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Abstract 

Perceivers can use past experiences to make sense of ambiguous sensory signals. 

However, this may be inappropriate when the world changes and past experiences no longer 

predict what the future holds. Optimal learning models propose that observers decide 

whether to stick with or update their predictions by tracking the uncertainty or ‘precision’ of 

their expectations. But contrasting theories of prediction have argued that we are prone to 

misestimate uncertainty – leading to stubborn predictions that are difficult to dislodge.  To 

compare these possibilities, we had participants learn novel perceptual predictions before 

using fMRI to record visual brain activity when predictive contingencies were disrupted - 

meaning that previously ‘expected’ events become objectively improbable. Multivariate 

pattern analyses revealed that expected events continued to be decoded with greater fidelity 

from primary visual cortex, despite marked changes in the statistical structure of the 

environment which rendered these expectations no longer valid. These results suggest that 

our perceptual systems do indeed form stubborn predictions even from short periods of 

learning – and more generally suggest that top-down expectations have the potential to help 

or hinder perceptual inference in bounded minds like ours.  

Introduction 

Perceiving creatures need to generate faithful representations of the external world from 

noisy and ambiguous signals. Observers can overcome this inherent sensory ambiguity by 

combining incoming sensory data with prior knowledge about what the world is likely to 

contain (de Lange et al., 2018; Heilbron & Chait, 2018; Hogendoorn, 2022; Yuille & Kersten, 

2006). For example, ‘sharpening’ models hypothesise that we use top-down predictions to 

relatively upweight the activity of neurons tuned to sensory features we expect, via 

competitive interactions that suppress populations tuned to unexpected alternatives (see 

Figure 1). We have observed this kind of predictive retuning in early and late visual brain 

areas (Kok et al., 2012; Yon et al., 2018), with suppression of unexpected signals reshaping 

neural activity so that it more closely resembles our prior predictions (see also González-

García & He, 2021).  

Predictively retuning sensory populations could provide an adaptive way to deal with sensory 

ambiguity in stable environments, as different kinds of retuning can weight our perceptual 

systems towards events that we expect - which are more likely to occur. However, a system 

that uses predictions to finesse ambiguous inferences encounters a problem when the world 
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begins to change, as predictions based on the past may cease to be useful when 

interpreting new environments. 

In a labile world like ours, perceivers must thus decide whether to stick with their existing 

expectations or learn and update their models in the face of new data.  Computational 

models of learning suggest an optimal solution to this dilemma can be found if agents 

estimate the ‘precision’ or reliability of their predictions and the stability of the outside world – 

updating beliefs more when our most reliable predictions are violated and when we think our 

environments are more changeable (Behrens et al., 2007; O’Reilly, 2013; Yu & Dayan, 

2005). Faithfully estimating these ‘parameters’ of our internal models and our external world 

can optimise how we use and update our predictions, ensuring that we do not bring old 

expectations to bear on new situations where they no longer apply. 

However, many modern models assume that our estimates of ‘precision’ or uncertainty in 

our predictions often decouple from reality (Yon & Frith, 2021). For example, contemporary 

predictive coding models incorporate the notion of ‘stubborn predictions’ – assuming that 

some top-down expectations are difficult to update in the face of new information (Yon et al., 

2019). In model-based terms, stubborn predictions are assumed to arise when agents 

assign especially high ‘precision’ to top-down predictions at the expense of ascending error 

signals that could potentially update them (Friston, 2018). 

Though prior work has investigated how learned expectations influence activity in frontal and 

parietal decision circuits (e.g., Hansen et al., 2011) at present we do not know whether our 

perceptual systems form stubborn predictions that shape activity in the sensory brain, or 

whether our learned expectations are updated appropriately when the environment signals 

they are no longer reliable. Here, we compare these possibilities. Our participants learned 

novel predictive associations between executed actions (finger movements) and the identity 

of ensuing visual stimuli (oriented gratings). After training with perfectly deterministic 

contingencies, we recorded participants’ visual brain activity with 3T fMRI during the same 

experimental task but with previously learned relationships disrupted: expected outcomes, 

unexpected outcomes or omitted outcomes were experienced with equal probability (33.3%). 

