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Abstract 
The Covid-19 outbreak has resulted in new patterns of 
home occupancy, the implications of which for indoor air 
quality (IAQ) and energy use are not well-known. In this 
context, the present study investigates 8 flats in London 
to uncover if during a lockdown, (a) IAQ in the monitored 
flats deteriorated, (b) the patterns of window operation by 
occupants changed, and (c) more effective ventilation 
patterns could enhance IAQ without significant increases 
in heating energy demand. To this end, one-year’s worth 
of monitored data on indoor and outdoor environment 
along with occupant use of windows has been used to 
analyse the impact of lockdown on IAQ. Moreover, using 
on-site CO2 data, monitored occupancy and operation of 
windows, the team has calibrated a thermal performance 
model of one of the flats to investigate the implications of 
alternative ventilation strategies. The results suggest that 
despite the extended occupancy during lockdown, 
occupants relied less on natural ventilation, which led to 
significantly higher CO2 and PM10 concentrations. 
However, simple natural ventilation patterns or use of 
mechanical ventilation with heat recovery proves to be 
very effective to maintain acceptable IAQ. 

Key Innovations 
• Use of on-site CO2 and window operation data 

to calibrate building energy models; 
• Use of building performance simulation and 

novel metrics to assess occupant exposure to 
carbon dioxide. 

Practical Implications 
• Providing evidence on the deterioration of 

indoor air quality resulting from homeworking / 
imposed lockdowns. 

• Recommending specific ventilation patterns to 
maintain acceptable indoor air quality despite 
the extended occupancy hours at home. 

Introduction 
The Covid-19 lockdowns across the globe mean that 
people spend much more time in their homes, where 
pollutant concentrations including particulate matter 
(PM), carbon monoxide (CO), carbon dioxide (CO2), 
ozone (O3) and volatile organic compounds (VOCs) can 
be several times higher than outdoor air, indicating a 
significant potential for detrimental health impacts.  

Specifically, concentrations of CO2 in occupied indoor 
spaces are often higher than concentrations found 
outdoors because people produce and exhale CO2. 
Declining air exchange rates per person increase the 
magnitude of this indoor–outdoor difference in CO2 
concentration allowing for peak indoor CO2 
concentrations above outdoor levels to be used as rough 
indicators for outdoor-air ventilation rate per occupant 
(Persily and Dols 1990).  
Direct health effects of CO2 on humans have been 
reported at concentrations much higher than those found 
in normal indoor settings. For example, Lipsett et al. 
(1994) suggest that CO2 concentrations higher than 
20,000 ppm cause changes in breathing. According to 
epidemiologic and intervention studies, higher levels of 
CO2 within the range found in normal indoor settings (i.e., 
up to 5,000 ppm), are associated with perceptions of poor 
air quality, increased prevalence of acute health 
symptoms (e.g. headache, poorer work performance), and 
increased absenteeism (e.g., Erdmann and Apte 2004; 
Federspiel et al. 2004; Milton et al. 2000). It is debated 
whether these associations exist because the higher indoor 
CO2 concentrations are correlated with higher levels of 
other indoor-generated pollutants which are the causative 
agents of the adverse effects (Mudarri 1997; Persily 
1997). Yet, as suggested by Chatzidiakou et al. (2015), 
CO2 concentration can be used as a good proxy for overall 
IAQ, with the exception of traffic-related pollutants.  
Moreover, other studies have underlined the direct 
negative impacts of CO2 on occupants, in the range of 
concentrations typically found in buildings. For example, 
Kajtar et al. (2012) reported that controlled human 
exposures to CO2 between 2000 ppm and 5000 ppm, with 
ventilation rates unchanged, were positively associated 
with perception of wellbeing and performance on some 
reading tasks. More recently, a study by Xu et al. (2020) 
found that sleep quality was negatively affected by 
increasing concentrations of CO2 up to 3000 ppm. 
Another study found that seven of nine aspects of work 
performance were significantly and negatively impacted 
by a CO2 level of 2500 ppm (Satish et al. 2012). 
Arguably, the above-mentioned studies have become 
especially relevant as the extraordinary circumstances 
associated with the Covid-19 outbreak has resulted in 
unprecedented patterns of household occupancy. If people 
continue to spend more time at home following the 2020 
global pandemic, it will be more critical to ensure that 



