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 45 
Abstract 46 
 47 
North America has seen a massive increase in cropland use since 1800, accompanied 48 
more recently by the intensification of agricultural practices. Through genome analysis of 49 
present-day and historical samples spanning environments over the last two centuries, we 50 
studied the impact of these changes in farming on the extent and tempo of evolution 51 
across the native range of common waterhemp (Amaranthus tuberculatus), a now 52 
pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely 53 
observed in the wild, with striking shifts in allele frequency trajectories since agricultural 54 
intensification in the 1960s. An evolutionary response to this extreme selection was 55 
facilitated by a concurrent human-mediated range shift. By reshaping genome-wide 56 
diversity across the landscape, agriculture has driven the success of this weed in the 21st-57 
century. 58 
 59 
One Sentence Summary 60 
 61 
Modern agriculture has shaped the evolution of a native plant into a weed by driving 62 
range shifts and strengths of selection rarely observed in the wild. 63 
 64 
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Main text 90 
 91 
Agricultural practices across North America have rapidly intensified over the last two 92 
centuries, through cropland expansion (1), monoculture plantings (2, 3), and increased 93 
chemical inputs (4, 5). Since the beginning of the 1800s, cropland usage has expanded 94 
from 8 million to 200 million hectares in Canada and the United States alone (1). Since 95 
the mid 1900’s, development of new crop varieties–including high-yield and herbicide-96 
resistant wheat, corn, and soy (6, 7)—have greatly improved the efficiency of food 97 
production in all farming sectors. Combined with increased reliance on pesticides, 98 
fertilizers, irrigation, and large-scale mechanization, this global transformation is oft-99 
referenced as the agricultural “Green Revolution” (8–10). Pesticide effectiveness, 100 
however, has been limited by the evolution of resistance across numerous pest species 101 
(11–14). While technological innovation for efficient food production has risen with 102 
increasing global food demands, the concomitant landscape conversion has become one 103 
of the foremost drivers of global biodiversity loss (15).  104 
 105 
Species that have managed to survive, and even thrive, in the face of such extreme 106 
environmental change provide remarkable examples of rapid adaptation on contemporary 107 
timescales and illustrate the evolutionary consequences of anthropogenic change. One 108 
such species is common waterhemp (Amaranthus tuberculatus), an agricultural weed that 109 
is native to North America and persists in large part in natural, riparian habitats (16, 17), 110 
providing a unique opportunity to investigate the timescale and extent of contemporary 111 
agricultural adaptation. The genetic changes underlying weediness are particularly 112 
important to understand in A. tuberculatus, as it has recently become one of the most 113 
problematic agricultural weeds in North America due to its widespread adaptation to 114 
herbicides, persistence in fields across seasons, and strong ability to compete with both 115 
soy and corn (18, 19). Determining the role of newly arisen mutations, genetic variants 116 
predating the onset of environmental change (20, 21), migration across the range (22), 117 
and their interactions (e.g. (23, 24)), will inform on the temporal and spatial scales at 118 
which contemporary adaptation occurs and management strategies should be employed. 119 
 120 
To understand how changing agricultural practices have shaped the success of a 121 
ubiquitous weed, we analyze genomic data from contemporary paired natural and 122 
agricultural populations alongside historical herbarium samples collected from 1828 until 123 
2011 (Fig 1). With this design, we identify agriculturally adaptive alleles (i.e., those that 124 
occur at consistently higher frequencies in agricultural than in nearby natural sites), track 125 
their frequencies across nearly two centuries, and link the tempo of weed adaptation to 126 
demographic changes and key cultural shifts in modern agriculture.  127 
 128 
 129 
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130 
Fig 1.  Sequenced waterhemp collections through space and time. A) Map of 17 131 
contemporary paired natural-agricultural populations [n=187, collected and sequenced in Kreiner 132 
et al., 2021 (25)], along with 108 novel sequenced herbarium specimens dating back to 1828 133 
collected across three environment types (Ag=Agricultural, Nat=Natural, Dist=Disturbed; 134 
metadata provided in Data S2). B) Distribution of sequenced herbarium samples through time.  135 

 136 
 137 
The genome-wide signatures of agricultural adaptation 138 
 139 
To find alleles favored under current farming practices, we looked for those that were 140 
consistently overrepresented in extant populations collected in agricultural habitats 141 
compared to neighboring riparian (“natural”) habitats (25) using Cochran–Mantel–142 
Haenszel (CMH) tests (Fig 2A). Alleles associated with agricultural environments (the 143 
0.1% of SNPs with lowest CMH p-values; n=7264) are significantly enriched for 29 GO-144 
biological process terms related to growth and development, reproduction, cellular 145 
metabolic processes, and responses to abiotic, endogenous and external stimuli, including 146 
response to chemicals (Table S1). The importance of chemical inputs in shaping weed 147 
agricultural adaptation is clear in that the most significant agriculturally associated SNP 148 
(raw p-value = 8.551x10-11, [FDR corrected] q-value = 0.00062) falls just 80 kb outside 149 
the gene protoporphyrinogen oxidase (PPO)—the target of PPO-inhibiting herbicides 150 
(Fig 2B). PPO herbicides were widely used in the 1990s, but have seen a recent 151 
resurgence to control and slow the spread of glyphosate resistant weeds (26, 27). Other 152 



 

4 

genes with the strongest agricultural associations include ACO1, which has been shown 153 
to confer oxidative stress tolerance (28); HB13, involved in pollen viability (29) as well 154 
as drought and salt tolerance (30); PME3, involved in growth via germination timing 155 
(31); CAM1, a regulator of senescence in response to stress (32, 33); and both CRY2 and 156 
CPD, two key regulators of photomorphogenesis and flowering via brassinosteroid 157 
signaling (34–37) (Table S2). Natural-vs-agricultural FST (allele frequency 158 
differentiation) is highly correlated with the CMH test statistic (Pearson’s r = 0.987), 159 
with 78% [98%] of CMH focal SNPs overlapping with the top 0.01% [0.1%] of FST hits 160 
(Fig S1). Despite negligible genome-wide differentiation among environments 161 
suggesting widespread gene flow (FST = 0.0008; with even lower mean FST between 162 
paired sites = -0.0029; Fig 2C), our results suggest that strong antagonistic selection acts 163 
to maintain spatial differentiation for particular alleles—403 SNPs with a CMH q-value < 164 
0.10. 165 
 166 
To further investigate the extent to which herbicides shape adaptation to agriculture, we 167 
assayed patterns of environmental differentiation at known resistance variants. Eight such 168 
alleles were present in contemporary samples, only six of which were common (Table 169 
S3): a deletion of codon 210 within PPO (38), a copy number amplification and a non-170 
synonymous mutation within 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) 171 
conferring resistance to glyphosate herbicides (39), and 3 separate non-synonymous 172 
mutations within acetolactate synthase (ALS) conferring resistance to ALS-inhibiting 173 
herbicides (19). While these resistance alleles were at intermediate frequency in 174 
agricultural populations, ranging from 0.08 to 0.35, they tended to be rarer but still 175 
frequent in natural populations, ranging from 0.04 to 0.22 (Fig 2C). Three out of six 176 
common resistance alleles show significant allele frequency differences among 177 
environments (EPSPSamp: F = 8.74, p = 0.006; PPO210: F = 40.98; p = 1.25e-09; 178 
ALS574: F = 6.28; p = 0.013), two of which represent among the strongest signals of 179 
differentiation genome-wide. Natural-vs-agricultural FST at the PPO210 deletion, 0.21, is 180 
higher than anywhere else in the genome and is even stronger when calculated within 181 
population pairs (FST= 0.27) (Fig 2C). Similarly, the EPSPS amplification is ranked 20th 182 
among genome-wide biallelic FST values, 0.14 (within-pair FST= 0.22), in support of 183 
herbicides as a foremost driver of agricultural adaptation (Fig 2D). 184 
 185 
To infer the importance of selective trade-offs in adaptation across natural and 186 
agricultural environments, we implemented a Wright-Fisher allele-frequency-based 187 
migration-selection balance model for these three differentiated resistance alleles, as well 188 
as the top 30 independent CMH outliers. Assuming these alleles are at a steady-state 189 
between migration and selection, we inferred that the costs of resistance per migrant that 190 
has arrived into natural environments are consistently higher than the benefits of 191 
resistance per migrant that has arrived into agricultural environments (per-migrant cost: 192 
benefit ratio ranges from 1.39 for EPSPSamp and 1.45 for ALS574, to 5.03 for the 193 
PPO210 deletion; Fig 2D, Table S3). Thus, the spread of these three common herbicide 194 
resistance alleles appears to be constrained either by more consistent selection against 195 
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resistance in herbicide-free, natural environments, or by particularly high rates of 196 
migration of susceptible alleles from natural into agricultural environments. In 197 
comparison, for the top 30 independent CMH outliers, the costs per migrant that has 198 
arrived in natural environments were about equally likely to be stronger or weaker 199 
(12/28, 42%) than the benefits per migrant in agricultural environments (Fig S2). This 200 
approach provides a novel and sensitive alternative to experimental studies of fitness 201 
costs which vary greatly depending on context (40), highlighting the potentially 202 
important role of resistance costs across a diverse set of individuals within actual 203 
agronomic and natural environments. In these field settings, further work is necessary to 204 
understand the contributions of temporal and spatial heterogeneity in both migration and 205 
selection for and against resistance across the landscape. 206 
 207 