Optimal theories of learning would suggest that the shift to a new context where predictions 

are more often violated than confirmed should drive model updating – abandoning 

predictions that are no longer reliable. However, if perceptual systems acquire predictions 

that are suboptimally stubborn, expectations established in previous contexts may not be 

dislodged by discrepant experiences – and observers may still rely on old predictions in new 

settings, with detectable influences on sensory brain activity. 

In line with this latter possibility, we found that patterns of brain activity in primary visual 

cortex showed the same influences of prediction identified in previous work (Kok et al., 2012; 

Yon et al., 2018), even though ‘expected’ events were objectively improbable (i.e., observers 

were more likely to encounter an ‘unexpected’ or omitted outcome, rather than the outcome 

they had previously learned to expect).  This suggests that even short periods of learning 

can lead us to acquire somewhat stubborn predictions, which bias representations in the 

sensory brain – even though such biases will not improve perceptual inference. These 

results suggest that human perceivers may misestimate the reliability of their predictions, 

relying on past learning even when the world signals that relationships have changed.  
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Figure 1:  Expectation ‘sharpening’ is one mechanism proposed in the literature that could 

generate superior decoding of expected sensory events. Sharpening models of perceptual 

prediction assume that probabilistic knowledge reshapes activity in sensory brain areas, such that it is 

weighted more heavily towards prior expectations (de Lange et al., 2018). a) For example, in a 

population of visual neurons, an observed stimulus (e.g., clockwise-tilted grating) will evoke most 

activity in those units tuned to the observed (clockwise tilt) features and lesser activity in those tuned 

to other features (e.g., counter-clockwise tilt). According to sharpening accounts, top-down predictions 

act to relatively upweight expected sensory signals by suppressing activity in populations tuned away 

from the stimulus (Press & Yon, 2019). b) This kind of predictive ‘sharpening’ (i.e. suppression of 

unexpected noise) leads to a greater signal-to-noise ratio across the population when expectations 

are valid. Thus, the presence of sharpening can be evaluated empirically using multivariate 

neuroimaging techniques (e.g., decoding) to quantify how expectations change the information 

content of sensory brain regions.  

 

 

Methods 

Participants: Twenty one right-handed participants were recruited (13 female, mean [SD] 

age = 27.9 [5.5] years) from Birkbeck, University of London and University College London 

(UCL). All participants reported normal or corrected to normal vision and had no history of 

psychiatric or neurological illness. One participant was excluded from the sample due to 
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excessive movement during scanning (i.e. sudden movements >2mm throughout runs), 

leaving a final simple of 20. The experiment was approved by local ethics committees at 

Birkbeck and UCL. Sample size was determined based on previous studies which have 

observed reliable effects of expectation on multivariate measures of visual brain activity (Kok 

et al, 2012; Yon et al, 2018).  

Apparatus: Experimental task and stimuli were generated using Cogent in Matlab. During 

training, stimuli were displayed on a grey background via a Dell Laptop 14” LCD screen (60 

Hz). During scanning the same stimuli were displayed on a rear-projection screen using a 

JVC DLA-SX21 projector (60 Hz). In both cases, stimuli subtended ~15° visual angle. 

Participants registered their perceptual decisions (see below) using an MRI compatible 

button box, and used the same button box when performing the task in and outside of the 

scanner.  

Experimental procedure: Participants completed a combined action and perceptual decision-

making task. Each trial began with the presentation of a central fixation cross framed by an 

imperative cue (square or triangle), which instructed participants to abduct either their right 

index or little finger. Participants’ abduction movements (i.e., releasing a previously 

depressed button) triggered the presentation of an oriented grating stimulus for 500 ms. 

Each stimulus was a sinusoidal grating, enveloped by a Gaussian filter to create Gabor 

patches of 80% Michelson contrast, at 1.5 cycles/ °. Stimuli were either oriented clockwise 

(CW; 45°) or counter-clockwise (CCW; 135°) relative to the vertical midline, and appeared 

within an annulus such that the central fixation cross remained visible. After a variable 300 – 

500 ms delay, participants were asked to judge the orientation of the observed stimulus. 

