van Zalm, Patrick W;
Ahmed, Saima;
Fatou, Benoit;
Schreiber, Rudy;
Barnaby, Omar;
Boxer, Adam;
Zetterberg, Henrik;
... Steen, Hanno; + view all
(2023)
Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer's disease biomarkers.
Cell Reports Medicine
, 4
(4)
, Article 101005. 10.1016/j.xcrm.2023.101005.
Preview |
Text
1-s2.0-S2666379123001155-main.pdf - Published Version Download (1MB) | Preview |
Abstract
To develop therapies for Alzheimer's disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from 150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two datasets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer's disease (AD) from controls in the two validation cohorts with areas under the receiver operating characteristic curve (AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing previously published proteomics data and the need for more stringent data deposition.
Type: | Article |
---|---|
Title: | Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer's disease biomarkers |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.xcrm.2023.101005 |
Publisher version: | https://doi.org/10.1016/j.xcrm.2023.101005 |
Language: | English |
Additional information: | © 2023 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
Keywords: | ALDOA, LDHB, PKM, biomarkers, glycolysis, logistic regression, meta-analysis, metabolism, Humans, Alzheimer Disease, Proteomics, Biomarkers, ROC Curve |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases |
URI: | https://discovery.ucl.ac.uk/id/eprint/10168864 |
Archive Staff Only
View Item |