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SUMMARY
To develop therapies for Alzheimer’s disease, we need accurate in vivo diagnostics. Multiple proteomic
studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome
this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective
biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from
150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two data-
sets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-
selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased
and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer’s disease (AD)
from controls in the two validation cohorts with areas under the receiver operating characteristic curve
(AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing pre-
viously published proteomics data and the need for more stringent data deposition.
INTRODUCTION

The most prevalent form of dementia, Alzheimer’s disease (AD),

is characterized by gradual deterioration of memory, thinking,

and reasoning as well as by depression.1 Differentiation of AD

from other types of dementia, and hence targeted therapeutic

development, has been impeded by the variability of clinical

symptoms both within and between dementias2 but could be

facilitated by discovery of biomarkers in body fluids, especially

cerebrospinal fluid (CSF) due to its proximity to and interactions

with the brain.3,4 The literature contains numerous reports of

molecules selectively enriched in AD CSF. Unfortunately, few

of these so-called biomarkers have been validated in indepen-

dent cohorts. Many factors affecting variability such as small

cohort sizes, inconsistent diagnostic criteria, and differences in

sample handling, data acquisition, and analysis could underlie

lack of irreproducibility of proteomics data.We therefore hypoth-
Cell R
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esized that we could identify robust AD biomarkers by perform-

ing an unbiased meta-analysis of publicly available proteomics

datasets from studies aimed at identifying AD biomarkers.

Although meta-analyses are common in other omics fields,

leveraging of multiple published datasets to overcome statistical

power limitations and lack of reproducibility has been neglected

in the proteomics field. Only very few proteomics meta-analysis

papers have recently been published.5–7 Even so, that meta-

analysis used the published result tables at face value, not

addressing the heterogeneity introduced by uncoordinated da-

tabases and data search strategies. In contrast, our meta-anal-

ysis strategy attempted to minimize such heterogeneities.

In our study, we retrieved and re-analyzed the raw liquid chro-

matography mass spectrometry (LC/MS) data from six vetted

published studies and one in-house dataset on quantitative

CSF proteomics in the context of AD. The identified biomarker

candidates, which were highly enriched in proteins associated
eports Medicine 4, 101005, April 18, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:hanno.steen@childrens.harvard.edu
https://doi.org/10.1016/j.xcrm.2023.101005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.101005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article
ll

OPEN ACCESS
with metabolic processes, were validated using a two-pronged

approach: firstly, by analyzing CSF specimens froman additional

independent cohort to down-select the list of biomarker candi-

dates and, secondly, by querying two recently published large-

scale CSF proteomics studies aimed at identifying biomarkers

for AD.8,9 To minimize risk of overfitting, each dataset was only

used once during the meta-analysis. This strategy resulted in

identification of a set of three metabolic enzymes as CSF protein

biomarkers, which were discovered and validated in arguably

the largest (n = 664) and most diverse set (ten different cohorts)

of patients with AD and age-matched healthy controls reported

to date. All three members of the discovered biomarker panel

are involved in glycolysis, i.e., a pathway well known to be dys-

regulated in AD.10,11

RESULTS AND DISCUSSION

Data pre-processing
We first identified potentially usable CSF proteomics datasets by

performing an extensive literature review in PubMed. We

retrieved 394 proteomic AD-focused biomarker discovery

studies (Figure 1A) andchose for analysis those that (1)werepub-

lished between January 1, 2010, and January 31, 2019; (2) used

CSF collected antemortem by lumbar puncture; (3) used LC-tan-

demMS (MS/MS) operated in data-dependent acquisition (DDA)

mode for proteomic profiling; (4) usedhigh-resolution/high-accu-

racy instrumentation; (5) made raw high-resolution/high-accu-

racy LC/MS data available for re-analysis; (6) provided discern-

able and appropriate naming of the data files; and (7) shared

the relevant meta-information. Six studies and their respective

datasets met our criteria (Table 1; see also STAR Methods). We

included one additional in-house dataset (AD 4 and five control

samples, tandem mass tagging [TMT] study with samples pro-

vided by UCSF, San Francisco, CA, USA) resulted in a total of

73 AD cases and 77 controls from seven independent cohorts

assembled in five countries on both sides of the Atlantic Ocean

(Figure 1A).12–17 Next, we retrieved raw LC/MS data from these

seven cohorts and re-searched against the UniProt human pro-

tein canonical sequence database (downloaded on January 17,

2019: 20,320 entries) using MSFragger/Fragpipe.18–20 This

methodminimizes variability due to varying protein sequence da-

tabases (e.g., with or without isoforms, or different database ver-

sions) and differences in the search, scoring, quantification, and

grouping algorithms. Moreover, by concentrating on the canoni-

cal protein forms, we avoided the problems of artifactual isoform

callingwithin a dataset during the protein grouping caused by the

presence or absence of spurious peptide spectral matches. To

normalize data, we used the average of the median intensities

of reference sample. As alternative, if no reference samples

were available, the median of summed intensities of all samples

was used (Figures 1B and1C).

We applied an in-house-developed outlier detection method to

each dataset based on the assumption that most proteins should

correlate between samples and that the lack thereof indicates

problems with sample collection, processing, or data acquisition.

This method correlates all protein intensities from each sample

with the dataset-specific median intensities. Samples with corre-

lation values four standard deviations from the mean correlation
2 Cell Reports Medicine 4, 101005, April 18, 2023
value were classified as outliers and excluded from further anal-

ysis (Figure 1D). The outlier selection method led to the removal

of five samples from the seven datasets, resulting in 69 AD cases

and 76controls.Manual inspection of the outlier detectionmethod

in principal-component analysis (PCA) provided evidence that our

objective outlier detection method was effective in removing out-

liers (Figure S1). This outlier detection method has the advantage

of allowing for quickly and easily adjusting the desired stringency.