Participants were presented with a question probing a specific orientation (e.g., “Was the 

stimulus tilted CW?”), and both orientations were probed with equal probability. They 

responded ‘yes’ or ‘no’ using their left thumb. Participants were required to respond within 

1500 ms, and the next trial started after a variable inter-trial interval (2-3 s in training and 2-6 

s in the scanner, see Figure 2 below).  
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Figure 2: Illustration of experimental task. a) Participants performed a task where their actions 

produced oriented gratings which could be at expected or unexpected orientations, based on the 

training phase. We analysed brain activity evoked by the observed stimuli, and how this varied as a 

function of expectations. b) Prior to the scanning session, participants had formed probabilistic 

expectations, such that certain actions were always paired with certain gratings (i.e., 100% of trials 

were expected). c) However, during the task itself these expected stimuli were objectively unlikely: 

participants experienced the expected grating, the unexpected grating or an omission with equal 

probability (33.3%).  

The experiment consisted of training and test sessions split over two consecutive days. On 

the first day, participants completed a training session outside of the scanner (600 trials, ~90 

minutes). On these trials, participants performed the task while experiencing perfect 

statistical contingencies between executed actions and observed stimuli – e.g., index finger 

abduction always resulted in the presentation of a CCW oriented grating, while little finger 

abduction always resulted in a CW oriented grating. When arriving on the second day, 

participants completed a shorter but identical refresher session before entering the scanner 

room (120 trials, ~15 minutes). Cue-action and action-outcome mappings were 

counterbalanced across participants.  

Participants then completed the main test session while in the MRI scanner, comprising 360 

trials over ten scanning runs. The key change in this test session was that contingencies 

between action and outcome were disrupted. On expected trials, performing a given action 

yielded a grating stimulus congruent with the mapping learned in training (e.g., abducting the 

index finger generated a CCW grating - 33.3% of trials). However, there were an equal 

number of unexpected trials where the same action generated the opposite stimulus (e.g., 

abduct index, observe CW grating – 33.3% of trials). Moreover, on a further third of trials 

visual stimuli were completely omitted: participants performed the same action in response 

to the usual imperative shape cue, but after acting this cue disappeared, and no grating 
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stimulus was displayed (33.3% of trials). This patterning of trial types means that on a 

majority of trials, stimuli which were previously expected during training did not appear.  

At the halfway point of both training and test sessions, the mapping between imperative 

shape cues (square and triangle) and to-be executed actions (index abduction or little 

abduction) was reversed, and participants were explicitly informed of the switch. This feature 

of the design removed any correlation between the shape cues and actual or expected 

grating orientations across the experiment. 

We analysed BOLD activity evoked by grating stimuli (and their omission) to determine 

whether expectations shape visual brain activity even when previously acquired predictions 

are no longer reliable – that is, whether predictions are ‘stubborn’ (Yon, de Lange & Press, 

2019).  

fMRI acquisition and preprocessing. Images were acquired using a 3T Prisma MRI scanner 

(Siemens, Erlangen, Germany) using a 32-channel head coil. Functional images were 

acquired using an echo planar imaging (EPI) sequence (ascending slice acquisition, TR = 

3.36 s, TE1/TE2 = 30/30.25 MS, 48 slices, voxel resolution: 3 mm isotropic). Structural 

images were acquired using a magnetisation-prepared rapid gradient-echo (MP-RAGE) 

sequence (voxel resolution: 1mm isotropic).  

Images were preprocessed in SPM12. The first six volumes of each participant’s data in 

each scanning run were discarded to allow for T1 equilibration. All functional images were 

spatially realigned to the first image and temporally realigned to the 24th (middle) slice. The 

participant’s structural image was then coregistered to the mean functional scan.  No 

smoothing was applied to functional images. All analyses of functional activity were 

conducted in the participants’ native space (i.e., images were not transformed into a 

common space [e.g., MNI]), as the use of forward deformation fields involves implicitly 

smoothing the activity of multiple voxels, potentially limiting the sensitivity of multivoxel 

pattern analyses (though see Op de Beeck, 2010). 

Regions of interest:  Analyses were restricted to a region of interest (ROI) in the primary 

visual cortex (V1) of each participant, as this region contains neural populations sensitive to 

properties defining our visual stimuli (oriented gratings). An ROI in V1 was identified for each 

participant based on both anatomy and activity in two steps. In the first step, the boundaries 

of V1 were estimated using Freesurfer. This involved converting each participant’s structural 

image into a cortical surface, and using the morphology of cortical folds to estimate the 

anatomical location of V1 (Hinds et al., 2008).  