IAQ in houses meets the recommended standards without 
excessive energy use. To this end, the present study 
benefits from one-year’s worth of monitored data to 
analyse IAQ in eight flats prior to and during an imposed 
lockdown in London. Moreover, the study deploys 
calibrated building performance simulation to investigate 
the potential of different ventilation strategies. For the 
purpose of the present paper, the monitoring-based study 
explores the concentrations of CO2, PM10 and PM2.5 and 
the simulation-based tests focus on CO2 concentration as 
a proxy for IAQ. 

Method 
Monitored data 
During the first enforced lockdown in London in spring 
2020, the authors took advantage of remote access to a set 
of monitoring devices in eight occupied flats in East 
London, which were part of an investigation since before 
the outbreak. Thus, the study could use one-year’s worth 
of monitored data collected from July 2019 to June 2020 
to reveal the impact of the lockdown on IAQ and patterns 
of opening and closing windows by occupants. The 
dataset included solar irradiance, wind speed and wind 
direction, indoor and outdoor air temperature, relative 
humidity, concentrations of CO2, PM10 and PM2.5 along 
with occupancy state in bedrooms and living rooms (as 
detected by PIR sensors) and operation of windows (as 
captured by contact sensors) at 5-minute intervals. 
The data analysis examined the impact of the lockdown at 
two scales. The first fortnight of lockdown was compared 
with the fortnight prior, to quantify the immediate impact 
of the lockdown. Then, to get a broader understanding of 
the overall effect, a 3 month period mid-lockdown has 
been compared with a 3-month period in the previous year 
with similar weather conditions.  

The calibrated building energy model 
The authors modelled one of the monitored flats in the 
building energy simulation tool EnergyPlus 9.4. This is a 
50.8 m2 one-bedroom flat with one-sided ventilation 
through two east-facing windows in the bedroom and 
living room (see Figure 1). The building envelope is 
highly insulated with U-Values of 0.18, 0.92, 0.13 and 
0.12 for the walls, windows, ceilings and floors 
respectively. The building also employs mechanical 
ventilation with heat recovery (MVHR) that operates in 
the heating season. 
The energy model comprises of five thermal zones 
including bedroom, living room, store, corridor and 
bathroom. The airflow through the windows and across 
the zones is simulated using the multi-zone airflow 
network model of EnergyPlus. The walls, floor and 
ceiling, adjacent to the neighbouring flats, are assumed to 
be adiabatic. 
Whereas previous efforts have predominantly relied on 
energy use data or monitored indoor temperatures to 
calibrate building thermal performance models (e.g., 
Tahmasebi & Mahdavi 2013; Jain et al. 2020), the present 
study uses monitored CO2 concentrations to calibrate a 
building model tailored for indoor air quality assessments. 

This poses further challenges for the calibration process, 
as the building model’s reliability depends largely on the 
validity of the rather complex air flow network definition 
and the window operation assumptions. Besides, to the 
authors’ knowledge, previous research has not established 
targets for the accuracy of calibrated building thermal 
performance models for IAQ predictions.  
Specifically, the following steps were carried out to 
prepare an initial thermal performance model of the flat 
for calibration: 

• The calibration period was set to 15 July to 31 
October 2019, during which time the MVHR 
system was not operating in the flat.  

• Thermal properties of the building fabric 
elements and internal heat gain sources (other 
than occupants) were defined based on the best 
information available to the modellers. 

• Monitored data on occupancy, window states 
and on-site outdoor CO2 concentration from the 
calibration period were incorporated into the 
EnergyPlus model to reduce the number of 
unknown parameters in the underdetermined 
calibration problem.  