For example, if one can test many potential biomarkers in future

studies, less stringent criteria may be used. On the other hand,

if more elaborate functional or antibody-based assays such as

ligand-binding assays or ELISAs are used for validation, then

higher stringency might be more appropriate.

Following outlier removal, protein intensities were dataset-

wise normalized using the Z score calculated from the control

samples within each dataset. Differences in instrumentation

and methodology used for each of the datasets precluded a

direct comparison of the reported intensity values as evidenced

in the PCA plot, showing that the raw intensity values from the

different datasets were completely separated (Figure 1E).

PCAs of the data before and after the Z score normalization

(Figures 1E and 1F) clearly show the need for and suitability of

the applied Z score normalization procedure.

Discovery of biomarker candidates
The curated combined dataset after removal of outliers included

145 samples with a total of 2,808 identified proteins (Figure S2A).

We first performed a Benjamini-Hochberg-corrected Fisher’s

exact test to query whether any protein was specifically detected

in only AD cases or controls. This analysis did not result in any

significant proteins when using an adjusted p value of <0.05 as

a cutoff value. Therefore, we decided to keep only those proteins

observed in at least 30% of the samples, leaving 434 proteins

(Figure S2B). Next, we used the non-parametric Mann-Whitney

U test followed by Benjamini-Hochberg multiple testing correc-

tion. The Mann-Whitney U test yielded 21 proteins (all upregu-

lated) with statistically significant abundance differences

between AD and controls (Figures 2A, S3A, and S3B).

Interestingly, some of the proteins that we found to be signif-

icant in the meta-analysis were not found to be significant in

some of the individual datasets (Figure S3C), which supports

our hypothesis that the meta-analysis of multiple independent

datasets can reveal novel biomarker candidates.

Importantly, some of our biomarker candidates have previ-

ously been linked to AD, suggesting that our meta-analysis strat-

egy yields meaningful data. For example, pyruvate kinase (PKM)

and fructose-bisphosphate aldolase A (ALDOA) were previously

reported to be significantly enriched in AD mutation carriers.21

Another targeted proteomics study found osteopontin (SPP1),

malate dehydrogenase (MDH1), and insulin-like growth factor-

binding protein 2 (IGFBP2) to be significantly enriched in the

CSF of AD cases compared with controls.22 In contrast, some

proteins that have been repeatedly considered promising candi-

dates such as Chitinase-3-like protein 1 (YKL-40), neurofilament

light chain, or neurosecretory protein VGF were not found to be

significant in our meta-analysis.23–25 The inconsistencies be-

tween the different proteomics studies as well as currently pur-

sued biomarkers highlights the need for testing and validation
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Figure 1. Data collection and pre-processing

(A) The literature was searched on PubMed, resulting in 394 records, of which six did result in the collection of raw MS data after the exclusion and inclusion

criteria were taken into account. With the addition of one in-house dataset, a total of 150 samples were collected, derived from seven cohorts from five countries.

(B–F) All data was systematically re-analyzed in MSFragger/Fragpipe (B) followed by data normalization (C). For the systematic removal of outliers, we developed

a method where a theoretical sample was created by calculating the median intensity of each protein in a dataset (D). Next, Pearson correlation between each of

the individual samples and the theoretical sample was calculated, and any sample that was more than three standard deviations removed from the theoretical

sample was considered an outlier and removed from downstream analysis. The process described in (B)–(D) was repeated for each of the seven cohorts,

whereafter data were combined, resulting in a PCA plot, as shown in (E). To overcome the variability between datasets, a Z score transformation was used, which

resulted in a homogeneous dataset (F). Z score transformation is a promising approach for comparing heterogeneous datasets.
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in multiple independent studies in order to obtain robust and un-

biased results and thereby identify proteins most likely to be

associated with the pathophysiology of AD pathology in CSF.

Bioinformatic analysis of biomarker candidates
We used two complementary methods to identify physical and

functional interactions of potential biomarkers. We exported

the 21 significant proteins to the CytoScape ClueGO tool to first

enrich for GO biological processes followed by the clustering of

non-redundant terms (Figure 2B). Next, we enriched the 21
biomarker candidates against the Molecular Signatures Data-

base (MSigDB) Hallmark dataset (Figure 2C).26 Remarkably,

the ClueGO tool enriched for four clusters of GO annotations,

of whom three were related to energy and metabolism. Next,

the MSigDB Hallmark revealed glycolysis-related protein enrich-

ment with the highest statistical confidence, pointing to an

important role of metabolism in AD.

Our findings are supported by a plethora of published studies

describing the dysregulation of redox processes and mitochon-

drial function in AD-diseased brain tissue.8,9,27–33 Furthermore,
Cell Reports Medicine 4, 101005, April 18, 2023 3
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ó
e
t
a
l.
1
5

S
p
a
in

1
a

3
a

N
IN
C
D
S
-A

D
R
D
A

a
s
s
e
s
s
e
d
b
y
n
e
u
ro
lo
g
is
t

O
rb
it
ra
p
V
e
lo
s
P
ro

n
o
n
e

a
lb
u
m
in

a
n
d
Ig
G

B
a
ru
c
k
e
r
e
t
a
l.
1
6

G
e
rm

a
n
y

1
9

2
0

M
M
S
E
/M

R
I
c
la
s
s
ifi
c
a
ti
o
n

a
g
e
m
a
tc
h
e
d

O
rb
it
ra
p
V
e
lo
s

n
o
n
e

n
o
in
fo
rm

a
ti
o
n

W
a
n
g
e
t
a
l.1

7
U
S
A

4
4

N
IN
C
D
S
-A

D
R
D
A

c
o
n
tr
o
ls

h
a
d
n
o
rm

a
l

c
o
g
n
it
io
n
a
c
c
o
rd
in
g

to
M
M
S
E
p
e
rf
o
rm

a
n
c
e

Q
E
x
a
c
ti
v
e

n
o
n
e

g
ly
c
o
p
ro
te
o
m
ic
s

In
fo
rm

a
ti
o
n
a
b
o
u
t
th
e
o
ri
g
in

o
f
th
e
s
a
m
p
le
s
,
th
e
n
u
m
b
e
r
o
f
s
a
m
p
le
s
fo
r
A
D
a
n
d
c
o
n
tr
o
l,
th
e
ty
p
e
o
f
M
S
in
s
tr
u
m
e
n
ts