It is likely that each participant’s visual cortex contains only a subset of neurons tuned to the 

specific stimuli used in our experiment - and including irrelevant voxels can have a 

deleterious impact on decoding performance (‘the curse of dimensionality’, Bellman, 1961; 

Haynes, 2015). To restrict our analyses to only those voxels involved in representing our 

stimuli, in a second step we therefore identified V1 voxels which contained information 

distinguishing the stimuli used in our task. This was achieved using an independent 

searchlight decoding analysis (3 voxel radius) to identify voxels that could discriminate 

clockwise from counter-clockwise grating stimuli (decoding accuracy greater than chance 

[50%]) collapsed across experimental conditions. All subsequent analyses were conducted 

on these informative V1 voxels.  

Multivariate decoding analyses: Multivariate pattern analyses were implemented using the 

TDT toolbox (Hebart et al., 2015). In each analysis, a linear support vector machine (SVM) 

was trained to discriminate which visual grating (clockwise tilt or counter-clockwise tilt) was 

observed on a given trial from BOLD activity across voxels. The initial step in each analysis 
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was the specification of a general linear model (GLM) in SPM12, including a separate 

regressor for each stimulus type (e.g., a clockwise grating, a counter-clockwise grating, or a 

visual omission) in each of the expectation conditions (e.g., expected clockwise, expected 

counter-clockwise) in each scanning run. In conditions where grating stimuli were presented, 

regressors were modelled to the onset of the observed stimulus. On omission trials, the 

regressors were modelled to the same time point in the trial (i.e., when a stimulus would 

normally appear). Movement parameters were included as nuisance regressors, and all 

model regressors were convolved with the canonical haemodynamic response function. This 

GLM generated ten beta images (one for each scanning run) for each stimulus type 

(clockwise, counter-clockwise, omission) in each expectation condition that were used for 

subsequent decoding analyses. 

To test for the presence of multivariate ‘sharpening’, beta images were grouped into 

conditions where visual stimuli were presented and stimuli were either expected (e.g., expect 

clockwise, observed clockwise) or unexpected (e.g., expect clockwise, observe counter-

clockwise). This yielded 40 beta images – 20 where stimuli were expected (ten clockwise, 

ten counter-clockwise) and 20 where stimuli were unexpected (also ten of each stimulus). 

Separate SVMs were trained and tested on the 20 beta images in each expectation 

condition, using a leave-one-out cross-validation procedure. For each decoding step, 18 

images from nine scanning runs were used to estimate a linear discriminant function 

separating clockwise and counter-clockwise gratings, which was then applied to the 

remaining two beta images to classify them as either ‘clockwise’ or ‘counter-clockwise’. The 

procedure resulted in ten decoding steps, where each step reserved beta images from one 

of the ten scanning runs for classifier testing. The SVM’s accuracy was calculated as the 

proportion of correctly classified images across all decoding steps. Accuracy was then 

compared between expected and unexpected conditions to determine whether information 

about observed stimuli varied as a function of learned expectation – where higher decoding 

accuracies suggest more informative underlying patterns, and a higher signal-to-noise ratio.  

A separate multivariate decoding analysis was also conducted to determine whether 

information about the expected stimulus could be identified on trials where stimuli were 

omitted entirely (Aitken et al., 2020; Hindy et al., 2016; Kok et al., 2014; Smith & Muckli, 

2010). To this end, an SVM was trained on the 20 beta images capturing patterns of activity 

on omission trials – where participants could either expect a clockwise (ten) or counter-

clockwise (ten) stimulus based on prior learning. This SVM was trained to classify the 

expected stimulus rather than the actual stimulus – as no stimuli were presented on 

omission trials. The same run-wise cross-validation was used, with decoding accuracy 

reflecting the SVM’s accuracy in classifying which stimulus the participant would be 

expecting on this trial – given the movement they have just performed. Above chance 

decoding accuracy in this analysis would indicate that V1 contains reliable information about 

momentary expectations – a possible signature of top-down predictions being supplied to 

early visual cortex from other parts of the brain. 

