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Floquet-induced localization in long-range many-body systems
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The fate of many-body localization in long-range interacting systems is not fully settled. For instance, the
phase boundary between ergodic and many-body localized regimes is still under debate. Here, we use Floquet
dynamics which can induce many-body localization in a clean long-range interacting system through spatio-
temporal disorder, which are realized by regular operation of random local rotations. The phase diagram has
been determined for two types of uniform and nonuniform long-range couplings. Our Floquet mechanism shows
more localizing power than conventional static disorder methods as it pushes the phase boundary in favor of the
localized phase. Moreover, our comprehensive long-time simulations provide strong support for obtained results
based on static analysis.
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I. INTRODUCTION

Many-Body Localization (MBL) is a profound concept in
condensed matter physics for breaking the ergodicity princi-
ple [1–8]. To better understand the different aspects of MBL,
several quantum information concepts [9–16] have been
theoretically developed and several experiments on newly
emerging quantum simulators have been performed [17–34].
Most of the MBL literature have been dedicated to 1D short-
range interactions, however, several fundamental problems
remain open for systems with long-range couplings [35,36].
In fact, many interactions in nature are inherently longrange,
and certain quantum simulators, e.g., iontraps [17,18,37] and
Rydberg atoms [19–21], are naturally governed by such in-
teractions. Long-range couplings can exist in various forms,
e.g., tunneling or Ising-type interactions, which may affect
the MBL physics very differently. A key open problem
in long-range MBL systems is how ergodic-MBL phase
diagram changes in the presence of such long-range interac-
tions [38–49].

Periodically driving many-body interacting systems,
known as Floquet dynamics, is a well-known thermalizing
mechanism [50,51], a phenomenon opposite to MBL. The
fate of MBL systems under different Floquet dynamics have
been studied in both theory [52–59] and experiments [32].
The results show that the MBL does not survive the Floquet
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dynamics unless the energy cannot be absorbed by the system
due to either high frequency or large amplitude of the driving
field [32,53,60,61]. Alternatively, in Refs. [62–64] the Floquet
dynamics is designed to suppress the tunneling of the particles
in a weakly disordered system to enhance the relative strength
of disorder and interaction for generating an MBL phase. One
may wonder whether it is possible to localize the evolution of
a disorder-free Hamiltonian through the sequential action of
local random rotations at regular time intervals. This can ef-
fectively induce spatio-temporal disorder which may localize
the system. Apart from being fundamentally interesting, this
has practical advantages too. In fact, inducing static disorder
may result in leakage from the valid Hilbert space in super-
conducting quantum simulators or heating in ion-trap systems
which make the simulation of the deep MBL phase very
challenging [22]. Our mechanism does not suffer from this
issue and thus is easier to be implemented on such quantum
simulators.

In this work, we introduce a Floquet mechanism that,
through generating spatio-temporal disorder, can localize a
disorder-free Hamiltonian. Using this localization mecha-
nism, we fully determine the phase diagram of two different
models, namely systems with uniform and nonuniform long-
range couplings. We show that our mechanism can induce
MBL in certain long-range systems which cannot be localized
by conventional static disordered Hamiltonians. Furthermore,
through extensive long-time numerical simulations, we pro-
vide more support for our observation based on statistics of
eigenstates.

The structure of the paper is as follows. After presenting
the considered model in Sec. II and introducing our Floquet
mechanism, the main results of the paper, namely, the phase
diagram and our method for extracting the critical properties,
are discussed in Sec. III. This section is followed by the
dynamical analysis of the MBL phase in Sec. IV. Finally, in
Sec. V, we summarize our work.
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II. MODEL

We consider a spin-1/2 chain of L particles interacting with
long-range tunneling and Ising interaction

H = −
∑
i �= j

{
Jx

|i − j|a
(
Sx

i Sx
j + Sy

i Sy
j

) + Jz

|i − j|b Sz
i Sz

j

}
. (1)

