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a b s t r a c t 

Combining functional soft materials with electrical impedance tomography is a promising method for developing 

continuum sensorized soft robotic skins with high resolutions. However, reconstructing the tactile stimuli from 

surface electrode measurements is a challenging ill-posed modelling problem, with FEM and analytic models 

facing a reality gap. To counter this, we propose and demonstrate a model-free superposition method which uses 

small amounts of real-world data to develop deformation maps of a soft robotic skin made from a self-healing 

ionically conductive hydrogel, the properties of which are affected by temperature, humidity, and damage. We 

demonstrate how this method outperforms a traditional neural network for small datasets, obtaining an average 

resolution of 12.1 mm over a 170 mm circular skin. Additionally, we explore how this resolution varies over a 

series of 15,000 consecutive presses, during which damages are continuously propagated. Finally, we demonstrate 

applications for functional robotic skins: damage detection/localization, environmental monitoring, and multi- 

touch recognition - all using the same sensing material. 
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. Introduction 

The sensorization of compliant functional materials is a vital step

n the development of biomimetic skins for soft robots [1,2] , requiring

he development of multimodal sensing capabilities in flexible, stretch-

ble, and healable materials. Recently, attention has shifted towards

lectrical impedance tomography (EIT) in soft sensor technologies for

obotic applications [3,4] , beyond its traditional use in the field of med-

cal imaging [5] . EIT enables continuum sensing, few electrodes for high

esolutions, and remote electrode positioning so as not to interfere with

 robot’s physical interactions. The combination of these advantages

ith advanced sensorized materials - such as self-healing hydrogels -

ould demonstrate a significant step forwards in the development of

iomimetic skins, but their time-varying nonlinear material properties

ecessitate data-driven approaches [6,7] . In addition, traditional recon-

truction techniques output a low-level conductivity maps, rather than

he deformation state which is more useful for soft robotic skins [5,8] . 

Gelatin-glycerol hydrogels are of ever-increasing interest in soft

obotics due to their printability, resilience, biodegradability, and ex-

ellent sensorization characteristics [7,9–13] . Whilst the fracture of bal-

istic gelatin has previously been explored using EIT methods [14] , few

orks have combined these functional hydrogels with EIT-based soft

ensing, due to the difficulties in tactile reconstruction. Zhang et al.

15] use a low conductivity gelatin-glycerol hydrogel sheet alongside
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-channel tomography to reconstruct highly conductive tactile stimuli,

hough this method does not extend to insulated touches. Ionically con-

uctive approaches may serve to counter this: Zhao et al. [16] use an

onically conductive liquid and deformable elastic film to perform sim-

le tactile reconstructions, with Soleimani and Friedrich [17] using a

imilar setup to detect forces as small as 64 mN. The combination of

imilar technologies with functional hydrogels can serve to advance the

eld of somatosensory robotic skins, provided the challenges in their

econstructions can be addressed. 

When coupled with soft skins, EIT’s governing equation may be ex-

ressed in the form of Poisson’s equation [18,19] : 

 

2 𝑣 + 

1 
𝜎
∇ 𝜎 ⋅ ∇ 𝑣 = 0 (1)

here 𝜎 represents the conductivity field of a body (assumed isotropic

nd real), and 𝑣 is the body’s potential field. The forward problem -

iven a proposed conductivity field 𝜎, find 𝑣 - can be solved both numer-

cally and, in certain cases, analytically [20–22] . Electrical impedance

omography concerns the inverse problem: finding 𝜎 from a selection

f electrode 𝑣 measurements and conservation-based boundary condi-

ions. This problem is notoriously nonlinear and ill-posed [5,19,23] ,

nd considerable research has been devoted to its reconstruction tech-

iques. Early attempts to simplify the problem use linearizations of Eq.