208 
Fig 2. Signals of contemporary agricultural adaptation, gene flow, and antagonistic 209 
selection across the genome in A. tuberculatus. A) Results from Cochran–Mantel–Haenszel 210 
(CMH) tests for SNPs with consistent differentiation among environments across contemporary 211 
natural-agricultural population pairs. A 10% FDR threshold is indicated by the lower dashed 212 
horizontal black line, while the Bonferroni corrected p-value < 0.1 cut-off is shown by the upper 213 
dashed horizontal gray line. Red points indicate focal agricultural-associated SNPs after 214 
aggregating linked variation (r2 > 0.25 within 1 Mb). Candidate agriculturally adaptive genes for 215 
peaks that are significant at a 10% FDR threshold shown. B) CMH results from the scaffold 216 
containing the most significant CMH p-value, corresponding to variants linked to the PPO210 217 
deletion conferring herbicide resistance and to the nearby herbicide-targeted gene ALS. C) 218 
Distribution of FST values between all agricultural and natural samples for ~3 million genome-219 
wide SNPs (minor allele frequency > 0.05). Vertical lines indicate FST values for the 10 220 
candidate genes named in A. D) Population-level frequencies of six common herbicide resistance 221 
alleles across geographically paired agricultural and natural habitats sampled in 2018 (pairs 222 
connected by horizontal lines). The first four columns are nonsynonymous variants in ALS and 223 
EPSPS, followed by EPSPSamp (a 10 Mb-scale amplification that includes EPSPS), and an in-224 
frame single-codon deletion in PPO. Estimates of per-migrant natural cost: agricultural benefit 225 
ratio (C:B) is shown in the top right corner, for the three resistance alleles with significant (*) 226 
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allele frequency differences (AFΔ) across environment types in a linear regression. 227 
 228 

Agriculturally-adaptive alleles change rapidly with intensified regimes 229 
 230 
With a genome-wide set of agriculture-associated alleles (251 loci after aggregating 231 
linked SNPs), we searched for signatures of temporal evolution using newly collected 232 
whole genome sequence data from a set of historical herbarium samples (n=108) dating 233 
back to 1828. These samples provide snapshots of the genetic changes that have occurred 234 
over this time period and across environment types, with collections from natural and 235 
weedy (agricultural and disturbed) habitats (Fig 1). Of the 165 loci for which we had 236 
sufficient information in the historical SNP set (sequenced to 10x coverage on average), 237 
151 were segregating with the same reference/alternate allele combination (i.e. 11 were 238 
dropped due to multi-allelism), and only three were invariant. To model allele frequency 239 
change through time at these alleles, we implemented logistic regressions of genotypes 240 
(within individual allele frequencies) at each locus on collection year, where 2*slope of 241 
the logit-transform is equivalent to the strength of selection (s) in a diploid model of 242 
selection (where s is the fitness difference between homozygotes, assuming additivity; 243 
see Methods for model and simulations (41)).  244 
 245 
Consistent with the rapid change in land use and farming practices in the recent past, the 246 
frequency of these 154 contemporary agricultural alleles has increased substantially over 247 
the last two centuries. Whereas in natural environments agriculturally-associated alleles 248 
have increased by 6% on average since 1870, the earliest time point at which we have 249 
collections across environment types, these same alleles have increased by 22% in 250 
disturbed and agricultural environments (Fig 3A). This observed change greatly exceeds 251 
the expected change over this time period, based on genome-wide patterns that reflect 252 
drift, migration, selection, and demographic change (null 95% interquantile range for 253 
allele frequency change in natural sites = [-2.7, 2.0.%]; for change in agricultural and 254 
disturbed sites = [3.3, 7.9%]). We generated these null expectations by randomly 255 
sampling a set of 154 loci with the same distribution of contemporary allele frequencies 256 
(Fig S4) and calculating their frequency change through time across herbarium samples, 257 
separately in each environment, 1000 times (see Methods (41)). That the observed change 258 
in natural environments is also more extreme than what is expected is consistent with 259 
ongoing migration of agriculturally-selected alleles and subsequent costs in natural 260 
environments. 261 
 262 
The considerable increase in frequency of these alleles across environments corresponds 263 
to remarkably strong selection even when estimated over century-long time periods. The 264 
154 agriculture-associated alleles collectively exhibit a selective strength of 𝑠̃	= 0.022 265 
since the 1870s in agricultural and disturbed habitats. However, these alleles exhibit 266 
much weaker selection, 𝑠̃ = 0.0056, in natural habitats (agricultural and disturbed null 267 
interquantile range = [0.0026, 0.0068]; natural null interquantile range = [-0.0018, 268 
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0.0018]). An open question in evolutionary biology is what distribution of selection 269 
coefficients underlie adaptation (42). We estimate that selection on agricultural-270 
associated loci varies between -0.196 and 0.150 in natural habitats, and -0.090 and 0.372 271 
in agricultural and disturbed habitats, reflective of left and right skewed distributions 272 
respectively (Fig 3B, Fig S5). The top 15 agriculture-associated alleles that we infer have 273 
experienced the strongest selection over the last ~150 years include SNPs that map near 274 
PPO, ACO1, CCB2, WRKY13, BPL3, and ATPD (Table S4). We find that both the total 275 
frequency change of agriculture-associated alleles and the estimated strength of selection 276 
in agricultural and disturbed environments are positively correlated with the extent of 277 
contemporary linkage disequilibrium around these loci (the number of SNPs with r2 > 278 
0.25 within 1Mb) (frequency change: F = 5.16, p = 0.024, r = 0.12; strength of selection: 279 
F= 3.99, p = 0.048, r = 0.058; Fig S6), consistent with theoretical expectations for the 280 
genomic signatures of recent positive selection (43, 44). 281 
 282 
We next asked how well the trajectory of modern agricultural alleles reflect the rise of 283 
industrialized agricultural regimes across the last century. When we split out samples into 284 
those that predate versus those that come after the intensification of agriculture during the 285 
Green Revolution, we find that the increase in frequency of agricultural alleles was 286 
negligible in agricultural and disturbed environments before the 1960s (predicted 1870-287 
1960 change = 0.005). In contrast, change subsequent to 1960 nearly completely accounts 288 
for the observed rise in frequency of modern agricultural alleles (predicted 1960-2018 289 
change = 0.219, versus total 1870-2018 change = 0.221) (Fig 3C). Corresponding 290 
estimates of selection by logistic regression using only data from before 1960 shows no 291 
evidence of selection on these loci in disturbed and agricultural habitats (𝑠̃ = 0.0008, null 292 
interquantile range = [-0.0044,0.0020]) or in natural habitats (𝑠̃= 0.0006, null 293 
interquantile range = [-0.004,0.004]). However, samples collected after 1960 reflect a 294 
dramatic shift in selection—a collective 𝑠̃= 0.054 in disturbed and agricultural 295 
environments and a collective 𝑠̃= 0.028 in natural environments (agricultural/disturbed 296 
null interquantile range =[0.0064,0.0020]); natural null interquantile range =[-297 
0.0056,0.0054]) (Fig 3C; Fig S8). Together, these results suggest that while most 298 
contemporary agricultural alleles were present in historical populations, these alleles only 299 
became associated with agricultural and human-managed sites over the last century, on 300 
timescales and rates consistent with the rapid uptake and intensification of agrochemicals, 301 
controlled irrigation, and mechanization in agriculture. 302 
 303 
The historical trajectory of known herbicide resistance alleles epitomizes extreme 304 
selection over the last 50 years (Fig 3D). Five out of seven known biallelic herbicide 305 
resistance alleles present in our contemporary, paired-environment collections are absent 306 
from our historical samples, consistent with the suggested importance of resistance 307 
adaptation from de novo mutation (13, 45) and a particularly recent increase in their 308 
frequency. Only three out of 108 historical samples show variation for herbicide 309 
resistance, two samples homozygous for resistance at ALS574 and one heterozygous for 310 
resistance at ALS122—all of which were sampled after the onset of herbicide 311 
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applications in the 1960s (Fig 3D). Resolving the very low historical and much higher 312 
contemporary frequencies of resistance, we estimate that since the approximate onset of 313 
herbicide use in 1960, these seven resistance alleles have collectively experienced a 314 
selective strength of 𝑠̃= 0.198 (Z = 2.11, p = 0.035) per year across environment types. 315 
Maximum likelihood based estimates of selective strengths for each resistance allele are 316 
significant for five of the seven, strongest for PPO210 (s > 0.194), EPSPS106 (s > 0.106), 317 
and for ALS574 (s > 0.088) (Fig 3D; Table S3).  318 
 319 
 320 