Results 

Expectations influence perceptual decisions 

Reaction times and choice accuracies were compared on expected and unexpected trials 

during the test session to determine whether previously learned expectations influence 

perceptual performance. This was achieved via ANOVAs including factors of expectedness 

(expected, unexpected) and scanning run (1-10), allowing us to analyse effects of learned 

expectation and whether they change across the experiment as participants experience 

more and more events that undermine previously learned associations. Complementary 
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Bayes Factors (BFs) were calculated in JASP to clarify where nonsignificant results 

suggested support for the null hypothesis.  

Our analysis of decision accuracy revealed that observers made more accurate perceptual 

choices on expected – M (SEM) = .98 (.005) - compared to unexpected trials - M (SEM) = 

.96 (.005); F1,19 = 18.47, p<.001. This effect did not interact with scanning run – F9,171= 1.65, 

p= .103, BF01= 0.883 -  suggesting this behavioural advantage did not differ between early 

and late runs of the experiment (see Figure 3).  

Comparable analysis of median reaction times found that decisions were numerically faster 

on expected – M (SEM) = .66 secs (.013) - compared to unexpected trials – M (SEM) = .69 

secs (.019) - though this difference was nonsignificant (F1,19 = 3.16, p= .091, BF01= .004).  

Moreover, this analysis also found no interaction between this effect and scanning run (F9,171 

= 1.577, p= .126, BF01= 6.478) – a pattern which would have been expected if previously 

learned predictions influenced reaction times in early phases of the experiment, but these 

effects washed out in subsequent blocks (see Figure 3).  

 

Figure 3: Expectations continue to shape behaviour in later experimental blocks. (a) Observers 

made more accurate perceptual decisions for expected compared to unexpected events, and this 

behavioural advantage did not change systematically across scanning blocks. (b) Observers had 

numerically faster reaction times on expected trials too, but this effect was non-significant. There was 

also no sign of this behavioural pattern changing over blocks. Both patterns suggest that expectations 
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established outside of the scanner continued to shape behaviour,  even though expectations ceased 

to be reliable.  

 

The effects of expectation on behaviour identified here suggest that prior learning continued 

to shape perceptual decision making, even though ‘expected’ events were improbable in the 

new test context. Moreover, the absence of any interaction between expectation and 

scanning run suggests that any effects of expectation on perceptual choice operated in a 

similar way across the scanning session – and did not wane as participants experienced 

more and more events that violated previous learning.  

Expectations sharpen sensory representations in primary visual cortex 

Support vector machines (SVMs) were used to decode from V1 the stimuli participants 

observed (clockwise, counter-clockwise), separately on expected and unexpected trials. 

Comparing decoding accuracies from primary visual cortex revealed superior decoding of 

expected – M(SEM) = 59.8% (1.6) – compared to unexpected stimuli – M(SEM) = 54% (1.6), 

t19 = 2.79, p = .012, dz = .624. This decoding benefit did not change across the experimental 

runs – F9,171 = .699, p = .709, BF01 = 1829.47. This pattern of results is consistent with the 

idea that top-down predictions continue to alter activity in early visual areas even in 

environments where these expectations are no longer reliable.  

However, comparing decoding effects for scanning run from these cross-validated SVMs is a 

conservative way of investigating whether effects change across the scanning session. This 

is because even when the classifier is tested on images from Block 10, it has been trained 

on images from Blocks 1-9. Thus, expectation effects present in later scanning blocks could 

be potentially contaminated by expectation effects in earlier blocks. 

To further evaluate whether this expectation effect on decoding accuracy differed in early 

and late phases of the experiment, we therefore conducted additional analyses where 

classifiers were trained and tested exclusively on data from one half of the experiment. 

These SVMs were trained and tested using the same leave-one-out cross-validation 

procedure describe above, except our ‘early runs’ classifier was trained and tested on beta 

images from Runs 1-5 and our ‘late runs’ classifier on beta images from Runs 6-10. We then 

analysed decoding accuracies as a function of expectation (expected, unexpected) and 

experiment phase (early half, late half, see Figure 4d). 

