempting to replicate the magnitude of the brain age gap difference 
previously reported by the ENIGMA-MDD consortium between persons 
with depression (N = 766) and controls (N = 751) using this method. 

2. Methods 

2.1. Samples 

Thirteen independent cohorts (N = 1517) from the ENIGMA MDD 
working group with data from people with major depression and con-
trols (18–75 years old) participated in this replication study. Cohort- 
specific details on demographics, basic clinical characteristics, and 
exclusion criteria can be found in the Supplement. All sites obtained 
approval from their local institutional review boards and ethics com-
mittees. All study participants provided written informed consent. 
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2.2. ENIGMA brain age prediction model 

Model development is described in more detail in (Han et al., 2021a), 
but in short, ridge regression was used to predict age from 77 
FreeSurfer-derived features (7 subcortical volumes, 34 cortical thickness 
regions, 34 cortical surface area regions, lateral ventricles, and intra-
cranial volume) in healthy controls (no history of mental or neurological 
illness). FreeSurfer features were averaged across hemispheres as this 
improved the model fit of the original algorithm. Separate models were 
trained for male (N = 952) and female (N = 1236) controls. The 
ENIGMA brain age model is publicly available (www.photon-ai. 
com/enigma_brainage) and was applied to the independent new 
ENIGMA MDD cohorts included in the current study. A schematic 
overview is displayed in Fig. 1. 

2.3. Model generalization 

The ENIGMA brain age prediction model has previously been vali-
dated in 646 unseen male and 757 unseen female control samples from 
23 independent scanners that were not part of the training data (Han 
et al., 2021a), as well as in other disease working groups of ENIGMA 
(Clausen et al., 2022; Constantinides et al., 2022). In the current study, 
model generalization was evaluated in control samples collected from 
20 additional independent scanners (N = 252 males and N = 499 fe-
males). To assess model performance in these data acquired from 
completely independent cohorts, we calculated (1) mean absolute error 
(MAE), (2) weighted MAE (i.e., wMAE, an age range informed metric; 
MAE ÷ age range of sample), (3) Pearson correlation coefficients be-
tween predicted brain age and chronological age, and (4) the proportion 
of the variance explained by the model (R2). R2 was calculated using the 
caret package according to the formula: 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1

(
yi − y

)2  

Where n is the number of subjects, y is the chronological age, ŷ is the 
predicted age, and y is the average age of subjects in the test set. Please 
note that according to this formula, R2 can be negative, even if a cor-
relation between age and predicted age is positive. This happens when 
model predictions have larger errors than predicting the average age, 
such as when predictions are biased or have a relatively large variance. 

2.4. Statistical analyses 

A mega-analytic approach was taken to replicate the presence and 
size of the brain age gap in depression by pooling data across all thirteen 
new cohorts. The brain age gap (predicted brain-based age minus 
chronological age, or, brain-PAD) was calculated for each individual 
and used as the outcome variable in analyses comparing the difference 
between brain-PAD in people with depression and controls and exam-
ining associations between brain-PAD and clinical characteristics. Each 
dependent measure of the ith individual at jth scanning site was 
modeled as follows:  

1. Brain-PADij = intercept + β1(Dx) + β2(sex) + β3(age) + β4(age2) +
β5(Dx × age) + β6(Dx × sex) + β7(age × sex) + β8(Dx × age × sex) +
Uj + εij  

