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Abstract

The development of integrated sensing and communication (ISAC) systems has

been spurred by the growing congestion of the wireless spectrum. The ISAC sys-

tem detects targets and communicates with downlink cellular users simultaneously.

Uniquely for such scenarios, radar targets are regarded as potential eavesdroppers

which might surveil the information sent from the base station (BS) to communi-

cation users (CUs) via the radar probing signal. To address this issue, we propose

security solutions for ISAC systems to prevent confidential information from being

intercepted by radar targets.

In this thesis, we firstly present a beamformer design algorithm assisted by artifi-

cial noise (AN), which aims to minimize the signal-to-noise ratio (SNR) at the target

while ensuring the quality of service (QoS) of legitimate receivers. Furthermore,

to reduce the power consumed by AN, we apply the directional modulation (DM)

approach to exploit constructive interference (CI). In this case, the optimization

problem is designed to maximize the SINR of the target reflected echoes with CI

constraints for each CU, while constraining the received symbols at the target in the

destructive region.

Apart from the separate functionalities of radar and communication systems

above, we investigate sensing-aided physical layer security (PLS), where the ISAC

BS first emits an omnidirectional waveform to search for and estimate target di-

rections. Then, we formulate a weighted optimization problem to simultaneously

maximize the secrecy rate and minimize the Cramér-Rao bound (CRB) with the aid

of the AN, designing a beampattern with a wide main beam covering all possible

angles of targets. The main beam width of the next iteration depends on the optimal
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CRB. In this way, the sensing and security functionalities provide mutual benefits,

resulting in the improvement of mutual performances with every iteration of the

optimization, until convergence.

Overall, numerical results show the effectiveness of the ISAC security designs

through the deployment of AN-aided secrecy rate maximization and CI techniques.

The sensing-assisted PLS scheme offers a new approach for obtaining channel

information of eavesdroppers, which is treated as a limitation of conventional PLS

studies. This design gains mutual benefits in both single and multi-target scenarios.



Impact Statement

Integrating the sensing functionality into the wireless communication system is a

crucial feature of the forthcoming sixth-generation (6G) Radio Access Network

(RAN), enabling the use of dense cell infrastructures to create a perceptive network.

Integrated sensing and communication (ISAC) systems can detect targets and com-

municate with users simultaneously, providing enhanced capabilities for a range

of applications such as intelligent transportation, remote healthcare, and industrial

automation. The attractive advantages of ISAC have drawn great attention from both

academia and industry. The benefits of integrated sensing in upcoming 6G networks

have been stressed by Ericsson and Nokia in their white papers in 2021, indicating

that the inclusion of sensing capabilities in a communication network enhances the

network performance itself by providing optimized input for rapid beam steering.

In the ISAC paradigm, the emitted dual-functional waveform carries confiden-

tial information, thus one of the key challenges of ISAC systems is preventing the

communication data from being recovered by malicious targets to be detected. In

2021, Ericsson launched the Hexa-X as one of the essential projects of 6G. It is

reported that ”for high security, the next generation should assure data privacy, the

integrity of communications, confidentially, and operational resilience”, which high-

lighted the critical role of security studies for transmitted data, as well as extensions

of research on information privacy at each end user. As per above, it motivates the

security concerns for ISAC systems in this Thesis.

Moreover, opportunities regarding privacy, security, and trust have been impli-

cated as the 6G flagship on localization and sensing have been presented by NXP

and the University of Oulu. Therefore, it is crucial to be concerned about the security
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of confidential information when evolving the sensing functionality toward future

networks. However, there are several challenges to ensuring the security of ISAC

systems: i) useful information is commonly embedded in probing signals for target

detection, which possibly results in information leakage; ii) the use of Rician chan-

nels in mmWave frequencies, which contain a line of sight (LoS) component, results

in an inescapable correlation with the sensing channel; iii) a unique and interesting

conflict arises from the radar functionality side, the power is expected to be focused

towards targets of interest to improve the detectability, while the useful signal in-

formation has to be protected from being intercepted by the targets (a.k.a. potential

eavesdroppers). The research in this thesis bridges the gap to tackle these challenges

and provides pioneer optimization results from the perspective of academia. The

capability of decoding can be deteriorated at each target by designing the artificial

noise (AN) at the transmitter side, while maintaining the power pointing to targets of

interest. Additionally, it is illustrated that the confidential data intended for users can

be efficiently protected even when the communication channel correlates with the

sensing channel in mmWave frequencies.

The research in this thesis also provides theoretical support for the characteriza-

tion and development of the PLS in ISAC schemes in the industry. The advanced

approaches regarding the PLS in ISAC studied in this thesis are promising to be

utilized in B5G and 6G networks. Additionally, threats and enablers for security

and trust in the 6G era have been exploited in the white paper of Nokia in 2021,

which stressed that 6G security research will be a key prerequisite to ensure the

trustworthiness of communications in the year 2030.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Background

As the 5G wireless networks are being rolled-out worldwide, emerging applications,

such as connected cars, smart factories, and digital twins, have intensified the need

to extend the capabilities of existing network infrastructures [6]. These applications

demand both increasingly high-quality communication as well as high accuracy and

robustness of sensing, and it is well-recognized that the cooperation and co-design

between communication and radar systems will play a significant role in the upcom-

ing beyond 5G (B5G) and 6G eras.

At the early stage of the radar-communication (RadCom) system studies, the two

systems were conceived to spectrally coexist with each other, thus easing the severe

competition over the scarce spectrum resources [7, 8]. In the forthcoming B5G/6G

eras, radio sensing and communications (S&C) are both evolving towards higher

frequency bands and large-scale antenna arrays, which leads to striking similarities

between S&C systems in terms of hardware architecture, channel characteristics, and

information processing pipeline [9]. In light of this, the research on the coexistence

of radar and communication systems has evolved into dual-functional radar com-

munication (DFRC) systems. The joint design of the S&C operations, in the form

of Integrated Sensing and Communications (ISAC), have been initially proposed

in [10]. ISAC systems are expected to achieve higher spectral and energy efficiencies,
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but most importantly, promote a new paradigm of integration for attaining mutual

benefits from a co-design perspective, wherein the S&C functionalities can mutually

assist each other. Benefiting from these two advantages, applications of ISAC have

been extended to numerous emerging areas, including smart manufacturing, environ-

mental monitoring, vehicular networks, as well as indoor services such as human

activity recognition.

In the ISAC system, radar and communication functionalities are realized by a

well-designed probing waveform that also carries communication signaling and data.

Evidently, this operation implicates security concerns, which are largely overlooked

in the relevant ISAC literature. This is because the probing signal conveys informa-

tion intended for communication users, while the radar beam is designed to point

towards targets, thus it opens the possibility for malicious targets to eavesdrop on

confidential information.

With the increasingly deep integration of the communication and sensing func-

tionalities, it has arisen wide concerns about the PLS in the practical implementations

of ISAC. For instance, in smart grids, a secure and reliable communication infras-

tructure is essential for the smooth functioning of smart grids. PLS techniques can

protect sensitive data, such as energy consumption patterns and grid control com-

mands, from eavesdropping and tampering. This will improve the overall security

and stability of the smart grid system. Besides, the ISAC systems in autonomous

vehicles are critical for their safe operation. By implementing PLS techniques, these

vehicles can maintain secure communication channels, preventing potential attackers

from intercepting or manipulating data, which could lead to accidents or compromise

the privacy of passengers. Moreover, the Internet of Things (IoT) and Industry

4.0 rely heavily on interconnected devices and sensors to optimize operations and

automate industrial processes. PLS methods can safeguard these systems from unau-

thorized access and cyberattacks, ensuring the privacy of data and the reliability of

communication between devices.

In light of the above, this Thesis focuses on interesting open-ended related to

exploiting the PLS in ISAC systems.
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1.1.2 Motivations

The PLS techniques have been widely studied in existing literature for

communication-only scenarios. With the evolution of ISAC, increasing secu-

rity risks emerge and should be taken into consideration, which presents a significant

number of open questions. Opportunities regarding privacy, security, and trust

have been implicated as the 6G flagship on localization and sensing. Therefore,

it is crucial to be concerned about the security of confidential information when

evolving the sensing functionality toward future networks. However, there are

several challenges to ensuring the security of ISAC systems: i) useful information is

commonly embedded in probing signals for target detection, which possibly results

in information leakage; ii) the use of Rician channels in mmWave frequencies,

which contain a line of sight (LoS) component, results in an inescapable correlation

with the sensing channel; iii) a unique and interesting conflict arises from the radar

functionality side, the power is expected to be focused towards targets of interest to

improve the detectability, while the useful signal information has to be protected

from being intercepted by the targets (a.k.a. potential eavesdroppers).

It is known that typical radar requires focusing the transmit power towards the

directions of interest to estimate targets accurately. Nevertheless, in the case of ISAC

transmission, critical information embedded in the probing waveform could be leaked

to the radar targets, which might be potential eavesdroppers at the adversary’s side.

To this end, it is essential to take information security into consideration for the ISAC

design. To secure confidential information in ISAC systems, existing approaches

can be generally divided into the following categories, i.e., 1) Cryptography and

2) Physical layer security (PLS). Conventionally, the security of communication

systems is regarded as an independent feature and addressed at the upper layers of the

protocol stack by deploying cryptographic technologies. The studies of cryptography

commonly assume that the physical layer provides an error-free link [11], while the

wireless links are vulnerable to attacks in practice, which would result in a high risk

of information leakage. It is worth pointing out that 5G has already been a large-scale

heterogeneous network with multiple levels and weakly-structured architectures,
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which makes it difficult to distribute and manage secret keys [12]. Also, complicated

encryption/decryption algorithms cannot be straightforwardly applied considering

the power consumption in 5G networks. Furthermore, even if the data is encrypted,

the detection of a wireless link from a potential eavesdropper can reveal critical

information. In contrast to complex cryptographic approaches, signal processing

operations of PLS are usually simple with little additional overheads.

In the communication literature, PLS has been widely investigated, where the

eavesdroppers’ reception can be crippled by exploiting transmit degrees of freedom

(DoFs) [13]. For instance, a meaningful technique for enabling physical layer secrecy

was presented in [13, 14], namely, artificial noise (AN) aided transmission. Besides,

the AN generation algorithm studied in [14, 15] was with the premise of publicly

known channel state information (CSI) in a fading environment, where AN lies in

the null-space of the transmission channel. However, these techniques are conceived

to address the PLS for communication-only scenarios such that they are unable to be

straightforwardly applied to secure ISAC transmission. Methods applying the AN to

secure the ISAC systems will be explored in Chapter 3 of this Thesis.

Moreover, in conventional beamforming designs, AN indeed degrades SINR

at both communication users (CUs) and eavesdroppers, which requires a higher

power budget to ensure the quality of service (QoS). In view of the redundant power

consumption caused by AN, directional modulation (DM) has attracted growing

research attention as an emerging hardware-efficient approach to secure wireless

communication systems in recent years [16–18]. The DM transmitter sends confiden-

tial information to the CUs such that the malicious eavesdroppers cannot intercept

the transmitted messages [19]. Unlike the secrecy rate-based methods, DM tech-

nique adjusts the amplitude and phase of the symbols at the users of interest directly

while scrambling the symbols in other undesired directions, which implies that the

modulation happens at the antenna level instead of at the baseband level. As a

result, a low symbol error rate (SER) can be endorsed at the CUs, while the received

symbols of the eavesdropper are randomized in the signal constellation. Since the

expensive and power-consuming radio frequency (RF) chains and digital-to-analog
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converter (DAC) deployed in conventional beamforming design are not required, the

DM-based scheme is efficient in aspects of both cost and energy. The DM approach

is based on the principles of exploiting constructive interference (CI) [2, 20–22],

where the received signal is not necessary to be aligned with the intended symbols,

but is pushed away from the detection thresholds of the signal constellation. One

step further, the CI-based method will be presented in Chapter 4 of this Thesis.

Finally, we note that existing works on secure ISAC transmission, the radar

and communication systems work individually over separate end goals rather than

cooperating with each other. A major limitation of PLS is the need to obtain some

information for the potential Eves. This ranges from full CSI, to an SNR estimate

of the eavesdropper’s link, or the eavesdropper’s direction as a minimum. This

difficult-to-obtain information often renders PLS impractical. Benefiting from the

ISAC framework naturally, the sensing functionality of ISAC offers an enabling role

here, by estimating the directions of potential Eves to inform PLS. To this end, a

sensing-aided algorithm to ensure communication data security in ISAC systems

will be presented in Chapter 5 of this Thesis.

1.2 Main Contributions
This Thesis aims at protecting the confidential information from the transmitter to

CUs in ISAC systems by introducing and analyzing various techniques regarding

PLS and implementing the algorithms in the ISAC systems. The main contributions

of this Thesis can be highlighted and summarized in the following list:

• Joint design of the beamformer and AN is presented in order to ensure the

information transmission security of the ISAC system, where a MIMO dual-

functional BS serves multiple legitimate users while detecting a target. The

designed strategy takes possible robustness into consideration, including the

knowledge of imperfect target location and the partial CSI. The results show the

feasibility of the algorithms with the existence of instantaneous and statistical

CSI errors. In addition, the secrecy rate of secure ISAC systems grows with

the increasing angular interval of location uncertainty. (Chapter 3)
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• Security solutions are studied for ISAC systems by exploiting known interfer-

ence, where the directional modulation approach is applied to exploit the CI.

Transmit waveform and receive beamforming are jointly designed to maximize

the SINR of the radar under security and power budget constraints. Then,

destructive interference (DI) was utilized by pushing the received symbols at

the target towards the destructive region of the signal to further deteriorate the

eavesdropping signal at the radar target. Simulation results verify the effec-

tiveness of the proposed design showing a secure transmission with enhanced

performance. (Chapter 4)

• Rather than the radar and communication units working individually in most

existing studies, approaches of the sensing-aided PLS towards ISAC systems

are studied. A well-known limitation of PLS is the need to have information

about potential eavesdroppers. The sensing functionality of ISAC offers an

enabling role here, by estimating the directions of potential Eves to inform PLS.

A weighted optimization problem is formulated to simultaneously maximize

the secrecy rate and minimize the Cramér-Rao Bound (CRB) with the aid of

the AN, and minimize the CRB of targets’/Eves’ estimation. Numerical results

avail of these mutual benefits and reveal the usefulness of sensing as an enabler

for practical PLS. (Chapter 5)

1.3 Thesis Organization
Sequential to this chapter of introduction, the rest of this thesis is organized as

follows. Chapter 2 introduces some fundamental concepts and preliminaries of the

related works. Chapter 3 and Chapter 4 introduce efficient approaches to ensuring

the PLS in ISAC systems, including AN-aided algorithm and CI-based symbol level

precoding (SLP). Furthermore, Chapter 5 studies a sensing-assisted PLS approach,

which promotes deeper integration between communication and sensing functionali-

ties. Finally, the conclusions and future works based on this thesis are presented in

Chapter 6. Fig. 1.1 shows the architecture of the thesis organization. The content and

contributions of the chapters following the Introduction are summarized as follows.
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Chapter 2: Fundamental Concepts and Related Works. This chapter pro-

vides a thorough review of the fundamental concepts related to this thesis, and

a comprehensive literature review is also given to demonstrate the relevant state-

of-the-art work. In particular, this chapter focuses on the precoding schemes in

communication and waveform designs in radar, followed by an overview of the ISAC

systems and approaches to ensuring the PLS. At the end of this chapter, fundamental

metrics for secure ISAC systems are introduced.

Chapter 3: Artificial Noise Aided Physical Layer Security in ISAC Systems.

In this chapter, we study the security issue in ISAC systems with the assistance of

AN. The DFRC base station (BS) emits dual-functional waveforms to communicate

with CUs and sense targets simultaneously. To avoid information leakage, AN is

added at the transmitter side. We jointly design the beamforming matrix and the

AN covariance matrix to ensure the transmission rate difference between the CUs

and the target, in order to maximize the secrecy rate accordingly. To be practical,

the robustness of the target location known to the BS and imperfect CSI are further

taken into account.

Chapter 4: Secure ISAC Systems Deploying the Constructive Interference

Technique. In this chapter, we deploy the SLP to secure the ISAC system. Inspired

by the concept of CI, the known multi-user interference (MUI) is exploited to con-

tribute to the SNR at CUs, which pushes the received symbols into the constructive

region by designing the waveform and the receive beamforming matrix jointly. Due

to the nature of the CI technique, symbols received at eavesdroppers are randomly

distributed. To further deteriorate the decoding capability of the eavesdropper, DI

is applied to limit the received symbols at the target within the destructive region.

Considering the target location is commonly estimated imprecisely, the robustness

of the target angle is considered in the problem formulations.

Chapter 5: Sensing-assisted PLS in ISAC Systems. In this chapter, we

present a sensing-assisted PLS technique, which integrates the functionalities deeply.

To start with, the DFRC access point (AP) emits an omnidirectional beampattern for

target search and angle estimation. Note that the CRB of the deployed estimation
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method can be derived. With the initially estimated target direction and estimating

accuracy at hand, a weighted optimization problem is designed to maximize the se-

crecy rate and minimize the CRB, while generating a beampattern with a wide main

beam, where the main beam covers all possible angles of targets. Then, the beam

width is narrowed by the optimal CRB. The weighted optimization problem can

be reformulated by updating the main beam width. In this way, the security metric

and the estimation accuracy can be jointly optimized by solving the optimization

problem iteratively.

Chapter 6: Conclusions and Future Work. This chapter concludes this Thesis

with a summary of all the contributions presented in the previous chapters, and future

research work within the framework of this Thesis is also discussed.
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Chapter 2

Fundamental Concepts and Related

Works

2.1 Precoding Methods for Communications

2.1.1 Preliminaries on Precoding

In multi-antenna wireless communication, precoding is the generalization of beam-

forming to support multiple streams of data, which exploits the channel-side informa-

tion at the transmitter (CSIT) by operating on the signal before transmission [23, 24].

Linear precoder is optimal from an information-theoretic viewpoint with the knowl-

edge of partial CSIT [25], serving as a multi-mode beamformer via matching the

input signal optimally to the channel. This is achieved by splitting the transmit signal

into orthogonal spatial eigenbeams, with stronger channels assigned higher power,

and weak channels with lower or no power. Precoding design varies depending on

the type of CSIT and the performance criteria [24, 26, 27].

We firstly introduce how precoding works in the downlink transmission of

a multi-antenna system as preliminaries, where the precoding techniques can be

classified into two categories: linear precoding and nonlinear precoding. Since

users are usually separate and do not cooperate in the downlink transmission, in

order to manage the potential MUI, the BS needs to perform some signal processing

techniques on the data symbols prior to transmission based on the CSI, and this is

where the term ‘precoding’ comes from.
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We consider a multi-user multiple-input single-output (MU-MISO) system in

the downlink, where the BS is equipped with Nt to transmit antennas communicating

with K users. The channel is assumed to be baseband discrete memoryless. The

received signal at the k-th user can be expressed as

yk = hT
k x+ zk, (2.1)

where x ∈ CNt×1 is the precoded signal vector, hk ∈ C
Nt×1 is the channel vector

corresponding to the k-th user, and zk is a complex scalar representing the AWGN at

the k-th receiver with zero mean and variance σ2
C . Particularly, the output signal at

the transmitter is given as

x =
K∑

k=1

wksk =Ws, (2.2)

where W = [w1, · · · ,wK] ∈ CNt×1 denotes the precoding matrix with each column

being the precoder for the k-th user and s ∈ CK×1 is the data symbol vector.

The signal model can be equivalently recast in a vector form as follows

y =Hx+ z, (2.3)

where H = [h1, · · · ,hK]T ∈ CNt×K represents the channel matrix, y ∈ CK×1 is the

received signal vector, and z is the noise vector. Assume that each block contains L

symbols and the channel matrix remains constant in each block.

Precoding methods can be classified on two major axes, i.e., group size and

switching rate, as shown in Fig. 2.1. In this section, we overview the existing

precoding schemes based on different switching rates.

2.1.2 Block-level Precoding

The block-level precoding matrix is applied across a block of symbols, indicating

that the beamformer designs at a block level by utilizing the knowledge of the

channel information. It is updated with the channel and fixed over a block of

information symbols. Block-level precoding approaches have been widely studied in

existing work, including linear closed-form precoding schemes such as maximum
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ratio transmission (MRT), zero-forcing (ZF), regularised zero-forcing (RZF) [24,28–

30], non-linear precoding schemes such as Dirty Paper Coding (DPC), Tomlinson-

Harashima Precoding (THP), [31, 32], and optimization-based precoding approaches

[33–35].

2.1.2.1 Linear Precoding

Maximum Ratio Transmission (MRT): The MRT precoding algorithm is known

as a counterpart of the Matched Filter (MF) precoding, which is the simplest precod-

ing method. MRT aims to maximize the received SNR but ignores the MUI, thus the

precoding matrix is written as [36–38]

WMRT =
1

fMRT
·HH =

HH√
tr
{
HHH} . (2.4)

where fMRT is the normalization factor that maintains the power of the transmit signal

after precoding, which is known as the noise amplification factor. It can be noted

from (2.4) that the MRT/MF precoding creates MUI, however, the residual MUI is

minimized because channels corresponding to each user tend to be quasi-orthogonal

when the number of antennas of the BS is sufficiently large.

Zero-Forcing (ZF): ZF precoding is also widely applied as a simple linear

precoding in existing studies [39–41]. The precoding matrix is given by the Moore-



2.1. PRECODING METHODS FOR COMMUNICATIONS 38

Penrose inverse of the channel as

WZF =
1

fZF
·H† =

1
fZF
·HH

(
HHH

)−1
, (2.5)

where fZF =

√
tr
{(

HHH)−1} denotes the normalization factor. ZF precoding is de-

signed to eliminate the MUI by pointing the signal beam towards the intended user,

while nulling the rest directions of other users. However, it meanwhile raises the

pre-detection noise at the receiver which is negligible in practice. Thus, the ZF

algorithm achieves accurate results at high SNR [32, 42].

Regularised Zero-Forcing (RZF): RZF is also referred to as the MMSE pre-

coder, which is considered as the state-of-the-art linear precoder for MIMO wireless

communication systems to balance the trade-off of the advantages with respect to

MF and ZF precoders [30]. According to [43,44], the RZF precoding matrix is given

as
WRZF =

1
fRZF
·HH

(
HHH +ϑ · I

)−1

=
HH

(
HHH +ϑ · I

)−1√
tr
{(

HHH +ϑ · I
)−1HHH(

HHH +ϑ · I
)−1} ,

(2.6)

where ϑ the scalar to regularize HHH. Specifically, it performs as ZF precoding

when ϑ→ 0 and as the MF precoding when ϑ→∞ [43]. Unlike ZFB, multi-user

interference cannot be canceled by RZF and thus needs to be limited by optimizing

the regularization parameter, i.e., minimizing the mean square error (MSE) between

the transmitted and received symbols. Thus, it is termed as minimum MSE (MMSE)

precoder [45–47]. For clarity, the main complexity of linear precoding techniques is

summarized in table 2.1.

Linear Precoding

Name Closed-form Expression Complexity Performance

MF WMF =
1

fMF
·HH O

(
K3

)
Lowest

ZF WZF =
1

fZF
·HH

(
HHH

)−1
O

(
K3

)
Better than MF

RZF WRZF =
1

fRZF
·HH

(
HHH +ϑ · I

)−1
O

(
K3

)
Balance benefits from MF and ZF

Table 2.1: Summary of linear precoding methods
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2.1.2.2 Non-linear Precoding

The linear block-level precoding algorithms given above are characterized by lower

complexity and are widely applied in practical implementations. However, it is at

the expense of performance loss, especially when the number of users K is close

to the number of transmit antennas Nt. In order to enhance the flexibility of the

transmitter, non-linear precoding methods are developed, including DPC, THP algo-

rithms [31,32,48,49]. Besides, a number of optimization-based precoding techniques

have also been developed, which generally aim to optimize the transmitted average

sum power, whilst ensuring the quality of service (QoS). In what follows, formula-

tions of optimization-based precoding algorithms will be elaborated.

The transmit power can be expressed as Pt =
∑K

k=1 ∥wk∥
2 in the block-level

precoding. To this end, the power minimization problem with constraints on commu-

nication QoS can be generally formulated as follows [50, 51]

W (H,γγγ) =arg min
W

K∑
k=1

∥wk∥
2

s.t.

∣∣∣hT
k wk

∣∣∣2∑K
i=1,i,k

∣∣∣hT
k wi

∣∣∣2+σ2
C

≥ γk,∀k,

(2.7)

where W is the precoding matrix to be designed, which is regarded as a function of

H and γγγ, and γγγ represents a vector with elements of each user’s SINR threshold.

Moreover, another optimization-based precoder design is to maximize the

minimum SINR of communication users, while ensuring the transmit power is lower

than a given threshold [52,53]. It is known as the max-min fair optimization problem

and formulates as

W (H,P0) =arg max
W

min
k

∣∣∣hT
k wk

∣∣∣2∑K
i=1,i,k

∣∣∣hT
k wi

∣∣∣2+σ2
C

s.t.
K∑

k=1

∥wk∥
2 ≤ P0,

(2.8)
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where P0 denotes the given power budget. Note that the optimization problems above

can be tackled by adopting semi-definite relaxation (SDR) technique. Typically, a

multi-antenna BS has individual power amplifiers in its analog front-end, and each

amplifier’s linearity limits each antenna individually [54, 55]. The optimization

problem can be further extended to the per-antenna power constraints by replacing

the one regarding the power budget with
∑K

k=1

[
wkwH

k

]
nn
≤ P̃0.