This analysis also revealed no interaction between expectation and experiment phase – 

F1,19= .006, p = .940, BF01 = 8.346, suggesting that influences of expectation on neural 

decoding performance did not differ between early and late phases of the experiment. Such 

an interaction may have been expected if previously learned predictions exert a strong 

influence on neural representations in early phases of the experiment, with this influence 

waning in later phases as observers learn that past predictions no longer apply. Instead, 

these results are more consistent with the idea that predictions are ‘stubborn’ - continuing to 

operate despite evidence from the environment that old expectations are unlikely to come 

true.  
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Figure 4: Enhanced decoding of expected events in primary visual cortex.  (a) Illustration of 

primary visual cortex in native space of a single participant (b) Pattern classification accuracy across 

expectation conditions – revealing superior stimulus representations on expected trials. (c) When this 

decoding analysis is broken down by block, there is no discernible change in effects across scanning 

runs. (d) If decoding analyses are conducted separately on data from each experiment half, 

equivalent effects of expectation are found on decoding accuracies in early and late phases of the 

task.   

 

Enhanced multivariate representations are related to changes in univariate activity patterns 

These decoding analyses replicate previous reports of how expectations shape processing 

in visual cortex (Kok et al, 2012; Yon et al, 2018). Previously, we have found that 

improvements in decoding are associated with characteristic changes in univariate activity – 

such that expectations lead to a suppression of activity in voxels tuned away from the 

expected stimulus (Yon et al, 2018). Suppressing unexpected noise in this fashion provides 
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a plausible mechanism via which top-down predictions improve signal-to-noise across the 

sensory population, yielding better decoding when expectations are valid.  

To investigate this possibility, here we conducted an analogous analysis to Yon et al (2018) - 

analysing how expectations change stimulus-specific patterns of BOLD activity. First, a t-test 

comparing activity evoked by clockwise and counter-clockwise gratings was used to classify 

the stimulus preference of each V1 voxel in a binary fashion (t>0 = clockwise preferred, t<0 

= counter-clockwise preferred). This makes it possible to analyse stimulus-related activity for 

each voxel both as a function of expectations (e.g., was the stimulus expected or 

unexpected?) and preference (e.g., was the presented stimulus the one the voxel is most 

responsive to or not?). Analysing univariate BOLD activity (beta estimates) with a 2 x 2 

expectation-by-preference ANOVA revealed no main effect of expectation – F1,19 = .542, 

p=.471 – and interestingly, also no interaction between expectation and stimulus preference 

in the univariate signal – F1,19= .108, p=.746.   

While this interaction was not significant, we nonetheless conducted further exploratory 

analyses to establish whether the decoding effects seen in this experiment were related to 

qualitatively similar changes in univariate activity patterns as seen in our previous work – 

specifically, a suppression of activity in units tuned away from the expected stimulus. To 

evaluate this possibility, we calculated two participant-wise effect scores. The first score was 

the effect of expectation on multivariate decoding (expected decoding accuracy – 

unexpected decoding accuracy) where positive numbers entail superior decoding on 

expected trials. The second score was the effect of expectation on univariate activity in 

voxels tuned away from the presented stimulus (expected non-preferred BOLD – 

unexpected non-preferred BOLD). Negative numbers on this effect score indicate a relative 

suppression of activity in voxels tuned to stimuli that are not currently expected. Correlating 

these two effects across participants revealed a significant negative relationship – r20 = -

.492, p=.028 – such that those participants who showed the greatest multivariate decoding 

advantage for expected signals also showed the greatest univariate suppression in units 

tuned to unexpected events (see Fig 5). The same effect holds if calculating a non-

parametric correlation – T20  = -.369, p = .032. This relationship also holds if we compute 

each participant’s univariate interaction effect between expectation and stimulus preference 

– i.e., (expected preferred BOLD – unexpected preferred BOLD) - (expected non-preferred 

BOLD – unexpected non-preferred BOLD) - where higher numbers indicate relatively 

stronger suppression of activity in voxels tuned away from (rather than towards) expected 

stimuli. Correlating this interaction term with each participant’s multivariate decoding effect 

also revealed a significant relationship - r20 = .475, p=.034. These patterns suggest that the 

underlying mechanisms at play are similar to those found in our previous work, even if the 

univariate patterns were not present at the group level.  
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Figure 5: Superior decoding of expected events is related to suppression of activity in voxels 

tuned to the unexpected. The scatterplot displays the relationship between univariate and 

multivariate effects of expectation in V1. The y axis displays differences in multivariate decoding for 

expected and unexpected – where positive numbers indicate superior classification of expected 

stimuli. The x axis displays differences in univariate BOLD activity (beta values) between expected 

and unexpected trials in V1 voxels tuned away from the stimulus presented on that trial.  Here, more 

negative numbers indicate a greater relative suppression of activity in voxels tuned to unexpected 

stimuli.  