u
s
e
d
,
q
u
a
n
ti
fi
c
a
ti
o
n
m
e
th
o
d
s
,
a
n
d
in
fo
rm

a
ti
o
n
a
b
o
u
t
e
n
ri
c
h
m
e
n
t
o
f
th
e
s
a
m
-

p
le
s
.N

IN
C
D
S
-A

D
R
D
A
,N

a
ti
o
n
a
lI
n
s
ti
tu
te

o
fN

e
u
ro
lo
g
ic
a
la
n
d
C
o
m
m
u
n
ic
a
ti
v
e
D
is
o
rd
e
rs

a
n
d
S
tr
o
k
e
a
n
d
th
e
A
lz
h
e
im

e
r’
s
D
is
e
a
s
e
a
n
d
R
e
la
te
d
D
is
o
rd
e
rs

A
s
s
o
c
ia
ti
o
n
;C

D
R
,c

lin
ic
a
ld
e
m
e
n
ti
a
ra
ti
n
g
;

M
M
S
E
,
m
in
i-
m
e
n
ta
l
s
ta
te

e
x
a
m

(M
M
S
E
);
Ig
G
,
im

m
u
n
o
g
lo
b
u
lin

G
.

a
T
h
e
s
a
m
p
le
s
th
a
t
w
e
re

u
s
e
d
b
y
L
le
ó
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hypometabolism in patients with mild cognitive impairment (MCI)

and AD has been reported using Fluoro-2-deoxy-D-glucose posi-

tron emission tomography (FDG-PET) imaging in affectedbrain re-

gions.34 Redox proteomics on AD postmortem brain tissue has

shown that multiple metabolic pathways are affected, including

pyruvate kinases, fructose bisphosphate aldolases, malate dehy-

drogenases, and enolases, all proteins that we observe to be

significantly upregulated in the CSF of patients with AD.11,35

More specifically, these proteins were found to be inactivated

due to oxidation, leading to reduced activity of adenosine triphos-

phate (ATP) synthesis and subsequent reduction of glucosemeta-

bolism in the brain. The observed upregulation of such proteins in

CSF might be a direct representation of the diminished activity of

the brain hypometabolism.

Down-selection of biomarker candidates
To further validate the 21 biomarker candidates in a data-driven

unbiased fashion, we used a two-step approach: firstly, we

down-selected the 21 biomarker candidates. To this end, an in-

dependent second in-house dataset was generated comprising

AD 10 (mean age 73.2 [±9.4], 50% females) and ten non-AD

(mean age 71.6 [±7], 50% females) control samples—the sam-

ples had been collected in Gothenburg, Sweden. The analysis

by unbiased discovery LC-MSwithout any depletion and/or frac-

tionation resulted in the FragPipe-based identification and quan-

tification of 488 CSF proteins in this down-selection dataset. The

same data analysis workflow that we used for the meta-analysis

was followed, i.e., data normalization, test for outliers (which

removed one sample), Fisher’s exact test (which did not identify

any AD or control-specific proteins), and filtering based on

completeness (70% cutoff).

The statistical analysis of the validation cohort using

Benjamini-Hochberg-corrected Mann-Whitney U test resulted

in a set of five proteins that were significantly different between

AD and control CSF (adjusted p < 0.05) (Figure 3A). Of these

five proteins, three overlapped with the biomarker candidates

identified in our meta-analysis, namely ALDOA, L-lactate dehy-

drogenase B chain (LDHB), and PKM (Figures 3B and 3C).

These three markers have been described in multitude for AD:

ALDOA has been found to be on the protein level in the cortex

and substantia nigra and also affected gene expression the en-

torhinal cortex.36,37 In the hippocampal proteome of patients

with AD, PKM was found to be altered, and in a genome-wide

function screen study, it was found that PKM is a regulator of am-

yloid b production, which was validated in a mouse study.38,39

Next, LDHB together with other mitochondrial proteins was

affected in an AD brain tissue transcriptomics study.40 Querying

the Human Protein Atlas for these three proteins showed that all

three are indeed cytosolic proteins, with an even expression

across all brain regions.41,42 This observation raised the question

how these bona fide cytosolic proteins were observed as being

dysregulated in the CSF: were they actively secreted, or are they

the result of neuronal death, which results in the spillage of these

proteins into the CSF? As we did not observe any enrichment of

other abundant intracellular proteins such as ribosomal or pro-

teasomal proteins or histone, which would be associated with

cell death, we hypothesize that those glycolytic proteins in the

CSF are indeed the result of a secretion process.



Energy and
Metabolism

peptidyl-cysteine modification

Maintenance of protein location 
in cell

Purine nucleoside triphosphate
biosynthetic process

Establishment of protein
localization to mitochondrial
membrane

NADH regeneration

purine nucleoside triphosphate biosynthetic process

peptidyl-cysteine modification

process

A B

C

Figure 2. Discovery cohort: Statistics and enrichment

(A) The Z scored data was statistically analyzed with the Mann-Whitney U test and Benjamini-Hochberg multiple comparison correction, resulting in the discovery of

21 biomarker candidates across seven independent datasets. The 21 biomarker candidates were held against the GeneOntology (GO) Biological Process database

and visualized using the Cytoscape ClueGO tool, which showed that three out of the four clusters of GO annotations are linked to energy and metabolism.