2. Brain-PADij = intercept + β1(Dx) + β2(sex) + β3(age) + β4(age2) +
β5(Dx × age) + β6(Dx × sex) + Uj+ εij  

3. Brain-PADij = intercept + β1(Dx) + β2(sex) + β3(age) + β4(age2) + Uj 
+ εij 

Intercept, Dx (MDD diagnosis), sex, and all age effects were fixed. 
The terms Uj and εij are normally distributed and represent the random 
intercept attributed to the scanning site and the residual error, respec-
tively. Standardized Cohen’s d was calculated to indicate the size of the 
effect. Regression analyses were performed in a subset of participants to 
associate brain-PAD with depression severity as measured with the 
Beck’s Depression Inventory (Beck et al., 1961) or Hamilton Depression 
Rating Scales (Hamilton, 2012), and partial-correlation Pearson’s 
r-statistics appropriate for mixed-effects models were calculated to 
indicate the size of the effect (Nakagawa and Cuthill, 2007). Within the 
patient group, we also used linear mixed models to examine brain-PAD 
associations with clinical characteristics (i.e., recurrence status [first 
versus recurrent episode], antidepressant (AD) status [taking AD yes/no 
at time of scanning], remitted status [acute versus remitted], age of 
onset of depression [categorized as: early, <26 years; middle adulthood, 
>25 and < 56 years; and late adulthood onset, >55 years]). All models 
included age and age2 covariates to statistically deal with the age bias of 
brain-PAD (i.e., correlation between brain-PAD and age) (Le et al., 
2018). In addition to the mega-analytic approach, a meta-analytic 
approach was also performed to provide further insights into the 
generalization of the ENIGMA brain age model and case-control differ-
ence in individual cohorts. Exploratory effects of cohort specific char-
acteristics (i.e., sample size, mean age, proportion of females) but also 
potential (scan) technical moderators (i.e., FreeSurfer version, field 
strength, scanner vendor, performance accuracy metrics [MAE, R2]) on 
the brain-PAD outcome were examined by random effects 
meta-regressions analyses using the metafor package in R (a more 
detailed description on methods can be found in the Supplementary 
Methods). All statistical tests were tested two-sided and considered 
significant at p < 0.05. 

3. Results 

3.1. Participants 

Participant characteristics are presented in Table 1. Thirty in-
dividuals from one cohort were excluded from the study based on having 
>10% missing structural brain ROIs data. Two individuals >75 years old 
from another cohort were also excluded from this study, given that the 
model was trained on data restricted within 18–75 years. Eight persons 
showed a brain-PAD with a calculated Z-score >3 (i.e., >3SD away from 
the global mean) and were excluded from analysis. In total, we included 
data from N = 1517 participants, including N = 751 controls (66% fe-
males) and N = 766 persons with (current) MDD (65% females). The 
Supplement includes cohort-specific information on participants 
(Supplementary Table S1), image acquisition and processing 

Fig. 1. Schematic overview of features used and data used to train the 
ENIGMA brain age model. Learned sex-specific ridge regression coefficients 
were applied to the current independent replication test data. 
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(Supplementary Table S2) and instruments used for depression ascer-
tainment (Supplementary Table S3). 

3.2. Brain age prediction performance 

Model generalizability was evaluated in the healthy control samples, 
split by sex. Both pooled and cohort-specific model performances are 
presented in Supplementary Table S4. While the generalization power 
varied from cohort to cohort, the pooled performance accuracy was 
comparable to the out-of-sample generalizability previously reported in 
(Han et al., 2021a), with current metrics between predicted brain age 
and chronological age of Pearson’s r = 0.73, R2 = 0.47, MAE = 7.50 
years, and wMAE = 0.13 in males and r = 0.73, R2 = 0.47, MAE = 7.50 
years, and wMAE = 0.13 in females. Fig. 2 shows the predicted brain age 
against chronological age in the pooled sample (Fig. 2A) and per cohort 
(Fig. 2B), with separate regression lines for controls and patients. Co-
horts showing a negative R2 showed negative mean cortical thickness 
deviations compared to the grand mean of combined cohorts (Supple-
mentary Fig. S1). Performance metrics in patient samples (separately for 
males and females) can also be found in the Supplementary Table S5. 

3.3. Replication of higher brain age in depression 

On average, depressed persons showed a significantly higher brain- 
PAD of +0.99 (SE 0.35) years (Cohen’s d = 0.15, 95% CI: 0.04–0.25) 
compared with controls (p < 0.01), Fig. 3. No significant three-way 
interaction between diagnosis by age and by sex, nor significant two- 

way interactions (diagnosis by age or diagnosis by sex) were found. 
The supplementary meta-analytic approach resulted in a slightly higher 
but similar pooled brain-PAD of +1.20 years and associated effect size of 
Cohen’s d = 0.19 between cases and controls (I2 = 52.6%, indicating 
moderate heterogeneity). Forest plots are depicted in Supplementary 
Fig. S2. A significant positive association between brain-PAD and BDI 
was found across diagnostic groups (N = 756, b = 0.04 years per 
symptom [SE = 0.02]; r = 0.08 [SE = 0.04], 95% CI: 0.00–0.15, p =
0.02), but this did not reach statistical significance within the patient 
group (N = 350, b = 0.07 years per symptom [SE = 0.04]; r = 0.09 [SE 
= 0.05], 95% CI: − 0.01-0.20, p = 0.055). Using the clinician- 
administered HDRS scores, no significant associations were found 
across diagnostic groups (N = 642, b = 0.05 years per symptom [SE =
0.03]; r = 0.06 [SE = 0.04], 95% CI: − 0.01-0.14, p = 0.09) nor within 
the depressed group (N = 458, b = 0.02 years per symptom [SE = 0.05]; 
r = 0.02 [SE = 0.05], 95% CI: − 0.07-0.11, p = 0.68). 