Here S(x,y,z)
i is the spin-1/2 operator for qubit at site i, Jx =

Jz = 1 are the interaction strengths, and a, b>0 are the power-
law exponents which determine the range of the tunneling and
interaction, respectively. By varying these exponents one can
tune the interaction geometry from a fully connected graph
(for exponents being zero) to a local nearest-neighbor 1D
chain (when the exponents tend to ∞). Many types of long-
range models [35,36] such as Coulomb, van der Waals, and
dipole-dipole interactions, are special cases of Hamiltonian
H which can now be realized in ion trap [65,66] systems.
Here, we systematically investigate two different regimes: (i)
uniform couplings in which a = b�∞; and (ii) nonuniform
couplings in which b is finite (power-law Ising interaction)
and a→∞ (nearest-neighbor tunneling).

To dynamically localize this disorder-free Hamiltonian, we
propose a Floquet dynamic in which the evolution over a
single time period τ consists of two operations. First, the
system evolves under the action of the disorder-free Hamil-
tonian H for a short-time period τ . Second, an instant kick
operation which is a set of local random rotations along the
ẑ axis, i.e., R(θ) = ∏L

i=1 e−iθiS
z
i , rotates all the qubits without

creating spin excitations, although it will induce energy ex-
citations, in the system. Since θi is sitedependent, these local
rotations induce spatio-temporal disorder in the dynamics of
the system. The random angles θ = (θ1, . . . , θL ) are drawn
from a uniform distribution [−θ/2, θ/2] with 0 � θ/π � 1
being the strength of the kick. Hence, the evolution operator
over a single period becomes

UF (θ, τ, a, b) = R(θ)e−iHτ . (2)

The random angles θ remain fixed in different periods. The dy-
namics of the system is described by an effective Hamiltonian
HF such that UF = e−iHF τ . The random nature of θ prevents us
from analytically driving a closed form for HF restricting us
to numerical simulations. Note that, our Floquet mechanism is
fundamentally different from Floquet dynamical decoupling
methods [62–64] in which the suppression of the hopping
amplitude increases the relative strengths of disorder and in-
teractions that potentially drive an ergodic system toward the
MBL phase.

III. PHASE DIAGRAM

Since the dynamics of the system is described by the effec-
tive Hamiltonian HF , one can investigate the properties of this
Hamiltonian to determine the phase diagram of the system as
a function of parameters (θ, τ, a, b). We first investigate the
statistical properties of energy levels of HF , namely {Ek}, or
equivalently the quasienergy levels of UF given by {e−iEkτ }.
Numerically, we compute the quasi-energies using exact diag-
onalization of UF in the subspace of Sz

tot=0, with Sz
tot=

∑
j Sz

j .
All the results are averaged over 1000 random samples of
θ to guarantee proper convergence. Since the Hamiltonian

FIG. 1. Upper panels: 〈r〉 as a function of τ for uniform
couplings: (a) a = b= 1; (b) a = b= 1.25; (c) a = b= 1.5; and
(d) a = b= 1.75. In all panels, the results are obtained for fixed θ = π

in systems with various sizes and the dashed lines correspond to
〈r〉�0.529 and 〈r〉�0.386 for ergodic and MBL phases, respectively.
The insets are the best data collapse obtained through the finite-size
scaling analysis for extracting τc and ν. For any choice of a�1.5, our
finite-size scaling analysis unambiguously determines the transition
point τc and critical exponent ν. Since the quality of data collapse
drops significantly for a<1.5, despite the fact that 〈r〉 is close to 0.4
for small τ , which is possibly due to finite-size effects, no phase
transition is detected for the considered system sizes. This lack of
phase transition indicates that there is no localized phase for a<1.5.
Lower panels: 〈r〉 as a function of τ for nonuniform couplings (i.e.,
b�a→∞): (e) b= 0.5; and (f) b= 1. In both panels, we set θ = π .
The insets are the best data collapse obtained through the finite-size
scaling analysis for extracting the attached transition point τc’s and
critical exponent ν’s.