(B) Biomarker candidates were held against the MSigDB Hallmark database, which particularly enriched for glycolysis (C).
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Validation of biomarker candidates
For a second validation of our panel of biomarkers candidates,

we used two additional independent datasets. To this end, we

leveraged two recently published large-scale CSF proteomics

studies aimed at identifying AD biomarkers: Johnson et al.

used a TMT strategy to analyze CSF samples from 150 AD cases

(mean 68.2 [±8.3], 55% females) and 147 controls (mean 65.0

[±8.2], 72% females), while Bader et al. applied a label-free

quantification (LFQ) data-independent acquisition strategy to

the analysis of CSF samples from 88 AD cases (mean 71.7

[±8.1], 55% females) and 109 controls (mean 65.5 [±14.4],

46% females).8,9 From each dataset, we extracted the intensities

of the three biomarker candidates ALDOA, LDHB, and PKM,

which were all considered significant in both datasets. We then

tested these three proteins individually for their differentiating

capabilities using receiver operating characteristic analysis.

The areas under the receiver operating characteristic curve

(AUROCs) for ALDOA, LDHB, and PKM were 0.85, 0.79, and

0.82, respectively, for the Johnson et al. dataset (Figure 4A)

and 0.81, 0.78, and 0.73, respectively, for the Bader et al. dataset
(Figure 4B). Next, we used logistic regression modeling to

assess the differentiating capabilities of the biomarker panel.

To minimize overfitting risk, we performed two separate ana-

lyses: firstly, we trained a model on the Johnson et al. dataset

and validated on the Bader et al. data. Secondly, we trained a

model on the Bader et al. dataset and validated on the Johnson

et al. data. These analyses resulted in very similar AUROCs of

0.87 and 0.83 for Johnson et al. and Bader et al. datasets,

respectively, confirming that there is no overfitting observable.

To better assess our purely data-driven three-step approach,

we evaluated the list of 21 biomarker candidates we identified in

the discovery phase of our proteomicmeta-analysis. To this end,

we investigated the following aspects of these 21 proteins in the

two validation datasets: (1) which proteins were observed in both

validation datasets, (2) how their individual performance is (as

assessed by AUROC averaged across the two validation data-

sets), and (3) how combinations of three perform between the

two datasets (as assessed by AUROC averaged across the

two validation datasets). These criteria were compared with

the values of the three proteins selected by our three-step
Cell Reports Medicine 4, 101005, April 18, 2023 5
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Down selection
Discovery

2 3 18

PKM

ALDOALDHB

CLSTN1

SERPINA7

Figure 3. Biomarker down-selection cohort

(A and B) Statistical analysis (Mann-Whitney U test

and Benjamini-Hochberg correction) of the prun-

ing cohort did result in five significant proteins (A),

of which three proteins did overlap with the results

of meta-analysis (B).

(C) Boxplots of the three significant biomarker

candidates (ALDOA, LDHB, PKM) are shown.
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approach. Firstly, of the 21 proteins identified in our three-step

approach, 15 were also observed in the two validation datasets.

Secondly, those 15 proteins covered an AUROC range of 0.52–

0.85, with YWHAZ showing the best individual performance. The

three proteins selected by our method ranked second, third, and

fourth based on their individual performances, with AUROCs of

0.74–0.84 (Figure S4). Thirdly, of the 455 possible three-protein

combinations, our set of three proteins ranked 50th (11th percen-

tile) with an AUROC of 0.85 (Table S1). In comparison, the best

three-protein combination featuring ALDOA, GAPDH, and

YWHAZ resulted in an AUROC of 0.89. As such, it can be stated

that our purely data-driven objective approach, which can be

easily implemented in a data analysis pipeline, resulted in the se-

lection of three proteins with excellent, albeit not necessarily

maximum, performance; maximum performance can be

achieved by a more brute force approach. The decision whether

to use a two-step approach with brute force or a three-step

approach with an additional down-selection step will have to

be made on a case-by-case basis depending on the number of

proteins selected in the discovery phase.
Limitations of the study
We would like to point out that when exploring MS literature and

data repositories for appropriate datasets problems with correct

data labeling, completeness of data files and demographic/clin-

ical information became apparent (Table 2). The incomplete de-

mographic variables made in-depth analysis of the effects of,

e.g., gender or ethnicity impossible. This highlights the need to

ensure that publicly available datasets are complete and care-

fully labeled and that all relevant demographic/clinical informa-

tion are available. The mere availability of raw data does not

make them useful. Instead, for a dataset to be useful, standards

such as those outlined by the FAIR principles have to be met and

ensured as part of the manuscript review process.43,44 Inherent

limitations of meta-analyses include lack of control over sample

collection and processing as well as the possibility of missing

biomarker candidates that can only be found with specific meth-

odology. However, any set of biomarkers discovered and vali-

dated using heterogeneous datasets is likely free of systematic

biases and is truly robust.
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Conclusion
In summary, we provide a generic strat-

egy for an unbiasedmeta-analysis of pro-

teomics data exemplified by application

to studies of CSF samples from patients

with AD. These findings highlight the po-

wer of analyzing larger numbers of pa-
tients from various independent cohorts that are increasingly

available in public data repositories. Our results strongly support

the original hypothesis that combining newand existing indepen-

dent cohorts into three unrelated meta-cohorts for discovery,

down-selection, and validation of biomarker candidates, respec-

tively, leads to a superior biomarker panel by leveraging the exist-

ing analyses of a wide range of independent datasets collected

with heterogeneous methodologies. Our exceedingly well-vali-

dated biomarker panel comprising three glycolytic enzymes is

consistent with the well-described dysregulation of the redox

metabolic pathways in AD and the concept that metabolic dysre-

gulation is the strongest overarching feature of AD. These data

suggest that a better understanding the cause-and-effect rela-

tionship of glycolysis with AD might be a key not only for diag-

nosing AD in living patients but also to development of alterna-

tives to current therapeutic approaches, which primarily target

amyloid b and/or tau. A logical next step is to design a prospec-

tive validation study that includes symptomatic aswell as healthy

controls, i.e., patients with non-AD dementias, to determine the

specificity of our candidate biomarker panel for AD.
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Figure 4. Biomarker validation cohorts
The postanalysis proteinmatrices of two large-scale ADCSF publications were downloaded to assess biomarker efficacy of the three biomarker candidates ALDOA,