3.4. Patient group analyses and meta-regressions with moderators 

No significant differences in brain-PAD were found between patient 
subgroups (recurrent versus first episode depression [b = 0.00 years, p 
= 0.99], AD-free versus AD-using patients [b = 0.83 years, p = 0.20], 
acute versus remitted depression [b = − 1.07 years, p = 0.43], or age of 
onset of depression in middle [b = 0.55, p = 0.49] or late adulthood [b 
= 0.84, p = 0.66] compared to early onset). The meta-regressions with 
sample size, mean age, proportion of females, proportion of first/ 
recurrent episode patients, proportion of AD-free/AD-using patients, 
proportion of remitted/acute patients, field strength and performance 
accuracy metrics (MAE, R2) did not significantly moderate the Cohen’s 
d effect size estimates of brain-PAD (all QMp’s > 0.05, Supplementary 
Table S6). However, significant moderating effects of FreeSurfer version 
6.0 (d = 0.41, p = 0.007) (Fig. 4A) and Philips scanner vendor (d = 0.50, 
p < 0.0001) were found (Fig. 4B), leading to more positive effect size 
estimates. 

4. Discussion 

The current study replicated the finding that persons with depression 
reliably show older appearing brains, with a similar estimated gap and 
associated effect size (+1 year, Cohen’s d = 0.14) as previously found in 
our largest mega-analysis of brain age in depression to date (+1.08 
years, Cohen’s d = 0.14) (Han et al., 2021a). While the generalization of 
our algorithm varied from cohort to cohort, pooled metrics were com-
parable to the performance accuracy found in the out-of-test samples in 
the original study. Importantly, post-hoc sensitivity analyses revealed 
that the exclusion of cohorts showing poor generalization did not change 
our replication findings (Supplementary Tables S7 and S8). In addition, 
a meta-analytic approach resulted in a highly similar pooled effect size 
(+1.20 years, Cohen’s d = 0.19), providing robust evidence for signifi-
cant but subtle age-related structural brain patterns in depression 
compared to controls. 

The current multi-site replication study provides further evidence 
that the brain age gap in depression is an estimated +1 year (Cohen’s d 
= 0.14), consistent with our previous mega-analysis in 19 other cohorts 
(Han et al., 2021a) and another meta-analysis including an additional 6 
studies (Ballester et al., 2022). Taken together, the impact of depression 
on age-related structural brain differences thus seems to be rather sub-
tle. However, it is important to note that the small, pooled effect size did 
not result from consistent small effects in each individual cohort, as can 
be seen from the forest plots of the meta-analyses in Supplementary 
Fig. S2. Instead, the subtlety of the effect seemed to be driven by the fact 
that four of the cohorts showed larger positive effects (Cohen’s d’s 
ranging from 0.40 to 0.67, mean = 0.50), whereas remaining cohorts 
showed no significant effects. However, effect sizes were not moderated 
by (Supplementary Table S6) or related to model generalization (i.e., 
small, or negative effect sizes were not only observed in cohorts showing 

Table 1 
Participant characteristics per diagnostic group.  

Characteristic N Controls, N = 751a MDD, N = 766a 

Cohort AFFDIS 49 20 (2.7%) 29 (3.8%) 
CSAN 107 49 (6.5%) 58 (7.6%) 
DCHS 70 54 (7.2%) 16 (2.1%) 
FIDMAG 69 34 (4.5%) 35 (4.6%) 
Hiroshima 315 167 (22%) 148 (19%) 
TiPS 105 75 (10.0%) 30 (3.9%) 
MOODS 96 32 (4.3%) 64 (8.4%) 
MOTAR 108 68 (9.1%) 40 (5.2%) 
NESDA 219 65 (8.7%) 154 (20%) 
Novo 128 52 (6.9%) 76 (9.9%) 
Singapore 40 17 (2.3%) 23 (3.0%) 
SoCAT 179 100 (13%) 79 (10%) 
StanfFAA 32 18 (2.4%) 14 (1.8%) 

Chronological age (years) 1517 38.80 ± 12.89 
(17.00–73.00) 

39.82 ± 12.70 
(18.00–73.00) 

Predicted brain age (years) 1517 41.75 ± 10.79 
(14.78–74.60) 

43.94 ± 10.65 
(15.22–75.66) 

Brain-PAD (years) 1517 2.95 ± 8.89 
(− 25.31-31.39) 