1) about a constant-conductivity condition [19,24] . Barber and Brown

18,23] analytically backproject the measured voltage gradients along
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Fig. 1. a) Experimental setup: a sensorized hydrogel skin is probed by a robotic 

arm, whilst a series of measurements are performed by electrodes positioned 

around its perimeter. b) The skin’s electrode configuration and shaded charac- 

terization area. Driving currents are applied to opposite electrodes, whilst the 

potential difference between all separate pairs of adjacent electrodes is mea- 

sured. 
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urved equipotentials. Further iterative algorithms apply Tikhonov &

andweber regularizations to the ill-posed problem [25–27] . Optimiza-

ion approaches have become more viable with increased computational

vailability, aiming to propose 𝜎 fields which minimize the error be-

ween Eq. (1) ’s proposed voltages and those measured at the electrodes.

enetic algorithms and particle swarm optimizations have been partic-

larly studied for their ability to minimize this cost function [28–31] . 

The creation of EIT simulations & finite element models facilitates

ata-driven approaches to the conductivity predictions using neural net-

orks [32–34] . Soft sensory implementations of the technology tend to

e coupled with simulation-based training: Park et al. [3] perform real-

ime reconstruction of a hydrogel/silicone elastomeric skin using deep

eural networks trained using finite element simulations, whilst Duan

t al. use deep learning to remove unwanted artefacts in the deforma-

ions of a stretchable conductive fabric [35] . Data-driven approaches

re not the only option for such sensors: Russo et al. [36] use Tikhonov

egularization with a one-step Newton parameter optimization to recon-

truct a conductive fabric’s tactile stimuli. Though conductivity maps

re sufficient for medical imaging, these soft sensory implementations

ust assume a close dependence between deformation and conductiv-

ty. Using a real-world data-driven approach, we instead aim to directly

redict a soft skin’s deformation state, without the need for simulations

r a training period. 

In this work, we estimate the deformation states of an ionically con-

uctive gelatin-glycerol hydrogel membrane using small amounts of

eal-world data. Given the substrate-dependent effects which such a ma-

erial introduces, a data-driven approach is employed: a robotic arm pro-

ides deformations of known location and depth, to which impedance

esponses around the skin’s perimeter are measured and used as inputs.

iven the large scale experimentation barrier to entry, this is - to the

uthors’ knowledge - the first demonstration of any EIT sensorized skin

hich constructs models from physical data, without the need for simu-

ations or analytic models. We illustrate its validity with demonstrations

f high-resolution localizations and its robustness to small damages. 

We first show how data-driven approaches can reduce the reality

ap often faced by analytical methods or simulation-based training with

unctional materials [37] . As the models are developed from real-world

ata without implicit assumptions about the material properties, they

utperform traditional analytical tools. We then propose our model-free

eighted activation map (WAM) method, which requires fewer real-

orld data points for its reconstruction. Unlike analytical tools, the

roposed method is generalizable to any sensing material, size and ge-

metry, while compared to black-box learning-based approaches our

ethodology is highly data efficient and provides actual maps of the

redicted deformations. Additionally, it is shown to localize contact sig-

ificantly better than an equivalent neural network with small datasets

f approximately 500 presses. We explore the ability of the proposed

ethod in detecting and adapting to damages with samples of over

5,000 presses. Finally, we present the method’s ability to monitor envi-

onmental changes, identify and localize damages, and respond to mul-

iple contacts simultaneously; a capability not easily achievable with the

xisting learning frameworks. 

. Materials and methods 

.1. Sensorized hydrogel 

The sensorized soft robotic skin is fabricated from a gelatin-

lycerol hydrogel using a 1:1.5:2.5:0.2:0.1 wt% composition of gelatin

pork, 240–260 bloom):glycerol:water:citric acid monohydrate: table

alt (NaCl), based on the work of Hardman et al. [7] . After being ho-

ogenized at a temperature of 50 ◦C, the mixture is manually cast into a

aser-cut circular polymethyl methacrylate (PMMA) mold, with 180 mm

nner diameter and 3 mm depth. The mold is left at room temperature

or two days to ensure an equilibrium is reached with the environmental

umidity. The evaporation of water during this process shrinks the skin’s
2 
iameter to approximately 160 mm, such that it is held under tension

hen secured in the 180 mm frame. 