 321 
Fig 3. Genomic signatures of agricultural adaptation through time. A) Agricultural allele 322 
frequency trajectories for each 154 focal SNPs, in agricultural and disturbed habitats (left), and 323 
in natural habitats (right). Trajectories colored by the empirical range of the allele frequency 324 
change quantile in agricultural and disturbed habitats. Transparent lines indicate those with non-325 
significant evidence of selection at 𝛼=0.05 after FDR=10% correction. B) The distribution of 326 
selective strengths on agricultural alleles in natural (dark gray) and agricultural/disturbed (light 327 
gray) habitats between 1870 and 2018. C) Environment-specific agricultural allele frequency 328 
trajectories, before and after the start of agricultural intensification in 1960 (vertical dashed line). 329 
Large circles represent moving averages (over both loci and individuals) of allele frequencies, 330 
whereas dots represent raw genotype data for each locus and sample from which the allele 331 
frequency trajectory is estimated. Cropland use per capita in North America data from (1), 332 
rescaled by use in 1600, to reflect intensity of agricultural practices. D) The trajectory of alleles 333 
at known herbicide resistance loci through time, fit by logistic regression for each of the biallelic 334 
resistance alleles present in our contemporary data (excluding EPSPSamp with its complex 335 
allelic structure). Dots represent genotypes for each historical and contemporary sample at each 336 
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herbicide resistance locus. 95% confidence interval of the maximum likelihood estimate of 337 
selection between 1960-2018 provided in the legend for each resistance allele. 338 

 339 
Concurrent temporal shifts in ancestry underlie agricultural adaptation 340 
 341 
Finally, we explored whether historical demographic change over the last two centuries 342 
has played a role in agricultural adaptation. Early taxonomy described two different A. 343 
tuberculatus varieties as separate species, with few distinguishing characteristics (seed 344 
dehiscence and tepal length (16)). Sauer’s 1955 revision of the genus, which used 345 
herbarium specimens to gauge the distribution and migration of congeners over the last 346 
two centuries (46), led him to describe an expansion of the southwestern var. rudis type 347 
(at the time, A. tamariscinus (Sauer)) northeastward into the territory of var. tuberculatus 348 
(A. tuberculatus (Sauer)), sometime between 1856-1905 and 1906-1955. Our sequencing 349 
of over 100 herbarium samples dating back to 1828, combined with 349 contemporary 350 
sequences (25, 47), allowed us to directly observe the change in the distribution of these 351 
two ancestral types, adding further temporal resolution to Sauer’s morphological 352 
observations of the species’ range shifts, and to assess the role of agriculturally-adaptive 353 
standing genetic variation across varieties.  354 
 355 
Range-wide, we see clear shifts in the distribution of var. rudis ancestry based on 356 
fastSTRUCTURE (48) inference at K=2 (Fig S9) across three-time spans, 1830-1920, 357 
1920-1980, and 1980-2018 (timespan: F = 5.47, p = 0.0045), and particularly so in the 358 
east (timespan x longitude: F = 5.49, p = 0.0045), consistent with a recent expansion of 359 
var. rudis ancestry (Fig 4A). Furthermore, we see strong state and province-specific 360 
shifts in ancestry through time in our historical sequences (time span by state interaction: 361 
F = 4.22, p = 7 x 10-5), highlighting not only the shift of var. rudis eastwards (with 362 
increases through time in Ontario, Ohio, Illinois, and Missouri) but also the very recent 363 
introduction of var. tuberculatus ancestry into the most western part of the range in 364 
Kansas (Fig 4B). A. tuberculatus demography thus appears to have been drastically 365 
influenced by human-mediated landscape change over the last two centuries, consistent 366 
with the massive recent expansion of effective population size we have previously 367 
inferred from contemporary samples over this same timeframe (45). That this shift has 368 
been most notable over the last 40 years is further consistent with the timescale of 369 
agricultural intensification, shifts towards conservation tillage, and rampant herbicide 370 
resistance evolution within the species (19, 45, 49, 50), suggesting selection on resistance 371 
may facilitate the colonization of var. rudis ancestry outside its historical range. Along 372 
these lines, we find this contemporary range expansion has facilitated the sorting of var. 373 
rudis ancestry across environments (a longitude by time span by environment interaction: 374 
F = 5.13, p = 4 x 10-5; Fig 4C), with increasing overrepresentation of var. rudis ancestry 375 
in agricultural and disturbed environments in the eastern portion of the range through 376 
time, as previously suggested (25). 377 
 378 
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 379 
 Fig 4. Temporal shifts in the distribution of var. rudis ancestry have facilitated polygenic 380 
agricultural adaptation. A) Longitudinal clines in var. rudis ancestry over three timespans, 381 
illustrating the expansion of var. rudis ancestry eastwards over the last two centuries. In A-C, 382 
dots represent individual-level ancestry estimates. B) The distribution of individual-level var. 383 
rudis ancestry by state and through time, illustrating state-specific changes in ancestry. Horizonal 384 
lines within each distribution represent first and third quantiles of ancestry. Timespans indicated 385 
in (A). C) Increasing sorting of individual-level var. rudis ancestry into agricultural 386 
environments on contemporary timescales. D) Environment-specific metrics of selection (CMH 387 
p-value and cross-population extended haplotype homozygosity (XPEHH)) across the genome in 388 
100 kb windows positively correlate with var. rudis ancestry in agricultural, but not natural 389 
habitats (XPEHH by Environment: F=9.34, p=0.002; CMH by Environment: F=99.70, p < 10-390 
16).  391 
 392 
 393 
To investigate whether agricultural adaptation has drawn disproportionately from var. 394 
rudis ancestry, we reconstructed fine-scale ancestry across the genome. Based on 395 
analyses in 100 kb windows, we find a least-squares mean of 5.5% (95% CI = [5.0, 396 
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5.9%]) more var. rudis ancestry genome-wide in agricultural environments compared to 397 
the adjacent natural habitat (Fig S10). The environment-specific proportion of var. rudis 398 
ancestry is not only positively correlated with recombination rate (F = 16.67, p = 4.5 x 399 
10-5, r = 0.056) and gene density (F = 5.85, p = 0.016, r = 0.499) but also with SNP and 400 
haplotype-based evidence of environment-specific selection. Agricultural, but not natural 401 
populations, have an excess of cross-population haplotype homozygosity (agricultural vs. 402 
natural XPEHH) and within-pair environmental differentiation (CMH p-value) in 403 
genomic regions of high var. rudis ancestry (XPEHH by Environment: F=9.34, p=0.002; 404 
CMH by Environment: F=99.70, p < 10-16; Fig 4D), implying that ancestry composition 405 
genome-wide in large part determines the extent of polygenic agricultural adaptation. 406 
These findings suggest that the expansion of var. rudis ancestry across the range, 407 
particularly in the last 40 years, has facilitated waterhemp’s success in agricultural 408 
habitats through providing access to preadapted, standing genetic variation.  409 
 410 
Discussion 411 
 412 
Agricultural adaptation in A. tuberculatus, a native plant in North America, has occurred 413 
over extremely rapid timescales, facilitated by range shifts in response to the 414 
agriculturalization of its native habitat. The human-mediated expansion of the 415 
southwestern lineage of the species northeastwards since the latter half of the 20th 416 
century has introduced new genetic variation across the range, on which selection in 417 
agricultural settings could act. Negligible genetic differentiation across habitats in this 418 
species refutes the idea of agriculture existing as separate to natural ecosystems (51). 419 
Despite substantial gene flow, the prevalence of agricultural alleles has increased rapidly 420 
since the intensification of agriculture over the last 60 years, in agricultural environments 421 
by nearly 6% per year, and even in natural habitats by more than 2% per year. The 422 
selective intensity of industrial agriculture is on par with the selective intensities 423 
Arabidopsis populations in extreme hot and dry environments are predicted to face by 424 
2070 under the high-emissions scenario of climate change (52). The effects of 425 
agricultural herbicides are even more extreme—range-wide, evolved resistance mutations 426 
have on average increased by 20% per year since herbicides were first introduced—427 
permeating even into natural habitats.  428 
 429 