• Hourly outdoor environmental data from the 
same period (including air temperature, air 
relative humidity, global, diffuse and direct 
irradiance along with wind speed and direction) 
were deployed to create real-year weather data 
for the purpose of model calibration using 
Elements software tool.  

To produce a more reliable building model, the key input 
parameters governing the air flow model and CO2 
generation were subjected to calibration. These were 
opening factor width for the open state of windows and 
interior doors, air mass flow through closed openings, 
occupants’ activity level and CO2 generation rate.  
 

 
Figure 1: The floor plan of the flat and its openings. 



Subsequently, an iterative process of minimizing the 
errors in the predicted CO2 concentrations was conducted. 
Two error metrics, namely Mean Bias Error (MBE) and 
Root Mean Square Error (RMSE) captured the model 
predictive potential in the calibration period. The authors 
also largely benefitted from visualizations of model 
predictions in the process, so that the resulting calibrated 
model could better predict the patterns of CO2 decay and 
build-up in different rooms. It should be noted that, in this 
process the effective open area of windows is represented 
by the parameter called width factor for open state, while 
the height factor for open state is assumed to be 1. 
Figure 2 illustrates a 2-day section of the estimated CO2 
concentrations in the living room obtained from the initial 
and calibrated building models compared with the 
monitored concentrations. Table 1 lists the calibration 

variables and their values in the initial and calibrated 
models and Table 2 gives the obtained error metrics for 
the estimated CO2 concentrations by the initial and 
calibrated models in the bedroom and the living room.  
In the absence of established accuracy targets for CO2 
concentration predictions (and without testing the model 
performance in a separate validation period), the error 
metrics seem to suggest that the calibration process has 
enhanced the model’s reliability in this regard. Given that 
the current study incorporates monitored data on the 
operation of windows, in authors’ view, the key parameter 
uncertainties contributing to the remaining discrepancy 
are the number of occupants in each room, wind pressure 
coefficients, as well as the effective opening area in each 
incidence of window opening. 

 

 
Figure 2: A two-day section of predicted living room CO2 concentrations by the 

initial and calibrated building energy models in comparison with the measured values.  

 
Table 1: Model inputs subjected to calibration. 

Input parameters Initial 
model 

Calibrated 
model 

Bedroom closed window air 
mass flow coefficient [kg/s.m] 0.001 0.0005 

Living room closed window air 
mass flow coefficient [kg/s.m] 0.001 0.02 

Bedroom window width factor 
for open state [-] 0.05 1 

Living room window width 
factor for open state [-] 0.05 0.6 

Corridor door width factor for 
open state [-] 0.025 1 

Living room occupant activity 
level [W/person] 99 115 

Occupant carbon dioxide 
generation rate [m3/s-W] 3.82E-08 6.00E-08 

 

Table 2: Errors from the initial and calibrated models. 

Error metrics Initial 
model 

Calibrated 
model 

Bedroom MBE [ppm] -245 60 

Living room MBE [ppm] -86 -42 

Bedroom RMSE [ppm] 511 318 

Living room RMSE [ppm] 270 189 
 
Simulation test cases 
Using the calibrated thermal performance model, the 
authors examined a number of occupancy and ventilation 
scenarios to get a better picture of the impact of lockdown 
on IAQ and the mitigating potential of different 
ventilation strategies. To this end, two occupancy patterns 
were considered, namely a common home occupancy 
schedule before the outbreak (referred to as normal 
occupancy), and a constant full occupancy (referred to as 
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lockdown occupancy). In terms of ventilation, a worst-
case scenario of no window operation, two effective 
patterns of natural ventilation in free-running and heating 
seasons, and use of MVHR system were studied. Thus, 
the simulation-based study involved the following 
simulation test cases: 

1. Non-heating season, normal occupancy, no 
window operation or mechanical ventilation 

2. Non-heating season, lockdown occupancy, no 
window operation or mechanical ventilation 

3. Non-heating season, lockdown occupancy, 
bedroom window open for 1 hour in morning, 
living room window open in waking hours 