PKM, and LDHB. Each of the three proteins was found to be significant between AD and controls in both the Johnson et al. (A) and Bader et al. (B) datasets, further

validating the efficacy of its differentiating capabilities. Next, a logistic regression model of the three biomarker candidates was trained for each of the validation

datasets, followed by testing of both models on the two validation cohorts. AUROC of the single proteins as well as the two models is shown in the legend.
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Table 2. Information on the seven datasets that were included for the meta-analysis

Unique

proteins Cutoff (70%)

Significant

(p adjusted < 0.05) Outliers AD Outliers control Available clinical information

Dayon et al.12 1,084 245 45 1 0 CSF AB42, tau, ptau, serum albumin

Sathe et al.13 2,533 2,522 0 1 0 AD vs. control

Khoonsari et al.14 522 409 0 1 0 AD vs. control, age, gender (all male), age of

onset (only AD), AB42 (only AD), tau (only

AD), ptau (only AD).

Lleó o et al.15 1,418 N/A N/A 0 0 AD vs. control (pooled of 10 samples)

Barucket et al.16 914 461 3 1 0 AD vs. control

Wang et al.17 433 252 0 0 0 AD vs. control

In-house 1,148 863 0 0 1 AD vs. control

Information includes proteins identified before and after 70% cutoff filter, number of significant proteins following a Mann-Whitney U test and

Benjamini-Hochberg correction, number of outliers between AD and control, and the available clinical information for each of the datasets. Cutoff filter

information and statistical analysis in the Lleó et al. dataset was not possible due to the small sample size.

Article
ll

OPEN ACCESS
data interpretation were done by P.W.v.Z. with the help of B.F., M.K., and H.S.

O.B. processed and analyzed the in-house dataset samples used for the

biomarker discovery part. S.A. processed the validation cohort samples and

contributed to the data analysis. H.Z. provided the validation sample set and

contributed to the data interpretation and the manuscript. R.S. gave insightful

comments and contributed to the data interpretation and themanuscript. After

the initial drafting by P.W.v.Z., the manuscript was written by P.W.v.Z., H.S.,

and J.S. All authors contributed to the article and approved the submitted

version.

DECLARATION OF INTERESTS

R.S. is member of the European Behavioral Pharmacology Society. H.Z. is

chair of the Alzheimer’s Association Global Biomarker Standardization Con-

sortium and the Alzheimer’s Association Biofluid-Based Biomarker PIA.

J.A.S. reports patents for tau therapeutics and biomarkers. H.S., J.A.S., and

P.W.v.Z. have submitted a patent application for markers described in this

manuscript. H.S. and J.A.S. report additional patent applications (unrelated

to the work described in the manuscript) around tau-PTM-based biomarkers

for AD and other tauopathies.

Received: June 15, 2022

Revised: October 10, 2022

Accepted: March 17, 2023

Published: April 18, 2023

REFERENCES

1. Sancesario, G.M., and Bernardini, S. (2018). Diagnosis of neurodegenera-

tive dementia: where do we stand, now? Ann. Transl. Med. 6, 340. https://

doi.org/10.21037/21001.

2. Karantzoulis, S., and Galvin, J.E. (2011). Distinguishing Alzheimer’s dis-

ease from other major forms of dementia. Expert Rev. Neurother. 11,

1579–1591. https://doi.org/10.1586/ern.11.155.

3. Blennow, K., Dubois, B., Fagan, A.M., Lewczuk, P., de Leon, M.J., and

Hampel, H. (2015). Clinical utility of cerebrospinal fluid biomarkers in the

diagnosis of early Alzheimer’s disease. Alzheimers Dement. 11, 58–69.

4. Teunissen, C., Verheul, C., andWillemse, E. (2018). The use of cerebrospi-

nal fluid in biomarker studies. In Handbook of clinical neurology (Elsevier),

pp. 3–20.

5. Haytural, H., Benfeitas, R., Schedin-Weiss, S., Bereczki, E., Rezeli, M., Un-

win, R.D., Wang, X., Dammer, E.B., Johnson, E.C.B., Seyfried, N.T., et al.

(2021). Insights into the changes in the proteome of Alzheimer disease

elucidated by a meta-analysis. Sci. Data 8, 312. https://doi.org/10.1038/

s41597-021-01090-8.
8 Cell Reports Medicine 4, 101005, April 18, 2023
6. Bai, B., Vanderwall, D., Li, Y., Wang, X., Poudel, S., Wang, H., Dey, K.K.,

Chen, P.-C., Yang, K., and Peng, J. (2021). Proteomic landscape of Alz-

heimer’s Disease: novel insights into pathogenesis and biomarker discov-

ery. Mol. Neurodegener. 16, 55. https://doi.org/10.1186/s13024-021-

00474-z.

7. Pedrero-Prieto, C.M., Garcı́a-Carpintero, S., Frontiñán-Rubio, J., Llanos-
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Eckert, A. (2012). Insights into mitochondrial dysfunction: aging, amyloid-

b, and tau–a deleterious trio. Antioxid. Redox Signal. 16, 1456–1466.

31. Selfridge, J.E., Lezi, E., Lu, J., and Swerdlow, R.H. (2013). Role of mito-

chondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiol.

Dis. 51, 3–12.

32. Yao, J., Rettberg, J.R., Klosinski, L.P., Cadenas, E., and Brinton, R.D.

(2011). Shift in brainmetabolism in late onset Alzheimer’s disease: implica-

tions for biomarkers and therapeutic interventions. Mol. Aspects Med. 32,

247–257.