.2. Hardware 

Voltage measurements are collected using 16 electrodes arranged

niformly in a 170 mm diameter circle around a laser-cut PMMA frame

ith an inner diameter of 160 mm ( Fig. 1 ). The frame consists of two

alves, which are held tightly together with eight M4 fasteners. The

ensorized skin ( Section 2.1 ) is sandwiched between these two layers,

ressing the 16 electrodes (M2 stainless steel bolts, with wires clamped

etween two nuts) firmly into its surface to ensure electrical contact.

o prevent the skin from slipping within the frame, the two are joined

etween each electrode using a cyanoacrylate adhesive. The frame is

upported 30 mm above a table by its perimeter ( Fig. 1 ), so that any

oint on the exposed skin can be freely pressed: in this work, a maximum

ress depth of 20 mm is enforced. 

The 16 electrodes are wired to a commercially available multi-

hannel Spectra electrical impedance measurement device (Mindseye

iomedical). For each measured state, the board uses a combination

f 25 kHz opposite electrode constant driving currents to yield a set of

92 adjacent electrode voltage measurements [38] . The process is illus-

rated in Fig. 1 : the driving current is sequentially applied to each of the

 = 16 opposite electrode pairs, colored red. For each 𝑛 , the potential

ifferences between all 𝑚 = 14 adjacent electrode pairs not sourcing or

inking current are measured (colored green). A USB connection returns

he 𝑛 × 𝑚 measured impedances. By comparing the states before and af-

er pressing, reconstruction algorithms ( Section 2.3 ) aim to estimate the

kin’s conductivity field 𝜎( 𝐱 ) . 
Throughout the experiment, the skin is pressed using a Universal

obots UR5 robotic arm, equipped with a 3D printed polylactic acid

PLA) probe of 5 mm diameter and 40 mm length. The probe is cov-

red with an insulating silicone bellow, and presses at random loca-

ions within a 140 mm diameter area of the skin, shaded red in Fig. 1 .

5,000 such presses are recorded in succession, over the course of six

ays. One of four specified pressing depths - 5, 10, 15, or 20 mm - is

andomly selected for each. Before each press, a full set of 192 mea-

urements is recorded, and the probe descends with a maximum speed

f 2 cm/s & acceleration of 2 cm/s 2 . The press is held until a full set of

92 voltage measurements has been taken, before ascending with max-

mum speed and acceleration of 1 cm/s & 1 cm/s 2 , respectively. A small

train-inflicted skin damage initiates between electrodes 2 & 3 close to
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Fig. 2. Damage states after a) 5000 and b) 15,000 presses, where 10.7% of the surface is damaged. The damage initiates between electrodes 2 & 3 before propagating 

along the edge of the frame. 
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he frame’s inner edge after approximately 5000 presses: Fig. 2 a. As

ressing continues, this damage propagates along the frame’s edge, ac-

elerating noticeably between 10,000 & 15,000 presses to reach 10.7%

urface coverage. Figure 2 b shows the damage in the skin’s final state,

ith electrode 0 lowermost. It should be noted that no electrode is com-

letely isolated by the damage; even in the final state, a small annular

trip of the hydrogel runs within the enclosing frame. 

A second undamaged skin is fabricated for the damage detection and

ulti-touch tests presented at the end of this work, constructed from

00 single press responses. Two probes are attached to the end-effector

ith a separation of 20, 75, or 108 mm, and are simultaneously pressed

0 mm into the skin’s surface. Damages are inflicted using a craft knife,

s shown in the supplementary video. 

.3. Reconstruction methods 

Three reconstruction techniques are compared in this work: a model-

ased backprojection algorithm, which makes a number of assumptions

bout the underlying material properties; a simple data-driven feed-

orward neural network, which can be trained to match the material’s

ehaviours using thousands of observed responses; and the proposed

uperposition method using fewer observations - Weighted Activation

aps. 

eighted activation maps 

The construction of Weighted Activation Maps (WAMs) is a data-

riven approach which relies on the superposition of known responses

nd the incorporation of the known sensor geometry, significantly re-

ucing the quantity of data required when compared to an equivalent

eural network. 