While modern, industrial agriculture imposes strengths of selection rarely observed in the 430 
wild, this species has in turn escalated the weed management-evolution arms race 431 
through a multitude of interdependent mechanisms: range expansion, polygenic 432 
adaptation from standing genetic variation, and large effect herbicide resistance 433 
mutations. Together, these results highlight that anthropogenic change not only leads to 434 
the formation of new habitats but also provides an opportunity for range expansion that 435 
may facilitate and feedback with local adaptation, reshaping genetic variation for fitness 436 
within native and potentially weedy species.   437 
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 630 
Figure Captions 631 
 632 
Fig 1.  Sequenced waterhemp collections through space and time. A) Map of 17 633 
contemporary paired natural-agricultural populations [n=187, collected and sequenced in Kreiner 634 
et al., 2021 (25)], along with 108 novel sequenced herbarium specimens dating back to 1828 635 
collected across three environment types (Ag=Agricultural, Nat=Natural, Dist=Disturbed; 636 
metadata provided in Data S2). B) Distribution of sequenced herbarium samples through time.  637 
 638 
 639 
Fig 2. Signals of contemporary agricultural adaptation, gene flow, and antagonistic 640 
selection across the genome in A. tuberculatus. A) Results from Cochran–Mantel–Haenszel 641 
(CMH) tests for SNPs with consistent differentiation among environments across contemporary 642 
natural-agricultural population pairs. A 10% FDR threshold is indicated by the lower dashed 643 
horizontal black line, while the Bonferroni corrected p-value < 0.1 cut-off is shown by the upper 644 
dashed horizontal gray line. Red points indicate focal agricultural-associated SNPs after 645 
aggregating linked variation (r2 > 0.25 within 1 Mb). Candidate agriculturally adaptive genes for 646 
peaks that are significant at a 10% FDR threshold shown. B) CMH results from the scaffold 647 
containing the most significant CMH p-value, corresponding to variants linked to the PPO210 648 
deletion conferring herbicide resistance and to the nearby herbicide-targeted gene ALS. C) 649 
Distribution of FST values between all agricultural and natural samples for ~3 million genome-650 
wide SNPs (minor allele frequency > 0.05). Vertical lines indicate FST values for the 10 651 
candidate genes named in A. D) Population-level frequencies of six common herbicide resistance 652 
alleles across geographically paired agricultural and natural habitats sampled in 2018 (pairs 653 
connected by horizontal lines). The first four columns are nonsynonymous variants in ALS and 654 
EPSPS, followed by EPSPSamp (a 10 Mb-scale amplification that includes EPSPS), and an in-655 
frame single-codon deletion in PPO. Estimates of per-migrant natural cost: agricultural benefit 656 
ratio (C:B) is shown in the top right corner, for the three resistance alleles with significant (*) 657 
allele frequency differences (AFΔ) across environment types in a linear regression. 658 
 659 
 660 
Fig 3. Genomic signatures of agricultural adaptation through time. A) Agricultural allele 661 
frequency trajectories for each 154 focal SNPs, in agricultural and disturbed habitats (left), and 662 
in natural habitats (right). Trajectories colored by the empirical range of the allele frequency 663 
change quantile in agricultural and disturbed habitats. Transparent lines indicate those with non-664 
significant evidence of selection at 𝛼=0.05 after FDR=10% correction. B) The distribution of 665 
selective strengths on agricultural alleles in natural (dark gray) and agricultural/disturbed (light 666 
gray) habitats between 1870 and 2018. C) Environment-specific agricultural allele frequency 667 
trajectories, before and after the start of agricultural intensification in 1960 (vertical dashed line). 668 
Large circles represent moving averages (over both loci and individuals) of allele frequencies, 669 
whereas dots represent raw genotype data for each locus and sample from which the allele 670 
frequency trajectory is estimated. Cropland use per capita in North America data from (1), 671 
rescaled by use in 1600, to reflect intensity of agricultural practices. D) The trajectory of alleles 672 
at known herbicide resistance loci through time, fit by logistic regression for each of the biallelic 673 
resistance alleles present in our contemporary data (excluding EPSPSamp with its complex 674 
allelic structure). Dots represent genotypes for each historical and contemporary sample at each 675 
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herbicide resistance locus. 95% confidence interval of the maximum likelihood estimate of 676 
selection between 1960-2018 provided in the legend for each resistance allele. 677 
 678 
 679 
Fig 4. Temporal shifts in the distribution of var. rudis ancestry have facilitated polygenic 680 
agricultural adaptation. A) Longitudinal clines in var. rudis ancestry over three timespans, 681 
illustrating the expansion of var. rudis ancestry eastwards over the last two centuries. In A-C, 682 
dots represent individual-level ancestry estimates. B) The distribution of individual-level var. 683 
rudis ancestry by state and through time, illustrating state-specific changes in ancestry. Horizonal 684 
lines within each distribution represent first and third quantiles of ancestry. Timespans indicated 685 
in (A). C) Increasing sorting of individual-level var. rudis ancestry into agricultural 686 
environments on contemporary timescales. D) Environment-specific metrics of selection (CMH 687 
p-value and cross-population extended haplotype homozygosity (XPEHH)) across the genome in 688 
100 kb windows positively correlate with var. rudis ancestry in agricultural, but not natural 689 
habitats (XPEHH by Environment: F=9.34, p=0.002; CMH by Environment: F=99.70, p < 10-690 
16).  691 
 692 
 693 
 694 
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 699 
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Materials and Methods 720 
 721 
Herbarium collections 722 
 723 
In 2019, we obtained 10 mg tissue collections of herbarium specimens from 7 herbaria 724 
across Canada and the United States and one governmental organization: the Royal 725 
Ontario Museum Herbarium, the Museum of Biological Diversity at Ohio State 726 
University Herbarium, the Indiana University Herbarium, the Michigan State University 727 
Herbarium, the Illinois Natural History Survey Herbarium, Missouri Botanical Gardens, 728 
The McGregor Herbarium at the University of Kansas, and Agriculture and Agrifood 729 
Canada. We selected samples to have an even representation of habitats through time. 730 
Samples were classified as natural (n=54), agricultural (n=28), or disturbed (n=20) based 731 
on collectors’ annotations on each plate: any reference to a cultivated field was treated as 732 
an ‘agricultural’ collection; descriptions such as dry grassland or riverbank was treated as 733 
a ‘natural’ collection; and reference to disturbed soil, railroad tracks, or manicured or 734 
managed land was treated as a ‘disturbed’ collection. For inference of contemporary 735 
allele frequency and ancestry change through time, samples collected from disturbed 736 
habitats were grouped together with the agricultural category—in both of which 737 
waterhemp exists as a weed (Table S5). When geographic coordinates were not provided, 738 
we referred to the state, county, section, intersection, and landmark descriptions to infer 739 
the geographic coordinate of a given sample. In total, we collected samples from 172 740 
specimens, 108 of which were selected for whole-genome sequencing. 741 
 742 
Herbarium DNA extractions & library preparations 743 
 744 
The work was performed in the ancient DNA lab at the University of Tübingen. For DNA 745 
extraction of the herbarium samples, we followed basic protocol 1 outlined in (54). 746 
Briefly, under sterile conditions, ~10 mg of each sample was ground and incubated with 747 
N-phenacylthiazolium bromide (PTB)-based mix overnight to lyse DNA. After a 748 
shredding step with QIAshredder spin columns, DNA was purified and eluted with 749 
DNAeasy Mini spin columns. Sequencing libraries were prepared using the basic 750 
protocol 2 outlined in (54), performing blunt-end repair, adapter ligation, a fill-in 751 
reaction, indexing, and finally PCR amplification (10 cycles) and a cleaning step. The 752 
libraries were sequenced on an Illumina NovaSeq instrument on a single flow cell. The 753 
sequencing run produced ~3,442 Gb data, an average of 32 Gb per sample.  754 
 755 
Mapping, damage correction, SNP calling and filtering 756 
 757 
We removed adapters, polyQ tails, and merged reads from herbarium sequencing reads 758 
using fastp (55). Because of the small fragment size of historical DNA, this resulted in a 759 
sizable loss of sequence coverage, from 46X coverage to a mean of 11X coverage. 760 
Mapping with bwa mem (56), we found on average that 89% of merged reads mapped to 761 
the female, US Midwestern, reference genome from (47), suggesting low rates of 762 
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contamination by exogenous DNA. Finally, we performed de-duplication of merged 763 
reads with DeDup (57), which is optimized for merged paired-end sequencing data. This 764 
resulted in a final mean per-sample coverage of 9.7X.  765 
 766 
We used the program MapDamage (58) to quantify damage patterns in the historical 767 
DNA. The fraction of C deamination, which leads to C-to-T substitutions, was low, at the 768 
first base ~2% on average across samples, barely inflated above the C-to-T substitution 769 
rate across the rest of the reads (Fig S3). Nonetheless, the fraction of C-to-T substitutions 770 
at the first base was positively correlated with the age of the samples (r = 0.46, t = -5.31, 771 
p = 5.94 x 10–7; Fig S3). We thus used MapDamage to rescale per-base quality scores to 772 
take into account the patterns of DNA damage. We called SNPs with freebayes (v1.3.2; 773 
with the arguments --use-best-n-alleles 4, --report-monomorphic) in 100 kb regions in 774 
parallel across the genome, merged, and then filtered SNPs based on the relationship 775 
between QUAL and DP (QUAL/DP > 30). In total, this resulted in 14,139,333 SNPs 776 
before merging with our contemporary data and filtering on missing data. 777 
 778 
Herbicide resistance alleles in herbarium samples were identified based on known 779 
locations of non-synonymous substitutions within ALS, PPO, and EPSPS. Initially, two 780 
genotype calls from herbarium samples predated the onset of ALS herbicide use in the 781 
1950s, showing standing variation for resistance at ALS574 and ALS122: one individual 782 
heterozygous for Trp-574-Leu collected in 1930 from a sandy agricultural field in St. 783 
Louis, Missouri, USA (HB0973); and another individual heterozygous for Ala-122-Ser 784 
collected in 1895 from a corn field in Fayette, Ohio, USA (HB0914). Upon further 785 
inspection, read-level support for resistance alleles was low with the allelic-bias at these 786 
genotype calls being highly skewed (reference to alternate ratio = 1:9 and 2:18, 787 
respectively). Similarly, one individual collected in 1967 from the Bottom of Maumee 788 
River, Ohio (HB0977) was heterozygous for ALS122, but the alternate resistance allele 789 
had support at only one read (reference to alternate ratio =1:7). We subsequently dropped 790 
these genotype calls from analyses of selection on herbicide resistance alleles through 791 
time. Relatedly, for both the set of 154 focal agricultural-alleles and ancestry informative 792 
SNPs used to call fine-scale ancestry across the genome, we investigated the potential for 793 
reference bias influencing our estimates of change through time. We calculated mean 794 
allelic bias (AB) for each set of SNPs individually for each sample, and asked the extent 795 
to which it correlated with collection year (Figure S3). AB for both sets of alleles was not 796 
significantly or meaningfully correlated with collection year (AB for agricultural alleles: 797 
b =3.987x10-5, p = 0.316, t = 0.7527; AB for ancestry informative alleles: b = -3.877x10-798 
5, p = -1.882, t = 0.0626). 799 
 800 
Metrics of differentiation across Environments: CMH, FST, & XPEHH 801 
 802 
To identify fine scale patterns of agrcultural adaptation across the genome, we used the 803 
7,262,599 genome-wide high-quality SNPs called from contemporary agricultural-natural 804 
paired populations (n=187 individuals total from 17 pairs of populations, 34 populations 805 