4.12 ± 9.86 
(− 25.19-32.40) 

Sex Female 1517 499 (66%) 498 (65%) 
Beck’s Depression Inventory 

(severity) 
756 5.40 ± 5.95 

(0–42) 
28.04 ± 10.87 
(0–56) 

Hamilton Depression Rating 
Scale (severity) 

642 1.45 ± 2.29 
(0–16) 

19.07 ± 8.04 
(0–41) 

Recurrent status First 1130  225 (38%) 
Recurrent   375 (62%) 

Antidepressant 
use 

AD-free 1131  357 (59%) 
AD-using   244 (41%) 

Remitted status Remitted 1004  41 (7.5%) 
Acute   508 (93%) 

FreeSurfer 
version 

5.0 1517 65 (8.7%) 154 (20%) 
5.3  403 (54%) 336 (44%) 
6.0  134 (18%) 139 (18%) 
7.1  100 (13%) 79 (10%) 
7.2  49 (6.5%) 58 (7.6%) 

Field strength 1.5T 1517 34 (4.5%) 35 (4.6%) 
3T  717 (95%) 731 (95%) 

Scanner vendor GE 1517 104 (14%) 125 (16%) 
Philips  182 (24%) 281 (37%) 
Siemens  465 (62%) 360 (47%)  

a n (%); Mean ± SD (Minimum-Maximum). 
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poor performance accuracy) (Supplementary Table S8). In addition, 
post-hoc correlation analyses (Pearson’s r) and scatter plots (Supple-
mentary Fig. S3) showed no direct relationship between model perfor-
mance (R2: r = 0.02, p = 0.95; MAE: r = − 0.01, p = 0.96) and 
brain-PAD. While negative R2 observed in some cohorts can likely be 
explained by lower values of the cortical thickness features in those 
particular cohorts (Supplementary Fig. S1), the inconsistency in effect 
sizes between cohorts may rather be due to other sources of variation 
unrelated to basic cohort or clinical characteristics such as first episode 

vs. recurrent, antidepressant free vs. antidepressant using or acute vs. 
remitted patients, as we did not observe any differences between these 
subgroups. 

Depressive state as measured by the BDI but not clinician-rated 
HDRS seemed to be weakly related to the brain age gap, indicated by 
the lack of significant associations with depression severity scores in the 
patient group, although the latter may also be due to the reduced sample 
size. Interestingly, symptom severity scores were however highly 
correlated in overlapping samples that included both BDI and HDRS 

Fig. 2. Brain age prediction using the ENIGMA algorithm in 13 new and unseen cohorts from 20 different scanners. (A) Chronological age against predicted 
brain age in the pooled sample and (B) per cohort. Separate regression lines are plotted for controls (black) and persons with depression (red). Diagonal dashed line 
reflects the line of identity (x = y). Predictions were pooled across males and females to calculate the performance metrics in the control group. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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measures (N = 462, Pearson’s r = 0.81, p < 0.0001), although the co-
efficient was reduced in patient samples only (N = 318, r = 0.48, p <
0.0001). The discrepancy could perhaps be explained by different ways 
the HDRS may be scored, inter-rater reliability or the differential pro-
portion of items emphasizing cognitive and affective (BDI-II) or somatic 
and behavioral dimensions (HDRS-17) (Brown et al., 1995). Alterna-
tively, the brain age gap may potentially be more sensitive to subjective 
(BDI) than to objectively (HDRS-17) rated experiences, consistent with 
the study finding that subjective experience of aging was closely related 
to the brain age gap (Kwak et al., 2018). Future studies may further 
investigate other clinical and symptom characteristics to explain such 
differences. 