The maps are built from the responses to a set of 500 known presses.

ach response consists of 192 values corresponding to the channel dif-

erences between the pressed and unpressed states. Each of the 192

hannels is measured using a specific tetrapolar electrode configuration

 Section 2.2 ). For each channel, an ‘activation map’ is created from the

00 contact locations: the 500 known responses ( 𝐯 ) are normalized and

ed into a tanh function to eliminate outliers: 

 𝑖 = tanh 
( 

𝑣 𝑖 − 𝜇𝐯 
𝜎𝐯 

) 

. (2)

sing the known positions of each press, a circular map of 𝐱 is then lin-

arly interpolated to visualize the regions in which the electrode con-

guration responds most strongly. The resolution of this visual map is

ependent on the number of contact locations, and its accuracy is de-

endent on the uncertainity of the contact location (which is related to

he accuracy of the robotic probe). Three such maps are shown in Fig. 3 .

t should be noted that the regions form paths which join their active
3 
lectrodes; each of the 192 paths thus has different patterns of sensi-

ivity, which can be later superposed to predict the skin’s deformation

tate. 

Using the first 500 responses to random presses, 192 maps are built

 Fig. 4 ). The randomized depths are not considered during the construc-

ion of the maps, to ensure noise-free localisation of both shallow and

eep deformations. Given a response to an unknown press, the activa-

ion maps are used to predict its location using weighted superposition:

ach of the 192 maps is multiplied by its corresponding raw response

alue before all are added together to produce the final estimate. When

redicting the value of a single press, the brightest pixel in the final

mage is used, illustrated by a black cross in Fig. 4 . 

Despite the simplicity of this approach, the rest of this work shows

ow the WAMs provide a valuable insight into the current paths through

he conductive skin, achieving more accurate predictions than analyt-

cal models with less ‘training’ data than the alternate learning-based

pproach. The predictions remain robust as damage initiates and prop-

gates, and the single-press data can be used to perform damage local-

zation and multi-press predictions. From Fig. 4 , we can see that the

umber of floating point operations required in a WAM reconstruction

s equivalent to those encountered when passing through a 192 ×500

eedforward network layer. Its implementation is therefore expected

o have a significantly quicker real-time refresh rate than a machine

earning-based solution, which introduces significantly more layers and

ctivation functions. In addition, once the data is available, the WAMs

pproach can immediately be deployed, whilst neural networks require

n additional training period. 

When visualizing the current paths, it should be noted that Fig. 3 ap-

lies an additional linear scaling with radius, since the responses near

he edges tend to be greater than those at the centre. Equation (2) is

eplaced by: 

 𝑖 = 

||||||𝑣 𝑖 
( 

1 . 1 − 

𝑟 
(
𝑣 𝑖 
)

𝑅 

) |||||| (3a)

 𝑖 = 𝑡𝑎𝑛ℎ 

( 

𝑝 𝑖 − 𝜇𝐩 

𝜎𝐩 

) 

(3b)

This scaling is not used in the construction of WAMs, and only aids

o visualize Fig. (3 )’s activation maps. 

ackprojection 

As an example of a purely analytical reconstruction technique, we

se a common standarized backprojection algorithm, implemented us-

ng pyEIT [39] . For each 192D response to a press, the algorithm aims

o construct a 363-value conductivity map, visualized using Matplotlib ’s

ripcolor function. The brightest pixel in the resulting image is taken to

e the method’s prediction of press location. 
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Fig. 3. Three exemplary activation maps, corresponding to channels 115, 130, & 132 during the first 500 random presses. The active tetrapolar electrodes are colored 

red (input) and green (output), between which current paths are clearly visible. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 4. Construction of a Weighted Activation Map (WAM). 192 activation maps are weighted using the response vector from an unknown press, and superposed 

into a final prediction image. The activation maps are created using data from the first 500 presses. The WAM method can continue to localize stimuli whilst damages 

are propagating. 

4 
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Fig. 5. A comparison of analytical backprojection and neural network (with 

different training sizes) localizations. Localization errors are plotted during the 

15,000 presses during which damage initiates and propagates. 
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Table 1 

Average resolutions (mm) and algorithmic complexities 

of the WAM, NN, and analytic approaches with small 

datasets. To match a typical application of sensor train- 

ing and deployment, resolutions are calculated for the 

first 100 presses after the training window, rather than 

using an internal test set. 