4. Heating season, normal occupancy, no window 
operation or mechanical ventilation 

5. Heating season, lockdown occupancy, no 
window operation or mechanical ventilation 

6. Heating season, lockdown occupancy, 1 to 2 
windows open for 15 min every 4 waking hours 

7. Heating season, lockdown occupancy, MVHR 
providing 7 litre/s.person outdoor air.  

Performance metrics 
To capture the occupants’ exposure to high levels of CO2 
concentration, the following building performance 
metrics were obtained for each simulation test: 

• Peak CO2 concentration in each room [ppm] 
• Sleeping time CO2 above 2500 [%]: This is the 

percentage of sleeping hours in the bedroom 
with CO2 concentrations above 2500 ppm. 

• Active time CO2 above 2500 [%]: This is the 
percentage of occupied hours in the living room 
with CO2 concentrations above 2500 ppm. 

Furthermore, to study the implications of different 
ventilation strategies for building energy use, the building 
heating energy load in kWh/m2 was estimated for each 
heating season test case. A heating setpoint of 22 °C has 
been used when calculating the heating energy load. 

Results and discussion 
Monitored air quality and window operation 
The monitored data – not surprisingly – revealed a 
substantial increase of occupancy levels in the studied 
flats especially on weekdays, as shown in Figure 3. 
Nonetheless, rather unexpectedly, occupants have relied 
less on natural ventilation (Figure 4). Comparing 3-month 
periods before and during lockdown, the data suggest that 
occupants have opened the windows less during the 
lockdown than before it. While this can be partly 
explained by the slightly higher outdoor temperatures in 
the selected pre-lockdown period, the data from the 
fortnights around the lockdown (with very similar 
weather conditions) confirms the decreased level of night-
time natural ventilation by occupants. The outcome of this 
higher occupancy and lower natural ventilation can be 
clearly seen in Figure 5, which shows that the living room 
median CO2 concentration has increased by more than 

200 ppm at specific hours. Figure 6 also reveals that, 
despite the lower outdoor PM10 concentrations on 
weekdays during the lockdown, indoor PM10 
concentrations rose on weekdays (as well as on 
weekends) in this period. This can be explained by the 
questionaries filled by the occupants, which reported 
more cooking incidences during lockdown, and in case of 
one participant, an increase in the use of candles.  

Simulation-based investigations 
Firstly, considering the worst-case scenarios, the 
simulation results suggest that the extended occupancy 
hours during a lockdown can significantly increase 
occupants’ exposure to high CO2 concentrations (see 
Table 3, tests number 1, 2, 4 and 5). For example, during 
a lockdown in the heating season, occupants could face 
CO2 concentrations of above 2500 ppm for almost 90% of 
the time that they spend in the living room, compared to 
only 33% with a normal occupancy pattern. As illustrated 
in Figure 7 and Figure 8, the impact of lockdown 
occupancy on CO2 levels can be seen clearly in both the 
living room and bedroom, even though the bedroom 
occupancy patterns are assumed to be identical in the 
normal and lockdown scenarios. 
Secondly, as can be seen in Table 3 and Figure 9, the 
selected natural ventilation strategy for a lockdown during 
a non-heating season (test number 3) seems to be very 
effective to maintain low levels of CO2. In the living 
room, the CO2 concentrations never exceed the 2500 ppm 
threshold. In the bedroom, this happens for less than 2 
percent of occupied time, even though the windows in 
both the bedroom and living room are assumed to be 
closed during the sleeping time.  
Thirdly, although the natural ventilation pattern suggested 
for the heating season relies on much shorter window 
openings (test number 6), it manages to noticeably reduce 
the CO2 levels (see Table 3 and Figure 10). That is, the 
living room CO2 concentrations never reach the threshold 
of 2500 ppm and the bedroom CO2 levels exceed this level 
for only 29% of sleeping hours. However, unsurprisingly, 
while this window operation during the heating season 
improves IAQ considerably, there is also an adverse effect 
on heating demand for this highly-insulated flat (a heating 
load of 6.55 kWh/m2 for months of January and February 
compared to that of 0.95 kWh/m2 when windows 
remained closed in these months). Needless to say, this 
challenging trade-off between IAQ and heating energy 
demand, is one of the key arguments for greater use of 
mechanical ventilation with heat recovery. As can be seen 
in Table 3 and Figure 11, test number 7 demonstrates that 
a MHVR system (with a sensible heat recovery 
effectiveness of 0.75 and providing 7 litre/s.person 
outdoor air), can maintain the CO2 concentrations in both 
rooms below 1400 ppm. It also reduces the heating 
demand by more than 40% compared to the solution based 
on natural ventilation in test number 6.  
 