As given above, block-level precoding approaches can be classified into linear

precoding and nonlinear precoding, which are deployed to mitigate the interference

among the users’ data streams. Moreover, with the knowledge of transmitting data

and channel information, the precoding can be performed at the symbol level. In

what follows, the SLP techniques will be introduced in detail.

2.1.3 Symbol-level Precoding

Differing from the block-level precoding, the SLP scheme indicates that the data

and channel information can be used to perform SLP at the transmitter [56]. The

SLP paradigm is proposed in this subsection in two different research directions,

including DM through analog SLP derived from antennas and propagation, as well

as digital SLP for CI, developed in signal processing.

The main difference between DM and digital SLP for CI is that DM technique

uses array weights in the analog domain to adjust the amplitude and phase of the

signals received on the receiving antennas, while the latter uses SLP as part of the

digital signal design at the transmitter in order to create CI at the receiver [57]. For

clarity, the architectures of the conventional transmitter, the analog SLP/DM, and

the digital SLP/CI are given in Fig. 2.2, Fig. 2.3, and Fig. 2.4, respectively. In the

following, a detailed description of DM and digital SLP (CI) is presented to show

the differences and similarities between both schemes.

2.1.3.1 Analog Symbol-level Precoding for DM

The DM transceiver consists of only one RF chain fed by a local RF oscillator, which

is illustrated in Fig. 2.3. In DM, the CSI and transmit symbols are utilized to design

the phase and amplitude of each antenna in a symbol level, such that the MUI can be
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degraded or even eliminated in the communication cellular network. By adjusting

the antennas, we can obtain the array weight vector, which modulates the emitted RF

signals from the transmitting antenna array. To this end, symbols are well-designed

for the desired phase and amplitude at the receiver side instead of generating the

symbols at the transmitter and sending them. It implies that the receivers’ antennas

can directly recover the symbols without channel equalization [16, 18, 58, 59].

Early DM research employed parasitic antennas to produce the desired ampli-

tude and phase in the far field via near field interactions between driven antenna

elements and multiple reflectors [60–63]. In [63], the authors introduced a near-field

direct antenna modulation (NFDAM) technique, which forms a DM signal by both a

transmit beam and a reflected beam. To be specific, transistor switches or varactor

diodes can be deployed to change the reflector length or its capacitive load, respec-

tively, deploying LoS channels [60]. Furthermore, the authors in [61] concluded that

the coverage area of the parasitic antenna is a planar convex region.

Unlike the research above using a single driven element in a parasitic array,

symbol-level array switching techniques were presented in [18,64–66], which aimed

to transmit information only in a specified direction. Particularly, a reconfigurable

array with a specific fixed delay in each RF chain was proposed to create the desired

symbols by properly switching the antennas, which allows information to be sent

over a narrower beamwidth and provides more selectivity in the possible transmit

angles [64]. Moreover, as studied in [65], BPSK constellations were directionally

modulated by switching the array elements.

2.1.3.2 Digital Symbol-level Precoding for CI

Despite the simplicity of RF chain transceivers and the low power consumption,

there are several limitations relating to implementation difficulties and a lack of an

algorithmic framework that needs to be studied further in the field of directional

modulation. In digital SLP for CI, the transmit signal is precoded at the transmitter

to create CI at the receiver. According to the criteria of digital precoding, the SLP

happens before transmitting the signal to the antenna array. Differing from the analog

symbol-level precoding in DM, the SLP developed in signal processing and wireless
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(a) (b) (c)

Figure 2.5: Constructive interference sectors for (a) BPSK, (b) QPSK, (c) 8PSK.

communications focused on algorithmic studies.

In block-level designs, the MUI is considered harmful which should be mitigated

[67–69]. However, in CI studies, the instantaneous interference for PSK symbols

can be classified as constructive and destructive according to concepts of PSK

modulation [2, 70, 71]. As shown in Fig. 2.5, the CI sectors for BPSK, QPSK, and

8PSK modulations are denoted by green shadows. In practical designs regarding the

CI method, the knowledge of the downlink channel and all user data is assumed to

be known to the transmitter. For clarity, the optimization regions of conventional

optimization and CI optimization are given in Fig. 2.6, where we take the QPSk

modulated symbol as an example.

In conventional optimizations, the signal power is minimized subject to QoS

constraints. Especially in the multi-user scenario, this is equivalent to constraining

the MUI corresponding to each user, such that the received symbol is contained

within a circle (or a hyper-sphere for multidimensional optimizations) around the

nominal constellation point [2, 71–74], which is shown as Fig. 2.6 (a). In contrast

to conventional designs, the CI scheme allows a relaxation of αI and αR for all

transmit symbols, under the condition that the interference falls into the constructive

region and contributes to the SNR of intended users. It is clear that the CI region

in Fig. 2.6 (b) is only constrained along the vicinity of the decision thresholds.

Therefore, the decision region extends infinitely towards the directions away from

the decision bounds and hence provides a more relaxed optimization compared with

the conventional region in Fig. 2.6 (a) [2, 56, 71, 75].
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Figure 2.6: Optimization regions for QPSK symbols (a) conventional precoding and (b) precoding
for CI technique [2].

CI-based optimal designs have been widely studied, which typically minimized

the power consumption, while ensuring the QoS [22, 75–78]. We here briefly

introduce the power minimization problem design with the constraints of the CI

technique. Consider a Gaussian broadcast channel serving K users, the received

signal at the i-th user is

yi = hT
i

K∑
k=1

tkdk +ni = hT
i

K∑
k=1

tke j(ϕk−ϕi)di+ni, (2.9)

where ti denotes the precoding vector, hi denotes the channel of the i-th used,

ni ∼
(
0,σ2

0

)
denotes the AWGN of the i-th user, and di = de jϕi is the transmit data.

Note that d = 1 for di,∀ i due to the concept of PSK modulation. Thereby, the

instantaneous transmit power for a signal is

Pt =

∥∥∥∥∥∥∥
K∑

k=1

tke j(ϕk−ϕ1)

∥∥∥∥∥∥∥
2

. (2.10)

Given the CI criteria above, the MUI contributes to the useful power at the intended

receivers, the SNR of which is given as

γi =

∣∣∣hT
i
∑K

k=1 tkdk
∣∣∣2

σ2
0

. (2.11)
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By observing Fig. 2.6, we note that the region of correct detection lies in ϑi ∈[
∠di−

π
M ,∠di+

π
M

]
for any M-PSK modulated symbol, where ϑi is the angle of

the detected symbols at the i-th receiver. We also have the following definitions

αI = Im
(
hT

i

K∑
k=1

tke j(ϕk−ϕi)
)

and αR = Re
(
hT

i

K∑
k=1

tke j(ϕk−ϕi)
)
, denoting the imaginary

and real component of the noise-free receive symbol ŷi ≜ hT
i

K∑
k=1

tke j(ϕk−ϕi), and the

SNR threshold is defined as γ̄ =
√
ωiσ

2
0. Accordingly, the power minimization

problem can be formulated as

min
ti

Pt (ti)

s.t.

∣∣∣∣∣∣∣∠
hT

i

K∑
k=1

tkdk

−∠di

∣∣∣∣∣∣∣ ≤ β,∀i

Re

hT
i

K∑
k=1

tke j(ϕk−ϕi)

 ≥ √
ωiσ

2
0,∀i.

(2.12)

and for β, it is defined as

tanβ = tan β̃

1−
√
ωiσ

2
0

Re
(
hT

i

K∑
k=1

tke j(ϕk−ϕi)
)
 . (2.13)

The optimization above is solvable and detailed in [2].

As mentioned above, the CI designs require knowledge of the downlink channel

and all user data. However, the perfect CSI acquisition is still a key limitation in

practice. Some literature regarding symbol-level schemes has studied the robustness

of communication systems, which will be reviewed as follows. In [79], interference

was decomposed into predictable and unpredictable interference, which were manip-

ulated constructively by a BS and caused by the quantization error, respectively. The

upper bound of the unpredictable interference was derived to reduce performance

loss. To exploit the interference, the BS aligns the predictable interference so that its

power is much greater than the derived upper bound. During this process, to intensify

the received signal power, the BS simultaneously aligns the predictable interference
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Precoding Related applications Reference

Block-level
Precoding

Interference Mitigation
[85–88], [52], [89–92], [55]

[39], [93–95]

Energy Efficiency
[96–98], [86], [87], [91]

[54]
Max-min Fairness [86], [52], [55], [99], [100], [101]

Robust CSI [102–116]
Capacity [117], [118]

PLS [113, 119–125]
Hybrid Precoding [34], [126–130], [98]

Symbol-level
Precoding

Energy Efficiency [78, 131–135]
Max-min Fairness [75, 78, 135, 136]

PLS [137–142]
Constant Envelope [143–150]

Interference
Exploitation

[2, 70, 76, 79, 136, 151–154]
[78, 81, 131–134, 144, 155]

Robust CSI [2, 79, 81, 83, 156]

Table 2.2: Literature review of block-level precoding and symbol-level precoding with
related applications.

so that it is constructively superimposed with the desired signal. Also, the authors

in [80] designed CI-based hybrid precoders that require minimum transmit power

to guarantee a certain QoS to the users in the presence of phase errors in the PSs.

Algorithms for exploiting the robustness of the SLP schemes are proposed in [81–84].

In these approaches, errors in CSI are assumed to be bounded, such that precoding

designs account for worst-case scenarios.

In addition, the DM and CI techniques enable PLS due to their natural criteria of

data distortions at unintended receivers. One way to further deteriorate the decoding

capability of the eavesdropper is to cooperate with the AN scheme. All of the above

regarding PLS designs will be elaborated on in Section 2.4. For clarity, the literature

review for block-level precoding and symbol-level precoding is summarized in Table

2.2.

2.2 Radar Waveform

Typically, radar systems work by sending a specific electromagnetic signal into a

region and detecting the echo returned by reflecting targets, involving information
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about the target, such as range, radial velocity, angular direction, size, shape, etc. As

mentioned above, the radar waveform plays a vital role in the accuracy, resolution,

and ambiguity of radar. For years, radar waveforms have been studied intensively in

order to improve the performance of detecting targets and extracting information.

In this section, typical examples of radar waveform designs will be summarized as

follows.

2.2.1 Radar Waveform Designs

2.2.1.1 Mutual Information Maximization

MI is a typical metric to measure the received information with respect to the

knowledge of the channels. The signal model over a frame of L time slots can be

written as

Radar signal: YR =HR (ηηη)X+ZR. (2.14a)

In sensing systems, MI is defined as the entropy between the sensing channels and

the received signals. Thus, the MI between the sensing channel matrix HR and

reflected signals YR given the knowledge of X can be used to measure the sensing

performance. The MI is accordingly given as [157]

IR (HR;YR|X) = Nr log
(
det

(
I+

XHΣHRX
σ2

r

))
, (2.15)

where ΣHR = E
{
HRHH

R

}
, Nr denotes the number of receive antennas.

Given the expression above, the MI maximization problem can be written

as [158]

max
X

IR (HR;YR|X)

s.t. X ∈ P .
(2.16)

2.2.1.2 Waveform Similarity Design

The waveform similarity design is also widely studied in the existing literature.

The optimization problem aims to design the transmit waveforms to be close to the

desired beampattern by optimizing the covariance matrix of the signal X, under
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constraints of communication performance, which is given as [159]

min
µ,Rd

M∑
m=1

∣∣∣µPd (θm)−aH (θm)Rda (θm)
∣∣∣2

s.t. Rd ⪰ 0,µ ≥ 0,Rd ∈ P .

(2.17)

where µ is a scaling factor, θm denotes an angular grid covering the detection an-

gular range, Pd (θm) is the desired ideal beampattern gain at θm, and Rd represents

the desired waveform covariance matrix. The optimal Rd is regarded as a well-

designed benchmark covariance matrix that constraints the Rx ≜ E
{
XXH

}
for further

optimization of the communication performance.

2.2.2 Wide Main Beam Design

The 3 dB main-beam width of an antenna is a measurement of the angle over which

the antenna is able to transmit or receive significant power. It is defined as the angle

between the two points on the antenna’s radiation pattern where the power drops to

one-half, or 3 dB, of the maximum power. This is a commonly used measurement of

the beamwidth of an antenna because the 3 dB points on the radiation pattern are

considered to represent the ”half-power” points, where the antenna’s performance is

half as effective as it is at its peak. As a result, the 3 dB beamwidth provides a good

indication of the overall directivity and focus of the antenna’s radiation pattern.

The 3 dB main-beam width design has been applied in many studies. Let x

denote the emitted waveform, we accordingly have the covariance matrix expression

as follows

Rx = E
[
xxH

]
. (2.18)

The beampattern is expressed P (θ) = aH (θ)Rxa (θ). Therefore, the optimization

problem can be designed to minimize the sidelobe power in a prescribed region and
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achieve a 3 dB main-beam width, which is given as [160, 161]

min
t,Rx
−t

s.t. aH (θ0)Rxa (θ0)−aH (αl)Rxa (αl) ≥ t,∀ αl ∈Ω

aH (θ1)Rxa (θ1) = 0.5aH (θ0)Rxa (θ0)

aH (θ2)Rxa (θ2) = 0.5aH (θ0)Rxa (θ0)

Rx ⪰ 0,Rx ∈ F ,

(2.19)

where Ω is the sidelobe region of interest, [θ1, θ2] is the predefined region of the 3

dB main-beam width. Note that this beampattern sidelobe minimization problem

can be efficiently solved in polynomial time by the SDP technique.

2.3 Integrated Sensing and Communication Systems

The increasing spectrum congestion leads to the development of the competitive

coexistence of radar and communication (R&C) systems, which was straightfor-

wardly implemented by the opportunistic spectrum sharing between the rotating

radar and the cellular networks as proposed in [162, 163]. As the demand for space

and spectral resources continues to explode, R&C systems are enabled to operate

in higher frequency bands, providing sufficient radio resources for high-resolution

imaging and facilitating high-rate data exchange. Meanwhile, the R&C coexistence

in multiple frequency bands results in either inevitable mutual interference or re-

source efficiency degradation. In order to enable the co-design of the communication

and radar functionalities, and explore the mutual benefits from each other, ISAC is

reckoned as a promising key technology in next-generation networks. The four-level

vision describing the evolution path of ISAC technologies is introduced in [3], in-

cluding the R&C spectral coexistence, hardware platform sharing, joint waveform

design and signal processing for R&C, and the share of network structure. All of the

state-of-the-art approaches imply ISAC to be the critical enabler in the foreseeing

applications of future networks, which is capable of high-quality S&C functionalities.

For clarity, the technological vision of ISAC is given in Fig. 2.7.
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Figure 2.7: Evolution path for ISAC technologies [3].

The existing designs of the ISAC can be classified into three categories, includ-

ing communication-centric design, radar-centric design, and joint optimizing design,

which will be elaborated in this section.

2.3.1 Linear Gaussian Signal Models

By taking the additive white Gaussian noise (AWGN) into account, we have the

generic linear signal models for the radar and communication receiver in ISAC can

be respectively given as [3]

Radar signal: yr =Hr (ηηη)x+ zr (2.20a)

Comm signal: yc =Hcx+ zc, (2.20b)

where x denotes the ISAC waveform, employed for both R&C, Hc is the communi-

cation channel, which can be estimated a priori via pilots. The radar channel Hr is

modeled as a function of the physical parameters ηηη, which commonly includes the

angle, Doppler, and range. zr and zc denote the AWGN with zero mean and variance

σ2
r and σ2

c , respectively. From the perspective of radar, one wishes to extract and

estimate the parameters ηηη by observing the received signal yr. While the commu-

nication receiver aims to decode and recover the transmit signal x according to the

observed signal yc. Note that (2.20) is a variety of R&C signal models. Related to

this Thesis, the reflected target echo received by a multi-input multi-output (MIMO)
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radar is detailed as

Hr =

L∑
l=1

αlb (θl)aT (ϑl), (2.21)

where αl, θl, and ϑl denote the channel coefficient, direction of arrival (DOA), and

direction of departure (DOD) of the l-th path. L is the number of resolvable targets.

a (ϑl) and b (θl) are the transmit and the receive steering vectors, where the steering

vector of the uniform linear array (ULA) equipped with N antennas, with spacing d

and wavelength λ is written as

a (θ) =
[
1,e− j2π d

λ sin(θ), · · · ,e− j2π(N−1) d
λ sin(θ)

]
. (2.22)

Additionally, in light of the channel models above, we specify the single-target

scenario in two cases: 1) point-like target; 2) extended target. [164]

• Point-like target case: In this case, the target response matrix is equivalent to

the expression given in (2.21) when we let L = 1. It is accordingly written as

Hr = αb (θ)aT (ϑ) . (2.23)

Note that the DOA θ is the same as DOD ϑ with the monostatic radar setting.

• Extended target case: The extended target is typically modeled as a surface

with a large number of distributed point-like scatterers, such as a vehicle or a

pedestrian moving on the road [165]. To this end, the target response matrix is

expressed as

Hr =

Ns∑
n=1

αnb (θn)aT (ϑn), (2.24)

where Ns denotes the number of scatters, and αn denotes the reflection coeffi-

cient of the n-th scatterer.

2.3.2 Communication-centric Design

In communication-centric (CC) designs, the related radar functionalities are inte-

grated to an existing or even commercialized communication waveform as a sec-

ondary function. As demonstrated in [166], systems can be classified into two types,
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which are realizing sensing 1) in point-to-point communication systems; 2) in large

networks such as mobile networks. They deploy the orthogonal frequency-division

multiplexing (OFDM)-based ISAC signaling, which directly exploits the OFDM

communication waveform to simultaneously accomplish R&C tasks [3, 167].

Note that the Doppler estimation and compensation is critical for combating

time-varying mmWave channels in communication-centric ISAC systems. With a

typical configuration, the sensing receiver and DFRC transmitter are co-located. Let

us assume that the ISAC transmitter emits the OFDM signal to communicate with

a user, while sensing a point target with delay τ and Doppler υ. The radar receiver

samples the reflected echo at each OFDM symbol, followed by block-wise FFT

processing. In the resultant discrete signal matrix, the (n,m)-th entry corresponds to

the n-th symbol on the m-th subcarrier, which is

yn,m = αn,mxn,me− j2π(m−1)∆ f τe j2π(n−1)υTc + zn,m, (2.25)

where αn,m is the channel coefficient and zn,m denotes the noise. It is worthwhile to

note that the interference resulting from the random communication data xn,m can be

simply mitigated by element-wise division

ỹn,m =
yn,m

xn,m
= αn,me− j2π(m−1)∆ f τe j2π(n−1)υTc +

zn,m

xn,m
. (2.26)

Afterward, in order to get the delay-Doppler profile of the target, we can then apply

a 2D-fast Fourier transform (FFT) to (2.24). For clarity, we summarize the related

reference for the CC ISAC system in Table 2.3.

2.3.3 Radar-centric Design

In contrast to the CC designs, radar-centric (RC) designs aim to implement commu-

nication data transmission over existing radar infrastructures. The emitted waveform

in radar-only systems conventionally contains no information, while research on RC

ISAC systems mainly focused on embedding the information in the waveform to be

transmitted. As radar is capable of realizing long-range propagation, the embedded

communication data is expected to be transmitted in a long-range with lower latency,
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Categories Typical Network Signal Reference

Point-to-point
Communiaction

IEEE 802.11
DFRC for

Vehicular Networks

Spread Spectrum [167, 168]
Waveform design based

on OFDM
[169–172]

Single carrier
(OFDM preamble)

[173–177]

Large Networks
Perspective Mobile

Networks
Multiuser-MIMO

OFDM
[178–181]

Table 2.3: Summary of Reference for CC ISAC Systems.

while the achievable transmission rate is limited in such designs [182–188].

Since communication data embedded radar systems rely on pulsed or

continuous-wave radar signals, eliminating the induced interference to radar func-

tionality is a fundamental challenge. This has been widely investigated in the existing

literature and is summarized in Table 2.4. Early RC designs have mainly focused

on exploiting the linear frequency modulation (LFM) signal as an information

carrier [189–191]. This approach enables a low probability of intercept/detection

communications, administrative communications, or auxiliary functions such as nav-

igation for a combined radar-navigation signal at the expense of data rates [189,190].

To ensure the performance of radar, index modulation (IM) is one of the techniques

of interest. It was first proposed in [192] for MIMO radar transmitting orthogonal

waveforms, where the communication information was conveyed by shuffling the

waveforms across multiple antennas, which does not break the orthogonality. It is

also further studied in [193–195] for MIMO-OFDM, multi-Carrier AgilE phaSed

Array Radar (CAESAR) and frequency hopping (FH)-MIMO radar. In these cases,

frequency combination randomly selects different sets of frequencies, and antenna

permutation allocates the selected frequencies to different antennas, which again

keeps the orthogonality unaffected.

2.3.4 Optimization-based Joint Design

In the CC and RC designs above, both schemes aim to ensure the performance of a

specific system, i.e., communication and radar, respectively, which lack flexibility

in exploring tradeoff between the two functionalities. The joint design schemes are
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Modulations Methods Reference

Modified
Waveforms

Time
Frequency
Embedding

Apply a combination of amplitude,
phase, and/or frequency shift keying
to radar chirp signals.

[182], [196],
[197], [190]

Map data to multiple chirp
subcarriers via the use of fractional
Fourier Transform

[198]

Code
Domain
Embedding

Modulate binary/poly-phased codes
in radar signals using direct spread
spectrum sequences.

[199]

Spatial
Embedding

Modulate information bits and embed
in the sidelobes of the radar
beampattern.

[182], [196]

Index Modulation

Embed information bits through indices
of certain parameters involved in the
transmission (antennas, frequencies,
and/or codes for signals).

[187], [200]
[193], [194]
[192], [195]

Table 2.4: Summary of Information Embedding Approaches in RC ISAC Systems.

conceived through convex optimization techniques, which take performance metrics

of both communication and radar systems into account, enabling the balance of the

requirements for R&C. An typical example of this will be briefly presented.

We here consider a MIMO DFRC BS equipped with Nt antennas, serving K

single-antenna users, while simultaneously detecting a point-like target located at the

direction θ. The optimization problem aims to minimize the CRB of angle estimation

under constraints of the CUs’ sum rate and the power budget is formulated as

min
X

CRB(θ)

s.t. ∥X∥2F ≤ Pt,

K∑
k=1

Rk ≥ R0,∀ k,
(2.27)

where X is the ISAC signal, Rk is the achievable rate of the k-th user, R0 is the

threshold of sum rate, and Pt is the power budget. The Pareto frontier between

R&C can be obtained by increasing R0, which leads to the increased objective

CRB [3]. Moreover, the precoder optimization design plays an important role in

joint R&C systems. This may involve interference mitigation between the radar and

communication signals, and maximizing the SNR of the transmitted signals.
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As per above, we have introduced the basic concept of ISAC systems, containing

the RC R&C and the CC R&C designs. To be more specific to this Thesis, existing

approaches for PLS are further elaborated in the following section.

2.4 Physical Layer Security
Information security has been a critical issue from the very beginning of research

in wireless networks, dating back to the 1970s with a mathematical description of a

wiretap channel [201,202]. By exploiting the properties of wireless channels, includ-

ing fading, noise, and interference, the PLS has been widely studied as an efficient

approach to enhance wireless security alongside high-layer encryption. Nevertheless,

with the development of the wireless network, conventional cryptographic techniques

may be insufficient or even unsuitable, as private key exchange must take place over

a secure channel. Thereby, PLS enables secure communication by solely relying

on the characteristics of wireless channels, avoiding the extra utilization of spectral

resources and reducing communication overhead [203]. As illustrated in Fig. 2.8,

a typical network employing PLS comprises three nodes: a transmitter (Alice), a

legitimate receiver (Bob), and an eavesdropper (Eve). With this setup, the transmitter

sends confidential information to the legitimate receiver, while preventing it from

being intercepted by the eavesdropper [204].

In this section, the optimization and design in PLS employing the AN-aided and

DM/CI-based algorithms will be summarized. In addition, a further discussion will

be provided regarding the impacts of CSI on PLS designs, as wiretap CSI acquisition

is still a limiting factor for PLS algorithms.

2.4.1 Secure Beamforming with AN

As elaborated in Section 2.1, in signal processing, the beamforming technique is to

transmit signals towards intended directions by maximizing the SINR in the direc-

tions of desired users, while suppressing the SINR in the directions of undesired

receivers [205, 206]. As a result, the energy is transmitted or focused in specific di-

rections instead of being dispersed in a diffuse manner, which significantly increases

the energy efficiency of the system.
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Legitimate receiver 
(Bob)

Eavesdropper 
(Eve)

Transmitter
(Alice)

Figure 2.8: A three-node point-to-point secure communication model consists of a transmitter, a
legitimate node, and an eavesdropper.
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Figure 2.9: Secure techniques, (a) Beamforming (b) AN-aided approach, and (c) Optimization-based
beamforming [4].

AN-aided PLS technique is an efficient way to utilize the channel quality ad-

vantages in the transmission link, which is designed to inject the well-designed

artificial signal at the transmitter side such that only the wiretap channel degrades

while the main channel is kept intact [207, 208]. The secure signal transmission

with AN and optimization-based beamforming designs are illustrated in Fig. 2.9,

which are representative techniques to ensure the PLS. In what follows, we review

the fundamental works that utilize the AN to improve PLS performance.