Data Points (N) 100 500 1000 

WAM Resolution (mm) 13.7 12.1 11.2 

WAM Complexity (kflops) 38 192 383 

NN Resolution (mm) 20.1 15.0 12.5 

NN Complexity (kflops) 147 ∗ 147 ∗ 147 ∗ 

Analytic Resolution (mm) 26.6 24.1 26.1 

Analytic Complexity (kflops) 139 139 139 

∗ Not including the network’s training. Application of an 

activation function is assumed to be equivalent to 1 flop. 
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eural networks 

Feedforward neural networks are used to predict the location

nd depth of the presses, trained using only real-world data with a

0:10:10% training/validation/test data split. A fixed architecture is

sed throughout the work, implemented using MATLAB ’s Deep Learning

oolbox. An input layer of size 192 is followed by three hidden layers

ith 300, 50, & 20 nodes respectively, and a 3-node regression output. A

anh activation layer follows each hidden layer. Training (stochastic gra-

ient descent with momentum) begins with a learn rate of 0.05, which

alls by 1% every 500 epochs, using minibatches of size 500. Training

ontinues for 5000 epochs. 

Before training, each input (taken to be the difference in response

etween the pressed and unpressed states in each of the 192 chan-

els) is normalized to have zero mean and unity standard deviation,

nd each output is scaled to fall in the range (0, 1). These same nor-

alization parameters are applied to all subsequent responses used for

redictions. 

. Results 

.1. Localization 

Before testing the WAM reconstructions, Fig. 5 demonstrates how

ata-driven methods are significantly advantageous over traditional an-

lytical reconstruction techniques given the hydrogel’s responses, using

he two existing methods presented in Section 2.3 . Backprojection uses

nly one response vector to make each prediction, whilst the neural net-

orks are trained using an 80%:10%:10% split of the first 2000, 5000,

0,000, or 15,000 presses. Figure 5 plots the rolling localization error

f the 5 cases over the 15,000 presses. It is immediately apparent that

he networks outperform the analytical reconstructions by learning the

atterns behind the non-modelled material properties, consistently pro-

ucing lower errors. All plots trend upwards as damage initiates and

ropagates, with a sharp climb at ∼10,000 presses corresponding to a

udden degradation. Unsurprisingly, each network performs best below

ts number of training presses, where 80% have been directly used in

ts training. Beyond this, errors steadily increase, suggesting a constant

hange in the response caused by the damage and hydrogel-environment

quilibrium (addressed in Fig. 8 a’s discussion). 

Given this inability of the purely analytical reconstructions to adapt

o changing conditions, Fig. 6 focuses on the comparison of the two

ata-driven reconstruction techniques: neural networks and weighted

ctivation maps. We hypothesise that WAM’s knowledge of the sensor

eometry allows the method to outperform neural networks with low

mounts of data, which we test in Fig. 6 a. Networks with the same

rchitecture as Fig. 5 are trained using the first 𝑁 = 100, 500, 1000,

000, 5000, or 10,000 known presses and tested on all 15,000 presses,

nd WAM predictions use activation maps constructed from the same

umber of presses (rather than 500, as described in Section 2.3 ). As be-
5 
ore, all methods perform best within their training region, then devolve

s damage propagates, with a sharp increase in error around 10,000

resses. When 𝑁 = 100 & 𝑁 = 500, WAMs clearly outperform the net-

orks, producing satisfactory solutions when there is insufficient data

or the networks to fully converge. Table 1 shows a comparison of the

wo methods’ average resolutions given small amounts of data: with just

00 inputs, the WAMs achieve an average resolution of 13.7 mm over

he 170 mm skin, compared to NN’s 20.1 mm. Both perform significantly

etter than the average analytic (backprojected) error for the same data

indow, which considers only the 192D response in its prediction. With

ery small datasets, the WAM location - predicted using the brightest

ixel approach- is also affected by the separation of the training points,

nd resolutions could likely be improved further by instead identifying

nd localizing the centroid of a region of interest in the output map. The

able also compares the number of floating point operations required

or each prediction. Neural networks, backprojection, and WAM with

 = 500 all have comparable complexities. However, the complexity of

AM varies linearly with N, resulting in a trade-off between resolution

nd complexity for which 𝑁 = 500 produces a reasonable compromise. 