 
 



 
Figure 3: Mean living room occupancy state in two 3-month periods prior to and during lockdown. 

 

 
Figure 4: Mean living room window state in two 3-month periods prior to and during lockdown. 

 

 
Figure 5: Median living room CO2 concentration in two 3-month periods prior to and during lockdown. 

 

 
Figure 6: Median indoor and outdoor PM10 in two 3-month periods prior to and during lockdown.  
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Table 3. The simulation tests and the obtained IAQ and thermal performance metrics. 

Test 
no. 

Run 
period 

Occupancy 
pattern 

Window 
opening pattern 

MVHR 
[l/s.pers] 

Bedroom 
peak 
CO2 
conc. 
[ppm] 

Living 
room 
peak 
CO2 
conc. 
[ppm] 

Sleeping 
time 

above 
2500 
ppm 
[%] 

Active 
time 

above 
2500 
ppm 
[%] 

Heating 
Load 

[kWh/m2] 

1 

Apr - May 

Normal No window opening - 4942 4272 60.5 20.0 - 

2 
Lockdown 

No window opening - 5195 5038 78.3 65.1 - 

3 Bedroom win. open 1 hour in morning 
Living room win. open in waking ours - 2715 1478 1.6 0.0 - 

4 

Jan - Feb 

Normal No window opening - 4540 3552 64.6 32.7 1.96 

5 

Lockdown 

No window opening - 5236 4643 86.4 89.9 0.95 

6 1 to 2 windows open for 
15 minutes every 4 waking hours - 3090 2024 28.8 0.0 6.55 

7 No window opening 7.0 1250 1326 0.0 0.0 3.79 

 

 
Figure 7: A 4-day section of simulation tests 1 &2 –Worst-case CO2 concentration in non-heating season without 

window operation and mechanical ventilation for normal and lockdown occupancy patterns. 
 

 
Figure 8: A 4-day section of simulation tests 4 &5 –Worst-case CO2 concentration in heating season without window 

operation and mechanical ventilation for normal and lockdown occupancy patterns. 
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Figure 9: A 4-day section of simulation test 3 – Predicted CO2 concentration in non-heating season with lockdown 

occupancy pattern and opening of 1 to 2 windows during the day. 
 

 
Figure 10: A 4-day section of simulation test 6 – Predicted CO2 concentration in heating season with lockdown 

occupancy pattern and daytime opening of 1 to 2 windows for periods of 15 min every 4 hours. 
 

 
Figure 11: A 4-day section of simulation test 7 – Predicted CO2 concentration in heating season with lockdown 

occupancy pattern and operation of MVHR delivering 7 litre/s.person outdoor air. 
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Conclusion 
This paper has shown that with the changing home 
occupancy patterns after the Covid-19 outbreak, the 
indoor pollutant concentrations can rise significantly.  
However, the natural ventilation strategies tested on a flat 
with one-sided openings, and deploying MVHR proved to 
be very effective to maintain acceptable IAQ at home. 
Therefore, it is particularly important that the households 
are made aware of the benefits of sufficient air exchange 
rates and the environmental control possibilities at their 
disposal to enhance IAQ. The research team will further 
investigate the observed interactions of occupants with 
windows and the associated driving factors to arrive at 
tailored models of window operation for post-pandemic 
residential buildings. 
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