AN-assisted secure transmission was firstly presented in [15], which indicated

that the key of AN design is to avoid interference leakage to legitimate users while

impairing the AN at the eavesdropper. To this end, AN is adopted in conjunction

with multiple-antenna techniques or with the help of relays, where the AN and the

transmit signals are jointly designed to maximize the secrecy rate [119, 209–213].

Intuitively, the security performance depends on the accuracy of the CSI known at
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the transmitter in most studies. However, the CSI of the eavesdropper’s channel is

impractical to be known perfectly at the transmitter, which promotes further studies

on the robustness of wiretap CSI for PLS techniques [22,214–216]. In [105,217,218],

a robust beamforming method was proposed to maximize the worst-case secrecy

rate via semidefinite programming (SDP) optimization problem. For further relaxing

the assumption of CSI, the case that the wiretap CSI is statistically known to the

transmitter was studied in [214, 219, 220]. Moreover, when no wiretap CSI is avail-

able at the transmitter, the artificially generated noise is designed to be orthogonal

to the channels towards legitimate users, thus the AN only deteriorates the wiretap

channel [14, 221–225].

Apart from concerns about the robustness of wiretap CSI, the CSI of the le-

gitimate receiver is sometimes partially known to the transmitter in practice. If the

transmitter receives limited feedback from the legitimate receiver, the AN that was

originally intended to jam the eavesdropper may now strongly interfere with the

main channel, resulting in a significant secrecy rate loss [203, 226]. In [222], Lin

et al. investigated the scenario where only quantized channel direction information

of the legitimate receiver’s channel is available at the transmitter. For a given trans-

mission power and a fixed number of feedback bits, a power allocation scheme for

information signal power and the AN power was proposed to maximize the secrecy

rate [222]. Furthermore, the secrecy performance with limited CSI feedback is

further improved by optimizing the number of feedbacks and transmit power jointly

in [227]. Additionally, the delay of feedback leads to a CSI mismatch, which leads

to noise leakage at the legitimate receiver as well as a loss in the achievable secrecy

rate. The beamforming and power allocation algorithms were proposed to minimize

the performance loss in [228].

2.4.2 DM/CI Based PLS Designs

DM is considered as an efficient method to ensure the PLS in wireless communica-

tion networks, the paradigm of which is illustrated in Fig. 2.10. It shows that DM

ensures the PLS by adjusting the amplitude and phase of the transmit signal along a

specific direction, while scrambling the symbols in other undesired directions. The
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fundamental concept of the DM technique implies that the modulation happens at

the antenna level, rather than the baseband. By doing so, low bit error rate (BER)

achieves at the intended receiver for a specific modulation, while the constellation

will be distorted in other undesired directions, resulting in a high BER.

The scheme presented in [18] was to produce a directional frequency/phase-

modulated signal by hopping antennas. This technique was then extended to mod-

ulate at both baseband and antenna levels for PLS in communication networks,

including a dual-beam scheme to create a modulated signal with two distinct radia-

tion patterns [229] and switching antennas according to a chipping sequence [66].

The DM scheme in [63] was designed to modulate the phase and amplitude by chang-

ing the antenna characteristics (its near- and far-field) at the symbol rate in order

to properly modulate the signal, As a result, it is able to transmit different signals

independently to the desired and the undesired directions. In [230], a phased array

was deployed at the transmitter and the genetic algorithm was deployed to derive

the phase values of a phased array in order to create symbols in a specific direction.

Furthermore, to jointly exploit DM with new array techniques, a hybrid MIMO

phased array time-modulated DM scheme was proposed in [141] for safeguarding

the mmWave wireless communication system.

The DM implementation can be extended to the scenario of transmitting confi-

dential information to more than one destination. The singular value decomposition

(SVD) is deployed to directionally modulate symbols towards the receiver with

two separately located receive antennas for MIMO systems [231]. The algorithm

in [232] studied a multi-beam DM scheme, which was to create two orthogonal

far-field patterns to modulate two independent data streams towards two different

directions, and the least-norm solution was proposed for the array weights derivation

and symbol modulation [233].

For further security improvement, the symbol-level precoder in [57] was pro-

posed by using the concept of CI in directional modulation aiming at improving

energy efficiency. Emerging studies combine the DM technique with the help of

AN, such as [225, 231, 234–238]. Particularly, [225, 236, 238] utilized an orthogonal
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Figure 2.10: Architecture of DM (QPSK modulation).

vector scheme to design the array weights in order to directionally modulate the data

and inject the AN in the direction of the eavesdropper. In [235], the DM synthesis

method was achieved with a closed-form expression by projecting the AN into the

null space of the steering vector along the desired direction. Besides, authors in [239]

redesigned AN signals in the form of CI to the intended receiver while keeping AN

disruptive to potential eavesdroppers.

In general, the DM may achieve a high-performance gain along the desired

directions via beamforming and provide a secure transmission by injecting AN to

deteriorate the data transmission towards the undesired directions [57, 240].

2.4.3 The Impacts of CSI on PLS Designs

As discussed above, it can be found that the impact of CSI is non-negligible in PLS

designs, which determines the choice secrecy metric and the design of the secrecy

scheme [241, 242]. In practice, the CSI of both the legitimate user channel and the

wiretap channel may be imperfectly known to the transmitter, or even unknown to

the transmitter. In one sense, the CSI of legitimate channels can be estimated through

training and feedback, whereas obtaining a precise CSI is difficult due to errors in

estimation and feedback delays. On the other hand, the eavesdropper is typically

considered malicious and uncooperative, resulting in difficulties in estimating the

CSI. In what follows, we will examine cases where information on the wiretap

channel is perfectly known, partially known, and unknown to the transmitter.
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2.4.3.1 Perfect CSI for Legitimate and Wiretap Channels

In the existing literature on PLS, perfect CSI of both legitimate and wiretap channels

is assumed to be known at the transmitter, such as [14, 223, 242–250]. Particularly,

in [249,251], all the nodes are active and can be monitored. These nodes play double

roles in multicast communication, that is, each node is legitimate with respect to

some specific data streams, while being malicious to other streams. As a result,

friendly and legitimate nodes are able to feed back the CSI perfectly, which in turn

allows the transmitter to know the CSI of both channels perfectly [252].

2.4.3.2 Partial CSI of the Wiretap Channel is Knowledgeable

CSI of legitimate channels is easily obtained, while CSI of wiretap channels is

difficult or impossible to obtain in many situations. In the cases where the perfect

CSI of the wiretap channel is unknown, imperfect CSI of the wiretap channel

can be estimated based on the past channel observation or prior knowledge of the

propagation environment [253, 254]. Note that the CSI of the wiretap channel can be

characterized following

• The CSI can be estimated according to a specific probability distribution that

the channel follows, such as the Gaussian distribution, Rayleigh distribution,

Rician distribution, etc. By adopting this method, only the statistical infor-

mation, including the mean and covariance of the probability distribution, is

required.

• The deterministic uncertainty model proposed in [105, 209, 255, 256] can be

deployed to characterize the uncertainties of eavesdroppers’ channels, where

the unknown wiretap channels are assumed to fall in a sphere or a set [257].

To this end, the uncertainty region of the eavesdropper’s channel is modeled as

ℑ =

{
hE

∥∥∥hE − ĥE
∥∥∥2
≤ ε

}
=

{
ĥE + eE∥eE∥

2 ≤ ε
}
, (2.28)

where ℑ denotes the sphere region with the estimated channel vector ĥE

being the center and the channel mismatch
√
ε being the radius, and eE is the

estimation error vector.
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• The channel can also be modeled as

hE =
√
υĥE +

√
1−υeE (2.29)

where υ ∈ [0,1] is a scalar for indicating the degree of channel knowledge,

and υ = 0 means that the eavesdropper’s CSI is perfect, υ = 1 corresponds

to a perfect channel estimation. ĥE and eE denote the estimated channel and

estimation error with i.i.d. entries.

2.4.3.3 Unknown CSI of Wiretap Channels

Considering eavesdroppers’ concealment and hostility, we further discuss the practi-

cal assumption that the wiretap CSI is unknown to the transmitter [258–260]. In the

absence of the wiretap CSI, the instantaneous secrecy rate cannot be expressed. To

this end, secrecy rate optimization cannot be performed in this case. As shown in

[256], a transmission antenna selection strategy to enhance the secrecy performance

of MIMO wiretap channels without eavesdroppers’ CSI is proposed based on three

key metrics, namely, the probability of non-zero secrecy capacity, the probability of

secrecy outages, and the probability of ϵ-outage secrecy [261, 262]. Additionally,

authors in [258] proposed a QoS-based secure strategy to enhance the security of

a cooperative relay network without the knowledge of the wiretap CSI. Likewise,

the secrecy sum rate maximization problem subjecting to the legitimate users’ QoS

requirements for the non-orthogonal multiple access (NOMA) system was presented

in [259].

In light of the above, when the eavesdropper’s CSI is unknown or imperfect,

exploiting AN or jamming signals has proven to be effective in improving secrecy

performance [263–265].

In the following section, several fundamental metrics in the study of PLS for

ISAC systems are given from the perspective of radar communication, respectively.
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2.5 Performance Metrics

In this section, we present the performance metrics for secure ISAC in this section,

including the estimation-theoretic metrics for sensing functionality and information-

theoretic metrics for communication functionality. To be more specific to the topic

of this Thesis, the secrecy rate is further proposed as a metric of communication

information security.

2.5.1 Estimation-theoretic Metrics for Sensing

Recall the signal model given in (2.20), where ηηη is the parameters to be extracted by

observing Yr, we Let the η̂ηη denote the estimated vector. To measure the accuracy of

the estimation, the MSE is given as ε = E∥ηηη− η̂ηη∥2. Moreover, the MSE can also be

defined as the trace of the following matrix

MSEηηη = E
[
(ηηη− η̂ηη) (ηηη− η̂ηη)H

]
, (2.30)

with the diagonal elements denoting the individual MSE for parameters η1, . . . , ηK ,

where K is the number of elements to be estimated. It is practical to minimize the

MSE in order to find the optimal estimator.

Additionally, if the parameter is deterministic, the Cramér-Rao bound (CRB)

lower-bounds the variance of unbiased estimators in estimation theory and statistics,

defined as the inverse of the Fisher Information Matrix (FIM) J (ηηη) [266,267], which

is given as follows

E
[
(ηηη− η̂ηη) (ηηη− η̂ηη)H

]
⪰ J−1 (ηηη) , (2.31)

where J (ηηη) = E
[
∂ ln p(Yr;ηηη)
∂ηηη2

]
, and p (Yr;ηηη) is the probability density function (PDF)

of Yr associated with estimating the deterministic parameter vector ηηη. Note that
∂ ln p(Yr;ηηη)
∂ηηη2

∣∣∣∣
ηηη=η̂ηη
= 0 if the MSE of an unbiased estimator achieves the CRB.

Apart from the metrics given above, there are some more sensing performance

criteria that are commonly considered in related works, which are listed as follows:

• Radar range resolution is defined as the capability of the radar to distinguish
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or resolve nearby adjacent targets in the range, which is expressed as

∆R =
c

2B
, (2.32)

where c is the speed of light and B is the bandwidth [268].

• The ambiguity function (AF) represents the time response of a filter matched

to a given finite energy signal when the signal is received with a propagation

delay τ and a Doppler frequency f relative to the nominal values (zeros)

expected by the filter [269]. For a given complex baseband pulse s (t), the

narrowband ambiguity function is expressed as

χ (τ, f ) =
∫ ∞

−∞

s (t) s∗ (t−τ)e j2π f tdt. (2.33)

• Besides, the probability of detection and false alarm are also critical per-

formance metrics for target detection, where the former denotes the correct

detection of existing targets and the latter corresponds to the probability of

detecting a target when a target does not exist [270].

2.5.2 Information-theoretic Metrics for Communication

From the perspective of communication, the information is expected to be transmitted

as reliably as possible [271]. Information theory, developed by Claude E. Shannon

in 1948 [272, 273], defines the notion of channel capacity as the tight upper bound

on the rate at which communication information can be reliably transmitted over

a channel of a specific bandwidth in the presence of noise, known as the Shannon-

Hartley theorem. The capacity of any discrete memoryless channel is defined as the

maximum mutual information I (X;Y) with input X and output Y can be written as

C =max
p(X)

I (X;Y) . (2.34)

Given a power constraint P over the input X, the channel capacity of a Gaussian

channel with AWGN is written as the well-known Shannon’s formula, i.e., CGau =
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log2

(
1+ P

σ2

)
, where σ2 is the noise variance,

To be more specific to the theme of this Thesis, we introduce a fundamental

secrecy metric for the measurement of communication security based on the channel

capacity given above. In PLS studies, secrecy capacity is commonly given as a key

evaluation metric, which is led by Wyner’s original work [201] and expressed as

Cs =max
p(X)

{I (X;Y)− I (X;Z)} , (2.35)

where X is the input, Y and Z are the output at the intended receiver and the eaves-

dropper, respectively. To evaluate the secrecy more conveniently and computation

affordably, the secrecy rate is applied in PLS studies as well. Assume that the inputs

are Gaussian distribution, thus the achievable secrecy rate can be expressed as

Rs = [Rc−Re]+ , (2.36)

where [·]+ ≜max {·,0} The secrecy rate is to assess the transmit effectiveness of PLS

strategies, where Rm denotes the data rate of the legitimate user and Re denotes the

wiretap channel. Note that the secrecy rate is regarded as the lower bound of the

secrecy capacity.

• Ergodic Secrecy Capacity/Rate: The secrecy capacity and the secrecy rate

given above is for fixed channels, while time-varying channels are widely

deployed in practice. When taking the fading of the wireless channels into

account, the ergodic secrecy capacity is practically applied by assuming that

the transmitted confidential message can be coded across a sufficiently large

number of varying channel states, that is, under delay-tolerant applications. It

indicates that the ergodic secrecy capacity evaluates the average performance

of secrecy transmission over fading channels. Nevertheless, the optimal trans-

mission scheme achieving the secrecy capacity is difficult to obtain for various

fading channels in practical designs. Therefore, the secrecy rate is commonly

deployed as the optimization objective in secure transmission designs with the

consideration of channel fading, defined as the difference between the ergodic
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rates of the main and wiretap channels with Gaussian codebook [241,274,275].

• Secrecy Outage Probability: Considering the imperfect CSI and the random-

ness of the communication channels resulting from the physical environment,

such as the shadowing, the locations of nodes, and the multi-path fading, the

observed signals change in a random manner. For transmission over quasi-

static fading channels where classical information-theoretic secrecy is not

always achievable, the secrecy outage probability measures the probability

of failing to achieve classical information-theoretic secrecy [276, 277]. To be

specific, it is defined as the probability that the instantaneous secrecy capacity

Cs falls below a target secrecy rate R0
s as

Pout
(
R0

s

)
= Pr

{
Cs < R0

s

}
. (2.37)

The expression above demonstrates that Cs < R0
s happens when the confidential

message is not correctly decoded by intended receivers or is not perfectly

secure. Consequently, reliable and secure transmission at a target secrecy rate

R0
s can be ensured with the probability of 1−Pout

(
R0

s

)
.

2.6 Open Problems and Future Work
This chapter has reviewed fundamental concepts and related works on security con-

cerns in ISAC systems. Moreover, there are numerous open problems in this area.

Sensing-assisted physical layer security: In existing studies on secure ISAC

systems, literature mainly focuses on a dual-functional BS emitting a waveform for

both sensing and communication functionalities. The communication transmission

is protected by related PLS approaches, while both the radar and communication

systems still work individually. In order to improve energy efficiency and reduce

power consumption, it is worthwhile to promote cooperation between sensing and

communicating. This motivates the research on sensing-aided techniques for protect-

ing communication data security, which exploits the active sensing functionality to

identify the direction of the eavesdropper.
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Target location protection: In the radar-communication coexistence scenario,

the precoder containing the radar parameters in the design of mutual interference

mitigation is passed to the communication system, resulting in risks to radar privacy.

In general, it is possible to protect the angle information of the radar when the ad-

versary does not employ the training-based technique to infer the radar information.

However, recent research showed that machine-learning-based schemes are able to

infer the location information contained in the precoding matrix. This motivates

further studies on how to exchange parameters between radar and communication

systems taking the privacy risk of each unit into consideration while maintaining a

minimum level of mutual interference.

ISAC security design at a network level: Security mechanism design on the

network level has been addressed for communication-only systems, where coverage

probability and ergodic capacity are analyzed in a systematic manner. This network-

level investigation advises networking planning and engineering design set out on

the whole system. Note that the existing ISAC-related research is investigated in

simple scenarios. The heterogeneity and high node density in future communication

systems motivate fundamental research in network-level ISAC designs.



Chapter 3

Artificial Noise Aided Physical Layer

Security in ISAC Systems

This chapter is based on our works published in [J1] and [C1].

3.1 Introduction
Given the dual-functional nature of the DFRC systems, the secrecy issue can be

addressed in the aspect of either radar or communication. From the perspective

of the radar system, existing works focus on radar privacy maintenance [278–280].

A functional architecture was presented in [278] for the control center aiming at

coordinating the cooperation between radar and communication while maintaining

the privacy of the radar system. In [279], obfuscation techniques have been proposed

to counter the inference attacks in the scenario of spectrum sharing between mil-

itary radars and commercial communication systems. Besides, the work of [280]

showed the probability for an adversary to infer the radar’s location by exploiting

the communication precoding matrices. On the other hand, the works of [281, 282]

have studied the secrecy problems from the viewpoint of communications. In [281],

the MIMO radar transmits two different signals simultaneously, one of which is

embedded with desired information for the legitimate receiver, and the other one

consists of false information to confuse the eavesdroppers. Both of the signals are

used to detect the target. Several optimization problems were presented, including

secrecy rate maximization, target return SNR maximization and transmit power
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minimization. Then, a unified joint system of passive radar and communication

systems was considered in [282], where the communication receivers might be

eavesdropped by the target of passive radar. As the radar system typically addresses

uncooperative or even malicious targets, it is essential to guarantee the PLS in the

safety-critical DFRC systems. To guarantee the secrecy of legitimate users in the

communication system, the optimization problem was designed to maximize the

SNR at the passive radar receiver (RR) while keeping the secrecy rate above a certain

threshold. While the aforementioned approaches are well-designed by sophisticated

techniques, the AN-aided PLS remains to be explored for the DFRC systems under

practical constraints.

To the best of our knowledge, most of the present works regarding secure

transmission in the DFRC system rely on the assumption of precisely known CSI

at the transmitter. However, wireless communication channels are often impacted

by interference from other users, devices, environmental factors, as well as thermal

noise in practice. These factors can affect the accuracy of channel estimation and

feedback, preventing the transmitter from obtaining perfect CSI. To address the

beamforming design in a more general context, we take the imperfect CSI into

account in our work, which includes instantaneous and statistical CSI with norm-

bounded errors. Moreover, the well-known S-procedure and Lagrange dual function

have been adopted to reformulate the optimization problem, which can be solved

by Semi-definite Relaxation (SDR) approach. In addition to the CSI issues, we also

explore the radar-specific target uncertainty, where we employ a robust adaptation

technique for target tracking.

Accordingly, in this chapter, we propose several optimization problems aiming

at ensuring information transmission security of the DFRC system. To be specific, we

consider a MIMO DFRC BS that is serving multiple legitimate users while detecting

targets. It should be noted that these targets are assumed to be potential eavesdrop-

pers. Moreover, spatially focused AN is employed in our methods. Throughout the

paper, we aim to minimize the SNR at the target while ensuring the SINR at each

legitimate user. Within this scope, we summarize our contributions as follows:



3.1. INTRODUCTION 69

• We first consider the ideal scenario under the assumptions of perfect CSI

and the known precise location of targets. The beampattern is formed by ap-

proaching a given benchmark radar beampattern. By doing so, the formulated

optimization problem can be firstly recast as Fractional programming (FP)

problem [283], and then solved by the SDR.

• We investigate the problem under the practical condition of target location

uncertainty, where we formulate a beampattern with a given angular interval

that the targets might fall into.

• We impose the imperfect communication CSI to the optimization in addition

to the above constraints, where worst-case FP problems are formulated to

minimize the maximum SNR at the target with bounded CSI errors.

• We consider the statistical CSI, which is more practical due to significantly

reduced feedback requirements [114]. To tackle this scenario, we further

formulate the eavesdropper SNR minimization problem considering the error

bound of statistical CSI.

• We derive the computational complexity for each proposed algorithm.

Moreover, for clarity, some important insights are listed as follows:

• When there is uncertainty on the target direction, the DFRC beam width

inevitably needs to be widened, hence increasing the range of angles where the

signal can be eavesdropped. Accordingly, ensuring security requires higher AN

power, which impacts the power allocated to signal transmission, to transmit

confidential information;

• When the peak to sidelobe ratio (PSLR) requirement for the radar increases

with a fixed power budget, more power is spent on satisfying the radar require-

ment. Accordingly, the reduced power budget for communications deteriorates

the secrecy rate;
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Figure 3.1: Dual-functional Radar-Communication system detecting target which comprises a poten-
tial eavesdropper.

• When the CSI is only imperfectly or statistically known, with a fixed power

budget, the secrecy rate deteriorates. The system achieves a higher secrecy

rate when both the target location and CSI are precisely known.

3.2 System Model
We consider a dual-functional MIMO DFRC system, which consists of a DFRC base

station, legitimate users, and a target which is a potential eavesdropper, as shown in

Fig. 3.1. The DFRC system is equipped with a uniform linear array (ULA) of Nt

antennas, serving K single-antenna users, while detecting a point-like target, which

is a single-antenna eavesdropper. For convenience, the multi-antenna transmitter, the

legitimate users and the target will be referred to as Alice, Bobs, and Eve respectively.

3.2.1 Signal Model

In the scenario shown in Fig. 3.1, the DFRC base station Alice intends to send

confidential information to single-antenna legitimate users, i.e. Bobs, with the

presence of the potential eavesdropper, i.e. Eve. The received symbol vector at Bobs

and Eve can be respectively modeled as

y =Hx+ z

r = αaH (θ)x+ e,
(3.1)
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where H = [h1,h2, · · · ,hK]T ∈ CK×Nt is the channel matrix, x ∈ CNt is the transmitted

signal vector, α represents the complex path-loss coefficient, θ is the angle of target,

a (θ) =
[
1 e j2π∆sin(θ) · · · e j2π(Nt−1)∆sin(θ)

]T
∈ CNt×1 denotes the steering vector of

the transmit antenna array, with ∆ being the normalized interval between adjacent

antennas. z and e are the noise vector and scalar, respectively, with zk ∼ CN
(
0,σ2

zk

)
,

e ∼ CN
(
0,σ2

e

)
.

Consider AN-aided transmit beamforming, the transmit vector x can be written

as

x =Ws+n (3.2)

where s ∈ CK is the desired symbol vector of Bobs, where we assume E
[
ssH

]
=

I, W = [w1,w2, · · · ,wK] ∈ CNt×K is the beamforming matrix, each column of the

beamforming matrix W represents the beamforming vector of each user, n is an

artificial noise vector1 generated by Alice to avoid leaking information to Eves. It

is assumed that n ∼ CN (0,RN). Additionally, we assume that the desired symbol

vector s and the artificial noise vector n are independent of each other.

According to [284], it is presumed that the above signal is used for both radar

and communication operations, where each communication symbol is considered

as a snapshot of a radar pulse. Then, the covariance matrix of the transmitted

dual-functional waveform2 can be given as

RX = E
[
xxH

]
=

K∑
k=1

Wk +RN , (3.3)

where Wk ≜ wkwH
k . Then, the beampattern can be expressed as

Pbp = aH (θ)RXa (θ) . (3.4)

1Note that the generated AN is colored Gaussian noise, which has favorable auto-correlation
properties, and will hence impose negligible impact on reconstructing the target at the radar receiver.

2In a general radar system, the transmitted waveform is required to be known at the receiver
side in order to estimate the target. As the waveform changes symbol by symbol in DFRC systems,
overhead generated by the sharing of the transmitted waveform with the receiver is significant. Thus,
monostatic radar is assumed to be employed in our system model rather than bistatic radar, i.e., the
transmitter and the receiver are collocated.
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3.2.2 Metrics

To evaluate the performance of the system, we define a number of performance

metrics in this subsection. Initially, based on the aforementioned system model, the

SINR of the k-th user can be written as

SINRCU
k =

E
[∣∣∣hT

k wksk
∣∣∣2]∑K

i,k,i=1E
[∣∣∣hT

k wisi
∣∣∣2]+E [∣∣∣hT

k n
∣∣∣2]+σ2

zk

=
hT

k Wkh∗k∑K
i,k,i=1

(
hT

k Wih∗k
)
+

(
hT

k RNh∗k
)
+σ2

zk

.

(3.5)

Equation (3.5) can be simplified

SINRCU
k =

tr
(
h∗khT

k Wk
)

∑K
i,k,i=1 tr

(
h∗khT

k Wi
)
+ tr

(
h∗khT

k RN
)
+σ2

zk

. (3.6)

The achievable transmission rate of legitimate users is given as

RCU
k = log(1+SINRk) . (3.7)

Likewise, based on the given signal model in (3.1) and (3.2), SNR at Eve can

be given as [285]

SNRE =
|α|2aH (θ)

∑K
k=1 Wka (θ)

|α|2aH (θ)RNa (θ)+σ2
e
. (3.8)

In practice, the precise location of the target is unlikely to be known in advance.