33. Zhou, M., Haque, R.U., Dammer, E.B., Duong, D.M., Ping, L., Johnson,

E.C.B., Lah, J.J., Levey, A.I., and Seyfried, N.T. (2020). Targeted mass

spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in

Alzheimer’s disease. ClinClin. Proteomicsomics 17, 19. https://doi.org/

10.1186/s12014-020-09285-8.

34. Moretti, D.V., Pievani, M., Pini, L., Guerra, U.P., Paghera, B., and Frisoni,

G.B. (2017). Cerebral PET glucose hypometabolism in subjects with mild

cognitive impairment and higher EEG high-alpha/low-alpha frequency po-

wer ratio. Neurobiol. Aging 58, 213–224. https://doi.org/10.1016/j.neuro-

biolaging.2017.06.009.

35. Perluigi, M., Sultana, R., Cenini, G., Di Domenico, F., Memo, M., Pierce,

W.M., Coccia, R., and Butterfield, D.A. (2009). Redox proteomics identifi-

cation of 4-hydroxynonenal-modified brain proteins in Alzheimer’s dis-

ease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Pro-

teomics. Clin. Appl. 3, 682–693.

36. Zahid, S., Oellerich, M., Asif, A.R., and Ahmed, N. (2012). Phosphopro-

teome profiling of substantia nigra and cortex regions of Alzheimer’s dis-

ease patients. J. Neurochem. 121, 954–963. https://doi.org/10.1111/j.

1471-4159.2012.07737.x.

37. Ding, B., Xi, Y., Gao, M., Li, Z., Xu, C., Fan, S., and He, W. (2014). Gene

expression profiles of entorhinal cortex in Alzheimer’s disease. Am J Alz-

heimers Dis Other Demen 29, 526–532. https://doi.org/10.1177/

1533317514523487.

38. Han, J., Hyun, J., Park, J., Jung, S., Oh, Y., Kim, Y., Ryu, S.-H., Kim, S.-H.,

Jeong, E.I., Jo, D.-G., et al. (2021). Aberrant role of pyruvate kinase M2 in

the regulation of gamma-secretase and memory deficits in Alzheimer’s

disease. Cell Rep. 37, 110102. https://doi.org/10.1016/j.celrep.2021.

110102.

39. Hondius, D.C., van Nierop, P., Li, K.W., Hoozemans, J.J.M., van der

Schors, R.C., van Haastert, E.S., van der Vies, S.M., Rozemuller, A.J.M.,

and Smit, A.B. (2016). Profiling the human hippocampal proteome at all

pathologic stages of Alzheimer’s disease. Alzheimers Dement. 12,

654–668. https://doi.org/10.1016/j.jalz.2015.11.002.

40. Galea, E., Weinstock, L.D., Larramona-Arcas, R., Pybus, A.F., Giménez-
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Critical commercial assays
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Software and algorithms
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Dr. Hanno

Steen (Hanno.steen@childrens.harvard.edu).

Materials availability
No new reagents were generated in this study.

Data and code availability
The mass spectrometry proteomics data of the validation cohort has been deposited to the ProteomeXchange Consortium via the

PRIDE partner repository with the dataset identifier PXD022649. The 10 datasets and the R-code for analysis and visualisation

including an easy-accessible R-markdown file can be found on the following Github page: https://github.com/SteenOmicsLab/

CSF-AD-meta-analysis. All matrices with protein quantification for the discovery, down-selection and the two large scale proteomic

studies (and their clinical files if required) can be found in the Github repository. Any additional information required to reanalyze the

data reported in this work paper is available from the Lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

For the subsequent validation, we used 20 CSF samples provided by the Zetterberg lab (University of Gothenburg, Mölndal, Swe-

den). The samples were from patients who sought medical advice because of cognitive impairment. Patients were designated as

normal (n = 10) or AD (n = 10) according to CSF biomarker levels, measured using INNOTEST assays (Fujirebio, Ghent, Belgium),

using cut-offs that are >90% specific for AD: total tau (T-tau) >350 ng/L and Ab42 < 530 ng/L.45 None of the biochemically normal

subjects fulfilled these criteria. To collect the CSF, lumbar punctures were performed in the morning. CSF was stored in polypro-

pylene tubes and centrifuged to pellet any cell debris. After centrifugation, all CSF samples were frozen and stored at�80�Cwithout

thawing until the experiment. The Regional Ethics Committee at the University of Gothenburg approved the study.

METHOD DETAILS

Biomarker discovery
Literature review

To retrieve AD-related CSF proteomics datasets, PubMed was searched with multiple combinations of the following keywords: ‘Alz-

heimer’s disease’, ‘biomarker discovery’, ‘cerebrospinal fluid’, ‘proteomics’, ‘dementia’, ‘mass spectrometry’, ‘discovery prote-

omics’ and ‘neurodegeneration’. The resulting PubMed search results were downloaded and reviewed to determine if a paper

described a study of CSF proteomes from AD patients using data-dependent acquisition (DDA) mode.

Exclusion criteria were: published before 2010; reviews (systematic or literature); written in other languages than English; no CSF

proteomics; non-human CSF; no AD-related samples; only post mortem CSF; CSF not collected by a lumbar puncture; no informa-

tion about the origin of samples; no description of sample preparation and/or MS techniques; use of non-DDA methods (e.g. SRM,

MRM, PRM, Western Blot, 2D gel electrophoresis); no information about AD diagnosis criteria or CSF collection; peptidomics for

biomarker discovery, isobaric labeling at the protein level or use of low resolution/low accuracy MS instrumentation.

Inclusion criteria were: published between Jan 1st, 2010 and Jan 31st, 2019; proteomic analyses of CSF from AD patients and in

controls; CSF collection ante mortem by lumbar puncture; proteomic profiling using LC-MS/MS operated in DDA mode; use of high

resolution/high accuracy instrumentation; well defined and described AD diagnosis and a clear definition of controls.