As the quantity of available data increases, the two error sets in

ig. 6 become comparable ( 𝑁 = 2000) before the networks begin to

utperform the WAMs due to the availability of damaged data. WAMs

re therefore most advantageous when real-world data is expensive to

ollect, and accurate reconstructions are required from small amounts

f data. 𝑁 = 500 is selected for subsequent tests, since this is well within

he range in which WAMs perform best. It also appears the WAMs could

e relatively robust to damages which initiate after the training period

 we later examine this effect in more detail. 

Another significant advantage of WAMs over the localization net-

orks is that they produce detailed deformation maps, providing more

ransparency to each prediction and enabling applications beyond local-

zation (later discussed in Section 3.2 ). Figure 6 b plots these deformation

aps when 𝑁 = 500 for the undamaged skin. As seen in Fig. 6 a, both

ethods yield very small errors within the training region (0 presses).

fter 5000 presses the material properties have shifted, but accurate pre-

ictions can still be made - where WAM has lower average errors than

he neural network ( 6 a). However, both methods appear significantly

orse during the 5 mm presses, due to the lower response magnitude. In

articular, the response of the perimeter-positioned electrodes is least

hen the shallow presses occur near the centre of the membrane, as in

he first plot of the 5000 presses. 

To test this, Fig. 7 compares the average errors with depth over test

ets of 500 presses throughout the dataset. Indeed, in 6 of the 7 test sets,

he lightest presses are associated with significantly higher localization

rrors than the others. The 10 mm presses follow, with the 15 & 20 mm

resses having the lowest errors. The figure also examines how the error

agnitudes are affected by damage: values increase with damage until

he 10,000 press point, where they plateau. This effect can be seen in

ig. 7 ’s lower plots: by the end, large errors stem from the same point/s
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Fig. 6. a) Neural network and WAM localization errors when trained using different quantities of data. b) WAM visualizations and predictions for both methods 

when 𝑁 = 500. 
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eing repeatedly predicted. If the damage causes one channel of the re-

ponse to rise significantly above the others, then this effect is expected.

his could be countered by exploring additional normalization steps or

anh layers before the activation weightings are applied, minimizing the

ffect of outliers. 
6 
The only test set which does not follow these patterns is 1–500: the

ata on which the WAMs are constructed. All 4 errors are the lowest

een throughout the plot, but the errors increase with depth. No errors

re noticeable in the 5 mm plots, since the small response magnitudes

ias the predictions towards the individual activation maps created from
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Fig. 7. Localization errors with time and depth of WAMs constructed with the first 500 presses. In the lower plots, black dots represent actual press locations, and 

colored dots represent WAM predictions. 
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s  
he training data. The larger depths seem to favor predictions nearer

he centre, underestimating the radial position of presses lying on the

ircle’s edge. We hypothesize that this is due to deeper presses caus-

ng significant responses in multiple channels, adding more noise to

he activation map selections and skewing the superposed predictions.

owever, further experimentation is required to verify and minimize

his. 

.2. Extended applications 

Having demonstrated WAMs’ localization capabilities, Fig. 8 tests

he 500 single press WAMs in a number of applications for which they

ave not been trained: environmental sensing, damage detection, and

ulti-touch localization. The central plot in Fig. 8 a shows the response

f the 192 channels to the unpressed state over the 6-day testing period.

he hydrogel skin is known to respond to environmental fluctuations in

emperature and humidity [7] , which can be seen in the responses’ 6 dis-

inct regions. Before damage occurs (i.e. over the first ∼5000 presses),

hese changes can be tracked using WAMs. By weighting the maps using

he difference in unpressed response between a given press and the first

ress, the effects of these environmental fluctuations are visualized: at

he peaks there is a clear response which sweeps across the centre of the

ydrogel during homogenization (see accompanying video, which ani-

ates the fluctations in baseline resistance during this testing period),

hilst between these the skin periodically returns to a more homoge-
7 
eous response. Though the capabilities of this behavior are not fully