 

No reliable information about expectations when stimuli are omitted 

Alongside stimulus-related activity, SVMs were also used to quantify information about the 

identity of stimuli that were expected but no signal was presented (omissions trials).  If top-

down predictions in V1 contain reliable information about expected stimuli, even when these 

are not presented, this analysis would reveal significantly above-chance decoding accuracy 

(Allefeld et al., 2016). However, one sample t-tests comparing decoding accuracy to chance 

(50%) revealed no reliable information about expected but omitted stimuli in V1 – t19 = .311, 

p = .759. 

Discussion 

Predictive models propose that we use prior experience to optimise perception of the here 

and now (Bar, 2004; de Lange et al., 2018). However, predictive perceptual systems in a 

changeable world face a challenge in determining how far perceptual inferences about the 

present should be guided by predictions from the past (O’Reilly, 2013; Yon, 2021). Models of 

learning suggest that this problem can be solved by estimating uncertainty in our predictions 

and our environments, but modern theories of prediction often incorporate the idea that 

expectations can be particularly ‘stubborn’ – brought to bear in new situations despite 

evidence that the world has changed (Yon et al., 2019).  

Here we tested whether such ‘stubborn predictions’ are deployed in the visual brain, looking 

for signatures of predictive influence identified in previous work – but in novel conditions 

where the ‘expected’ is more likely not to be presented. Multivariate decoding analyses 

revealed that expectations enhanced the quality of sensory representations in primary visual 

cortex. This pattern is what is predicted by sharpening models of top-down expectation, 
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which assume that expectation signals increase the signal-to-noise ratio of sensory 

representations (de Lange et al, 2018; Press & Yon, 2019). At the group level, we did not 

find patterns in the univariate analyses like those we have identified in previous work, of 

relatively lower signal for expected events in voxels tuned to unexpected events (Kok et al., 

2012; Yon et al., 2018). However, across participants we did see that enhancements of 

multivariate stimulus information on ‘expected’ trials were associated with a relative 

suppression of univariate signals in voxels tuned to unexpected events. Though more work 

is needed to establish the precise nature of the underlying mechanisms (e.g., probing 

multiple grating orientations to estimate population tuning curves), these findings are broadly 

in line with the findings from our earlier work.  

The present study extends previous work by demonstrating that these expectation signals 

continue to reshape activity in these neural populations even when ‘expected’ events occur 

infrequently, and observers experience environmental statistics which strongly suggest that 

their old expectations should no longer apply. There was no sign of a decline in these effects 

as participants experienced more events inconsistent with previous learning.  

One possible explanation for these findings is that human perceivers do not estimate the 

reliability of their predictions or the (in)stability of their environments in ways that normative 

learning models suggest that they should. For example, hierarchical learning models 

suppose that we can optimise learning about the relationships between events if we also 

estimate the rate at which our environment changes – learning more from new evidence 

when we detect that our environment is beginning to shift (Behrens et al., 2007; Yu & Dayan, 

2005). If our participants approached their task as an optimal learner might, the presence of 

unexpected and omitted visual outcomes should induce changes in meta-level beliefs about 

the stability of the environment, driving new learning to update (and abolish) old, 

inappropriate predictions. Contrary to this possible norm, we find that perceivers continue to 

deploy top-down predictions even when environmental contingencies mean that ‘expected’ 

events do not occur most of the time. An undue reliance on old predictions could arise if 

agents estimate the stability of their environment (and the reliability of their predictions) 

incorrectly – believing that the world is more stable than it really is, and thus that 

experiences from the past are more relevant to interpreting the present than they really are.  

Exaggerated beliefs in the stability of our environments could be a general suboptimality in 

prediction and learning mechanisms that has been hitherto underappreciated. This could 

stem from general computational limitations in bounded agents like us: imprecise learning 

about the reliability of our predictions could stem from the fact that meta-level quantities (like 

volatility) are naturally difficult to estimate, because tracking the stability of our environment 

over time requires integrating over many more datapoints than tracking what’s happening in 

the here and now (Yon & Frith, 2021). Given this computational constraint, it seems possible  

that observers form ‘stubborn predictions’ because their initial belief about the stability of the 

environment (established through perfectly contingent training) is not updated sufficiently 

quickly to drive (un)learning about perceptual predictions.   