 

22 

in total) from (25) (Fig 1). Previously, these data had been only used for genome-wide 806 
PCA and faststructure based individual-level ancestry estimates. To make use of our 807 
paired sampling design, we used plink (59) to perform a Cochran–Mantel–Haenszel test, 808 
testing an (environment x SNP | pair) effect after applying a minor allele frequency cutoff 809 
of 0.01. We identified candidate agriculturally-adaptive genes based on the nearest gene 810 
(bedtools closest) to each LD-clumped, [FDR-corrected] q-value < 0.1 SNP. We found 811 
the Arabidopsis thaliana orthologues of our A. tuberculatus genes with orthofinder (60). 812 
For genes where orthofinder found no A. tuberculatus orthologue and in which our 813 
annotation identified no orthologue in closely related species based on gene expression 814 
data, we used blastn (61) to perform a conclusive search for similar genes across species. 815 
 816 
We used plink to calculate Weir and Cockerham’s FST, both between all natural and 817 
agricultural samples, and between environments within each population pair, which we 818 
later averaged to obtain the mean pairwise FST. For calculation of FST at the EPSPS 819 
amplification, we recoded individuals as 0, 1, 2 based on copy number amplitude (<1.5, 820 
1.5 < copies < 2.5, and >2.5, respectively). Briefly, EPSPS copy number was estimated in 821 
Kreiner (2019), through scaling coverage within the EPSPS gene by the genome-wide 822 
average. We used selscan (62) to calculate the cross-population extended haplotype 823 
homozygosity, after read-back and population-level phasing with Shapeit2 (63), both of 824 
which required knowledge of recombination rates, which we supplied in the format of our 825 
imputed LD-based map from (47). 826 
 827 
Models of Migration-Selection Balance 828 
 829 
Three resistance alleles showed significant differences in allele frequency across natural 830 
and agricultural environments (ALS574, EPSPSamp, and PPO210) based on a multiple 831 
regression approach (lm: genotype ~ pair + environment), reflecting differential selection 832 
pressures in the face of otherwise high rates of migration (as evidenced by the low 833 
genome-wide FST). Indeed, previous experimental work on costs on resistance has shown 834 
several of these herbicide resistance mutations to be associated with substantial costs: the 835 
ALS574 mutation has been associated with a 67% reduction in above-ground biomass in 836 
A. palmeri (64), whereas the EPSPS amplification has been associated with a 25% 837 
reduction in dry biomass in A. tuberculatus (39) but is associated with no observed cost 838 
in A. palmeri (65). In the context of the experimental conditions and genotypes used in 839 
Wu et al., 2019 (66), no costs of the PPO210 deletion were found. However, not 840 
accounting for realistic genotypic and environmental heterogeneity is a major limitation 841 
of experimental approaches to assaying costs (40). 842 
 843 
We take a model-fitting approach that implicitly takes into account such heterogeneity by 844 
looking over a diverse set of genotypes, environments, and selective regimes. 845 
Specifically, we fit a two-patch, two-allele model of migration-selection balance to 846 
estimate the relative magnitude of migration and selection across environment types. In 847 
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each patch, we first assume that the life cycle starts at the adult stage, followed by 848 
migration and then selection among the juveniles to the next census among adults: 849 
 850 

𝑥!∗ = (1 − 𝑚#)𝑥! +	𝑚#𝑦!, 𝑥$∗ = (1 − 𝑚#)𝑥$ +	𝑚#𝑦$	851 
𝑦!∗ = (1 − 𝑚%)𝑦! +	𝑚%𝑥!, 𝑦$∗ = (1 − 𝑚%)𝑦$ +	𝑚%𝑥$ 852 

Eq. I 853 
 854 
where 𝑚% and 𝑚# represent immigration rates of alleles into natural and agricultural 855 
sites, respectively; 𝑥!∗ and 𝑥$∗  represent the frequency of the susceptible and resistant 856 
allele in agricultural environments after migration; and 𝑦&∗ and 𝑦$∗  represent the frequency 857 
of the susceptible and resistant allele in natural environments after migration. Assuming 858 
random mating, the frequencies of resistant (in agricultural, 𝑥$' ; in natural, 𝑦$' ) and 859 
susceptible alleles (in agricultural, 𝑥!' ; in natural, 𝑦!') after selection are proportional to: 860 
 861 

𝑥!' =	
𝑥!∗	(𝑥!∗𝑊!! + 𝑥$∗𝑊!$)

𝑥!∗
(	𝑊!! + 2	𝑥!∗	𝑥$∗ 	𝑊!$ + 𝑥$∗

(	𝑊$$		
,	 862 

𝑥$' =	
𝑥$∗ 	(𝑥$∗𝑊$$ + 𝑥!∗𝑊!$)

𝑥!∗
(	𝑊!! + 2	𝑥!∗	𝑥$∗ 	𝑊!$ + 𝑥$∗

(	𝑊$$	
	864 

 863 

𝑦!' =	
𝑦!∗	(𝑦!∗𝑉!! + 𝑦$∗𝑉!$)

𝑦!∗
(	𝑉!! + 2	𝑦!∗	𝑦$∗	𝑉!$ + 𝑦$∗

(	𝑉$$	
,		 865 

𝑦$' =	
𝑦$∗ 	(𝑦$∗𝑉$$ + 𝑦!∗𝑉!$)

𝑦!∗
(	𝑉!! + 2	𝑦!∗	𝑦$∗	𝑉!$ + 𝑦$∗

(	𝑉$$	
, 866 

Eq. II 867 
 868 

where W and V reflect the average fitness of each genotype in agricultural and natural 869 
environments, respectively. Assuming additivity with 𝑠% measuring the selective cost of 870 
the resistant allele in natural environments (𝑉$$ = 1 − 𝑠%, 𝑉$! = 1 − 𝑠%/2, 𝑉!! = 1) and 871 
𝑠# measuring the selective benefit of the resistant allele in agricultural environments 872 
(𝑊$$ = 1 + 𝑠#	,𝑊$! = 1 + 𝑠#/2,	𝑊!! = 1) and assuming and that migration at the loci 873 
is weak (m << 1), a given pair of populations is expected to approach a steady state, 874 
where: 875 
 876 

&!
)!