Herewith, we define a region of target location angular uncertainty, which is given as

[θ0−∆θ,θ0+∆θ], with ∆θ being the uncertainty region given a-priori. This scenario

will be elaborated in Section 3.4. Then, the achievable transmission rate of Eve can

be expressed as

RE = log(1+SNRE) . (3.9)
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Additionally, the transmit power is expressed as

Pt = tr(RX). (3.10)

Given the achievable transmission rates of Bobs and Eve, the worst-case secrecy rate

of the system is defined as3 [286]

SR =min
k

[
RCU

k −RE
]+
. (3.11)

Note that since we focus on optimizing the covariance matrices of both the

DFRC signal and the AN, the range sidelobe is not considered in this paper due to its

reliance on symbol-level waveform designs, which is designated as our future work.

3.2.3 Channel Model with Imperfect CSI and Statistical CSI

3.2.3.1 Imperfect CSI

According to [287], an additive channel error model of k-th downlink user can be

formulated as hk = h̃k + ek, where h̃k is the estimated channel vector known at Alice,

and ek denotes the channel uncertainty within the spherical region ℑk = {ek | ∥ek∥
2 ≤

µ2
k}.

3.2.3.2 Statistical CSI

As the statistical CSI is known to the BS instead of instantaneous CSI, we rewrite

the SINR of the k-th user as

SINRCU
k =

tr
(
R̃hkWk

)
∑K

i,k,i=1 tr
(
R̃hkWi

)
+ tr

(
R̃hkRN

)
+σ2

zk

, (3.12)

where R̃hk = E
{
h∗khT

k

}
denotes the k-th user’s downlink channel covariance matrix

with uncertainty. As a result, the true channel covariance matrix can be modeled

3The secrecy is defined as the worst-case secrecy against all potential Bob-Eve pairs in a multi-user
multi-Eve scenario. We minimize the target’s eavesdropping SNR subject to users’ SNR thresholds,
expressed as the minimum difference between the users’ and the Eve’s rates as we indicate in the
following sections.
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as Rhk = R̃hk +∆k,∀k, where ∆k,∀k are the estimated error matrices. The Frobenius

norm of the error matrix of the k-th user is assumed to be upper-bounded by a known

constant δk, which can be expressed as ∥∆k∥ ≤ δk.

3.3 Minimize Eve’s SNR with Perfect CSI and Target

Angle

In this section, we aim to enhance the secrecy rate by minimizing Eve’s SNR while

guaranteeing the required SINR thresholds for legitimate users, i.e. the SINR of Bobs.

Firstly, the formulated optimization problem is formulated based on the assumption

that the channel information from Alice to Bobs in the communication system is

perfectly known. Meanwhile, the precise direction of the detected target is assumed

to be known to the transmitter, which will be further relaxed by considering the

uncertainty in the target’s location in the later sections. The complexity analysis is

given at the end of this section.

3.3.1 Problem Formulation

Let us firstly consider the SNRE minimization problem, which should guarantee:

a) individual SINR requirement at each legitimate user, b) transmit power budget

and c) a desired radar spatial beampattern. It is noteworthy that the time-domain

metric peak-to-average power ratio (PAPR) in the DFRC system can be explicitly

dealt with by including PAPR constraints in our optimization problems such as

PAPR minimization convex optimization method adopted in [288], or constant

modulus (CM) constraints in [144, 289, 290]. To keep the focus on the secrecy

aspect, PAPR is not considered in our optimization problem throughout this chapter,

which is designated as our future work. Note that an ideal radar beampattern should

be obtained before designing the beamforming and artificial noise, which can be

generated by solving the following constrained least-squares (LS) problem [284,291]
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as an example

min
η,Rd

M∑
m=1

∣∣∣ηPd (θm)−aH (θm)Rda (θm)
∣∣∣2

s.t. tr (Rd) = P0,

Rd ⪰ 0,Rd = RH
d ,

η ≥ 0,

(3.13)

where η is a scaling factor, P0 represents the transmission power budget, {θm}Mm=1

denotes an angular grid covering the detection angular range in [−π/2,π/2], a (θm)

denotes steering vector, Pd (θm) is the desired ideal beampattern gain at θm, Rd

represents the desired waveform covariance matrix.

Given a covariance matrix Rd that corresponds to a well-designed MIMO radar

beampattern, the fractional programming optimization problem of minimizing SNRE

can be formulated as 4

min
Wk,RN

|α|2aH (θ0)
∑K

k=1 Wka (θ0)

|α|2aH (θ0)RNa (θ0)+σ2
e
, (3.14a)

s.t. ∥RX −Rd∥
2 ≤ γbp, (3.14b)

SINRCU
k ≥ γb,∀k, (3.14c)

tr(RX) = P0, (3.14d)

Wk =WH
k ,Wk ⪰ 0,∀k, (3.14e)

rank(Wk) = 1,∀k, (3.14f)

RN = RH
N ,RN ⪰ 0, (3.14g)

where the constraints Wk =WH
k ,Wk ⪰ 0, rank(Wk) = 1,∀k, are equivalent to con-

straining Wk =wkwH
k [13]. θ0 represents the direction of Eve known at Alice5, γbp is

the pre-defined threshold that constraints the mismatch between designed covariance

4To simplify the optimization problem, we alternatively minimize the SNR at the target, while
ensuring the SINR at each legitimate user is larger than a threshold.

5The MIMO radar is assumed to be with two working modes including searching and tracking.
In the search mode, the radar transmits a spatially orthogonal waveform, which formulates the
omnidirectional beampattern. Potential targets can be searched via the beampattern. Then, the radar
is able to track potential targets via transmitting directional waveforms. Thus, the precise location is
available to be known at Alice.
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matrix RX and the desired Rd, and finally γb denotes the predefined SINR threshold

of each legitimate user.

To solve the problem (3.14), let us employ the SDR approach by omitting

the rank(Wk) = 1 constraint in (3.14f), based on which we relax the optimization

problem as

min
Wk,RN

|α|2aH (θ0)
∑K

k=1 Wka (θ0)

|α|2aH (θ0)RNa (θ0)+σ2
e
, (3.15a)

s.t. (3.14b) - (3.14e) and (3.14g). (3.15b)

By noting the fact that problem (3.15) is still non-convex due to the fractional

objective function, we propose in the following an iterative approach to solve the

problem efficiently.

3.3.2 Efficient Solver

Following [283], problem (3.15) is a single-ratio FP problem, which can be solved

by employing the Dinkelbach’s transform demonstrated in [292], where the globally

optimal solution can be obtained by solving a sequence of SDPs. To develop the

algorithm, we firstly introduce a scaling factor c = SNRE, which is an auxiliary

variable. We then define two scaling variables U and V, which are nonnegative and

positive respectively, where U = |α|2aH (θ)
∑K

k=1 Wka (θ) ,∀k, V = |α|2aH (θ)RNa (θ)+

σ2
e . As a result, the FP problem (3.15) is equivalent to

min
Wk,RN

U−cV, (3.16a)

s.t. (3.14b) - (3.14e) and (3.14g), (3.16b)

where c can be iteratively updated by

c [t+1] =
U[t]
V[t]
, (3.17)

where t is the index of iteration. For clarity, we summarize the above in Algorithm

3.1. According to [283], it is easy to prove the convergence of the algorithm given
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the non-increasing property of c during each iteration. It is noted that the SDR

approach generates an approximated solution to the optimization problem (3.14)

by neglecting the rank-one constraint. Accordingly, eigenvalue decomposition or

Gaussian randomization techniques are commonly employed to obtain a suboptimal

solution. In our case, it is noteworthy that the solution obtained from the SDR solver

can be guaranteed to be rank-16 [293].

3.3.3 Complexity Analysis

In this subsection, the computational complexity of Algorithm 3.1 is analyzed as

follows. Note that SDP problems are commonly solved by the interior point method

(IPM) [294], which obtains an ϵ-optimal solution after a sequence of iterations with

the given ϵ. In problem (3.14), it is noted that the constraints are linear matrix

inequality (LMI) except for (3.14b), which is a second-order cone (SOC) [295]

constraint. Thus, we demonstrate the complexity in Table 3.1, where Niter repre-

sents iteration times. For simplicity, the computational complexity can be given as

O
(√

2Niter ln (1/ϵ) K3.5N6.5
)

by reserving the highest order term.

Algorithm 3.1 Alogrithm for solving FP problem (3.15)

Input: H,a (θ0) ,σ2
e ,σ

2
z ,α,γbp,γb,P0, itermax ≥ 2, ε

Output: W(t)
k ,R

(t)
N ,k = 1, · · · ,K

1. Compute Rd. Reformulate problem (3.15a) by (3.16a). Set the iteration
threshold ε > 0. Initialize c(0),c(1),

∣∣∣c(1)− c(0)
∣∣∣ > ε.

Repeat:
2. Obtain W(t)

k ,R
(t)
N ,k = 1, · · · ,K by solving the SDP problem (3.16).

3. Update c by (3.17).
4. t = t+1.

Until:
t ≥ itermax or

∣∣∣ct+1− ct
∣∣∣ < ε

3.4 Minimize Eve’s SNR with Robust Target Angle
In practice, the precise location of the target is difficult to be known at the transmitter.

In this section, we consider the scenario where a rough estimate of the target’s angle,
6Let k and m denote the number of n×n square matrix variables and linear constraints, separately.

For a complex separable QCQP, the SDR is tight if m ≤ k+2, with the assumption that none of the

solution
{
X∗i

}k

i=1
to SDR satisfies X∗i = 0 for some i [293].
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instead of its precise counterpart, is available at Alice. Accordingly, the following

beampattern design aims at achieving both a desired main-beam width covering

the possible angle uncertainty interval of the target as well as a minimized sidelobe

power in a prescribed region. First of all, the optimization problem is formulated

to generate a wide main-beam beampattern, following which an efficient solver is

proposed. Finally, the complexity analysis is given at the end of this section.

3.4.1 Problem Formulation

In this subsection, we consider the case that the angle uncertainty interval of the

target is roughly known within the angular interval [θ0−∆θ,θ0+∆θ]. To this end,

the target from every possible direction should be taken into consideration when

formulating the optimization problem. Accordingly, the objective is given as the

sum of Eve’s SNR at all the possible locations as follows. Due to the uncertainty of

target location, a wider beampattern needs to be formulated towards the uncertain

angular interval to avoid missing the target. Inspired by the 3dB main-beam width

beampattern design for MIMO radar [296], we propose a scheme aiming at keeping

a constant power in the uncertain angular interval, which can be formulated as the

following optimization problem

min
Wk,RN

∑
θm∈Φ

|α|2aH (θm)
∑K

k=1 Wka (θm)

|α|2aH (θm)RNa (θm)+σ2
e

(3.18a)

s.t. aH (θ0)RXa (θ0)−aH (θm)RXa (θm) ≥ γs,∀ θm ∈Ω (3.18b)

aH (θk)RXa (θk) ≤ (1+α)aH (θ0)RXa (θ0) ,∀θk ∈ Φ (3.18c)

(1−α)aH (θ0)RXa (θ0) ≤ aH (θk)RXa (θk) ,∀ θk ∈ Φ (3.18d)

(3.14c) - (3.14g), (3.18e)

where θ0 is the main-beam location, Ω denotes the sidelobe region of interest, Φ

denotes the wide main-beam region, γs is the bound of the sidelobe power.

Likewise, recall the problem (3.14), SDR technique is adopted. To solve

the above sum-of-ratio problem, according to [283], we equivalently recast the
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minimization problem by neglecting rank-1 constraint as

max
Wi,RN

∑
θm∈Φ

|α|2aH (θm)RNa (θm)+σ2
e

|α|2aH (θm)
∑K

i=1 Wia (θm)
(3.19a)

s.t. (3.18b) - 3.18d), (13.4c) - (13.4e) and (13.4g), (3.19b)

It is noted that problem (3.19) is still non-convex. The approach to solving this

sum-of-ratio FP problem is described in the following.

3.4.2 Efficient Solver

To present the solution to problem (3.19), we firstly refer to [283] and denote

A (θm) = |α|2aH (θm)RNa (θm)+σ2
e

B (θm) = |α|2aH (θm)
∑K

i=1
Wia (θm)

One step further, the sum-of-ratio problem is equivalent to the following optimization

problem, which can be rewritten in the form

max
Wi,RN ,y

∑
θm∈Φ

(
2ym

√
A (θm)− y2

mB (θm)
)
, (3.20a)

s.t. (3.18b) - (3.18d), (13.4c) - (13.4e) and (13.4g), (3.20b)

where y denotes a collection of variables {y1, · · · ,yM}. The optimal ym can be obtained

in the following closed form when θm is fixed

y∗m =
√

A (θm)
B (θm)

. (3.21)

To this end, the reformulated optimization problem (3.20) can be solved. Then, eigen-

value decomposition or Gaussian randomization is required to get the approximated

solution. 7 For clarity, the above procedure is summarized in Algorithm 3.2.

7It is known that the Charnes-Cooper transform is an effective approach for FP problems with low
complexity. However, it comes with limitations, such as: (a) additional constraints are introduced;
(b) the feasible regions of new variables are to be characterized, which may not be easy to do. We
also remark that although the technique works very well for the single-ratio case (in fact converges
to a global optimum solution of the concave-convex single-ratio FP problem), it cannot be easily
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Algorithm 3.2 Algorithm for solving sum-of-ratio problem (3.19)

Input: H,a (θ0) , ε > 0, σ2
e ,σ

2
z ,α,γb,γs,P0, itermax ≥ 2, ∆θ.

Output: W(t)
k ,R

(t)
N ,k = 1, · · · ,K.

1. Reformulate problem (3.19) by (3.20).
Repeat:

2. Obtain W(t)
k ,R

(t)
N ,k = 1, · · · ,K by solving the new convex optimization problem

(3.20).
3. Update y by (3.21).
4. t = t+1.

Until:
t ≥ itermax or

∥∥∥yt+1−yt
∥∥∥ < ε

3.4.3 Complexity Analysis

We end this section by computing the complexity of solving problem (3.18). It is

noted that all the constraints can be considered as LMIs in optimization problem

(3.18). We denote Φ0 = card(Φ) and Ω0 = card(Ω) as the cardinality of Φ and Ω,

respectively. Thus, referring to [294], we give the computational complexity in

Table 3.1, which can be simplified as O
(
3
√

2Niter ln (1/ϵ) K3.5N6.5
)

by reserving the

highest order.

3.5 Robust Beamforming with Imperfect CSI
In this section, based on the models presented in the previous sections, we consider

the case that the perfect channel information is not available at the base station. By

relying on the method of robust optimization, we formulate an optimization problem

aiming at designing the dual-functional beamformer that is robust to the channel

uncertainty, which is bounded in a spherical region. Meanwhile, to guarantee the

generality, we minimize the worst-case SNR received at the target in the angular

interval of possible location of potential eavesdropper. Then, an efficient solver

tailored for the considered fractional optimization problem is developed, following

extended to the multiple-ratio case, e.g., sum-of-ratios problem. To achieve better performance, we
deploy the quadratic transform proposed in [297], which is inspired by Dinkelbach’s transform. It
is also proved in [297] that although the conventional Dinkelbach’s transform may lead to a faster
convergence rate than the proposed quadratic transform, the use of which is restricted to the single-
ratio problem whereas the quadratic transform is capable of dealing with multiple ratios. Furthermore,
for multiple-ratio FP problems where global convergence is not guaranteed, slower convergence can
sometimes be advantageous as it allows the algorithm to fully explore the solution space.
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by a detailed complexity analysis.

3.5.1 Problem Formulation

Recalling the channel model demonstrated in Section II, we formulate the opti-

mization problem when the CSI is imperfectly known to the transmitter as follows.

According to the well-known S-procedure [298], ∀eH
k ek ≤ µ

2
k , the constraint that

guarantees the worst-case SINR of legitimates users can be reformulated as [287]

(
h̃k + ek

)H
Wk −γb

K∑
i=1,i,k

Wi−γbRN

(h̃k + ek
)
−γbσ

2 ≥ 0,∀ k. (3.22)

Then, we minimize the possible maximum Eve’s SNR in the main-beam region of

interest, which yields the following robust optimization problem

min
Wk,RN ,tk

max
θm∈Φ

|α|2aH (θm)
∑K

k=1 Wka (θm)

|α|2aH (θm)RNa (θm)+σ2
e

(3.23a)

s.t.

 h̃T
k Ykh̃∗k −γbσ

2− tkµ2
k h̃T

k Yk

Ykh̃∗k Yk + tkIN

 ⪰ 0,∀ k, (3.23b)

Yk :=Wk −γb

∑
i,k

Wi

−γbRN

tk ≥ 0,∀k, (3.23c)

(3.18b) - (3.18d) and (3.14d) - (3.14g) , (3.23d)

where Φ = [θ0−∆θ,θ0+∆θ] is the main-beam region of interest, m = 1, · · · ,M. M

represents the number of detecting angles in the interval Φ, and finally t = [t1, · · · , tK]

is an auxiliary vector relying on the S-procedure.

3.5.2 Efficient Solver

To solve problem (3.23), the SDR approach is adopted again by dropping the rank-1

constraint in (3.23i). Moreover, the objective function (3.23a) can be transformed to

a max-min problem initially which is given as

max
Wk,RN ,tk

min
θm∈Φ

|α|2aH (θm)RNa (θm)+σ2
e

|α|2aH (θm)
∑K

k=1 Wka (θm)
. (3.24)
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To verify this, we introduce a variable z and define A (θm) = a (θm)aH (θm). The

objective function (3.24) can be rewritten as max
Wk,RN ,tk,z

z , which subjects to z ≤(
tr (A (θm)RN)+σ2

/
|α|2

)/
tr
(
A (θm)

∑K
k=1 Wk

)
and any other constraints in (3.23).

Likewise, we denote
C (θm) = tr (A (θm)RN)+σ2

/
|α|2

D (θm) = tr
(
A (θm)

∑K

k=1
Wk

)
The aforementioned constraint is equivalent to

z ≤max
ym

(
2ym

√
C (θm)− y2

mD (θm)
)
,

which is a less-than-max inequality, so max
ym

can be integrated into the objective.

Consequently, problem (3.23) is reformulated as

max
Wk,RN ,y,tk,z

z, (3.25a)

s.t. 2ym
√

C (θm)− y2
mD (θm) ≥ z, θm ∈ Φ,∀ m, (3.25b) h̃T

k Ykh̃∗k −γbσ
2− tkµ2

k h̃T
k Yk

Ykh̃∗k Yk + tkIN

 ⪰ 0,∀ k, (3.25c)

Yk :=Wk −γb

∑
i,k

Wi

−γbRN

(3.23c) - (3.23f), (3.14d) - (3.14e), and (3.14g) (3.25d)

where ym is an auxiliary variable, each ym corresponds to the radar detecting angles θm

in the main-beam region of interest Φ. We refer to the rest variables to the definitions

which we presented in the previous sections. Note that problem (3.25) is convex

and can be readily tackled. Here, we define a collection of variables y = {y1, · · · ,yM}.

To solve this problem, we apply the quadratic transform and optimize the primal

variables Wk,RN , tk and the auxiliary variable collection y in an alternating manner.

When the primal variables are obtained by initializing the collection y, the optimal

ym can be updated by

y∗m =
√

C (θm)
D (θm)

. (3.26)
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To this end, eigenvalue decomposition or Gaussian randomization is required to

obtain approximated solutions. For clarity, the solution to problem (3.25) can be

summarized as Algorithm 3.3.

Algorithm 3.3 Method for Solving multiple-ratio FP problem (3.24)

Input: a (θ0) , h̃k,σ
2
e ,σ

2
z ,α,γb,γs,P0, CSI estimation error threshold µk > 0, ∆θ, iter-

ation threshold ε > 0, itermax ≥ 2.
Output: W(t)

k ,R
(t)
N , tk,z,k = 1, · · · ,K.

Initialization: Set initial values for y(0),y(1), which
∥∥∥y(1)−y(0)

∥∥∥ > ε.
Repeat:

1. Reformulate problem (3.24) by replacing the fractional objective function with
the form in (3.25b).
2. Reconstruct the problem with variable z.
3. Obtain W(t)

k ,R
(t)
N ,∀k by solving the optimization problem, and then update y by

(3.26).
4. Update the primal variables by (3.25), over RN ,Wk,∀k for fixed y.
5. t = t+1.

Until:
t ≥ itermax or

∥∥∥y(t)−y(t−1)
∥∥∥ < ε

3.5.3 Complexity Analysis

The complexity of Algorithm 3.3 is analyzed in this subsection. Similarly, Φ and Ω

can be regarded as discrete domains. We denote Φ0 = card(Φ) and Ω0 = card(Ω) as

the cardinality of Φ and Ω, respectively. All the constraints in problem (3.23) are

LMIs. Specifically, we notice that the problem is composed by 3Φ0+Ω0+K+1 LMI

constraints of size 1, 2K +2 LMI constraints of size N, and K LMI constraints of

size N +1. For simplicity, we reserve the highest order of computational complexity,

which can be given as O
(
4
√

3Niter ln (1/ϵ) K3.5N6.5
)
.

3.6 Robust Beamforming With Statistical CSI
In this section, we consider the extension of the scenario in section V, where the

channels from Alice to Bobs vary rapidly. As a result, the instantaneous CSI

is difficult to be estimated. Note that the second-order channel statistics, which

vary much more slowly, can be obtained by the BS through long-term feedback.

Nevertheless, even in the event that the statistical CSI is known at Alice, uncertainty
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is always inevitable. We therefore take the uncertainty matrix into consideration by

employing additive errors to the channel covariance matrix. Likewise, the complexity

analysis is given at the end of this section.

3.6.1 Problem Formulation

We firstly recall the reformulation of the SINR of the k-th user and the channel

model with statistical CSI presented in Section 3.2. To this end, based on Lagrange

dual function [114, 299], the constraint corresponding to QoS of k-th user can be

formulated as

−δk ∥Ak +Zk∥− tr
(
R̃hk (Zk +Ak)

)
−γbtr

(
R̃hkRN

)
−γbσ

2
z ≥ 0

Zk = ZH
k ,Zk ⪰ 0,∀ k

where Ak = γb
∑K

i=1,i,k Wi−Wk,∀ k. Recalling the optimization problem in Section

3.5, likewise, the robust beamforming problem with erroneous statistical CSI is given

as

min
Wk,RN ,Zk

max
θm∈Φ

|α|2aH (θm)
∑K

k=1 Wka (θm)

|α|2aH (θm)RNa (θm)+σ2
e

(3.27a)

s.t. −δk ∥Ak +Zk∥− tr
(
R̃hk (Zk +Ak)

)
−γbtr

(
R̃hkRN

)
−γbσ

2
z ≥ 0,∀ k, (3.27b)

Zk = ZH
k ,Zk ⪰ 0,∀ k (3.27c)

(3.18b) - (3.18d) and (3.14d) - (3.14g). (3.27d)

We note that the problem (3.27) can be solved with SDR approach by dropping the

rank-one constraint in (3.27). One step further, similar to (3.23), problem (3.27) can

be reformulated in a similar way, given by

max
Wk,RN ,Zk,z

z (3.28a)

s.t. 2ym
√

C (θm)− y2
mD (θm) ≥ z, θm ∈ Φ,∀m, (3.28b)

(3.27b)-(3.27c), (3.18b) - (3.18d), (3.14d) - (3.14e) and (3.14g). (3.28c)
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Note that problem (3.28) is SDP feasibility and can be solved in polynomial time

using interior-point algorithms8 [114].

3.6.2 Complexity Analysis

The complexity of problem (3.27) is given as follows. As is noted in problem (3.28),

almost all the constraints are LMI except for the SOC constraint (3.27b). Likewise,

we denoteΦ0 = card(Φ) andΩ0 = card(Ω) as the cardinality ofΦ andΩ. Note that the

problem is composed by K SOC constraints of size 1, Ω0+3Φ0+1 LMI constraints

of size 1, and 4K + 2 LMIs of size N. Accordingly, we compute the complexity

as shown in Table 3.1. When the CSI is statistically known, the computational

complexity can be simply demonstrated as O
(
5
√

2Niter ln (1/ϵ) K3.5N6.5
)
. which

is the complexity of each iteration. Then, The calculated complexities of all the

proposed optimizations are summarised in Table 3.1.

Complexity

Perfect CSI and Precise Target Location O
(√

2Niter ln (1/ϵ) K3.5N6.5
)

Perfect CSI and Target Location Uncertainty O
(
3
√

2Niter ln (1/ϵ) K3.5N6.5
)

Imperfect CSI and Target Location Uncertainty O
(
4
√

3Niter ln (1/ϵ) K3.5N6.5
)

Statistical CSI and Target Location Uncertainty O
(
5
√

2Niter ln (1/ϵ) K3.5N6.5
)

Table 3.1: Complexity Analysis

3.7 Numerical Results
To evaluate the proposed methods, numerical results based on Monte Carlo sim-

ulations are shown in this section to validate the effectiveness of the proposed

beamforming method. Without loss of generality, each entry of channel matrix H is

assumed to obey standard Complex Gaussian distribution, i.e. hi, j ∼ CN (0,1). We

assume that the DFRC base station employs a ULA with half-wavelength spacing be-

tween adjacent antennas. In the following simulations, the number of antennas is set

as Nt = 18 and the number of legitimate users is K = 4. Moreover, for convenience,

8Since solutions Wk,k = 1, · · · ,K obtained from solving the convex relaxation problems (3.15),
(3.19), (3.24) and (3.28) are all rank-one, the rank-one approximation procedures, e.g., eigenvalue
decomposition or Gaussian randomization, can be omitted in general for our study.
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Figure 3.2: Beampatterns with various target direction uncertainty interval when (a) CSI is known,
(b) CSI is imperfectly known and (c) statistical CSI is imperfectly known.
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Figure 3.3: Secrecy rate with different angular intervals, N = 18,K = 4,P0 = 30 dBm, with γb = 10 dB
and γb = 15 dB, respectively.

the noise level of the eavesdropper is assumed to be the same as that of the intended

receivers. The constrained beamforming design problems in Section 3.3-Section 3.6

are solved by the classic SDR technique using the CVX toolbox [300].