However, another possibility is that agents do not generally struggle to estimate 

environmental volatility, but are prone to specific biases when estimating the predictive 

power of their actions. Recent studies in reinforcement learning have suggested that when 

agents experience identical schedules of variable wins and losses, they are biased to 

perceive environments as more stable when rewards are predicted by their actions rather 

than equally predictive sensory cues (Weiss et al., 2021). Such effects could reflect a high-

level belief about volatility and action – meaning that we expect the world to stabilise when 

we interact with it. Previously, we have argued that expectation mechanisms which use 
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sensory context or executed actions to predict upcoming events operate in functionally 

equivalent ways (Press et al., 2020) – and comparable influences of both kinds of prediction 

are observed in brain and behaviour. However, it remains possible that potential differences 

in volatility estimation between active and passive prediction are important for understanding 

how different kinds of expectation guide perceptual inference – since it may generally be true 

that mappings between action and outcome tend to be more reliable than mappings between 

different sensory cues. Armed with these background beliefs, agents may frequently mistake 

spurious associations between action and outcome for genuine contingencies (Yon et al., 

2020).  

These neuroimaging findings provide an interesting complement to recent work using similar 

techniques to study behavioural and computational consequences of prediction on 

perception as predictive relationships degrade (Thomas et al., 2022). This work reveals that 

when perfect predictive associations are replaced with weaker associations, prior learning 

can continue to bias perceptual decisions. Moreover, computational modelling suggests that 

such biases arise via altering both the starting points and rates of sensory evidence 

accumulation (Ratcliff et al., 2016; Yon et al., 2021; see also Wyart et al., 2012). These 

effects are compatible with the kind of neural mechanism we observe here – where activity 

in the sensory brain is weighted towards predicted outcomes, yielding ‘sharper’ 

representations of expected events. 

There is however one possible discrepancy between this behavioural work and our present 

neuroimaging results. Here, we find evidence that perceptual predictions are retained in 

environments where previously expected events become objectively improbable (33% of 

trials), while Thomas et al. (2022) find that effects of expectation are completely abolished 

when predictive contingencies disappear (i.e. when ‘expected’ and ‘unexpected’  events are 

equiprobable in a subsequent test session [50%]).  A possible reason for this difference is 

that participants in the present study received more training than those in Thomas et al. 

(2022), as well as being presented with a longer ‘refresher’ of the learned contingencies 

before disruption. Differences in this kind of experience may alter inferences agents make 

about the stability of their environments, and the stubbornness of resulting predictions. It is 

therefore important for future work to establish the boundary conditions of these phenomena: 

identifying when and why predictions are rapidly updated, and when they are stubbornly 

retained. 

While we found evidence that stubborn predictions shape visual representations of expected 

and unexpected events, we did not find evidence for expectation signals in V1 when events 

were omitted. Such effects have been observed in multiple previous studies (e.g., Aitken et 

al., 2020; Hindy et al., 2016; Kok et al., 2014) when expectations are probed while 

probabilistic knowledge remains valid. Thus, it is possible that we did not observe any 

reliable expectation-related activity on omission trials in our task because predictive 

mappings were not sufficiently strong. However, an alternate possibility is that multivariate 

decoding is not the best tool to identify such signals. Other attempts to reveal ‘templates’ of 

expected but omitted stimuli have instead quantified the univariate activity of units that prefer 

the expected stimulus – based on independent data to establish voxel stimulus preferences 

separate from expectations. We did not include similar independent ‘stimulus only’ runs in 

the present experiment, and this may be a promising avenue for future work.  

In conclusion, we have found that stimulus representations in primary visual cortex continue 

to be ‘sharpened’ in line with top-down expectations, even when the environment signals 

that ‘expected’ events are no longer likely. Evidence that our perceptual systems form such 

‘stubborn predictions’ reveals important ways that learning and prediction in the human brain 
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may depart from principles laid down in optimal models – possibly due to intrinsic constraints 

on our ability to estimate different kinds of uncertainty. Understanding these bounds on 

human information processing will be critical for understanding the symbiotic relationship 

between learning and perception, and for determining when our predictive models improve 

and impair our ability to make sense of the world around us.   
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