= ((+",-")
+#	+"

 in agricultural patches and &$
)$

= ((-#,+#)
-#	-"

 in natural patches 877 
Eq. III 878 

 879 
While it is not possible to solve for selection directly in the absence of data on migration 880 
rates, these formulae allow us to estimate the strength of divergence by inferring the 881 
strength of selection relative to migration in natural ( 𝑠𝑁𝑚𝑁) and agricultural ( 𝑠𝐴𝑚𝐴) 882 

environments, as presented in Table S3. The ratio of these metrics gives the ratio of the 883 
cost faced per migrant that has arrived in natural environments versus the benefit per 884 
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migrant that has arrived in agricultural environments, assuming that the pair of 885 
populations is near equilibrium. It is worth emphasizing the “per migrant” nature of these 886 
measures (𝑠%/𝑚% versus 𝑠#/𝑚#); even if the selective benefit of resistance in agricultural 887 
environments were stronger than its cost in natural environments (𝑠# ≫ 𝑠%), it is possible 888 
for the benefit of resistance per migrant to be less than its costs per migrant 889 
(𝑠#/𝑚# ≪ 𝑠%/𝑚%) when migration rates are higher into agricultural environments 890 
(𝑚# ≫ 𝑚%). We also note that the approach to migration-selection balance occurs 891 
exponentially at a rate proportional to the selection coefficient (when 𝑚#, 𝑚% ≪ 𝑠#, 𝑠% ≪892 
1) and so should occur rapidly at sites under strong selection (Supplemental Index 1). 893 
 894 
Logistic models of temporal allele frequency change 895 
 896 
We used CMH outliers from the contemporary paired population scan to investigate 897 
patterns of agricultural-allele frequency change over the last two centuries. We were 898 
interested in tracking independent allele frequency trajectories, so from the 403 SNPs 899 
with CMH p-values that exceeded 10% FDR correction (𝑝 < 6 × 10,2), we performed a 900 
subsequent clumping step, effectively retaining a set of largely unlinked SNPs (Fig S11) 901 
that represent the most significant SNP in a particular region of the genome. Specifically, 902 
we used plink --clump, to find the most significant hit genome-wide, scan 1 Mb around it, 903 
and exclude any SNP from the resulting output that is associated with the focal SNP with 904 
r2 > 0.25. This algorithm was repeated until all SNPs passing the genome-wide 905 
significance threshold had been clumped. This resulted in 251 loci that on average 906 
showed a 17.9% allele frequency difference between extant agricultural and natural 907 
environments. Average LD across focal SNPs was 0.043, with only four pairs of SNPs 908 
showing high pairwise LD (r2 > 0.4) with another SNP. All of these four SNP pairs are 909 
found on separate chromosomes from the SNP with which it has high LD, suggesting the 910 
correlation is driven by selection and migration not linkage (alternatively, genome-911 
assembly or polygenic adaptation [such as in (45, 67)] may drive such a signal). At each 912 
SNP, we labelled the alleles such that the agriculture-associated allele was the one whose 913 
frequency was higher in agricultural sites than natural sites. 914 
 915 
We then found the intersection of these modern agriculture-associated alleles, identified 916 
in our contemporary paired collections, with the historical, filtered SNPs from the 917 
herbarium sequence data. 154 loci were present in the historical samples with the same 918 
reference/alternate allele combinations. Because the definition of agriculture-associated 919 
alleles depends on their relative frequency across environment types, such alleles include 920 
both reference (91/154) and alternate (63/154) bases. We extracted a matrix of 0, 0.5, and 921 
1 values, representing the frequency of the agricultural allele for each locus within each 922 
individual, for samples from both our contemporary and historical collections. 923 
Combining these individual agricultural allele frequencies at each locus across historical 924 
and contemporary datasets, we then performed a logistic regression in R (glm function, 925 
family=“binomial”) of genotype on collection year, separately on samples from either 926 
natural or agricultural and disturbed environments. From each logistic regression, we 927 
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extracted the logit-transformed slope, p-value, and standard error, as well as the predicted 928 
value (allele frequency) for the years 1870 and 2018, representing the minimum sample 929 
year and maximum sample year. While we have samples dating back to 1828, we 930 
constrained this analysis to samples collected after 1870, as the density of samples before 931 
then is low (n=4), with no representation of samples from agricultural environments.  932 
The slope of the logistic regression gives an estimate of the selection coefficient, s 933 
(specifically, slope = s/2) where s is the difference in fitness between the two 934 
homozygotes and the division by two comes from using a diploid model. This selection 935 
coefficient estimates the net fitness benefit (if s>0) of the agriculture-associated allele, as 936 
determined by the rise in frequency over time of that allele. Specifically, with 937 
homozygote fitness of 1+s and heterozygote fitness of sqrt(1+s)~1+s/2, measured relative 938 
to the wildtype homozygote, the allele frequency over time has a generalized logistic 939 
form:  940 
 941 