The selected papers were searched to determine if the paper describes the availability of the raw MS data in repositories such as

PRIDE or MassIVE (massive.ucsd.edu).46 If data were not available on repositories, authors were contacted directly requesting their

raw LC-MS data. In some cases, LC-MS data were available, but the relevant meta-data was not. Some of these complications could

be resolved by directly contacting the corresponding authors. If several methodswere described in a single publication only the data-

set with the largest number of identified proteins was used for further analysis.

One (unpublished) additional in-house dataset was used in this study. Quantitative proteomic mapping of these samples was per-

formed using tandem mass tags (TMT) and analyzed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer

(ThermoFisher, Waltham, MA, USA). Similar to the publications selected in the literature review the CSF of the in-house dataset

was collected ante mortem.

Down-selection of biomarker candidates
Sample processing, digestion and clean-up

CSF samples were prepared for proteomic analysis using an in-house-developed MStern Blotting protocol which was adapted for

CSF samples.47,48 Briefly, 100 mL of CSF samples were processed using a PVDF 96-well membrane plate (Merck-Millipore, MA,

USA). Initially, the 100 mL of CSF was mixed with 100 mL Urea buffer (8M in 50mM ammonium bicarbonate (ABC). To further reduce

the disulphide bonds on the proteins 30 mL Dithiothreitol (DTT) (0.05M in water) was added and incubated in a thermomixer (300rpm)

for 20 min at room temperature. To prevent the re-formation of disulphide bonds, 30 mL Iodoacetamide (IAA) (0.25 M in water) was

added and incubated in a thermomixer (300rpm) for 20 min at room temperature in the dark.

Reduced and alkylated CSF protein suspension was transferred to a 96 well polyvinylidene fluoride (PVDF) membrane (MSIPS4510,

Millipore,MA,USA),which hadbeenactivatedwith 150 mL 70%ethanol and subsequently primedwith 200 mL of ureabuffer. To facilitate

the transfer of the solution through the PVDF membrane a vacuummanifold was used. CSF proteins are captured on the PVDF mem-

brane and were washed with 200 mL 50mMABC before applying 100 mL digestion buffer (0.4 mg Trypsin (V5111, Promega,WI, USA) in

50 mM ABC) to the 96-wells plate. The 96-wells plate was wrapped in parafilm and put in a 37�C dark humidified incubator for 2 h to

facilitate digestion of the proteins. After incubation, the remaining digestion buffer was evacuated from the 96-wells PVDF membrane

plate using a vacuummanifold. Proteins, now peptides, were eluted twice with 150 mL of 40% acetonitrile (ACN), 0.1% formic acid (FA).

The flow-through was pooled in a 96-wells plate which was centrifuged to dryness in a vacuum centrifuge.

For sample desalting, peptides were resuspended in 100 mL of 0.1% FA and transferred to a 96 wells MACROSPIN C18 plate

(Targa, Nest Group, MA, USA) which had previously been activated with 100 mL of 70% ACN, 0.1% FA followed conditioning with

100 mL 0.1% FA. To transfer the solutions through the MACROSPIN C18 plate, the plates were centrifuged at 2000g for 2 min. After

capturing the peptides on the C18 beads the plate was washed with 100 mL of 0.1% FA followed by eluting the peptides with 100 mL

40% ACN, 0.1% FA and 100 mL 70% ACN, 0.1% FA. The captured eluents were dried down in a vacuum centrifuge and stored at

�20�C until analysis.
e2 Cell Reports Medicine 4, 101005, April 18, 2023
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LC-MS/MS analysis

To validate the biomarker candidates the prepared CSF samples were analyzed on an Orbitrap Q Exactive mass spectrometer

(Thermo Scientific, Bremen, Germany). First, the tryptic digests were resuspended in 20 mL resuspension buffer (5% ACN, 5%

FA) and placed into a nanoflowHPLC pumpmodule LC autosampler (Eksigent/Sciex, Framingham,MA, USA) where 4 mL of the sam-

ple was loaded onto a PicoChip column (150 mm 3 10 cm Acquity BEH C18 1.7 mm 130 Å, New Objective, Woburn, MA) which was

kept at 50�C. The peptides were eluted off the PicoChip column using 2%of solvent B (0.1%FA in ACN) in solvent A (0.1%FA), which

was increased from 2 to 30% in a 40min ramp gradient and back to 35%on a 5min ramp gradient with a flow rate of 1000 nL/min. The

Orbitrap settings were the following: positive DDA top 12 mode. MS1 scan settings: m/z range: 375–1400, resolution 70000 @ m/z

200, AGC target 3e6, max IT 60ms. MS scan settings: resolution 17500 @m/z 200, AGC target 1e5, max IT 100ms, isolation window

m/z 1.6, NCE 27, underfill ratio 1% (intensity threshold 1e4), charge state exclusion unassigned, 1, >6, peptide match preferred,

exclude isotopes on, dynamic exclusion 40 s.

QUANTIFICATION AND STATISTICAL ANALYSIS

Biomarker discovery
Proteomic analysis

All downloaded raw LC/MS data were analyzed in Fragpipe 17.1 using the human UniprotKB/Swiss-prot protein sequence (without

isoforms) database which was downloaded on January 17th, 2019 with a total of 20623 entries.18–20 Amaximumof twomissed tryptic

cleavages were allowed and we set the peptide length between 7 and 50 amino acids long. We included cysteine residues (fixed),

acetylation of the N-terminal of proteins (variable), and oxidation of methionine (variable) as modifications with a maximum of three

modifications on a peptide. For the TMT studies a (+229.163 Da) modification at the N terminus of the peptide as well as at lysine was

set as fixed modifications. 1% FDRwas allowed for percolator and proteinProphet. IonQuant included the match-between-runs set-

tings where we required at least one ion per peptide for quantification.