in Eq. (1) and its corresponding HF are dramatically less
sparse than the nearest-neighbor interactions, the numerical
simulation of the system is very challenging [67] and thus
is restricted to L = 16. By computing the consecutive energy
gaps δk = Ek+1−Ek , one can characterize the level statistics
by their ratio rk = min(δk+1, δk )/ max(δk+1, δk ). The averaged
value of this ratio, 〈r〉, serves as a well-established tool in
numerical studies of finite MBL systems [68]. While the
MBL phase is determined by Poisson level statistics with
〈r〉 � 0.386, the ergodic phase is known to follow the circular
orthogonal ensemble level statistics with 〈r〉 � 0.529 [5,50].

Clearly, we have four control parameters in the system,
namely (θ, τ, a, b). For each choice of these parameters, one
can compute 〈r〉 to reveal the phase of the system. As an ex-
ample, by fixing θ = π and considering various system sizes,
in Figs. 1(a)–1(d), we plot 〈r〉 as a function of τ for several
choices of uniform couplings a = b∈{1, 1.25, 1.5, 1.75}. Two
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main features can be observed. First, as τ increases the system
becomes ergodic and this transition gets sharper by increasing
the system size. This can be understood that by increasing τ,

the evolution of the disorder-free Hamiltonian H gets enough
time to thermalize the system. In other words, the effective
Hamiltonian HF is dominantly determined by the Hamilto-
nian H rather than the disordered kick operator R(θ). This is
fundamentally different from those Floquet systems in which
energy absorption is suppressed due to the high frequency
of the ergodic evolution which makes static disorder domi-
nant [52–59]. Second, for any choice of a � 1.5 [Figs. 1(c)
and 1(d)] the curves of different sizes clearly intersect in tiny
domains of τ , which indicates the emergence of the scale in-
variance in the vicinity of the transition point τc. Note that the
intersection domains for the curves in Figs. 1(a) and 1(b), i.e.,
for the case a � 1.5, increase by adding system sizes which
signal disorder-dependent transition points [45,47]. In the
context of MBL, the scale invariance implies the emergence
of a diverging length scale ξ in the system and thus scaling
the interested observable as F (L/ξ ). Here, F is an arbitrary
function and L denotes the system size. Considering ergodic-
MBL transition as a continuous second-order transformation
results in the diverging length scale ξ ∝ |τ − τc|−ν with ν

as the critical exponent. Precise determination of transition
point τc and critical exponent ν demand finite-size scaling
analysis. To do this, we plot 〈r〉 as a function of (τ−τc)L1/ν .
By proper choice of τc and ν, one can collapse the curves for
different system sizes. To achieve the best data collapse we
use an elaborate optimization scheme and minimize a proper
quality function Q [69–71], which is defined and discussed
in the Appendix. In our case, a perfect data collapse results in
Q = 1 and any deviation from such a perfect situation makes Q
larger. Results of finite-size scaling analysis are shown in the
inset of Figs. 1(a)–1(d) for uniform couplings a = b. While,
for any choice of a � 1.5, the finite-size scaling unambigu-
ously determines the transition point τc and critical exponent
ν with Q ∼ 4, the quality of data collapse drops significantly
for a < 1.5. The smallest Q’s for the corresponding data col-
lapses are obtained at about 200, for any choice of τc and
ν and considered system sizes. Therefore, for a < 1.5 and
considered system sizes, despite the fact that 〈r〉 is close to 0.4
for small τ , which is possibly due to finite-size effects, one
cannot confidently find scaling behavior which is expected
near the transition point and in the thermodynamic limit,
there will be no localized phase in this regime. This is an
interesting observation as the power-law couplings a and b
play two opposite roles. Decreasing the coupling a allows
spin tunneling between the distant qubits which enhances
ergodicity. On the other hand, decreasing the coupling b (i.e.,
making the Ising interaction more long-range) creates an ef-
fective site-dependent energy shift whose value depends on
the spin configuration of the whole system. This energy shift
acts like an effective random magnetic field which enhances
localization. The absence of MBL in uniform couplings (i.e.,
a = b) for a < ac � 1.5 shows that the thermalizing long-
range tunneling overcomes the localizing long-range Ising.
This has also been observed in ordinary disordered long-range
Hamiltonians. However, while in such systems ac is found
to be ac � 2 [38,41,72], our Floquet system shows more
localization power with ac � 1.5. In other words, the spatio-