3.7.1 Beam Gain

We first show the resultant radar beampattern in Fig. 3.2 with different angular

interval of target location uncertainty, i.e. [−5◦,5◦] and [−10◦,10◦]. The SINR

threshold of each legitimate user is set as γb = 10 dB. The narrow beampattern when

the target location is precisely known at the BS is set as a benchmark. It is found that

the desired beampattern with a wide main beam is obtained by solving the proposed

algorithms, which maintain the same power in the region of the possible target

location. Additionally, it is noted that with the expansion of location uncertainty

angular interval, the power gain of the main beam reduces.
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Figure 3.4: Worst-case secrecy rate versus the sidelobe power with various SINR threshold of
legitimate users for the Algorithm 2, N = 18,K = 4,P0 = 30 dBm,∆θ = 5◦.

3.7.2 Trade-off Between the Performance of Radar and

Communication System

In this subsection, we evaluate the performance trade-off between radar and com-

munication systems. Fig. 3.3 shows the secrecy rate performance with various

angular intervals for γb = 10 dB and γb = 15 dB. The main-beam power decreases

when the target uncertainty increases, then the leaking information would get less,

which improves the secrecy rate. As is demonstrated in Fig. 3.3, the secrecy rate

increases with the growth of the target uncertainty interval. Besides, with 5 dB

growth of legitimate user SINR threshold, the secrecy rate increases 0.5 bit/s/Hz

approximately.

Fig. 3.4 demonstrates the secrecy rate performance versus the threshold of

sidelobe with P0 = 30 dBm,∆θ = 5◦, which reveals the trade-off between the perfor-

mance of radar and communication systems. In Algorithm 3.2, the power difference

between the main beam and sidelobe increases with the growth of γs, which results

in the increasing possibility of information leaking. As the numerical result shown in

Fig. 3.4, it is notable that the secrecy rate decreases with the growth of γs, especially

the tendency gets obvious when γs is greater than 30 dB.
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Figure 3.5: Achieved secrecy rate with different error bounds in the scenario of known imperfect
CSI, N = 18,K = 4,P0 = 30 dBm.

3.7.3 Robust Beamforming Performance

As the norm of CSI error is bounded by a constant, the secrecy rate performance

versus error bound is illustrated in Fig. 3.5, with different location uncertainty. With

the growth of error bound, the achievable SINR at each legitimate user keeps being

above the given threshold but not a constant according to constraints (3.25c) and

(3.27b). We note that the worst-case secrecy rate reduces after a certain value with

the increasing error bound, because of the different changing rate between target

SNR and user SINR corresponding to various error bounds in Fig. 3.5. Whereas,

as is shown in Fig. 3.6, the secrecy rate keeps increasing with the growth of error

bound. In addition, the robust beamforming designs achieve a higher secrecy rate

when the location uncertainty is limited in a larger interval.
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Figure 3.6: Worst-case secrecy rate versus different error bounds when statistical CSI is imperfectly
known, N = 18,K = 4,P0 = 30 dBm,γb = 10 dB.

3.8 Conclusions
In this chapter, optimization-based beamforming designs have been addressed for

the MIMO DFRC system, which aimed at ensuring the security of information

transmission in case of leaking to targets by adding AN at the transmitter to confuse

the potential eavesdropper. Specifically, we have minimized the SNR of the target

which is regarded as the potential eavesdropper while keeping each legitimate user’s

SINR above a certain constant to ensure the secrecy rate of the DFRC system.

Throughout this paper, the optimization beamforming problem has been designed

with perfect CSI and imperfect CSI, as well as with accurate and inaccurate target

location information.

First of all, both the precise location of the target and perfect CSI have been

assumed to be known at BS, which gained the highest secrecy rate according to the

numerical results. When the target location was uncertain, the main-beam power

decreased with the growth of the uncertainty angular interval. Moreover, the secrecy

rate versus different thresholds of sidelobe has been demonstrated, which revealed

the trade-off between radar and communication system performance. Then, we

formulated a target SNR minimization problem with imperfect instantaneous CSI

and statistical CSI known to the base station respectively. As shown in the numerical
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results, the beamforming design has been feasible in both robust scenarios. Finally,

simulation results have been presented to show the secrecy rate tendency affected by

error bound with various target location uncertainty.



Chapter 4

Ensure the PLS of ISAC Systems by

Deploying the

Constructive/Destructive Interference

Technique

This chapter is based on our works published in [J2], [C2], and [C3].

4.1 Introduction
The AN-aided secure DFRC systems have been presented in the previous chapter.

However, the AN indeed degrades SINR at both CUs and eavesdroppers, which

requires a higher power budget to ensure the QoS. In view of the redundant power

consumption caused by AN, DM has attracted growing research attention as an

emerging hardware-efficient approach to secure wireless communication systems in

recent years [16–18].

The DM transmitter sends confidential information to the CUs such that the

malicious eavesdroppers cannot intercept the transmitted messages [19]. Unlike the

SR-based methods, the DM technique adjusts the amplitude and phase of the symbols

at the users of interest directly while scrambling the symbols in other undesired

directions, which implies that the modulation happens at the antenna level instead

of at the baseband level. As a result, a low SER can be endorsed at the CUs, while
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the received symbols of the eavesdropper are randomized in the signal constellation.

Since the expensive and power-consuming RF chains and digital-to-analog converter

(DAC) deployed in conventional beamforming design are not required, the DM-based

scheme is efficient on aspects of both cost and energy. The DM approach is based on

the principles of exploiting CI [2, 20–22], where the received signal is not necessary

to be aligned with the intended symbols, but is pushed away from the detection

thresholds of the signal constellation.

To the best of our knowledge, all the existing studies on DFRC security are

based on SR maximization, with the assumption of Gaussian symbol transmission

and perfect or imperfect CSI knowledge. To address DFRC security in broader

scenarios, it is worth studying the CI-based waveform design for the reason that a)

MUI is commonly treated as a detrimental impact that needs to be mitigated, while it

becomes beneficial and further contributes to the useful signal power in CI design; b)

CI based precoding can support a larger number of data streams with a significantly

improved SER performance [301].

Moreover, motivated by the demand for power-efficient and cost-effective

MIMO systems, we deploy constant envelope (CE) waveform design in our problem

formulations. To be specific, CE waveforms maintain a constant amplitude, allowing

power amplifiers to operate at or near saturation, improving power efficiency and

minimizing energy consumption [302]. Besides, CE waveforms have a low PAPR,

which reduces the likelihood of signal clipping, simplifies the design of power am-

plifiers, and improves overall system performance. In practice, digital phase shifters

(PSs) are mostly deployed, which provide a discrete set of phase states which are

controlled by a string of binary digits [303].

In this chapter, we propose several designs, which aim at maximizing the re-

ceived SINR of the radar in secure DFRC systems. Specifically, we consider an

MU-MISO DFRC BS which serves CUs and detects a point-like target simultane-

ously, where the transmit waveform and the receive beamformer are jointly designed

to improve PLS following the CI approach. Note that the target is treated as a

potential eavesdropper. As a further consideration on communication data secrecy,
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MUI is designed to be constructive at the CUs, while disrupting the data at the radar

target, which deteriorates the target receive signals and thus increases the SER at the

target. Also, discrete phase CE and 1-bit DACs constraints are taken into account for

hardware cost reduction. Throughout this chapter, the proposed problems above are

firstly studied in an ideal scenario where the target location is known to the BS, and

are then extended to the more practical case where the location is uncertain to the

BS.

Within this scope, the contributions of our work are summarized as follows:

• We design the transmit waveform and receive beamformer jointly for the

secure ISAC system, where the DM technique is employed to maximize the

received SINR of the radar system under the constraints of power budget and

CI for security.

• We propose an FP algorithm to solve the radar SINR maximization prob-

lem and compare the resulting performance with benchmark techniques, and

alternative solvers including semidefinite relaxation (SDR), and successive

Quadratically Constrained Quadratic Program (SQ) methods.

• We investigate the problem under the practical condition of target location

uncertainty, where the ISAC waveform is designed to maximize the minimum

radar SINR within a given angular interval that the targets might fall into.

• We further consider an advanced secure CI design for the proposed ISAC

system, where the MUI is designed to be constructive to CUs, while destructive

to the target.

• We also take the hardware efficiency into account, imposing discrete phase

CE and 1-bit DACs constraints into the waveform optimization design by

exploiting the full destructive region.

4.2 System Model
We consider an ISAC MU-MISO system with a BS equipped with NT transmit

antennas and NR receive antennas, which is serving K single-antenna users and
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(a) (b)

Figure 4.1: (a) ISAC System imposed a potential eavesdropper, which might eavesdrop on the
information from the access point (AP) to CUs. (b) Secure ISAC system.

detecting a point-like target simultaneously. As shown in Fig. 4.1, the target can

be regarded as a potential eavesdropper which might intercept the information sent

from the BS to legitimate users. Due to the existence of I clutter sources, the target

return interferes with the BS’s receiver. Additionally, the communication channel

is considered to be a narrowband slow time-varying block fading Rician fading

channel. Based on the assumptions above, below we elaborate on the radar and

communication signal models.

4.2.1 Radar Signal Model

Let x ∈ CNT×1 denote the transmit signal vector, the received waveform at the receive

array is given as

r = α0U (θ0)x︸     ︷︷     ︸
signal

+

I∑
i=1

αiU (θi)x︸         ︷︷         ︸
signal - dependent clutter

+ z︸︷︷︸
noise

, (4.1)

where α0 and αi denote the complex amplitudes of the target and the i-th interference

source, θ0 and θi are the angle of the target and the i-th signal-dependent clutter

source, respectively, and z ∈ CNR×1 is the additive white Gaussian noise (AWGN)

vector, with the variance of σ2
R. U (θ) is the steering matrix of a uniform linear array

(ULA) antenna with a half-wavelength spaced element, defined as

U (θ) = ar (θ)aT
t (θ), (4.2)
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where
at (θ) =

1
√

NT

[
1,e jπsinθ, · · · ,e jπ(NT−1)sinθ

]T

ar (θ) =
1
√

NR

[
1,e jπsinθ, · · · ,e jπ(NR−1)sinθ

]T
.

Then, the output of the filter can be given as

r f = wHr

= α0wHU (θ0)x+
I∑

i=1

αiwHU (θi)x+wHz,
(4.3)

where w ∈ CNR×1 denotes the receive beamforming vector. Accordingly, the output

SINR can be expressed as

SINRrad =

∣∣∣α0wHU (θ0)x
∣∣∣2

wH
I∑

i=1
|αi|

2U (θi)xxHUH (θi)w+wHwσ2
R

=
µ
∣∣∣wHU (θ0)x

∣∣∣2
wH (
Σ (x)+ INR

)
w
,

(4.4)

where µ = |α0|
2
/
σ2

R, Σ (x) =
I∑

i=1
biU (θi)xxHUH (θi), and bi = |αi|

2
/
σ2

R.

Since x is the intended information signal, the received signal at target (eaves-

dropper’s receiver) can be given as

yR = α0aH
t (θ0)x+ e, (4.5)

where e ∼ CN
(
0,σ2

T

)
denotes the AWGN. Then, eavesdropping SNR at radar target

can be expressed as

SNRT =

∣∣∣α0aH
t (θ0)x

∣∣∣2
σ2

T

. (4.6)

4.2.2 Communication Signal Model

The received signal at the k-th CU can be written as

yk = hH
k x+nk, (4.7)
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where hk ∈ C
NT×1 denotes the multiple-input-single-output (MISO) channel vector

between the BS and the k-th CU. Similarly, nk is the AWGN of the CU k with the

variance of σ2
Ck

. Following the typical mmWave channel proposed in [304], we

assume that hk is a slow time-varying block Rician fading channel, i.e., the channel

is constant in a block but varies slowly from one block to another. Thus, the channel

vector of the k-th user can be expressed as a combination of a deterministic strongest

line-of-sight (LoS) channel vector and a multiple-path scattered channel vector,

which is expressed as

hk =

√
vk

1+ vk
hLoS

L,k +

√
1

1+ vk
hNLoS

S ,k , (4.8)

where vk > 0 is the Rician K-factor of the k-th user, hLoS
L,k =

√
NT at

(
ωk,0

)
is the

LoS deterministic component. a
(
ωk,0

)
denotes the array steering vector, where

ωk,0 ∈
[

- π2 ,
π
2

]
is the angle of departure (AOD) of the LoS component from the

BS to user k [304, 305]. The scattering component hNLoS
S ,k can be expressed as

hNLoS
S ,k =

√
NT
L

L∑
l=1

ck,lat
(
ωk,l

)
, where L denotes the number of propagation paths,

ck,l ∼ CN (0,1) is the complex path gain and ωk,l ∈
[

- π2 ,
π
2

]
is the AOD associated to

the (k, l)-th propagation path.

Additionally, we note that the intended symbol varies at a symbol-by-symbol

basis in CI precoding designs. Let sk denote the intended symbol of the k-

th CU, which is M-PSK modulated. To this end, we define sk ∈ AM, where

AM =
{
am = e j(2m−1)ϕ,m = 1, · · · ,M

}
, ϕ = π/M, and M denotes the modulation order.

4.3 SINRrad Maximization with Known Target

Location
With the knowledge of precise target location, in this section, we design the transmit

waveform aiming at maximizing the received radar SINR and subject to the infor-

mation secrecy constraint in the wireless communication system deploying the CI

method. For clarity, we remark here that the known target location is quite a typical

assumption in the radar literature, especially for target-tracking algorithm designs.
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Figure 4.2: QPSK illustration. (a) Relaxed phase DM. (b) Rotation by arg
(
s∗k

)
.

This can be interpreted as to optimize the transmit waveform and receive beamformer

towards a specific direction of interest, or to track the movement of the target with

predicted location information inferred from the previous estimates. Note that this

also applies to the clutter sources, whose angles are assumed to be pre-estimated.

In light of the above system setting, we then propose two algorithms to tackle

the optimization problem, namely, the SQ method proposed in Section III-B and

the FP method proposed in Section III-C. Finally, the SDR approach is adopted to

analyze the upper-bound performance, and is presented in Section 4.3.

4.3.1 Problem Formulation

As demonstrated in [57], the study of the DM technique can be based on strict

phase and relaxed phase constraints. For the strict phase-based waveform design, the

received signal yk should have exactly the same phase as the induced symbol of the

k-th CU (i.e., sk), which constrains the degrees of freedom (DoFs) in designing the

waveform x. Hence, inspired by the concept of CI [2,151], the optimization problem

is proposed to locate the received symbol for each CU within a constructive region

rather than restrict the symbol in the proximity of the constellation point, namely the

relaxed phase based design.

The CI technique has been widely investigated in recent work. To avoid de-

viating our focus, we will omit the derivation of the CI constraints, and refer the

reader to [2] for more details. Since CI-based waveform design aims to transform the
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undesirable MUI into useful power by pushing the received signal further away from

the M-PSK decision boundaries, all interference contributes to the useful received

power [306]. Herewith, the SNR of the k-th user is expressed as 1

SNRk =

∣∣∣hH
k x

∣∣∣2
σ2

Ck

. (4.9)

With the knowledge of the channel information, all CUs’ data, as well as the

location of target and clutter resources is readily available at the transmitter, we

formulate the following optimization problem aiming at maximizing the SINR of

the target return

max
w,x

SINRrad

s.t. ∥x∥2 ≤ P0∣∣∣∣arg
(
hH

k x
)
− arg(sk)

∣∣∣∣ ≤ ξ,∀ k,

SNRk ≥ Γk,∀ k,

(4.10)

where P0 denotes the transmit power budget, Γk is the given SNR threshold, and ξ is

the phase threshold where the noise-less received symbols are supposed to lie.

As illustrated in Fig. 4.2, by taking one of the QPSK constellation points as an

example, the constructive region is given as the green area. In Fig. 4.2(a), ȳk denotes

the noise-excluding signal and the SNR-related scalar γk is the threshold distance to

the decision region of the received symbol at the k-th CU. Then, in order to express

the constructive region geometrically, we rotate the noise-free received signal ȳk

and project it onto real and imaginary axes, which are illustrated in Fig. 4.2(b). By

1We note that the CI technique adjusts the received signal at the receiver side directly at the symbol
level, thus the transmit signal is assumed to be finite-alphabet symbols. As the achievable secrecy
rate for a finite-alphabet input scenario would differ from the secrecy rate achieved by a Gaussian
codebook [307], we deploy the SER as a performance metric to evaluate the information security
instead of the secrecy rate.
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noting |sk| = 1, the rotated signal ỹk can be given in the form of

ỹk = (yk −nk)
s∗k
|sk|
= hH

k xs∗k

= h̃H
k x,

(4.11)

where h̃k = hks∗k. Let us represent Re(ỹk) = Re
(
h̃H

k x
)

and Im(ỹk) = Im
(
h̃H

k x
)
. Then,

the SINRrad maximization problem (4.10) can be recast as [2]

max
w,x

SINRrad (4.12a)

s.t. ∥x∥2 ≤ P0 (4.12b)∣∣∣∣Im (
h̃H

k x
)∣∣∣∣ ≤ (

Re
(
h̃H

k x
)
−

√
σ2

Ck
Γk

)
tanϕ,∀ k (4.12c)

where ϕ = ±π/M. Till now, the constraints (4.12b) and (4.12c) are both convex. In

particular, the CI constraint (4.12c) is essentially linear with respect to the variable x.

In the following subsections, we will transform the non-convex objective function to

tackle the optimization problem.

4.3.2 Solve (4.12) by SQ Approach

It is noted that problem (4.12) is still non-convex since the clutter is signal-dependent,

where the quadratic form of optimizing variable x is included in both the numerator

and denominator. To address this issue, in this section we develop an SQ approach to

extract a suboptimal solution. Firstly, note that problem (4.12) can be viewed as the

classical minimum variance distortionless response (MVDR) beamforming problem

with respect to w, which can be expressed as a function of x as

w =
[Σ (x)+ I]−1U (θ0)x

xHUH (θ0) [Σ (x)+ I]−1U (θ0)x
. (4.13)

By substituting (4.13) into (4.4), the optimization problem (4.12) can be rewritten

as [308, 309]

max
x

xHΦ (x)x

s.t. (4.12b) and (4.12c),
(4.14)
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where Φ (x) = UH(θ0)[Σ (x)+ I]−1U (θ0) is a positive-semidefinite SINR matrix. To

solve problem (4.14), we adopt the sequential optimization algorithm (SOA) pre-

sented in [309]. To be specific, let us firstly ignore the dependence of Φ (x) on x,

i.e., fixing the signal-dependent matrix Φ (x) =Φ for a given x. To start with, we

initialize Φ =Φ0, where Φ0 is a constant positive-semidefinite matrix. By using

SOA, the waveform x is optimized iteratively with the updatedΦ till convergence.

By doing so, in each SOA iteration, we solve the following problem

max
x

xHΦx

s.t. (4.12b) and (4.12c).
(4.15)

Note that problem (4.15) is easily converted to a convex Quadratically Constrained

Quadratic Program (QCQP) problem by recasting the signal-independent matrix Φ

to be negative-semidefinite as follows [308]

max
x

xHQx

s.t. (4.12b) and (4.12c),
(4.16)

where Q = (Φ−λI), λ ≥ λmax (Φ), where λmax (Φ) is the largest eigenvalue of Φ 2 It

is straightforward to see that Q is negative-semidefinite, thus the objective function

is concave, and then it can be tackled efficiently by CVX toolbox [310]. Here, we

denote w∗ and x∗ as the optimal receive beamformer and waveform, respectively.

Furthermore, as the expression given in (4.13), the receive beamforming vector w∗

can be updated by the optimal waveform x∗. Therefore, the suboptimal solutions are

obtained until convergence by updating x and w iteratively. The generated solution

will serve as a baseline in Section 4.6 named as SQ. For clarity, we summarize the

SQ approach in Algorithm 4.1. The computational complexity of solving problem

(4.16) at each iteration is given by O
(
N3

T

√
K
)

[311].

In SQ approach, we note that the reformulation of the objective function in

2Note that the objective function (4.16) can be transformed into the form of Rayleigh quotient,
which is a typical optimization formulation with a closed-form solution. However, it does not admit
a simple closed-form solution due to CI constraints. Accordingly, the Rayleigh quotient theorem
cannot be trivially applied to solve the optimization problem.
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(4.16) actually relaxes the one given in (4.15). To be specific, we have xHQx =

xH (Φ−λI)x = xHΦx− λxHx, while the power constraint (4.12b) indicates that

xHx in the second term is not constant. In the following subsection, we adopt the

FP algorithm to solve problem (4.15), which aims to tackle the problem without

relaxation in the objective function.

Algorithm 4.1 SQ Algorithm for solving problem (4.12)

Input: P0,hk,σ
2
Ck
,σ2

R, θi, θ0,α0,bi,Γk,∀ k,∀ i, ε > 0, and the maximum iteration
number mmax

Output: x
1. Reformulate problem (4.12) by (4.16).
2. Initialize the positive-semidefinite matrix Φ0, m = 1.

Repeat:
3. Calculate Qm−1, solve problem (16) to obtain the optimal waveform xm.
4. Update Φm by xm.
5. Transform Φm into the negative-semidefinite matrix Qm.
6. m = m+1.

Until:
m ≥ mmax or

∣∣∣SINRm
rad −SINRm−1

rad

∣∣∣ < ε

4.3.3 Solve (4.12) by FP Approach

The original radar SINR maximization problem can also be written as

max
x

µ
∣∣∣wHU (θ0)x

∣∣∣2
wH (
Σ (x)+ INR

)
w

s.t. (4.12b) and (4.12c).

(4.17)

We note that the non-convexity lies only in the objective function in the problem

above, and one can stay in the convex feasible region by exploiting various linear

iteration schemes. Thus, it can be solved by converting the objective function into its

linear approximation form. Following the Dinkelbach’s transform of FP problem

presented in [297], we firstly reformulate the objective function as

max
x
µ
∣∣∣wHU (θ0)x

∣∣∣2−uwH (
Σ (x)+ INR

)
w

s.t. (4.12b) and (4.12c).
(4.18)
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Here, the objective function is still non-concave because of the first term. To proceed

with optimization problem (4.18), let us firstly denote f (x) =
∣∣∣wHU (θ0)x

∣∣∣2. Then,

we approximate the objective function f (x) by its first-order Taylor expansion with

respective to x at x′ ∈D, where D denotes the feasible region of (4.17).

f (x) ≈ f
(
x′

)
+∇ f H (

x′
) (

x−x′
)

= f
(
x′

)
+Re

((
2
(
x′HUH (θ0)w

)
UH (θ0)w

)H (
x−x′

))
,

(4.19)

where ∇ f (·) denotes the gradient of f (·). For simplicity, we omit the constant term

f (x′) and denote

g (x) = Re
((

2
(
xm−1

H

UH (θ0)w
)
UH (θ0)w

)H (
x−xm−1

))
. (4.20)

Herewith, the m-th iteration of the FP algorithm can be obtained by solving the

following convex optimization problem

max
x
µg (x)−uwH (

Σ (x)+ INR

)
w

s.t. (4.12b) and (4.12c),
(4.21)

where xm−1 ∈D is the point obtained at the (m−1)-th iteration. The optimal solution

xm ∈D can be obtained by solving problem (4.21), and then the receive beamformer

wm can be obtained by substituting xm in (4.13). Furthermore, u is an auxiliary

variable, which is updated iteratively by

um+1 =
µ
∣∣∣wHU (θ0)xm

∣∣∣2
wH (
Σ (xm)+ INR

)
w
. (4.22)

It is easy to prove the convergence of the algorithm given the non-increasing property

of u during each iteration [297]. For clarity, we summarize the above in Algorithm

4.2. We note that the computational complexity of solving problem (4.21) at each

iteration is given by O
(
N3

T

√
K
)

[311].
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4.3.4 Upper Bound Performance

In this subsection, we derive a new optimization problem to analyze the upper-bound

performance of problem (4.12). According to the reformulation given in problem

(4.14), the objective function is equivalent to

y (x) = xHUH (θ0) [Σ (x)+ I]−1U (θ0)x. (4.23)

It is obvious that Σ (x)+ I ⪰ I, and thereby, [Σ (x)+ I]−1 ⪯ I, which indicates that

y (x) ≤ xHUH (θ0)U (θ0)x. So we firstly relax the objective function as

max
x

xHUH (θ0)U (θ0)x

s.t. (4.12b) and (4.12c).
(4.24)

It is noted that problem (4.24) is an inhomogeneous QCQP [312] problem. We firstly

define X = xxH and let

X̃ =

 X x

xH 1

 . (4.25)

Afterwards, problem (4.24) can be recast as

max
x,X

tr
(
XÛ0

)
s.t. X̃ ⪰ 0, rank

(
X̃
)
= 1

(4.12b) and (4.12c),

(4.26)

where Û0 = UH (θ0)U (θ0). Note that problem (4.26) is ready to be solved by the

SDR technique [313]. To start with, we relax the above optimization problem by

dropping the rank-1 constraint, yielding

max
x,X

tr
(
XÛ0

)
s.t. X̃ ⪰ 0

(4.12b) and (4.12c).