Data analysis

Protein identification and quantification outputs were exported from Fragpipe whichwas loaded into R-studio where all the described

analysis was executed unless described differently. Each step of the data preparation, statistical analysis and data visualization is

available as an R-markdown file on the Github Repository.

Because some of the datasets included a reference node, two normalization methods were scripted in R. If there was no reference

node in the data, the summed intensity for each sample was calculated followed by the calculation of the median of all summed

intensities for each study individually. Next, for each sample in the dataset the normalization factor (NF) was calculated by dividing

the median of all summed intensities by the summed intensity of a given sample. Subsequently, this factor was used to normalize the

protein intensities of the corresponding sample. If a dataset did include one or more reference sample the median intensity of the

reference sample was calculated and used to determine the NF. In the case of multiple reference nodes, the average of all median

intensities was calculated and used to determine the NF. The NF was calculated by dividing the median intensity of the reference

node (or average if multiple reference nodes) by the median intensity of a given sample. The NF was subsequently used to normalize

the protein intensities of the corresponding sample.

In shotgun MS proteomic studies there is no standardized manner to select and remove samples that should be considered out-

liers. Usually, principal component analysis (PCA) plots of the samples are created, and samples are considered outlier based on their

location relative to the other samples. This subjective approach can then lead to the removal of the outlier from datasets but lack

reproducibility. For the re-analysis of datasets, we avoided this approach and developed a standardized approach for outlier iden-

tification instead. The normalized datasets were loaded into R where a theoretical sample was created based on the median inten-

sities calculated for each protein identified in the respective dataset. Next, the Pearson correlation between each sample and this

theoretical median sample was calculated in each dataset. Next, the standard deviations for the correlation coefficients were calcu-

lated and any sample with a correlation coefficient more than three standard deviations away from onewas considered an outlier and

removed from the dataset. A similar approach using three standard deviations as a criterion for being an outlier can be found in the

paper by Spellman et al.49

The collected datasets from different labs used different methodologies and hardware set-ups for their proteomic profiling of the

CSF samples. Therefore, the intensities of the different datasets were not directly comparable; instead, the Z-scores were calculated

to allow for comparisons. For the Z score transformation, all data were first loaded into R where all zero intensities produced by Frag-

pipe were treated as missing values, i.e. these values were removed from the intensity matrix. Subsequently, all remaining intensity

values were log2-and then Z score transformed: For a given protein in each dataset, the mean and standard deviation were calcu-

lated based on the intensities of the control samples in a dataset. These values were then used to calculate the Z-scores of the cor-

responding protein for all samples (Z score = (intensity – mean)/standard deviation). This process was then repeated for all protein

across all datasets. Finally, all datasets were combined into one large dataset. The effectiveness of this procedure was confirmed by

comparing the PCA plots before and after Z score transformation.

Due to high variability and/or incompleteness of meta data such as age, gender, or Braak stages we were only able to test for

differences in proteins between AD and controls without control for potential confounders. All statistical analysis was executed in

R-studio.50 First, a Fisher exact test was used to identify proteins that might show statistical significance due to the percent
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presence/absence in the AD vs. control group. Next, proteins withmore than 70%missing valueswere removed from the dataset. For

statistical analysis, the non-parametric Mann-Whitney U test was used. The non-parametric test was chosen as with such variable

data assumptions for the parametric equivalent could not be assured. The resulting p values were corrected for multiple comparison

using the Benjamini-Hochberg procedure.51 Last, since it was hypothesized that the meta-analysis would results in more biomarker

candidates compared to analyzing each dataset separately, we analyzed each of the datasets used in this meta-analysis on its own

with a Student’s T-test and Benjamini-Hochberg correction. The results were used to create a heatmap where the p values of the

found biomarker candidates of the meta-analysis were compared with the p values of the biomarker candidates when datasets

were analyzed on their own.

The identified biomarker candidates were analyzed to determine their functional enrichment. We analyzed the biomarker candi-

dates with the Cytoscape plug-in ClueGO.52 ClueGO can compare and integrate clusters/groups of GO annotations based on kappa

statistics to connect GO terms to one another. We also tested against the MSigDB Gene Sets Hallmark datasets using the msigdbr-

package followed by visualization using the Clusterprofiler R package.53,54

Down-selection
Statistical analysis

Given our goal of mining and (re-)analyzing existing data using a standard and systematic data processing pipeline, all methods

described above were also applied to this set of CSF samples, apart from Z-scoring the data. First, a two-sided Fisher’s exact

test with a Benjamini-Hochberg correction was used to determine if a protein was only identified in the AD or control group. Next,

proteins with valid values less than 70% were removed from the dataset followed by analysis with a Mann-Whitney U-test and a

Benjamini-Hochberg Correction. Non-parametric testing was chosen to mirror the analysis in the discovery step. Proteins found

to be significant in the discovery and down-selection cohort were selected for final validation.

Validation of biomarker candidates
The Johnson et al. (2020) and Bader et al. (2020) datasets were used for final validation.8,9 We extracted the tabular quantification

data from their respective data repositories where we extracted clinical classification of samples and the quantitative values of

the down-selected markers. These markers were then combined into a biomarker panel using logistic regression modeling. A model

for each of the two datasets was created independently from one another. Finally, the single markers and both the models (i.e.,

model-Bader and model-Johnson) were tested on both datasets to assure model results were not due to overfitting. Testing was

facilitated with the pROC R-package which visualized the results and extracted the area under the curve statistics of the receiver

operating characteristic curve analysis.55

Next, we assessed the biomarker efficacy of all the biomarker candidates from the discovery cohort on the down-selection dataset

and the two validation datasets through calculation of the area under the receiver operating characteristic curve (AUROC) for each

protein. Last, we tested each possible 3-protein combination of the discovery cohort biomarker candidates in the two validation data-

sets through a brute-force method.

ADDITIONAL RESOURCES

Github repository which includes all datasets and code: https://github.com/SteenOmics/AD_CSF_Meta-Analysis.
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