xamined in this work, this preliminary demonstration illustrates the

otential of the setup for inclusion in a multi-modal sensorized skin,

here it can respond not only to tactile stimuli but also to moisture

nd temperature. When damage begins to propagate, these responses

re dwarfed by the effect of the damage: the lower row of Fig. 8 a plots

he same difference in unpressed response for the later stages, where

amage is significant. The damaged region responds more strongly over

he propagation period, which suggests that single-press WAMs could

e used for damage detection. This idea is explored in Fig. 8 b, in which

 new undamaged membrane is cast, mounted, and pressed 500 times

o build the 192 required activation maps - this is done entirely au-

onomously using a robotic arm, enabling the quick and minimal-effort

alibration of new skin materials and geometries. Rather than relying on

econstructed magnitudes to identify the occurrence of damages, contin-

ously monitoring the unpressed baseline enables damages to be more

asily identified: in the plot of the raw channel values, 3 scalpel cuts

orrespond to definite peaks in the measured response. By constructing

 WAM from the difference in response before and after these peaks,

he damage can be localized as well as identified. For the purposes of

omparison, plot A visualizes the WAM when no damage has occurred

 the corresponding time window is marked on the plot. Plot B shows

he difference before/after the first small cut, made by pressing a scalpel

nto the surface. This allows the two halves to regain contact when the

calpel is removed, giving very little lasting change in the responses.
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Fig. 8. WAM applications beyond single-press localizations, despite this being the only data it has ever seen. a) Environmental monitoring and damage detection 

over 15,000 presses, constructed from the first 500 presses. The skin’s state fluctuates with temperature and humidity. b) Damage identification and localization in 

a new membrane, using 500 single-presses. c) Multi-touch: WAM constructions for two simultaneous 10 mm presses at a range of separations. 
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iven the hydrogel’s healability, these halves would be expected to heal

ver time if they remained in contact. 

Conversely, damage C is large enough to yield a gap in the mem-

rane, the localization of which is clearly visible. After allowing time for

ny transient responses to settle, the significant damage D is performed

ertically in the membrane’s centre. This causes a large response in the

entre of the WAM. Though the response is in the correct region, it is

ot aligned perfectly with the cut (as seen in Fig. 8 a). This is likely due

o a breakdown of the linearity assumptions on which the WAMs are

ased, since the large damaged zone now returns a zero response. 

Finally, Fig. 8 c tests the WAM response to multiple touches, based

n the single press constructions. Even at the 10 mm pressing depth, the

aps show excellent matches to the probed locations, which are marked

ith black crosses. The maps highlight the entire region between the

wo electrodes, rather than two clear areas. As can be seen in the sup-

lementary video, this reflects the membrane’s tension increase along

he entire line. As such, the weighted activation maps seem to be a good

eflection of Eq. (1) ’s reconstruction problem. The WAMs are maps of

eformation rather than conductivity, aiding straightforward interpre-

ation of the tactile signals. This technique helps to further data-driven

roprioceptive & exteroceptive sensing in soft robotics, with our remote

lectrode configuration enabling continuous sensing of the skin without

isturbing its properties and interactions. 

. Conclusion 

In this work, we have demonstrated the data-driven tactile recon-

tructions of a gelatin-glycerol hydrogel skin, without the need for sim-

lations or analytic modelling. We proposed the WAM - weighted activa-

ion maps - method, which is able to outperform learning-based methods

or small datasets up to 1000 responses, whilst also providing a visu-

lization of the predicted deformation state. By focusing on the skin’s

eformation state, the method is able to be directly applied to new tasks

ithout retraining, including environmental monitoring, damage detec-

ion and localization, and multi-touch recognition. This discovery is par-

icularly useful in the implementation of soft EIT skins in robotic sys-

ems, where analytic assumptions may be invalid, simulations may face

he reality gap, and data may be expensive to collect. The perimeter-

ositioned electrodes suit the development of soft robotic skins using

his technology, and future work will consider the sensorization and

elf-supervised learning of an entire hand, using electrodes placed only

t its wrist. Finally, the preliminary results presented in Fig. 8 demon-

trate the potential of further investigations into WAMs’ use in shape

ecognition, multi-touch responses, and environmental monitoring. The

hallenges and methods associated with each of these will be developed

n future works: finding the damage extent at which WAMs’ assump-

ions become invalid; extracting multi-touch predictions from the re-

onstructed deformation maps; and combining damage monitoring with

ctive healing techniques to create a closed-loop protection system. Ad-

itionally, the transferabilities of the activation maps between materi-

ls and geometries will be investigated. By exploiting similarities, the

mount of data required for calibration could be reduced to even lower

evels, facilitating quick deployment of custom sensorized skins. 
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