(4.27)
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Problem (4.27) is convex and can be optimally solved. Here, we define X∗ and x∗

as the approximate solution to the problem above. By substituting the X∗ in the

objective function in (4.25), the optimal objective value is an upper bound of the

optimal value in problem (4.12). Note that the computational complexity of solving

problem (4.27) is given as O
(
N4

T
√

2NT +K
)

[311]. For clarity, the computational

complexities of proposed algorithms in Sec. 4.3 are summarized in Table 4.1.

Algorithms Complexity

SQ O
(
N3

T

√
K
)

FP O
(
N3

T

√
K
)

SDP O
(
N4

T
√

2NT +K
)

Table 4.1: Complexity Analysis

Remark 1. In problem (4.27), the constraint X̃ ⪰ 0 implies X ⪰ xxH . Based on the

relaxations above, we have the following inequalities

tr
(
X∗Û0

)
≥ tr

(
x∗x∗HÛ0

)
≥ x∗HΦ

(
x∗

)
x∗

Therefore, the objective value in (4.27) is larger than the achievable SINRrad, of

which performance is presented as the upper bound of radar receive SINR in our

simulation results.

Algorithm 4.2 The Proposed FP Algorithm for solving problem (4.12)

Input: P0,hk,σ
2
Ck
,σ2

R, θi, θ0,α0,bi,Γk,∀ k,∀ i, ε > 0, and the maximum iteration
number mmax

Output: x
1. Reformulate the objective function as given in (4.21).
2. Initialize x0 ∈ D randomly, m = 1.

Repeat:
3. Solve problem (4.21) to obtain the optimal waveform xm.
4. Obtain the receive beamformer wm by substituting xm in (4.13).
5. Update u by (4.22).
6. m = m+1.

Until:
m ≥ mmax or

∣∣∣SINRm
rad −SINRm−1

rad

∣∣∣ < ε
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4.4 SINRrad Maximization with Target Angle

Uncertainty

In a practical target tracking scenario, the target location is not perfectly known to

the BS due to its movement and random fluctuation, and we therefore consider the

scenario where a rough estimation of the target’s angle is available at the BS. That

is, the target is assumed to locate in an uncertain angular interval. In the following

waveform design, we aim to maximize the minimum SINRrad with regard to all

possible locations within the interval, while taking the CI technique and power

budget into account. Finally, an efficient solver is proposed to tackle the worst-case

optimization problem.

4.4.1 Problem Formulation

Let us denote the uncertain interval as Ψ= [θ0−∆θ,θ0+∆θ]. It is noteworthy that the

target from every possible direction should be taken into account when formulating

the optimization problem. To this end, we therefore consider the following worst-

case problem, which is to maximize the minimum SINRrad with respect to all the

possible target locations within Ψ. For the sake of simplicity, let θp ∈ card(Ψ) denote

the p-th possible location in the given region, where card(·) represents the cardinality

of (·).

max
x

min
θp∈card(Ψ)

µ
∣∣∣∣wHU

(
θp

)
x
∣∣∣∣2

wH (
Σ (x)+ INR

)
w

s.t. (4.12b) and (4.12c).

(4.28)

Note that the problem above is non-convex since the point-wise maximum of concave

functions is not convex. In the following subsection, we will work on solving the

problem (4.28).

4.4.2 Efficient Solver

As is detailed in [297], the straightforward extension of Dinkelbach’s transform

which is deployed in Section III does not guarantee the equivalence to problem

(4.28). Thus, we give the equivalent quadratic transformation of the the max-min-



4.4. SINRrad MAXIMIZATION WITH TARGET ANGLE UNCERTAINTY 106

ratio problem (4.28), which is rewritten as

max
x,u

min
βp∈card(Ψ)

2up

√
µ
∣∣∣∣wHU

(
θp

)
x
∣∣∣∣2−u2

pwH (
Σ (x)+ INR

)
w

s.t. (4.12b) and (4.12c).

(4.29)

Here, we denote u as a collection of variables {u1, · · · ,uP} ,up ∈ R. The objective

above is a sequence of ratios for θp ∈ card(Ψ). To proceed3, we rewrite problem

(4.29) in an epigraph form by introducing the variable a,a ∈ R, which yields the

following formulation

max
x,u,a

a (4.30a)

s.t. 2up

√
µ
∣∣∣∣wHU

(
θp

)
x
∣∣∣∣2−u2

pwH (
Σ (x)+ INR

)
w ≥ a,∀ θp ∈ card(Ψ) (4.30b)

(4.12b) and (4.12c). (4.30c)

By observing problem (4.30), it is noted that the constraint (4.30b) is non-convex. To

tackle the problem, likewise, we substitute µ
∣∣∣∣wHU

(
θp

)
x
∣∣∣∣2 in the first term of (4.30b)

with its first-order Taylor expansion approximation with respective to x at x′ ∈D as

is given in (4.19), which is expressed as

max
x,u,a

a

s.t. 2up

√
µRe

((
2
(
x′HUH

(
θp

)
w
)
UH (θ0)w

)H
(x−x′)

)
−

u2
pwH (

Σ (x)+ INR

)
w ≥ a, ∀ θp ∈ card(Ψ)

(4.12b) and (4.12c).

(4.31)

It is noted that at the m-th iteration, x′ in problem (4.31) denotes xm−1 ∈D, which

is the point obtained at the (m−1)-th iteration. When the optimal waveform x is

3As given in the expression (4.4), it can be found that the objective function is independent with
the amplitude coefficient α0, therefore, when the target location is imperfectly known, the uncertainty
of amplitude can be neglected in the problem formulation.
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obtained, the variable up can be updated by the following closed form as

um+1
p =

√
µ
∣∣∣∣wHU

(
θp

)
xm

∣∣∣∣2
wH (
Σ (xm)+ INR

)
w
. (4.32)

Now, problem (4.31) can be solved by interior point methods at a worst-case compu-

tational complexity of O
(
N3

T

√
Ψ0+K +1

)
at each iteration [314], where we denote

Ψ0 as the number of elements in card(Ψ). For clarity, the proposed method of solving

(4.28) is summarized in Algorithm 4.3.

Algorithm 4.3 The Proposed Algorithm for solving multiple-ratio FP problem (4.28)

Input: P0,hk,σ
2
Ck
,σ2

R, θi, θ0,α0,bi,Γk,∆θ,∀ k,∀ i, ε > 0, and the maximum iteration
number mmax

Output: x
1. Reformulate the problem by (4.29).
2. Transform the problem to epigraph form following (4.30).
3. Reformulate the non-convex constraint by (4.31).
4. Initialize x0 ∈ D randomly, m = 1.

Repeat:
5. Solve problem (4.31) to obtain the optimal waveform xm.
6. Obtain the receive beamformer wm by substituting xm in (4.13).
7. Update u by (4.32).
8. m = m+1.

Until:
m ≥ mmax or ||um−um−1|| < ε

4.5 CI precoding with DI for the Radar Receiver
In this section, we consider the information transmission security of the DFRC

system. We assume that the communication users are legitimate, and treat the point-

like target as a potential eavesdropper which might surveille the information from

BS to CUs. Accordingly, in the following design, we aim to maximize the SINR

at the radar receiver like the proposed formulation in Section 4.3 and Section 4.4,

while confining the received signal at the target into the destructive region of the

constellation, in order to ensure the PLS for DFRC transmission. This problem

will be studied under the circumstances that the target location is known to the BS

perfectly and imperfectly, respectively.
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Figure 4.3: The constructive and destructive region division for QPSK.

4.5.1 With Knowledge of Precise Target Location

In prior work with respect to DM technique, such as algorithms proposed in [57],

the problems are designed based on the CSI of legitimate users, where the symbols

received by potential eavesdroppers are scrambled due to the channel disparity.

However, PLS cannot be explicitly guaranteed in this way. To be specific, taking

QPSK modulation as an example, the intended symbol can be intercepted with a
1
4 probability at the target when the target’s channel is independent of the CUs’

channels, while more importantly, the probability of the target intercepting increases

when the target and CUs’ channels are correlated. The simulation result will be

shown in Section 4.6.

While the CI-based precoding guarantees low SER at CUs, we still need to

focus on the detection performance at the target in order to prevent the transmitted

information from being decoded. Thus, the following problem is designed to improve

the SER at the target. In detail, we define the region out of the constructive region

as a destructive region and aim at restricting the received signal of the potential

eavesdropper in the destructive area.

We firstly take s1 as a reference. Likewise, the received noise-excluding signal
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at the target can be expressed as

ỹR = (yR− e)
s∗1
|s1|
= α0aH

t (θ0)xs∗1

= α0ãH
t (θ0)x,

(4.33)

where ãH
t (θ0) = aH

t (θ0) s∗1. Accordingly, the destructive region can be described by

|Im(ỹR)| ≥
(
Re(ỹR)−

√
σ2

TΓT

)
tanϕ, (4.34)

where the scalar ΓT denotes the desired maximum SNR for the potential eavesdropper

and
√
σ2

TΓT corresponds to γe in Fig. 4.3. As illustrated in Fig. 4.3, the destructive

region can be divided to three zones and the inequality (4.34) holds when any one of

the following constraints is fulfilled.

zone 1 : Re
(
α0ãH

t (θ0)x
)
−

√
σ2

TΓT ≤ 0 (4.35a)

zone 2 : Im
(
α0ãH

t (θ0)x
)
≥

(
Re

(
α0ãH

t (θ0)x
)
−

√
σ2

TΓT

)
tanϕ

and Re
(
α0ãH

t (θ0)x
)
>

√
σ2

TΓT (4.35b)

zone 3 : − Im
(
α0ãH

t (θ0)x
)
≥

(
Re

(
α0ãH

t (θ0)x
)
−

√
σ2

TΓT

)
tanϕ

and Re
(
α0ãH

t (θ0)x
)
>

√
σ2

TΓT . (4.35c)

For simplicity, we denote (4.35) as destructive interference (DI) constraints. By

taking the full region of destructive interference into consideration, the optimization

problem can be formulated as

max
x

µ
∣∣∣wHU (θ0)x

∣∣∣2
wH (
Σ (x)+ INR

)
w

s.t. (4.12b) and (4.12c)

(4.35a) or (4.35b) or (4.35c).

(4.36)
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Note that problem (4.36) is again an FP problem, which can be converted to

max
x
µg (x)−uwH (

Σ (x)+ INR

)
w

s.t. (4.12b) and (4.12c)

(4.35a) or (4.35b) or (4.35c).

(4.37)

One step further, since all of the constraints given in (4.35) are linear, the reformu-

lation above can be tackled following the solving method proposed in Section 4.3.

Then, the formulation (4.37) is converted into a convex optimization problem which

includes three subproblems. By solving the problems above, we can obtain optimal

waveforms x∗1,x
∗
2,x
∗
3. Then, we substitute each of them in the objective function, the

one resulting in maximum SINRrad will be the final solution to problem (4.36).

4.5.2 With Target Location Uncertainty

In this subsection, we study the scenario where the target location is known im-

perfectly. Similar to Section 4.4, the target is assumed to locate within a given

angular interval Ψ = [θ0−∆θ,θ0+∆θ] and βp ∈ card(Ψ) denotes the p-th possible

target angle. In order to guarantee secrecy, we confine the received signal at every

possible angle in the destructive area. Hence, the problem is given as follows

max
x

min
θp∈card(Ψ)

µ
∣∣∣∣wHU

(
θp

)
x
∣∣∣∣2

wH (
Σ (x)+ INR

)
w

(4.38a)

s.t. ∥x∥2 ≤ P0 (4.38b)∣∣∣∣Im (
h̃H

k x
)∣∣∣∣ ≤ (

Re
(
h̃H

k x
)
−

√
σ2

Ck
Γk

)
tanϕ,∀ k (4.38c)∣∣∣∣Im (

α0ãH
t

(
βp

)
x
)∣∣∣∣ ≥ (

Re
(
α0ãH

t

(
βp

)
x
)
−

√
σ2

TΓT

)
tanϕ,∀ p,

(4.38d)

which is however not convex. When we take the possible target locations into account,

the approach proposed in Section 4.5 would be complicated and time-consuming.

Therefore, in order to reduce the computational complexity, we solve problem (4.38)

by following the given steps below. Firstly, it is noteworthy that (4.38d) holds when
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any one of the following inequalities is satisfied for each p.

Im
(
α0ãH

t

(
βp

)
x
)
≥

(
Re

(
α0ãH

t

(
βp

)
x
)
−

√
σ2

TΓT

)
tanϕ,∀ p (4.39a)

− Im
(
α0ãH

t

(
βp

)
x
)
≥

(
Re

(
α0ãH

t

(
βp

)
x
)
−

√
σ2

TΓT

)
tanϕ,∀ p. (4.39b)

One step further, according to the big-M continuous relaxation method proposed

in [315], we introduce binary variables ηp ∈ {0,1} ,∀ p and a sufficiently large constant

Ω > 0, the reformulated either-or constraints in (4.39) can be converted to

(
Re

(
α0ãH

t

(
βp

)
x
)
−

√
σ2

TΓT

)
tanϕ− Im

(
α0ãH

t

(
βp

)
x
)
−ηpΩ ≤ 0,∀ p (4.40a)(

Re
(
α0ãH

t

(
βp

)
x
)
−

√
σ2

TΓT

)
tanϕ+ Im

(
α0ãH

t

(
βp

)
x
)
−

(
1−ηp

)
Ω ≤ 0,∀ p.

(4.40b)

Note that in the either-or constraints above, (4.40a) is active when ηp = 0, which

corresponds to (4.39a), and (4.40b) is fulfilled anyway due to the sufficiently large

constant Ω. Likewise, when ηp = 1, (40b) is activated. Accordingly, problem (4.38)

can be recast as [306]

max
x

min
θp∈card(Ψ)

µ
∣∣∣∣wHU

(
θp

)
x
∣∣∣∣2

wH (
Σ (x)+ INR

)
w

s.t. (4.12b), (4.12c), (4.40a) and (4.40b)

ηp ∈ {0,1} ,∀ p,

(4.41)

We firstly reformulate the problem into the following equivalent form

min
x

max
βp∈card(Ψ)

wH (
Σ (x)+ INR

)
w

µ
∣∣∣∣wHU

(
βp

)
x
∣∣∣∣2

s.t. (4.12b), (4.12c), (4.40a) and (4.40b)

ηp ∈ {0,1} ,∀ p,

(4.42)

Henceforth, we will work on solving (4.42). Based on the formulation proposed
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in Section 4.4, we firstly give the epigraph form of problem (4.42), which is shown

in (4.43).

min
x,ηp,a

a (4.43a)

s.t. 2up

√
wH (
Σ (x)+ INR

)
w−

u2
pµRe

((
2
(
x′HUH

(
θp

)
w
)
UH (θ0)w

)H (
x−x′

))
≤ a,∀ θp ∈ card(Ψ) (4.43b)

(4.12b), (4.12c), (4.40a) and (4.40b) (4.43c)

ηp ∈ {0,1} ,∀ p. (4.43d)

It is noted that (4.43) is a mixed-integer optimization problem with no

polynomial-time computational complexity. To reach a lower complexity, we give

the equivalent form of the above problem as [306, 316]

min
x,ηp,a

a+ω

2∆θ+1∑
p=1

ηp−

2∆θ+1∑
p=1

η2
p


s.t. (4.43b)

(4.12b), (4.12c), (4.40a) and (4.40b)

0 ≤ ηp ≤ 1,∀ p,

(4.44)

where ω denotes a large penalty factor for penalizing the objective function for any

ηp that is not equal to 0 or 1. The problem above can be solved by the successive

convex approximation (SCA) method firstly aiming to obtain the optimal ηp. Then,

x,a can be tackled by optimal ηp iteratively following the FP algorithm. To start

with, we initially let s
(
ηp

)
=

2∆θ+1∑
p=1
η2

p, and the first-order Taylor expansion of s
(
ηp

)
is given as

s̃
(
ηp,η

′
p

)
≈

2∆θ+1∑
p=1

(
η′p

)2
+2

2∆θ+1∑
p=1

η′p
(
ηp−η

′
p

)
. (4.45)

Herewith, problem (4.44) is solvable by adopting the SCA algorithm so as to generate
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the optimal ηp. Eventually, the reformulation is given as

min
x,ηp,a

a+ω

2∆θ+1∑
p=1

ηp− s̃
(
ηp,η

n−1
p

) (4.46a)

s.t. 2up

√
wH (
Σ (x)+ INR

)
w−

u2
pµRe

((
2
(
xm−1HUH

(
θp

)
w
)
UH (θ0)w

)H (
x−xm−1

))
≤ a,∀ p (4.46b)

(4.12b), (4.12c), (4.40a) and (4.40b) (4.46c)

0 ≤ ηp ≤ 1,∀ p. (4.46d)

where n is the iteration index of ηp. To tackle this problem, ηp is updated until

convergence, and then the optimal waveform x can be obtained by updating up,∀ p

iteratively by

um+1
p =

√
wH (
Σ (xm)+ INR

)
w

µ
∣∣∣∣wHU

(
θp

)
xm

∣∣∣∣2 . (4.47)

Let us denote the number of iterations required for generating the optimal ηp by Nn.

Accordingly, the total complexity of can be given as O
(
4NnN6

TΨ0
)

by reserving the

highest order term [314]. For simplicity, the proposed method of solving problem

(4.41) is summarized in Algorithm 4.4.

4.6 Hardware efficient Design

4.6.1 Security Design with 1-bit DACs

We proceed to the optimization-based non-linear mapping scheme with 1-bit DACs

[317] by taking the full region of destructive interference into consideration. The
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resulting optimization problem can be formulated as

max
x

µ
∣∣∣wHU (θ0)x

∣∣∣2
wH (
Σ (x)+ INR

)
w

(4.48a)

s.t. |xn| ∈

±
√

P0

2NT
±

√
P0

2NT
j

 ,n = 1, · · · ,NT (4.48b)∣∣∣∣Im (
h̃H

k x
)∣∣∣∣ ≤ (

Re
(
h̃H

k x
)
−

√
σ2

Ck
Γk

)
tanϕ,∀k (4.48c)

(4.35a) or (4.35b) or (4.35c). (4.48d)

Note that the non-convexity lies in (4.48a) and (4.48b). The objective function

was recast linearly and readily solvable in Section 4.3.3, which refers to problem

(4.21). With respect to the non-convex constraint lies in (4.48b), we then relax the

strict modulus constraints on xn,∀n and recast the problem above as [144]

max
x̂
µg (x̂)−uwH (

Σ (x̂)+ INR

)
w (4.49a)

s.t. |Re(x̂n)| ≤

√
P0

2NT
, |Im(x̂n)| ≤

√
P0

2NT
,∀n (4.49b)

(4.48c) and (4.48d). (4.49c)

We note that the problem above is convex and can be solved by CVX toolbox [298].

However, the elements in the resultant waveform x̂ cannot guarantee strict equality

for the real and imaginary parts of x̂n. Thus, we normalize the optimal 1-bit DAC

waveform following

xn = sgn[Re(x̂n)]

√
P0

2NT
+ sgn[Im(x̂n)]

√
P0

2NT
j,∀ n, (4.50)

where sgn[·] denotes the sign function.

Till now, problem (4.48) is converted into a convex optimization problem which

includes three subproblems. By solving the problems above, we can obtain optimal

waveforms x∗1,x
∗
2,x
∗
3 corresponding to the aforementioned constraints (4.35a), (4.35b)

and (4.35c), respectively. Then, we substitute each of them in the objective function,

the one resulting in maximum SINRrad will be the final solution to problem (4.48).
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Algorithm 4.4 The Proposed Algorithm for solving the mixed-integer optimization
problem (4.41)

Input: P0,hk,σ
2
Ck
,σ2

R, θi,bi, θ0,α0,∆θ,Γk,∀ k,∀ i, ε > 0, ε0 > 0, and the maximum
iteration number mmax

Output: x
1. Reformulate the problem by (4.43).
2. Transform the problem to epigraph form following (4.31).
3. Initialize η0

p ∈ [0,1], x0 ∈ D randomly, n = 1, m = 1.
Repeat:

4. When x is fixed, solve problem (4.47) iteratively by updating ηn
p until∣∣∣∣∣∣2∆θ+1∑

p=1
ηn−1

p

(
ηp−η

n−1
p

)∣∣∣∣∣∣ < ε0.

5. Fix the optimal η∗p, solve problem (4.47) to obtain the optimal waveform xm.
6. Obtain the receive beamformer wm by substituting xm in (4.13).
7. Update u by (4.46).
8. m = m+1.

Until:
m ≥ mmax or ||um−um−1|| < ε

4.6.2 1-bit Quantization Constant Modulus Design

Since the extreme case of 1-bit DACs represents a special case of coarsely quantized

CE signals [318,319], we explore the 1-bit quantized CE precoding in this subsection.

Herewith, the optimization problem is formulated as

max
x

µ
∣∣∣wHU (θ0)x

∣∣∣2
wH (
Σ (x)+ INR

)
w

(4.51a)

s.t. |xn| =

√
P0

NT
,n = 1, · · · ,NT (4.51b)

(4.48c) and (4.48d). (4.51c)

In this case, we relax CE constraints and recast the problem as

max
x̃
µg (x̃)−uwH (

Σ (x̃)+ INR

)
w (4.52a)

s.t. |x̃n| ≤

√
P0

NT
,n = 1, · · · ,NT (4.52b)

(4.48c) and (4.48d). (4.52c)
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We note that the relaxed form above is a second-order cone program (SOCP) and

can be effectively solved. In order to achieve a full CE waveform design for all the

antennas at the BS we need to force the equality constrained before transmission.

More specifically, we normalize the optimal waveform x̃ following

x̄n =


x̃n

/√ P0

NT
|x̃n|

 if |x̃n| ,
√

P0/NT ,∀ n

x̃n if |x̃n| =
√

P0/NT ,∀ n

(4.53)

We consider that phase shifters (PSs) are controlled digitally in practical applications

and the weight of each PS is assumed to be a finite number of values depending on

the quantization bits. Thus, when we deploy 1-bit resolution PSs, we discrete the

phase of x̄n,∀ n by (4.50).

4.7 Numerical Results
In this section, we evaluate the proposed methods via Monte Carlo-based simulation

results given as follows. We assume that both the DFRC BS and the radar receiver are

equipped with uniform linear arrays (ULAs) with the same number of elements with

half-wavelength spacing between adjacent antennas. In the following simulations,

the power budget is set as P0 = 30 dBm, and the Rician coefficient is given as vk = 1.

The target is located at θ0 = 0◦ with a reflecting power of |α0|
2 = 10 dB and clutter

sources are located at θ1 = −50◦, θ2 = −20◦, θ3 = 20◦, θ4 = 50◦ reflecting a power of

|α1|
2 = |α2|

2 = |α3|
2 = |α4|

2 = 20 dB. The SNR threshold ΓT is set as −1dB as the

default unless it is presented specifically.

4.7.1 The Resultant Beampattern

The resultant beampattern is firstly given in Fig. 4.4 with different number of DFRC

BS antennas, where we set the DFRC precoder design proposed by Chen et al. [5]

as the benchmark, namely ‘DFRC-PD’, and the proposed methods in this paper are

denoted as ‘DFRC-CI’ and ‘DFRC-CI-DI’ in our results, respectively. The SNR

threshold Γk,∀ k is fixed as 15dB. The nulls at the locations of clutter sources are

clearly illustrated. It can be observed that the performance of beampattern gets
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Figure 4.4: Optimized beampatterns with different numbers of DFRC BS antennas, where the
beamformer design approach proposed in [5] is set as benchmarks and K = 5.

better from the viewpoint of the radar, and the main beam width decreases with the

increasing number of BS antennas. Additionally, compared with the beamformer

design method proposed in [5], the peak to sidelobe ratio (PSLR) of the resultant

beampattern generated from our proposed waveform design method is higher, and it

can be found that the null in the main beam is mitigated in our design. It can also

be noted that the beampattern generated by the CI-DI method overlaps with the one

obtained by employing CI constraints only.

Furthermore, when the radar target location is not known to the BS perfectly,

the generated beampattern is shown in Fig. 4.5 with the different angular intervals

of possible target locations. It is noteworthy that the power gain of the main beam

reduces and the PSLR decreases with the expansion of the target location uncertainty

interval.

4.7.2 Radar SINR Performance

In this subsection, we evaluate the performance of radar receive SINR versus SNR

threshold of the communication system, number of CUs, and target location uncer-
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Figure 4.5: The resultant beampattern with different angular interval.NT = NR = 10,K = 5.
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Figure 4.6: Convergence analysis.

tainty. Firstly, Fig. 4.6 illustrates the convergence analysis of the proposed methods.

It can be found that the algorithm converges fast when the target location is precisely

known to the BS. The optimal solution is generated with 5 iterations with the knowl-

edge of the precise target location, while it converges with around 9 iterations when

the target location is uncertain.