The current study did examine several potential technical sources of 
bias such as field strength, scanner vendor, and FreeSurfer version. In 
terms of scan technical moderators, we found that image acquisition 
with a Philips scanner (in contrast to Siemens or General Electric ven-
dors) and FreeSurfer version for processing images (v6.0, in contrast to 
v5.0, v5.3, v7.1, v7.2) showed significant moderating effects on the ef-
fect size of the case-control difference in the brain age gap. The distri-
bution and variety of scanner vendors used to train our brain age 
algorithm can be found in Supplementary Table S9. A qualitative com-
parison shows that the Philips scanner vendor was not necessarily 
overrepresented in the training sample (28%), and is unlikely to explain 
the significant moderating effect of the Philips scanner vendor in the 
current study. Yet to gain more insight, we repeated the meta-analytic 
approach used here on the test data from the original Han et al. 
(2021) study (Supplementary Fig. S4). When retrospectively performing 
meta regressions for scanner vendor and FreeSurfer version on the test 
data used in the original study, we found significant moderating effects 
of Philips (d = 0.28, p < 0.0001) but also Siemens scanner vendor (d =
0.11, p = 0.01), as well as for FreeSurfer v5.3 (d = 0.16, <0.0001), 
leading to more positive effect size estimates compared to General 
Electric or Bruker scanner vendors, or FreeSurfer v5.0, v5.1, and v6.0, 
respectively (Supplementary Figs. S5 and S6). Scanner manufacturer 
differences may potentially lead to non-negligible differences in cortical 
thickness, surface area, and volume (Potvin et al., 2016), and a recent 
study also found that different FreeSurfer pipelines may generate 
different statistical outcomes in case-control comparison studies (Filip 
et al., 2022). Further work is required to thoroughly examine the in-
fluence of scan technical variables on brain age prediction performance 
and statistical outcomes. Future studies may, for example, consider 
using retrospective techniques to accommodate site-effects in multi-site 
neuroimaging studies (Bayer et al., 2022). However, importantly, cur-
rent site effects were corrected for in both the current mega-analysis and 

in that of the original study, and it also seems plausible that other het-
erogeneous demographic, psychosocial, clinical, or biological 
cohort-specific characteristics, which we did not measure, coincided 
with the scanner vendor variable (i.e., biological sampling bias). 

A recent systematic review, for example, suggests a role for epige-
netic factors, and work investigating whether (genetic risk) for epige-
netic aging contributes to the brain-PAD metric is underway in the 
ENIGMA consortium. While other literature suggests differential brain 
aging effects in older adults compared to middle-aged adults (i.e., only 
significantly higher brain-PAD in geriatric sample) (Christman et al., 
2020), females and males (i.e., brain-PAD only associated with depres-
sive severity in males) (Dunlop et al., 2021), or stage-dependent re-
lationships with depression (i.e., only occurring at illness onset) (Han 
et al., 2021), we did not confirm this in the current study. To interpret 
these different findings, we must acknowledge that this may be due to 
the older age of the geriatric sample (mean = 66.41 years [SD = 5.45] in 
Christman et al. vs. mean = 39.31 years [SD = 12.80] here) and different 
imaging-derived modality (functional MRI in Dunlop et al. vs. structural 
MRI used here). Furthermore, detailed information on ethnicity, socio-
economic and psychosocial variance were not available and its impact 
on (the performance of the) brain age (prediction model) could not be 
evaluated in more detail here. However, an independent study including 
the NESDA cohort showed selectively older appearing brains in those 
with high somatic symptom severity (Han et al., 2021b). Future studies 
with more detailed (clinical) characterization (e.g., individual or clus-
ters of depressive symptoms) are needed to gain more insight into which 
factors consistently contribute to the brain-PAD metric. 

A major strength of this replication study is the harmonized 
approach of data preprocessing, quality checking, and brain age pre-
diction algorithm across cohorts, potentially limiting the sources of bias 
that may stem from these decisions. This study is therefore a good 
example of the advantage of consortium efforts and collaborative team 
science. A note of caution is however due, since within individual co-
horts, the case-control difference may not be consistent, present, or 
significant, also explaining the inconsistent findings across individual 
studies (Ballester et al., 2022). Unfortunately, due to a lack of harmo-
nized clinical, demographic, and psychosocial information in consortia 
like ENIGMA MDD, we are limited in our ability to identify factors that 
could explain the variance in brain-PAD between cohorts. Finally, while 
the brain age predictions may be more accurate with higher-dimensional 
data from multimodal sources, it remains an open question whether 
models with improved performance accuracy show increased sensitivity 
in detecting subsequent associations with clinical psychopathology. 

5. Conclusion 

This replication study using data from 13 cohorts around the world 
confirmed our previous findings that persons with major depressive 
disorder show advanced brain aging compared to controls by approxi-
mately +1 year. Thus, two large-scale independent but harmonized 
mega-analyses across 32 cohorts and >3400 patients and >2800 con-
trols show a reliable but subtle pattern of brain aging in adult depres-
sion. It is important to note that the small, pooled effect is not due to 
consistent small effects across cohorts but may be driven in part by the 
heterogeneity across scanning sites. Although we did not find a relation 
between basic patient properties and the effect size difference in the 
brain age gap, future work is needed to examine which scan technical, 
clinical or biological characteristics may underlie the individual varia-
tion in the brain age gap. 
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