𝒑(𝒕) = 	
𝒑𝟎	𝒆𝒔𝒕/𝟐

𝟏 − 𝒑𝟎 + 𝒑𝟎	𝒆𝒔𝒕/𝟐
	944 

Eq. IV 942 
 943 

where 𝑝& is the allele frequency at time 𝑡 = 0.  945 
 946 
The total allele frequency change at each locus was calculated by taking the difference 947 
between the predicted frequency of the allele in 2018 and 1870. We merged the output of 948 
these locus-specific logistic regressions in agricultural environments, with both SNP and 949 
haplotype-based statistics from these same individuals to identify contemporary 950 
correlates of the magnitude of allele frequency change and selection through time. 951 
Specifically, we examined how well contemporary recombination rate, XPEHH, CMH p-952 
value, number of SNPs in linkage disequilibrium (r2 > 0.25) with the focal SNP (< 1Mb; 953 
i.e., number of SNPs in a clump), and distance between linked SNPs, explained both the 954 
total allele frequency change and the estimated strength of selection (Fig S6).  955 
 956 
We also performed a separate set of analyses, where a logistic regression was used to 957 
analyze the trajectory of all agricultural alleles or known herbicide resistance alleles at 958 
once, first across samples from natural environments and then for samples from 959 
agricultural and disturbed environments (‘genotype ~ year + locus’). We further 960 
partitioned samples in each environment to those that predate or are subsequent to the 961 
1960s, to infer the importance of the intensification of agriculture and herbicides in 962 
shaping the strength of selection on contemporary agricultural alleles (Fig 3C, D). For 963 
each of the four logistic regressions ran on these partitioned sets of data, the slope of the 964 
year term represents a joint estimate of the strength of selection for agricultural alleles, 965 
between 1870-1960 or 1960-2018, in natural or agricultural environments. We refer to 966 
this joint estimate of selection at multiple loci as 𝑠̃.  967 
 968 
To test whether a shift in selection at 1960 was statistically supported, we also compared 969 
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our full model analyzing temporal signatures of allele frequency change between 1870-970 
1960 to one that fits either two or three logistic regression lines across that time frame 971 
(i.e., a segmented logistic regression). A segmented logistic regression with two 972 
breakpoints provides the best fit to our data, compared to a model with either one or no 973 
breakpoints (two-break segmented AIC=54360.55, one-break segmented AIC =54437.66, 974 
non-segmented AIC=54444.67), and converges on 1913 and 1961 breakpoints, the later 975 
supporting a priori hypotheses and our interest in interrogating signals before and after 976 
the start of the Green Revolution in 1960 (Fig 3C). For comparison and visualization 977 
purposes of shifts in the trajectory of selection across these time periods, we also present 978 
the splines of environment-specific cubic model fits in Fig S7. 979 
 980 
We designed a randomization test to model the expected distribution of allele frequency 981 
change through time under null processes (drift, migration, selection, and demographic 982 
change). In particular, we were interested in quantifying the potential bias associated with 983 
high frequency alleles having more leeway to change more through time, as compared to 984 
a set of lower frequency alleles. We thus randomly sampled 154 loci across the genome 985 
from our contemporary collections (the same number as our observed clumped and 986 
historically matched set of agricultural alleles), repeating this sampling 1000 times. 987 
Importantly, each sample exactly matched the frequency distribution observed for extant 988 
agricultural alleles (Fig S4). This randomization was done independently in each 989 
environment, such that the alleles sampled to match the extant agricultural-allele 990 
frequency distribution in agricultural environments in one iteration were different from 991 
the alleles sampled to match the frequency distribution in natural environments. To 992 
account for the ascertainment bias in our set of putatively agriculturally adaptive 993 
alleles—alleles that show the greatest excess of allele frequency in agricultural compared 994 
to natural environments—we similarly defined alleles at each randomly drawn SNP (i.e., 995 
the agriculture-associated allele was the one found at greater frequency in agricultural 996 
sites than in natural sites, whether it was the reference or alternate allele). In each of the 997 
1000 randomizations within each environment, we then performed the same analyses as 998 
above: matching these alleles in our historical samples, producing a matrix of genotype 999 
data for both contemporary and historical sets, and performing a logistic regression for 1000 
each locus, as well as logistic regression on all loci at once, for either samples from 1001 
natural or agricultural environments, and for those that either preceded or were 1002 
subsequent to 1960. Using the 1000x randomizations, we then computed the 2.75 and 1003 
97.25% quantiles (“null 95% interquantile range”) of the statistics of interest (total allele 1004 
frequency change and selection coefficients) to compare against our observed values. 1005 
Note that these null expectations implicitly account for changing ancestry through time, 1006 
as genome-wide genotypes reflect the spread of var. rudis over time and space.  1007 
 1008 
We performed forward-time simulations in SLIM (v3.7.1) to validate the robustness of 1009 
our space-time herbarium sampling approach for inference of the strength of selection for 1010 
a set of alleles. On a genomic background of length 100kb, with a recombination rate 1011 
scaled to approximately that of Arabidopsis thaliana (4x10-6), we started by evolving 1012 
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additive mutations (with a mutation rate of 5x10-6) neutrally for 2000 generations in 5000 1013 
individuals. After this time period, we imposed an environmental shift causing those 1014 
previously neutral mutations to become beneficial [with an exponential distribution of 1015 
fitness effects centered on s=0.1]. This scenario represents selection on standing genetic 1016 
variation and, potentially, any new mutations that arise after the onset of selection. After 1017 
this environmental shift, we start our temporal sampling following the same temporal 1018 
distribution and total sample size used in our manuscript (i.e., t = 0, 5, 6, 7, 10, 10, 10, 12 1019 
… 141, representing years sampled after 1870, n = 104 [removing four individuals from 1020 
< 1870]), with individuals randomly sampled across 2D space. From these simulations, 1021 
we find that our temporal and spatial historical sampling approach is able to provide an 1022 
accurate estimate of s. On average across 500 simulations, the correlation coefficient 1023 
between estimated s and true s was 0.61 (SE=0.067). Thus, the method employed to 1024 
estimate the strength of selection is expected to be accurate for the sample sizes in this 1025 
study, although we expect accuracy to decline with smaller sample sizes, weaker 1026 
selection, and/or smaller species-wide effective population sizes. 1027 
 1028 
Maximum likelihood estimate of selection 1029 
 1030 
For known biallelic herbicide resistance alleles (excluding only the complex EPSPS 1031 
amplification), we were particularly interested in understanding selection on each allele 1032 
over time. We used a maximum likelihood approach to estimate the strength of selection 1033 
for each resistance allele between 1960-2018, along with a 95% confidence interval using 1034 
profile likelihood. Summing overall years (t), the log-likelihood of observing the data is 1035 
given by the binomial sampling formula describing the chance of observing the number 1036 
of resistant (𝑛$) and susceptible alleles (𝑛!) in any given year: 1037 
 1038 

𝒍𝒏(𝑳) 	= > (𝒏𝑹 ⋅ 𝒍𝒏(
𝒑𝟎	𝒆

𝒔𝒕/𝟐

𝟏 − 𝒑𝟎 + 𝒑𝟎	𝒆
𝒔𝒕/𝟐) + 𝒏𝑺 ⋅ 𝒍𝒏(	

𝟏 − 𝒑𝟎
𝟏 − 𝒑𝟎 + 𝒑𝟎	𝒆

𝒔𝒕/𝟐))	𝒕
	1041 

Eq. V 1039 
 1040 

where p0 represents the frequency of the allele when t = 0 (defined as the present for ease 1042 
of computation) and s represents the strength of selection (see logistic allele frequency 1043 
trajectory equation above), both of which are unknown and estimated by maximizing the 1044 
likelihood. Because many of the resistant alleles were only observed in contemporary 1045 
samples, selection must be sufficiently strong on recent timescales to explain this rise, but 1046 
any larger value of selection is also able to explain the data (i.e., the likelihood surface 1047 
becomes flat with increasing s in several cases). Because maximum likelihood points are 1048 
poorly estimated when the likelihood surface becomes flat, we only present the 95% 1049 
confidence interval in the main text (i.e., those values of s for which the ln(L) falls within 1050 
𝜒[7.79]( /2 of the maximum likelihood), but present maximum likelihood estimates in 1051 
Table S3 as well. We implemented this algorithm in R, using the mle2 function 1052 
implemented within the bblme package in R. 1053 
 1054 
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Ancestry inference 1055 
 1056 
For genome-wide ancestry inference, we merged filtered SNPs from herbarium samples 1057 
with high-quality SNP sets from (25) (n=187, collections from 2018) and (47) (n=162, 1058 
collections from 2015), resulting in 457 individuals and representing all resequenced A. 1059 
tuberculatus whole genomes (n of SNPs = 1,269,007). We used faststructure (48) to infer 1060 
individual-level ancestry, taking the proportion of an individual’s assignment to a 1061 
grouping at K=2 to represent either var. rudis or var. tuberculatus ancestry. An 1062 
individual’s proportion of var. rudis ancestry was then analyzed in a multivariate 1063 
regression that tested how well var. rudis ancestry was explained by longitude, latitude, 1064 
environment (natural or agricultural), timespan (1800-1920 [n=39], 1920-1980 [n=44], 1065 
1920-2020 [n=374]), a two-way timespan by longitude interaction, a two-way timespan 1066 
by state interaction, and a three-way timespan by environment by longitude interaction 1067 
(Individual ancestry assignment ~ longitude + latitude + environment + timespan + 1068 
timespan:longitude + timespan:state + timespan:environment:longitude) 1069 
 1070 
We also used plink to perform a principal-component analysis of merged SNPs from just 1071 
herbarium samples (Fig S12) and all 457 samples jointly (Fig S13). 1072 
 1073 
We were interested in the distribution of var. rudis ancestry across the genome, and so 1074 
used LAMP (68) to assign ancestry to SNPs, based on two reference populations 1075 
homogenous for either var. rudis or var. tuberculatus ancestry (Kansas and Ontario 1076 
Natural Populations, respectively; (47)). Ancestry informative SNPs were those with an 1077 
FST > 0.40  (2x the mean genome-wide ancestry differentiation between varieties, in these 1078 
two populations) between these reference populations and that were also in common 1079 
between datasets (<20% of samples with missing data) after merging historical sequences 1080 
with the contemporary paired sequence data (25). Since LAMP requires recombination 1081 
rate information, we also imputed the LD-based genetic map from (47) to the ancestry-1082 
informative SNPs to get genetic distance between each. Finally, we performed the LAMP 1083 
analysis, one population at a time, one scaffold at a time. After merging SNP-wise 1084 
ancestry assignments across scaffolds, we calculated the mean, 5%, and 95% quantile of 1085 
var. rudis ancestry in 100 kb regions for each population, and eventually, each 1086 
environment (Fig S10).  1087 
 1088 
To understand the relationship between ancestry, agricultural selection, and genomic 1089 
architecture, we performed a multiple regression to quantify drivers of fine-scale ancestry 1090 
across the genome. We regressed the individual proportion of var. rudis ancestry in 100 1091 
kb windows across the genome against gene density, recombination rate, scaffold, 1092 
environment, average CMH score, average XPEHH (difference in extended haplotype 1093 
homozygosity across environments), the interaction between environment and average 1094 
CMH score in each window, and the interaction between environment and the mean 1095 
XPEHH in each window (100kb mean ancestry ~  scaffold + mean gene density + mean 1096 
recomb + mean xpehh:env + mean cmh:env + env). The least squares effect of 1097 
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environment on ancestry was taken to calculate the average difference in ancestry 1098 
between agricultural and natural environments.  1099 
 1100 