The average performance of the tradeoff between the given SNR threshold

of CU and the SINR of radar is illustrated in Fig. 4.7, including benchmark al-

gorithms. Specifically, with respect to the benchmarks, SQ denotes the method
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proposed in [308], and SDR without Gaussian Rand denotes the upper bound of the

objective function as we have given in Section 4.3. To satisfy the rank-1 constraint,

a Gaussian randomization procedure is commonly required, the simulation result

of which is given in Fig. 4.7 denoted as ‘SDR after Gaussian Rand’. It is found

that the received SINR of radar increases with the growth of Γk when we adopt

SQ method and the SDR technique after the Gaussian randomization procedure,

while SINRrad decreases when we deploy the other methods. This is for the reason

that the optimized system power increases with the growth of Γk, which is less

than the given power budget P0, under the circumstance when the SQ method or

SDR solver with Gaussian randomization procedure is deployed. That is, the SQ

approach and SDR after Gaussian randomization fail to formulate an appropriate

tradeoff between the radar system and the communication system. Moreover, the

proposed waveform design method reaches a higher SINRrad compared with the

beamformer design in [5], especially when Γk is above 22dB. Furthermore, the

radar receives SINR is deteriorated when the destructive interference constraints are

taken into account. Moreover, when deploying the hardware-efficient constraints, we

note that the hardware-efficient designs, i.e., both the discrete phase CE and 1-bit

DACs approaches, deteriorate the performance of radar SINR. Specifically, the 1-bit

quantized CE outperforms the 1-bit DAC technique, which is for the reason that

the feasible region of problem (5.51) is larger than that of problem (5.48). It also

demonstrates that the hardware efficiency design is achieved at the expense of the

target sensing performance.

Fig. 4.8 depicts the radar SINR versus the number of CUs with the different

numbers of BS antennas, which reveals the tradeoff between radar and communi-

cation system. It can be also noted that the received SINR of the radar system gets

lower when DI constraints are taken into account.

In Fig. 4.9, we explore the effect of correlation between the target and CU LoS

channels in the radar eavesdropping performance with various angular uncertainty

intervals ∆θ when the angle difference between the CU and the target (i.e. ‘∆ϕ’ in

Fig. 4.9) varies from 0.5◦ to 25◦. It indicates the tradeoff between SINRrad and target
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NT = NR = 10,K = 5.
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Figure 4.9: Average SINR of radar versus angular interval of target location uncertainty for different
angular differences ∆ϕ between the target and communication users, NT = NR = 10,K = 5.

uncertainty. In addition, it can be found that the radar SINR is slightly impacted by

the CU location when the angle difference is larger than 15◦.

4.7.3 Communications Security Performance

The distribution of received symbols at CUs (denoted by blue markers) and the

target (denoted by blue markers) is shown in Fig. 4.10, where QPSK and 8PSK

modulated symbols are taken as examples. It illustrates that the received symbols

are randomized at the target when only CI is considered, while the signals received

by the target are conveyed into the destructive region when deploying DI constraints.

In Fig. 4.11, the average SER of CUs versus threshold SNR Γk is depicted when the

BS is equipped with a different number of antennas, with and without DI constraints,

respectively. It is found that the SER decreases with the growth of Γk. Furthermore,

when the received symbols at the target are constructed in the destructive region,

CUs decode the received symbols with a lower probability, which means the SER

performance of the CUs is deteriorated to some extent when DI constraints are taken

into account.

Furthermore, in Fig. 4.12, we take one CU as a reference to evaluate the SER

performance of the radar target versus the angle difference between the target and

the CU. It is noted that the target decode probability converges to 0.75 with the
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(a) QPSK, CI (b) QPSK, CI-DI

(c) 8PSK, CI (d) 8PSK, CI-DI

Figure 4.10: The constellation of received signals with DI constraints when the target location
is known to the BS precisely, where the received signal at CUs and the target are
denoted by blue dots and red dots, respectively. QPSK and 8PSK modulated signal,
NT = NR = 10,K = 5.

increasing angular difference from the CU to the target when only the CI constraint

is considered. For generality, the simulation result is obtained on average of target

location ranging in the angular interval
[
−π2 ,

π
2

]
. Moreover, it can be found that

the SER at the target increases obviously when the DI constraints are considered,

which is close to 1 when the angle difference is getting larger. Thus, it indicates

that the deployment of the DI method prevents the radar target from eavesdropping

communication data efficiently when the CU and the target channels are correlated.
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BS when target location is known precisely. K = 5.
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4.8 Conclusions
In this chapter, we have considered the sensing-aided secure ISAC systems, where

the dual-functional BS emitted waveforms to estimate the amplitudes and the di-

rections of potential eavesdroppers and send confidential communication data to

CUs simultaneously. The proposed design has promoted the cooperation between

sensing and communication rather than conventionally individual functionalities.

The weighted optimization problem has been designed to optimize the normalized

CRB and secrecy rate while constraining the system power budget. Our numerical

results have demonstrated that the secrecy rate was enhanced with the decreasing

CRB in both single and multi-Eve scenarios.



Chapter 5

Sensing-assisted PLS in ISAC Systems

5.1 Introduction

We note that in the above works on secure ISAC transmission, the radar and commu-

nication systems work individually over separate end goals rather than cooperating

with each other. To further promote the integration of S&C functionalities to improve

the security of the ISAC systems, we propose a novel approach to ensure the PLS

for communication data transmission, which is assisted by the sensing functional-

ity. To be specific, we still consider a dual-functional access point (AP) that emits

waveforms, aiming at estimating targets’ parameters and communicating with users

simultaneously. As the waveform carries confidential information intended for CUs,

while the beampattern is designed to point to the angles of targets, this system faces

the risk of information leakage if targets act as eavesdroppers. Differing from the

scenario in the previous Chapters, we here obtain the channel information of Eves

with the assistance of the sensing functionality. Besides, apart from the single-target

scenario, we further implement the proposed method in the multi-target scenario.

The proposed algorithm includes two stages. At the first stage, the dual-

functional AP emits an omnidirectional waveform for Eve detection, which then

receives echoes reflected from both CUs and Eves located within the sensing range.

Suppose that all CUs are cooperative users. That is, the location information of each

is acknowledged to the AP. Thus, it is possible to obtain angle estimates of Eves

contained in the reflected echo by removing known CUs’ angles. The estimation
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performance is measured by the CRB [320].

In the next stage, we formulate a weighted optimization problem to minimize

the CRB of targets/Eves and maximize the secrecy rate, subject to beampattern

constraints as well as a transmit power budget. A key novelty in this setup is that the

channel information in the secrecy rates is a function of the sensing performance.

Specifically, to avoid any false dismissal detection, the main lobe of the beampattern

is designed to be wide, with a width depending on the estimation accuracy. After-

wards, by improving estimation accuracy, the sensing and security functionalities

provide mutual benefits, resulting in improvement of the mutual performances with

every iteration of the optimization, until convergence.

Within this scope, the contributions of our work are summarized as follows:

• We present a sensing-assisted PLS algorithm of the ISAC system, where

the CRB and secrecy rate are employed to measure the sensing and secrecy

performance, respectively. Specifically, the secrecy rate is updated with the

increasing accuracy of the Eve angle estimation iteratively.

• We analyze the lower bound of CRB and the upper bound of the secrecy rate

with the constraint of power budget in our proposed ISAC system.

• We iteratively maximize the determinant of the Fisher Information Matrix

(FIM) and the secrecy rate of the ISAC system by jointly designing the beam-

forming matrix and the AN.

• We further consider the Eve location uncertainty, where the main beam of

the sensing beampattern is designed to be sufficiently wide to illuminate the

possible angular region that an Eve may appear with high probability, which is

indicated by the CRB value obtained from the previous iteration. This implies

that secrecy needs to be provided throughout the angle range.

• We design a fractional programming (FP) algorithm to solve the proposed

weighted optimization problem and verify the efficiency of the solver for both

single-Eve and multi-Eve detection.



5.2. SYSTEM MODEL 127

sensing

ISAC Access Point

CU

CU

CU

CU

Target/
Eve

Target/
Eve

(a) Stage 1–The ISAC AP emits omnibeampat-
tern for Eve estimations

Sensing

ISAC Access Point

CU

CU

CU

CU

Target/
Eve

Target/
Eve

target location uncertainty

Artificial Noise 
(AN)

Secure 
communication

E
1SNR


ESNRK

CU
1SINR

CU
2SINR

CU
3SINR

CUSINR I



CRB

(b) Stage 2–Sensing-aided secure ISAC system

Figure 5.1: Architecture of the proposed secure ISAC system assisted by the sensing functionality.

5.2 System Model

We consider a mmWave ISAC system equipped with co-located antennas and let Nt

and Nr denote the number of transmit antennas and receive antennas, where the base

station communicates with K communication users (CUs) and detects M targets/Eves

simultaneously as depicted in Fig. 5.1. We assume the BS has knowledge of the CUs

and their channels, and has no knowledge of the Eves.

5.2.1 Communication Signal Model and Metrics

Let the rows of X ∈ CNt×L denote the transmit waveforms, where L is the number of

time-domain snapshots. By transmitting the dual-functional waveforms to K CUs,

the received signal matrix at the receivers can be expressed as

YC =HX+ZC , (5.1)

where ZC ∈ C
K×L is the additive white Gaussian noise (AWGN) matrix and with

the variance of each entry being σ2
C . H = [h1,h2, . . . ,hK]H ∈ CK×Nt represents the

communication channel matrix, which is assumed to be known to the BS, with each

entry being independently distributed. Following the typical mmWave channel model

in [304, 321], we assume that hk is a slow-fading block Rician fading channel. The
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channel vector of the k-th user can be expressed as

hk =

√
vk

1+ vk
hLoS

L,k +

√
1

1+ vk
hNLoS

S ,k , (5.2)

where vk > 0 is the Rician K-factor of the k-th user, hLoS
L,k =

√
Ntat

(
ωk,0

)
is the

LoS deterministic component. a
(
ωk,0

)
denotes the array steering vector, where

ωk,0 ∈
[

- π2 ,
π
2

]
is the angle of departure (AOD) of the LoS component from the

BS to the user k [304, 305]. The scattering component hNLoS
S ,k can be expressed as

hNLoS
S ,k =

√
Nt
Lp

∑Lp
l=1 ck,lat

(
ωk,l

)
, where Lp denotes the number of propagation paths,

ck,l ∼ CN (0,1) is the complex path gain and ωk,l ∈
[

- π2 ,
π
2

]
is the AOD associated to

the (k, l)-th propagation path.

The waveform X in (5.1) can be expressed as

X =WS+N, (5.3)

where W ∈CNt×K is the dual-functional beamforming matrix to be designed, each row

of S ∈ CK×L denotes the k-th unit-power data stream intended to CUs, and N ∈ CNt×L

is the AN matrix generated by the transmitter to interfere potential eavesdroppers.

We assume that N ∼ CN (0,RN), where RN ⪰ 0 denotes the covariance matrix of the

AN that is to be designed. We further assume that the data streams are approximately

orthogonal to each other, yielding

1
L

SCSH
C ≈ IK×K . (5.4)

Note that (5.4) is asymptotically achievable when L is sufficiently large. Then, we

denote the beamforming matrix as W = [w1, . . . ,wK], where each column wk is the
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beamformer for the k-th CU. Accordingly, the SINR of the k-th user is given as

SINRCU
k =

∣∣∣hH
k wk

∣∣∣2
K∑

i=1,i,k

∣∣∣hH
k wi

∣∣∣2+ ∣∣∣hH
k RNhk

∣∣∣+σ2
C

=
tr
(
H̃kW̃k

)
K∑

i=1,i,k
tr
(
H̃kW̃i

)
+tr

(
H̃kRN

)
+σ2

C

,

(5.5)

where we denote H̃k = hkhH
k and W̃k = wkwH

k .

5.2.2 Radar Signal Model

By emitting the waveform X to sense Eves, the reflected echo signal matrix at the

BS receive array is given as

YR =

M∑
m=1

a∗ (θm)βmbT (θm)X+ZR, (5.6)

where a (θ) ∈ CNr×1 and b (θ) ∈ CNt×1 represent the steering vectors for the receive

and transmit arrays, which are assumed to be a uniform linear array (ULA) with

half-wavelength antenna spacing. βm is the complex amplitude of the m-th Eve. We

assume the number of antennas is even and define the receive steering vector as

a (θ) =
[
e− j Nr−1

2 πsinθ,e− j Nr−3
2 πsinθ, · · · ,e j Nr−1

2 πsinθ
]T
. (5.7)

It is noted that we choose the center of the ULA antennas as the reference point. To

this end, it is easy to verify that

aH (θ) ȧ (θ) = 0. (5.8)

Finally, ZR denotes the interference and the AWGN term. We assume that the

columns of ZR are independent and identically distributed circularly symmetric

complex Gaussian random vectors with mean zero and a covariance matrix Q = σ2
RI.

Similar to the expression in (5.5), the eavesdropping SNR received at the m-th
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Eve is written as

SNRE
m =

|αm|
2aH (θm)

K∑
k=1

W̃ka (θm)

|αm|
2aH (θm)RNa (θm)+σ2

0

, (5.9)

where σ2
0 denotes the covariance of AWGN received by each Eve.

For simplicity, the reflected echo signal given in (5.6) can be recast as

Y = A∗ (θθθ)ΛBT (θθθ)X+ZR, (5.10)

where we denote A (θθθ) = [a (θ1) , . . . ,a (θM)], B (θθθ) = [b (θ1) , . . . ,b (θM)], and Λ =

diag(βm).

5.2.3 CRB and Secrecy Rate

In this subsection, we elaborate on the radar detection and communication security

metrics. Particularly, the target/Eve estimation is measured by the CRB, which

is a lower bound on the variance of unbiased estimators [322], and the security

performance is evaluated by the secrecy rate.

In the multi-Eve detection scenario, the CRB with respect to the unknown Eve

parameters θ1, . . . , θM and β1, . . . ,βM was derived in [323] in detail, and the Fisher

information matrix (FIM) for θm,∀ m as well as real and imaginary parts of βm,∀ m

is given as

J = 2L


Re(J11) Re(J12) − Im(J12)

ReT (J12) Re(J22) − Im(J22)

−ImT (J12) −ImT (J22) Re(J22)

 , (5.11)

where the elements of the matrix in (5.11) are given as

J11 =
(
ȦHQ−1Ȧ

)
⊙

(
Λ∗BHR∗XBΛ

)
+

(
ȦHQ−1A

)
⊙

(
Λ∗BHR∗XḂΛ

)
+(

AHQ−1Ȧ
)
⊙

(
Λ∗ḂHR∗XBΛ

)
+

(
AHQ−1A

)
⊙

(
Λ∗ḂHR∗XḂΛ

)
(5.12a)

J12 =
(
ȦHQ−1A

)
⊙

(
Λ∗BHR∗XB

)
+

(
AHQ−1A

)
⊙

(
Λ∗ḂHR∗XB

)
(5.12b)

J22 =
(
AHQ−1A

)
⊙

(
BHR∗XB

)
, (5.12c)



5.3. BENCHMARK SCHEMES: ISOTROPIC AN 131

with ⊙ denoting the Hadamard (element-wise) matrix product, and Ȧ =[
, ∂a(θ1)
∂θ1

∂a(θ2)
∂θ2

. . . ∂a(θM)
∂θM

]
, Ḃ =

[
∂b(θ1)
∂θ1

∂b(θ2)
∂θ2

. . . ∂b(θM)
∂θM

]
.

Also, the covariance matrix RX is given as

RX =
1
L

XXH =WWH +RN

=

K∑
k=1

W̃k +RN .
(5.13)

As per the above, the corresponding CRB matrix is expressed as

CRB(θθθ,βββ) = J−1 (5.14)

and
CRB(θθθ) =

[
J−1

]
11

CRB(βββ) =
[
J−1

]
22
+

[
J−1

]
33
.

(5.15)

Moreover, the achievable secrecy rate at the legitimate user is defined as the dif-

ference between the achievable rates at the legitimate receivers and the eavesdroppers.

Thus, we give the expression of the worst-case secrecy rate as [324, 325]

SR
(
W̃k,RN

)
=min

k,m

[
RCU

k −RE
m

]+
, (5.16)

where RCU
k ,∀ k and RE

m,∀ m represent the achievable transmission rate of the k-th

CU and the m-th Eve, which can be expressed as (17a) and (17b), respectively.

RCU
k

(
W̃k,RN

)
= log

(
1+SINRCU

k

)
(5.17a)

RE
m

(
W̃k,RN

)
= log

(
1+SNRE

m

)
. (5.17b)

5.3 Benchmark Schemes: Isotropic AN
In the scenario considered with no knowledge of the Eves, a typical method to

avoid the information inception is to transmit AN. To be specific, partial transmit

power is allocated to emit the AN to interfere with the Eves, where the AN is
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isotropically distributed on the orthogonal complement subspace of CUs’ channels

[326]. To elaborate on this, we firstly take the l-th snapshot as a reference, i.e., (5.1)

is simplified as

yC [l] =Hx [l]+ zC [l] . (5.18)

where x [l] =Ws [l]+n [l]. For simplicity, the snapshot index l will be omitted in the

following descriptions. We further rewrite the AN vector n as

n = Vn̄, (5.19)

where V = P⊥H = INt −HH
[
HHH

]−1
H denotes the orthogonal complement projector

of the H, and n̄ is the zero-mean colored noise vector with a covariance matrix

Rn̄ = E
{
n̄n̄H

}
[119, 327]. Accordingly, the covariance matrix is given as

R̄x =

K∑
k=1

W̃k +VRn̄VH . (5.20)

Then, the received signal vector of legitimate CUs is written as

yC =HWs+ zC . (5.21)

It is noted that the AN does not interfere the CUs’ channels and the SINR of the k-th

user is given as

SINR
CU
k =

tr
(
H̃kW̃k

)
K∑

i=1,i,k
tr
(
H̃kW̃i

)
+σ2

C

. (5.22)

Likewise, the SNR of the m-th Eve is given as

SNR
E
m =

E
{
gH

mWs
}

E
{
gH

mn
}
+σ2

0

=

gH
m

K∑
k=1

W̃kgm

gH
mVRn̄VHgm+σ

2
0

=

tr
(
Gm

K∑
k=1

W̃k

)
tr
(
GmVRn̄VH)

+σ2
0

,

(5.23)



5.3. BENCHMARK SCHEMES: ISOTROPIC AN 133

where gm denotes the channel from the transmitter to the m-th Eve. Note that the

covariance matrix of the colored noise vector, i.e., Rn̄, is set as the identity matrix

when Eves’ channels are unknown to the ISAC BS.

5.3.1 AN Refinement Based on Eves’ Information

The AN design could be further refined if more information about Eve’s channels gm

is known to the BS. In this case, we assume that the instantaneous channel realizations

of Eves are known to the transmitter, which is defined as Gm = E
{
gmgH

m

}
= ḡmḡH

m +

σ2
G,mINt , where ḡm and σ2

G,mINt denote the mean and covariance matrix of gm,

respectively. In particular, to obtain a fair comparison with our approach that assumes

no Eves’ information, we consider the extreme setting that Gm = σ
2
g,mINt , σ

2
g,m > 0.

Besides, we assume that gm and s are independent and identically distributed (i.i.d.).

To this end, the expression of the secrecy rate can be accordingly obtained as given

in Section 5.2, which is written as

SRIST =min
k,m

[
log

(
1+SINR

CU
k

)
− log

(
1+SNR

E
m

)]+
. (5.24)

In light of the above assumptions, the secrecy rate maximization problem with the

omnidirectional beampattern design is given as

max
W̃k,Rn̄

SRIST

s.t. R̄X =
P0

Nt
INt

W̃k ⪰ 0,Rn̄ ⪰ 0,∀ k.

(5.25)

Note that the non-convexity of the problem above only lies in the objection function,

while it can be regarded as a typical secrecy rate maximization problem, which has

been solved efficiently as studied in [213, 328]. The simulation results will be given

in Section 5.7 as benchmarks.
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5.4 Eves’ Parameters Estimation
To avoid redundancy, we briefly present the method to estimate amplitudes and

angles of Eves based on our signal models proposed in Section 5.2, namely the

combined Capon and approximate maximum likelihood (CAML) approach [329,

330]. Specifically, Capon is initially applied to estimate the peak directions, and then

approximate maximum likelihood (AML) is used to estimate the amplitudes of all

Eves.

We firstly give the expression of signal model Y [331], where we let θ̂m,m =

1, . . . ,M denote the estimated Eves’ directions. Similar to the receive signal model in

(5.6), we here have

Y = A∗
(
θ̂θθ
)
Λ̂BT

(
θ̂θθ
)
X+ Z̃, (5.26)

where Λ̂ΛΛ = diag
[
β
(
θ̂1

)
, . . . ,β

(
θ̂M

)]
and Z̃ denotes the residual term. By employing

the AML algorithm, the estimate of amplitudes can be written in a closed form given

as [330]

βββ =
1
L

[(
AHT−1A

)
⊙

(
BHR̂∗XB

)]−1
·vecd

(
AHT−1YXHB∗

)
, (5.27)

where vecd(·) denotes a column vector with the elements being the diagonal of a

matrix and

T = LR̂−
1
L

YXHB∗
(
BT R̂XB∗

)−1
BT XYH , (5.28)

where R̂ is the sample covariance of the observed data samples and R̂ = 1
LYYH .

At the first step of the Eve parameter estimation, we design our transmission so

that the AP emits an omnidirectional waveform, which is usually employed by the

MIMO radar for initial probing. Thus, the covariance matrix is given as R̃X =
P0
Nt

INt .

The CRBs for angles and amplitudes of targets can be accordingly calculated by

substituting R̃X into (5.12) and (5.15), where we denote them as CRB0
(
θ̂θθ
)

and

CRB0
(
β̂ββ
)
. Assume that the probability density function (PDF) of the angle estimated

error is modeled as Gaussian distribution, zero mean and a variance of CRB0
(
θ̂θθ
)
.

That is, Eest,m ∼ CN
(
0,CRB0

(
θ̂m

))
, where Eest,k denotes the angle estimation error of

the k-th Eve. As a consequence, the probability that the real direction of the k-th Eve
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Figure 5.2: Spatial spectral estimates with CAML approach, when Eves locate at θ1 = −25◦, θ2 = 15◦

(blue lines), and CUs locate at θ3 = 40◦, θ4 = 10◦ and θ5 = −30◦ (green lines). The red
dashed lines in (b) denote the real directions and amplitudes of Eves. (a) SNR=20dB. (b)
SNR=-15dB.

falls in the range Ξ(0)
m =

[
θ̂m−3

√
CRB0

(
θ̂m

)
, θ̂m+3

√
CRB0

(
θ̂m

)]
is approximately

0.9973 [332]. Thus, the main lobe width of the radar beampattern will be initially

designed as Ξ(0), and then it will be iteratively updated based on the optimized CRB.

For clarity, we present the spatial spectrum of the direction of angle (DOA)

estimation by deploying the CAML technique in Fig. 5.2. It is assumed that two Eves

are located at θ1 = −25◦, θ2 = 15◦ (denoted by blue lines) and three CUs locate at

θ3 = 40◦, θ4 = 10◦, θ5 = −30◦ (denoted by green lines), with the modulus of complex

amplitudes β1 = 1,β2 = 5,β3 = 4,β4 = 5 and β5 = 2, where directions of CUs are

known to the transmitter. Fig. 5.2(a) and Fig. 5.2(b) demonstrate the CAML

performance when SNR=20dB and SNR=-15dB, respectively. It is noted that the

CAML approach estimates the DOA precisely when SNR is 20dB, while errors of the

angle estimation happen when the SNR decreases to -15 dB. To further illustrate the

performance of the CAML estimation method, the root means square error (RMSE)

versus the SNR of the echo signal is shown in Fig. 5.3 with the CRB as a baseline.

As expected, the CRB is shown as the lower bound of the RMSE obtained by CAML

estimation, in particular, the CRB gets tight in the high-SNR regime.
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Figure 5.3: Target/Eve estimation performance by applying CAML method, with the CRB obtained
by omni directional beampattern design as a benchmark.

5.5 Bounds for CRB and Secrecy Rate

The design of a weighted optimization between the radar CRB and the communi-

cation secrecy rate presents the challenge that the two performance metrics have

different units and potentially different magnitudes. To overcome this challenge we

need to normalize them each with their respective upper/lower bound. To obtain these

bounds, in this section we present the CRB minimization problem and the secrecy

rate maximization problem with the system power budget constraint. Considering the

further design of the weighted objective function in the following section, the CRB

minimization problem can be approximated as the FIM determinant maximization

problem. To this end, the optimal solutions generate the upper bounds of the FIM

determinant and the secrecy rate, both of which will be employed to normalize the

metrics in Section 5.6.

5.5.1 Upper-bound of the FIM Determinant

We denote ηηη as the sensing parameters, thus the MSE can be expressed as

M (ηηη)≜E
{
(ηηη− η̂ηη) (ηηη− η̂ηη)T

}
⪰ J−1. For the m-th parameter ηi to be estimated, it has

E
{
∥ηi− η̂i∥

2
}
≥

[
J−1

]
ii

[333]. Thus, it is common to minimize the trace or the deter-

minant of the CRB matrix, i.e., tr
(
J−1

)
or

∣∣∣J−1
∣∣∣. Since the CRB matrix is the inverse

of the FIM matrix, the problem of minimizing
∣∣∣J−1

∣∣∣ is equivalent to maximizing |J|,
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which is given as [323]

max
W̃k,RN

|J| (5.29a)

s.t. RN ⪰ 0,W̃k ⪰ 0,∀ k (5.29b)

tr

 K∑
k=1

W̃k +RN

 = P0, (5.29c)

where P0 denotes the power budget of the proposed system. It is noted that the

optimization above is convex and can be efficiently solved by CVX toolbox [310,334].

Consequently, by substituting the optimal W̃k,RN in (5.11), the upper-bound of FIM

determinant is obtained.