FIG. 2. Left panels: 〈r〉 for a system of length L = 16 and θ = π

as a function of τ and power-law exponents for (a) uniform couplings
(a = b); and (c) nonuniform couplings (b� a → ∞). In both panels,
the red markers show the MBL-ergodic phase boundary determined
by the finite-size scaling analysis. Right panels: the critical τc as
a function of θ for various choices of exponents in (b) uniform
couplings (a = b); and (d) nonuniform couplings (b� a → ∞). In
both panels, the area below each curve represents the MBL phase.

temporal disorder R(θ) has more localization power than the
spatial one and gives τc = 0.22 and τc = 0.25 for a = 1.5 and
a = 1.75, respectively. To investigate the phase diagram of
the uniform case (i.e., a = b) with more details, we keep the
strength of the random kick to a strong value of θ = π and
plot 〈r〉 as a function of a and τ in Fig. 2(a) for a system of
size L = 16. The boundary between the ergodic and the MBL
phases, denoted by red markers, is determined by finite-size
scaling analysis of 〈r〉, as discussed before. In addition, to
clarify the role of random kick strength, in Fig. 2(b) we plot
the critical time τc as a function of θ for various a’s. The area
below each curve represents the MBL phase. Clearly, by re-
ducing a the MBL area shrinks, showing the tendency toward
thermalization.

All the above analysis can be repeated for systems with
nonuniform couplings (b � a→∞). Again as an example,
by fixing θ = π and considering various system sizes, in
Figs. 1(e) and 1(f), we plot 〈r〉 as a function of τ for two
choices of nonuniform couplings b∈{0.5, 1}. For considered
system sizes, one can see the clear intersection points for all
the curves in Figs. 1(e) and 1(f) which determine the onset
of transition. The finite-size scaling analysis which collapses
all the curves on a universal one as a function of (τ−τc)L1/ν

and leads to precise τc are presented in the insets of Figs. 1(e)
and 1(f). The achieved Q’s for these data collapses are about
four. As long-range Ising interaction induces an effective
static disorder in the chain, the free evolution of the clean
Hamiltonian H takes a longer time to thermalize the system.
Therefore the transition points are highly skewed to the larger
values of τ . We obtain τc = 0.74 and τc = 0.68 for systems
with nonuniform couplings b= 0.5 and b= 1, respectively.
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FIG. 3. Imbalance 〈I (t )〉 versus t in the MBL phase for θ = π ,
τ = 0.1, and L = 16. Panel (a) and its inset are for the uni-
form couplings (a = b). Panel (b) is for the nonuniform couplings
(b� a → ∞).

To determine the whole phase diagram of the system for
nonuniform couplings, in Fig. 2(c), we plot 〈r〉 as a function
of b and τ in a system of size L = 16, when the strength of
the disordered kick is fixed to θ = π . The phase boundary
between the MBL and the ergodic phases in Fig. 2(b) are
denoted by red markers. By decreasing b (i.e., making the
Ising interaction more longrange) the localization power en-
hances and the system can localize for longer τ . As discussed
above, decreasing b induces effective disorder and thus τc is
increased. To see the effect of disordered kick strength on the
phase diagram, in Fig. 2(d) we plot τc as a function of θ for
various b’s. The area below the curves represents the MBL
phase. As expected, by decreasing b the MBL region increases
which further confirms the enhancement of the localization
power.

IV. DYNAMICAL ANALYSIS OF THE MBL PHASE

To better understand the MBL phase in long-range interact-
ing systems, it is highly insightful to investigate the dynamical
properties. Here, we focus on measuring imbalance that can
quantify the ability of the system to conserve the initial infor-
mation. In fact, we pursue two main objectives: (i) illustrating
the localization dynamics of the system; and (ii) providing
further affirmation for the phase boundary determined by 〈r〉,
in particular the absence of MBL for a = b < 1.5.

We initialize a system of size L = 16 in Néel state
|ψ (0)〉= |↑↓ . . . ↑↓〉. The evolution of the system af-
ter t times kicking is given by |ψ (t )〉=(UF )t |ψ (0)〉. The
imbalance is defined as I (t ) = 2/L

∑
i(−1)i+1〈Sz

i 〉, where
〈Sz

i 〉 = 〈ψ (t )|Sz
i |ψ (t )〉 and the normalization in the definition

guarantees that I (0) = 1. In the following, we set θ = π and
τ = 0.1 to be sure that the system evolves in MBL phase. For
achieving good statistics and converging results, we generate
1000 random samples and denote the random-averaged im-
balance as 〈I (t )〉. While in the ergodic phase, the imbalance
has to relax to zero, showing no memory about the initial
state, in the MBL phase it reaches a finite value, resembling
the presence of memory [12,29,32]. Figure 3(a) illustrates
random-averaged imbalance 〈I (t )〉 versus t for various val-
ues of uniform couplings (a = b). After a transport time, the
imbalance relaxes to a plateau for a � 1.5, signaling that the
system is strongly localized and all particles will stay close to
their original positions during time evolution. This is in full
agreement with the level statistics analysis presented in the

previous section. For a < 1.5 the imbalance gradually relaxes
to zero and, hence, the system will thermalize in a longtime.
This confirms that for the choice of τ = 0.1, θ = π the critical
power-law coupling is ac � 1.5, again in agreement with level
statistics analysis. For the sake of completeness, in the inset
of Fig. 3(a) we plot the random-averaged imbalance for a
system with short-range tunneling and Ising interaction, i.e.,
a = b→∞. For nonuniform couplings, in Fig. 3(b), we plot
the imbalance as a function of t for various b’s. Interestingly,
in the localized phase the dynamics of imbalance and its
saturation hardly changes by b. Clearly, all the curves after
some transport time relax to a nonzero constant showing that
system can preserve the initial information during the long-
time simulation.

V. CONCLUSION

We have proposed a Floquet mechanism, which enables
the creation of the MBL phase in a disorder-free long-range
interacting system. In the limit of short-time evolution τ , the
mechanism reproduces the results for conventional disordered
systems. By utilizing this Floquet mechanism, two main re-
sults have been achieved. Firstly, we have determined the
phase diagram of the system for two different types of cou-
plings, namely uniform (a = b) and nonuniform (b � a→∞),
using level statistics. Our mechanism shows a strong lo-
calizing power such that it prevents thermalization in those
long-range systems which cannot be localized merely by dis-
order. Second, we have studied the dynamics of imbalance to
provide further support for the level-statistics analysis in both
types of couplings.
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APPENDIX

To precisely determine the critical values, we perform
finite-size scaling analysis using Python package pyfssa and
evaluate the quality of the data collapse as follows. Assuming
that i indexes the system size Li and j indexes the time period
τ j with τ1 < τ2 < · · · < τk . For scaled observations {yi j} (e.g.,
the random-averaged level statistics ratio 〈r〉) and its standard
errors {dyi j} at xi j = L1/ν

i (τ j − τc), and also {ŷi j} and {dŷi j}
as the estimated values of the master curve and its standard
error again at xi j = L1/ν

i (τ j − τc), Houdayer and Hartmann
[71] redefined the quality function

Q = 1

N
∑

i j

(yi j − ŷi j )2

dy2
i j − dŷ2

i j

. (A1)
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The sum in the quality function Q only involves terms for
which the estimated value ŷi j of the master curve at xi j is
defined. The number of such terms is N . For an optimal fit,

the individual deviations (yi j − ŷi j )2 is of the order of the
individual error dy2

i j − dŷ2
i j , so the quality Q is close to one

and much larger for nonoptimal fits.
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