5.5.2 Secrecy Rate Bound

To derive the upper bound of the secrecy rate, we only consider the communication

security metric in this subsection. Assuming that the CSI is perfectly known to the

BS, the secrecy rate maximization problem can be formulated as

SR⋆ = max
W̃k,RN

min
k,m

SR
(
W̃k,RN

)
(5.30a)

s.t. (5.29b), (5.29c). (5.30b)

It is noted that the non-convexity lies in the objective function of (5.30), which

makes the optimization problem above difficult to solve. To resolve this issue, we

introduce an auxiliary variable b, where (5.30) has the same optimal solutions as the

reformulation below

SR⋆ = max
W̃k,RN ,b

min
k,m

[
RCk

(
W̃k,RN

)
− logb

]

s.t. log

1+
|αm|

2aH (θm)
K∑

i=k
W̃ka (θm)

|αm|
2aH (θm)RNa (θm)+σ2

R

 ≤ logb,∀ m

(5.29b), (5.29c).

(5.31)
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The above problem can be simply relaxed into a convex SDP problem. For brevity,

we refer readers to [213] for more details.

5.6 Weighted Optimization Problem
In this section, we propose a normalized weighted optimization problem that reveals

the performance tradeoff between the communication security and Eve parameters

estimation. Additionally, recall that the ISAC access point firstly emits an omnidi-

rectional beampattern as given in Section 5.4, where imprecise angles of Eves have

been obtained at the given SNR, with the angular uncertainty interval of the m-th

Eve is denoted as Ξ(0)
m . To reduce angle estimation errors, we also take the wide main

beam design into account, which covers all possible directions of Eves.

5.6.1 Problem Formulation

To achieve the desired tradeoff between the communication data security and the

radar estimation CRB, while taking the estimation errors of Eves’ angles and the

system power budget into account, we formulate the weighted optimization problem

as follows

max
W̃m,RN

ρ
|J|
|J|UB

+ (1−ρ)
SR

SRUB
(5.32a)

s.t. aH (
ϑm,0

)
RXa

(
ϑm,0

)
−aH

(
ϑm,p

)
RXa

(
ϑm,p

)
≥ γs,∀ ϑm,p ∈ card(Ψm) ,∀ m

(5.32b)

aH (
ϑm,n

)
RXa

(
ϑm,n

)
≤ (1+α)aH (

ϑm,0
)
RXa

(
ϑm,0

)
,∀ ϑm,n ∈ card(Ωm) ,∀ m

(5.32c)

aH (
ϑm,n

)
RXa

(
ϑm,n

)
≥ (1−α)aH (

ϑm,0
)
RXa

(
ϑm,0

)
,∀ ϑm,n ∈ card(Ωm) ,∀ m

(5.32d)

(5.29b) , (5.29c), (5.32e)

where |J|UB and SRUB denote the upper bounds of the FIM matrix determinant and

the secrecy rate which were obtained in Section 5.4, respectively. 0 ≤ ρ ≤ 1 denotes

the weighting factor that determines the weights for the Eve estimation performance
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Algorithm 5.1 Iterative optimization of the CRB and the secrecy rate

Initialization: Ξ(0)
m obtained from initial target/Eve estimation and CRB in Section

5.4; r = 1
Repeat:

1: Ω(r)
m = Ξ

(r−1)
m , Ψ(r)

m is accordingly obtained;
2: substitute Ω(r)

m and Ψ(r)
m into problem (5.32);

Repeat:
3: solve problem (5.32) by FP algorithm;

Until: find the optimal c ∈
[(

min
k

1+P0∥hk∥
2
)−1
,1

]
which generates the maximum

value of the objective function deploying the golden search;
4: the optimal variables W̃⋆k ,R

⋆
N are obtained;

5: calculate the CRB(r)
(
θ̂
)

and the secrecy rate in the r-th iteration;

6: Ξ(r)
m can be accordingly obtained;

7: update r = r+1,
Until: Convergence.

and the secrecy rate. α denotes a given scalar associated with the wide main beam

fluctuation. ϑm,n is the n-th possible direction of the m-th Eve, ϑk,0 is the angle

which was estimated by the algorithm proposed in Section 5.4. Ωm and Φm denote

the main beam region and sidelobe region, respectively. Note that card(·) denotes

the the cardinality of (·).

Remark 2. It is important to highlight that the secrecy rate given by (5.16) is

a function of the estimation accuracy of Eve’s parameters, including θm and αm.

Accordingly, beyond the tradeoff in the weighted optimization in this section, the

improvement in the sensing performance directly results in an improvement in the

secrecy performance.

5.6.2 Efficient Solver

To tackle problem (5.32), we firstly recast the complicated secrecy rate term in the

objective function. For simplicity, we denote Σk =
∑K

i=1 tr
(
H̃kW̃i

)
and rewrite the
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optimization problem as

max
W̃k,RN

ρ

|J|UB
|J|+

1−ρ
SRUB

min
k,m,n

RCk

(
W̃k,RN

)
− log

1+
|αm|

2aH (
ϑm,n

) K∑
k=1

W̃ka
(
ϑm,n

)
|αm|

2aH (
ϑm,n

)
RNa

(
ϑm,n

)
+σ2

R



+

,

ϑm,n ∈ card(Ωm) ,∀ m (5.33a)

s.t. (5.32b), (5.32c), (5.32c) and (5.32e). (5.33b)

According to [213], the weighted optimization problem can be recast as (5.34) by

introducing the scalar b.

max
W̃k,RN

min
k

 ρ|J|UB
|J|+

1−ρ
2S RUB

Σk + tr
(
H̃kRN

)
+1

b
(
Σk − tr

(
H̃kW̃k

)
+ tr

(
H̃kRN

)
+1

) (5.34a)

s.t.
|αm|

2aH (
ϑm,n

) K∑
k=1

W̃ka
(
ϑm,n

)
|αm|

2aH (
ϑm,n

)
RNa

(
ϑm,n

)
+1
≤ b−1,∀ ϑm,n ∈ card(Ωm) ,∀ m (5.34b)

(5.32b), (5.32c), (5.32c) and (5.32e). (5.34c)

It is noted that the min operator only applies to the second term of the objective

function of problem (5.34). According to the Fractional Programming (FP) algorithm

[297], the optimization problem can be further reformulated by replacing the fraction

term with the coefficient z, which is given as

max
W̃k,RN ,y,z

ρ

|J|UB
|J|+

1−ρ
2S RUB

z (5.35a)

s.t. 2yk

√
Σk + tr

(
H̃kRN

)
+1− y2

k

(
b
(
Σk − tr

(
H̃kW̃k

)
+ tr

(
H̃kRN

)
+1

))
≥ z,∀ k

(5.35b)

(5.34b), (5.32b), (5.32c), (5.32d), and (5.32e), (5.35c)

where y denotes a collection of variables y = {y1, . . . ,yK}. Referring to [213], let

c = 1
b , where c ∈

[(
min

k
1+P0∥hk∥

2
)−1
,1

]
. Thus, problem (5.35) can be rewritten as
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follows by replacing b with c

max
W̃k,RN ,y,z

ρ

|J|UB
|J|+

1−ρ
2S RUB

z (5.36a)

s.t. 2cyk

√
Σk + tr

(
H̃kRN

)
+1− y2

k

(
Σk − tr

(
H̃kW̃k

)
+ tr

(
H̃kRN

)
+1

)
≥ cz,∀ k

(5.36b)

c|αm|
2aH (

ϑm,n
) K∑

k=1

W̃ka
(
ϑm,n

)
≤ (1− c)

(
|αm|

2aH (
ϑm,n

)
RNa

(
ϑm,n

)
+1

)
,

∀ ϑm,n ∈ card(Ωm) ,∀ m (5.36c)

(5.32b), (5.32c), (5.32d) and (5.32e). (5.36d)

where the optimal yk can be found in the following closed form

yk =
c
√
Σk + tr

(
H̃kRN

)
+1

Σk − tr
(
H̃kW̃k

)
+ tr

(
H̃kRN

)
+1
. (5.37)

Note that problem (5.36) can be efficiently solved by the cvx toolbox [310, 334].

Given the interval of c, the optimal variables. W̃⋆k ,R
⋆
N ,z
⋆ can be consequently

obtained by performing a one-dimensional line search over c, such as uniform

sampling or the golden search [335]. To this end, the optimal CRB⋆ and SR⋆ can be

accordingly calculated.

To further generalize the problem above and simplify the objective function,

we equivalently consider the determinant minimization problem of PHJ−1P by

introducing the matrix P, where P associates with activated Eves with the dimension

of P is 3K ×3. For example, when the CRB minimization is only associated with

the first Eve, the first, the (M+1)-th, and the (2M+1)-th rows are the first, second,

and third rows of the identity matrix I3×3, respectively [323]. Then, by noting that

the inequality ΥΥΥ−1 ≥ PHJ−1P is equivalent to ΥΥΥ ≥ ΥΥΥPHJ−1PΥΥΥ, and based on the
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Schur-complement condition, problem (5.32) can be recast as

max
W̃k,RN ,z,ΥΥΥ

ρ

|J|UB
|ΥΥΥ|+

1−ρ
2S RUB

z

s.t.

 ΥΥΥ ΥΥΥPH

PΥΥΥ J

 ⪰ 0

(5.36b), (5.36c) and (5.36d).

(5.38)

Similarly, the determinant maximization problem above is convex and readily solv-

able. For clarity, the above procedure has been summarized in Algorithm 5.1.

5.7 Numerical Results

In this section, we provide the numerical results to evaluate the effectiveness of the

proposed sensing-aided secure ISAC system design. We assume that both the ISAC

BS and the radar receiver are equipped with uniform linear arrays (ULAs) with the

same number of elements with half-wavelength spacing between adjacent antennas.

In the following simulations, the number of transmit antennas and receive antennas

is set as Nt = Nr = 10 serving K = 3 CUs, the frame length is set as L = 64, the noise

variance of the communication system is σ2
C = 0 dBm.

Resultant beampatterns of the proposed sensing-aided ISAC security technique

are shown in Fig. 5.4 and Fig. 5.5, which demonstrate the single-Eve (located at

ϑ1,0 = −25◦) scenario and multi-Eve scenario (located at ϑ1,0 = −25◦,ϑ2,0 = 15◦),

respectively. Note that the Rician factor is set as vk = 0.1 for generating a Rician

channel with a weak LoS component, aiming to alleviate the impact on the radar

beamppattern caused by the channel correlation, and α is set as α = 0.05. To verify

the efficiency of the proposed approach, the received SNR of the echo signal is set

as SNR=-22 dB, which is defined as SNR = |β|
2LP0
σ2

R
. The ISAC BS first transmits an

omnidirectional beampattern for Eve estimation, with the aid of the CAML tech-

nique, which is denoted by green dashed lines in Fig. 5.4 and Fig. 5.5. It is referred

to as the first iteration and the CRB can be accordingly calculated. Then, to ensure

that Eves stay within the angle range of main lobes, we design a beampattern with a



5.7. NUMERICAL RESULTS 143

wide main beam with a beamwidth determined by the CRB obtained from the last

iteration, which has been elaborated in Section 5.6. By updating the CRB iteratively,

the main lobes get narrow and point to the directions of Eves, as illustrated by the

rest of the lines in Fig. 5.4 and Fig. 5.5. In the simulations, we repeat the weighted

optimization problem until the CRB and the secrecy rate both convergence to a local

optimum. The beampatterns also indicate that the main beam gain grows with the

main lobe width getting narrow. Besides, Fig. 5.5 shows that the power towards

Eves of interest gets lower compared with the single-Eve scenario, while it still

outperforms the omnidirectional beampattern design.
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Figure 5.4: Beampatterns for the scenario of single Eve angle estimation, where the main beam
width narrows over each iteration, ϑ1,0 = −25◦, I = 3,K = 1,P0 = 35dBm, SNR=-22dB.

Fig. 5.6 illustrates the convergence of the CRB and the secrecy rate of the

proposed algorithm. The benchmark in Fig. 5.6 (c) is generated following the AN

design techniques in Section 5.3, where the covariance of AWGN received by Eves

is set as σ2
0 = 0 dBm. It is noted that the performance of metrics converges after

five iterations when SNR=-22 dB, while the convergence requires less iterations

at higher SNR. Additionally, the secrecy rate obtained by the proposed algorithm

converges to 7.5 bit/s/Hz and 7.8 bit/s/Hz when SNR=-22 dB and SNR=-15 dB,

which outperforms the isotropical AN methods.

In Fig. 5.7, we investigate the secrecy rate versus the main beam width with
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Figure 5.5: Beampatterns for the scenario of two Eves to be estimated, illustrating the circumstance
when the main lobes overlap at the first iteration, ϑ1,0 = −25◦,ϑ2,0 = 15◦, I = 3,K =
2,P0 = 35dBm, SNR=-22dB.

different power budget P0, and the benchmarks are given in dashed lines and dot-

ted lines which are obtained by the AN design techniques with knowledge of Gm

and with no information of Eves’ channels as given in Section 5.3, respectively.

Generally, the secrecy rate gets higher with the increase of the power budget and

it is obvious that the proposed algorithm outperforms benchmark methods. It is

worthwhile to stress that the proposed weighted optimization (5.32) is implemented

with no information of Eves. Note that the secrecy rate increases first and then

decreases with the expansion of Eve’s location uncertainty. The initial increase is

because the gain of the beam towards the target/Eve of interest decreases with the

growth of the main beam width, resulting in the deterioration of the eavesdropping

SNRE
m. With respect to the expression in (5.16), the secrecy rate improves when

SNRE
m reduces. However, the power budget constraint becomes tight when the main

beam keeps being expanded. This indicates that more power is allocated to the Eve

estimation, thus, the secrecy rate decreases. Additionally, when the main beam is

wider, the transmission needs to secure the data over a wider range of angles, which

is reflected in an SR expression with high channel uncertainty. Particularly, when

the power budget is low, for example, P0 = 25 dBm, we note that the secrecy rate

monotonically decreases with the growth of ∆θ, while the weighted optimization
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Figure 5.6: Convergence with iterations when SNR=-15dB and SNR= 22dB. I = 3,K = 1,P0 =

35dBm. (a) Convergence of root-CRB of amplitude estimation; (b) Convergence of
root-CRB of angle estimation; (c) Convergence of the secrecy rate.
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Figure 5.7: The secrecy rate analysis versus Eve’s location uncertainty with various power budgets,
where the AN design techniques with no information of Eves’ channels and with known
Gk are denoted by dotted lines and dashed lines, respectively. ϑ1,0 = −25◦, I = 3,K =
1,SNR=-15dB.

problem is infeasible due to the power budget limit when the ∆θ is larger than 5

degree.

Moreover, it is illustrated in Fig. 5.8 that the secrecy rate decreases with the

growth of CU number, given different power budgets P0. Note that a higher power

budget achieves better security performance. Particularly, the secrecy rate cannot

be ensured if the ISAC system serves more than 5 CUs when P0 = 25 dBm. In Fig.

5.9, we consider the performance tradeoff between the target/Eve estimation and

communication data security with different power budgets by varying the weighting

factor ρ. We note that higher P0 results in a better performance of the estimation

metric, i.e., root-CRB of the amplitude and the angle. Additionally, with the increase

of secrecy rate, the CRB grows as well, which demonstrates the deterioration of

Eve’s angle estimation accuracy.

Furthermore, we consider a scenario including one CU and one Eve for ex-

ploiting impacts on security and sensing metrics resulting from the angle difference

between the CU and the Eve. In this case, the Rician channel model with a strong
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Figure 5.8: The secrecy rate analysis versus the number of CUs, with various power budgets. K =
1,SNR=-15dB.
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Figure 5.9: Tradeoff between the CRB and the secrecy rate with different power budget. ϑ1,0 =

−25◦, I = 3,K = 1,SNR=-15dB.
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LoS component is deployed, i.e., vk = 7 in (5.2), and the CU is assumed to locate

at −20◦. Resultant beampatterns are shown in Fig. 5.10 when the Eve is at −20◦ as

well. It is demonstrated that the main beam width converges after four iterations and

the generated angle root-CRB at the second iteration is lower than the case of a weak

Rician channel, which is validated in Fig. 5.11. Fig. 5.11 illustrates the analysis

of the secrecy rate and the root-CRB of the angle with various angle differences.

Generally speaking, with the expansion of the uncertain angular interval ∆θ, both of

the metrics are deteriorated. The secrecy rate decreases when the Eve and the CU

directions get closer, while the performance of the CRB improves since the tradeoff

is revealed in Fig. 5.9.
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Figure 5.10: Beampatterns for the scenario when the CU and the Eve both locate at −20◦, narrowing
with each iteration until convergence. I = 1,K = 1,SNR=-22dB,P0 = 35dBm.
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Figure 5.11: Secrecy rate and root-CRB of angle performances versus uncertain angular interval of
the target/Eve, with various angle differences between the Eve and the CU, where the
CU locates at −20◦. I = 1,K = 1,SNR=-15dB,P0 = 35dBm.

5.8 Conclusion
In this chapter, we have considered the sensing-aided secure ISAC systems, where

the dual-functional BS emitted waveforms to estimate the amplitudes and the di-

rections of potential eavesdroppers and send confidential communication data to

CUs simultaneously. The proposed design has promoted the cooperation between

sensing and communication rather than conventionally individual functionalities.

The weighted optimization problem has been designed to optimize the normalized

CRB and secrecy rate while constraining the system power budget. Our numerical

results have demonstrated that the secrecy rate was enhanced with the decreasing

CRB in both single and multi-Eve scenarios.



Chapter 6

Conclusions and Future Work

This Dissertation focuses on the optimization designs for ensuring the PLS in ISAC

systems. In this Thesis, a general overview of ISAC systems, some fundamental

concepts and state-of-the-art works are provided in Chapter 2. Then in Chapter

3, Chapter 4, and Chapter 5, we demonstrate the secure DFRC system designs,

including secrecy rate improvement with the assistance of AN, direct amplitude

and phase designs of each symbol at receivers by applying the CI technique, and

secure communication data transmission assisted by sensing functionality. Next, we

summarize the conclusions and contributions of each chapter in detail.

Chapter 3: AN-aided PLS in ISAC systems. Considering the increasingly

deeper integration between radar and communication, the objective of Chapter 3 is

to guarantee communication data security for ISAC systems. The beamformer and

the AN are jointly designed to maximize the SNR at the target, while ensuring the

QoS of CUs. The following specific remarks can be derived from the results of this

chapter:

• In ISAC systems, the proposed AN-aided PLS technique effectively prevents

the communication data from being intercepted by the target, i.e., potential

eavesdropper, which is illustrated by the analysis of the secrecy rate. Taking

the robustness of the communication channel estimation into account, the

secrecy rate increases first with the growth of the CSI error bound since more

power is allocated to achieve the QoS requirement for communication. How-

ever, it deteriorates the secrecy performance when the CSI error bound keeps
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increasing. This is for the reason that the transmission rate of communications

decreases with the growth of the CSI error bound, which has been demon-

strated in the analysis of secrecy rate versus imperfectly known instantaneous

CSI.

• The scenario then extends to considering the target direction robustness, the

generated beampattern is designed to be with a wide main beam covering all

possible angles of the target. In this way, it is predictable that the main beam

power gets lower with the expansion of the target angular interval uncertainty

with a fixed power budget. Furthermore, what we found interesting is that the

secrecy rate increases with the expansion of target location uncertainty. This

is because the main beam power decrease when the angle estimation error

increases, which raises the data rate difference between the Eves and LUs.

• Future Work: As per above, it is noted that the performance of the secrecy

rate is dramatically impacted by the robustness of both the radar and communi-

cation channels. To design a system adjustable for practical implementations,

it would be critical to address the flexibility of the power allocation. That

is, a dynamic power allocation design is induced for our future work, which

allows this secure ISAC system to be flexible to achieve desired performance

tradeoff between the radar and communication functionalities dynamically.

This design would be an appealing approach to further improve the energy

efficiency for secure ISAC systems. To achieve this, a weighted factor ρ ∈ [0,1]

can be applied as an extra variable designing the ratio of the achievable rate of

communication and radar. To start with, the AN can be assumed to fall into

the null space of the communication channel, then we optimize the weighted

factor with an extra constraint of energy efficient threshold. Then, this problem

can be expanded to design the AN via the optimization problem jointly. The

main obstacle of this work would be the efficient solver of the complicated

problem and should be deeply investigated.

Chapter 4: Secure ISAC Systems Deploying the CI Technique. The objective
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of chapter 4 is to propose an SLP technique, i.e., deploying DM to exploit CI, aiming

to constrain symbols received by CUs falling into the constructive region and the

symbols received by the target falling into the destructive region. To this end, the

SER at CUs can be guaranteed while deteriorating the decoding capability of the

target. The conclusions and contributions of this chapter are summarized as follows:

• The proposed CI/DI technique can well ensure communication data security in

the ISAC system, even in the context of mmWave frequency, which implies the

correlation between the CUs’ channels and the target’s channel. Comparing

the AN-aided approach, it reduces the redundant power consumption caused

by the AN and improves the flexibility benefiting from the SLP. In the CI-only

case, the SER analysis demonstrates that the channel correlation degrades

the SER at the target, which deteriorates the data security compared with

the scenario of uncorrelated main and wiretap channels. To tackle this issue,

deployment of the DI approach obviously improved the SER at the target/Eve,

which is close to 1 when the angle difference is getting larger.

• The proposed waveform design optimization problem outperforms the DFRC

precoder design in [5] since the amplitudes and the phases of symbols are

directly designed at the receiver side which gains more flexibility and achieves

lower sidelobe power at the expense of RF chains’ number. Moreover, the

FP solver we employed in this work outperforms the SQ algorithm given

in [308]. Considering the robustness of the target location, the main beam of

the generated beampattern covers possible angles and the main beam power is

accordingly decreased.

• Future Work: The CI technique can be classified as the digital PLS, which

enables a true implementation of mathematical algorithms with maximum

flexibility. However, since each antenna element has its own dedicated RF

chain as well as individual DACs and ADCs, it is achieved at the expense

of a large number of RF chains. On the other hand, analog beamforming is

an efficient approach to reducing RF chains, but at the expense of spectral
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efficiency. To balance the benefits of both, the hybrid SLP technique is

appealing for our future work. To achieve this, the optimization problem

can be designed in the presence of limited RF chains under the transmit power

constraint and the low-resolution PSs’ constraint. The energy efficiency will be

accordingly improved thanks to the reduced RF chains and the finite-precision

PSs. Herein, the joint design problem may be difficult to solve and will be

studied in depth. This problem also implies an existing tradeoff between the

number of RF chains and the resolution of the PSs, which can be further

explored in this study as an extension of future work.

Chapter 5: Sensing-assisted PLS in ISAC Systems. Studies in Chapter 3 and

Chapter 4 are designed in a single-target scenario, and each radar and communication

works in an individual functionality. This motivates the studies in Chapter 5, where

we present a sensing-assisted approach for the ISAC system. The proposed approach

can be summarized in two steps: 1) estimating angles of targets by emitting an

omnidirectional waveform; 2) designing a weighted optimization problem to itera-

tively optimize the secrecy and the CRB by updating the main beam width, which is

calculated by the optimal CRB from the last iteration. The main contributions of the

chapter can be highlighted in the following list:

• The proposed sensing-aided PLS algorithm is promising in the research field

of secure ISAC systems, which is initially designed to obtain the information

of the Eves’ channels, i.e., the well-known limitation of conventional PLS

studies, with the assistance of sensing functionality. It is found that the secrecy

rate and the CRB can mutually benefit each other for a given weighted factor ρ.

This is because the secrecy rate decreases with the expansion of the uncertain

target angular interval when the power constraint is tight. Hence, in our

designs, the secrecy rate increases as Eve’s estimation improves until the

angular interval of the estimation error ∆θ is less than 3 degrees. Moreover,

the given beampatterns in numerical results verify that the proposed algorithm

enables not only single-target/Eve but also multi-target/Eve sensing.

• In the mmWave frequency band, the channel correlation between the radar and



154

communication systems is further considered. Herewith, the Rician channel

model with a strong LoS component is deployed, where the Rician factor

υk = 7, and both the CU and the target are assumed to locate at −20◦. With

this channel setup, the generated angle root-CRB at the second iteration is

lower than in the case of deploying the weak Rician channel. Additionally, the

secrecy rate decreases when the Eve and the CU directions get closer, while

the performance of the CRB improves.

• Future Work: Existing literature regarding secure ISAC systems mainly

focuses on a dual-functional BS emitting a waveform for both sensing and

communication functionalities. The communication transmission is protected

by related PLS approaches, while both the radar and communication systems

still work individually. The study in Chapter 5 is a promising design of a

sensing-assisted PLS approach for ISAC systems, which is aided by inserting

AN at the transmitter. However, the redundant power consumption caused by

the AN has been indicated in many works. As a future work, it is particularly

interesting to deploy the DM technique instead of the added AN in order to

improve energy efficiency and reduce power consumption. To be specific, the

optimization problem is designed to minimize the CRB with the constraint

of power budget and the CI technique by optimizing the emitted waveform

at a symbol level. Moreover, this study may further motivate the research of

hybrid structures for balancing the benefits of analog and digital SLP.

To finally summarize, the Thesis has presented several approaches to ensuring

communication data security in ISAC systems. The author hopes that the given

results and observations within this Thesis can be with the help of practical imple-

mentation and motivate further work in the field of secure ISAC systems in the future

5G-and-beyond wireless communication networks.
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