 1101 
  1102 
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 1103 

Fig S1. Strong congruency between results of a CMH genome-wide scan (assessing 1104 
environmental differences stratifying for population pair) versus a between-environment 1105 
FST	genome-wide scan (differentiation among individuals pooled within natural 1106 
environments and within agricultural environments). A) Two Manhattan plots showing 1107 
the distribution of CMH -log10(p-values) [top] and Fst values [bottom] at SNPs across the 1108 
genome. B)	Between-environment FST is plotted against the CMH -log10(p-values), 1109 
showing a strong correlation (Spearman’s ρ = 0.905; Pearson’s r between Fst and CMH 1110 
χ2 = 0.957). In both A and B, red dots indicate clumped, putative agriculturally adaptive 1111 
SNPs as inferred from the CMH scan after applying a 10% FDR cutoff. 1112 
 1113 

 1114 
  1115 
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 1116 

 1117 
Fig S2. 𝒔𝑨

𝒎𝑨
 (representing selective benefit per migrant in agricultural habitats) versus 𝒔𝑵

𝒎𝑵
 1118 

(representing the selective cost per migrant in natural habitats) for the 30 independent 1119 
loci with the most significant CMH scan hits, compared to the 3 common herbicide 1120 
resistance alleles with significantly different allele frequencies among natural and 1121 
agricultural environments. Diagonal line represents equal agricultural benefits compared 1122 
to natural costs, scaled by migration. 1123 
 1124 
  1125 



 

32 

 1126 
Fig S3. Percent C-to-T deamination by read position (A), along with the correlation of 1127 
collection year with percent C-to-T deamination at first base (B). C-D represent temporal 1128 
correlates with genome-wide coverage (C), fragment length (D), mean allelic bias by 1129 
sample for focal agriculture-associated alleles (E) and mean allelic bias by sample for 1130 
ancestry informative alleles (F). For B-F, each dot represents sample-wise means for  1131 
each108 sequenced herbarium specimens.  1132 
 1133 
  1134 
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 1135 
Fig S4. The distribution of frequencies for agricultural-associated alleles in agricultural 1136 
samples along the x-axis, and in natural samples along the y-axis. Null distributions for 1137 
an expectation of change in the frequency in our focal set of alleles was generated by 1138 
producing randomized allele sets of the same size (n=154) matching the extant frequency 1139 
distributions shown here, first in natural environments (top histogram), and then in 1140 
agricultural environments (right histogram). 1141 
  1142 
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 1143 
Fig S5. Inferred strength of selection on 154 agricultural alleles through time, in either 1144 
agricultural or natural environments. Selection coefficients were extracted from logit-1145 
transformed logistic regressions of genotype on year, run separately for each locus in 1146 
each environment. Gray ribbon for each locus represents the bounds of the standard error 1147 
associated with the estimate of selection in each environment. 1148 
  1149 
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 1150 
Fig S6. The association between contemporary patterns of linkage disequilibrium 1151 
(number of SNPs within 1Mb of focal agricultural-associated allele with r2>0.25) and 1152 
allele frequency change (top) or selection (bottom) observed over the last 150 years 1153 
across herbarium samples. Regression line shows the least square mean effect of 1154 
contemporary associations from a multiple regression analysis. 1155 
  1156 
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 1157 
Fig S7. Cubic splines that illustrate the environment-specific frequency change of 1158 
modern agriculture-associated alleles through time since 1870. Gray ribbon denotes the 1159 
95% CI.  1160 
  1161 
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 1162 
Fig S8. Overlayed histograms of logistic-model estimates of selection before (left) and 1163 
after (right) the 1960s, the start of agricultural intensification, for agriculturally-1164 
associated alleles in natural (dark gray) versus agricultural and disturbed (light gray) 1165 
environments (medium gray occurs when counts overlap). 1166 
 1167 
 1168 
 1169 
 1170 
 1171 
 1172 
 1173 
 1174 
 1175 
 1176 
 1177 
 1178 
 1179 
 1180 
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 1181 
Fig S9. Longitudinal and state-wise patterns of ancestry across 457 A. tuberculatus 1182 
individuals from contemporary and historical sampling, inferred from faststructure. 1183 
Samples sorted by longitude, from west (left) to east (right). White dashed lines denote 1184 
clusters of specimens sampled from different states and provinces across this longitudinal 1185 
gradient. K=2 taken as var. rudis versus var. tuberculatus ancestry, as in (47). 1186 
  1187 
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 1188 
Fig S10. Excess of var. rudis ancestry in agricultural compared to natural environments, 1189 
in 100 kb regions across the genome. Lines depict the mean ancestry across all 1190 
populations within each environment, with error bars showing the mean 5th and 95th 1191 
percentile of ancestry across populations. Fine-scale ancestry estimates were inferred 1192 
with LAMP (68).  1193 
  1194 
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 1195 
Fig S11. Heatmap of r2 values alongside a dendrogram of the 154 agricultural-associated 1196 
SNPs identified through CMH tests across paired contemporary natural-agricultural 1197 
samples, illustrating independence among focal LD-clumped CMH outliers. 1198 
  1199 

0.0 0.4 0.8

1



 

41 

 1200 
Fig S12. PCA of genome-wide genotypes from herbarium samples, colored by 1201 
state/province.  1202 
  1203 
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 1204 
Fig S13. PCA of genome-wide genotypes from 457 A. tuberculatus specimens, including 1205 
108 herbarium samples, contemporary paired populations (25) (n=187), and 21 1206 
populations from 5 geographic regions (47) (n=162).  1207 
  1208 
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Table S1. GO Enrichment results for the top 0.1% CMH outliers (n=7264 SNPs, 1650 1209 
orthologous genes in Arabidopsis thaliana). 1210 
 1211 

GO biological process complete Expected Alleles Fold Enrichment 

Bonferroni 
corrected p-
value 

anatomical structure formation involved in morphogenesis 15.41 2.4 1.61 x 10-2 
anatomical structure development 322.07 1.3 7.59 x 10-5 
developmental process 352.41 1.31 2.19 x 10-6 
post-embryonic development 138.32 1.46 7.06 x 10-4 
multicellular organism development 264.29 1.32 2.47 x 10-4 
multicellular organismal process 284.88 1.3 6.92 x 10-4 
reproductive structure development 121.64 1.45 9.21 x 10-3 
reproductive system development 121.76 1.45 9.33 x 10-3 
system development 223.18 1.33 3.46 x 10-3 
reproductive process 160.77 1.38 9.11 x 10-3 
reproduction 162.39 1.37 1.52 x 10-2 
response to light stimulus 123.57 1.42 2.14 x 10-2 
response to radiation 126.22 1.46 3.33 x 10-3 
response to abiotic stimulus 249.49 1.35 6.75 x 10-5 
response to stimulus 562.59 1.24 1.55 x 10-7 
organic cyclic compound metabolic process 184.54 1.32 4.77 x 10-2 
organic substance metabolic process 589.08 1.19 1.37 x 10-4 
metabolic process 649.69 1.2 6.38 x 10-7 
regulation of cellular metabolic process 190.98 1.32 3.73 x 10-2 
regulation of cellular process 375.46 1.23 5.85 x 10-3 
regulation of biological process 456.6 1.21 2.30 x 10-3 
biological regulation 498.73 1.22 9.43 x 10-5 
regulation of metabolic process 237.21 1.29 2.52 x 10-2 
cellular response to stimulus 234.8 1.3 1.16 x 10-2 
cellular process 919.46 1.2 1.11 x 10-15 
response to chemical 308.77 1.29 2.83 x 10-4 
cellular metabolic process 573 1.22 7.54 x 10-7 
nitrogen compound metabolic process 423.67 1.21 8.41 x 10-3 
primary metabolic process 487.78 1.17 4.62 x 10-2 

 1212 
  1213 



 

44 

Table S2. Gene and orthologue information for the 50 SNPs with the most significant 1214 
CMH p-values, sorted by Scaffold and then CMH p-value. AMATA=Amaranthus 1215 
tuberculatus, AT=Arabidopsis thaliana. Blastn top-hit only shown for SNPs with no 1216 
orthologue identified in our annotation or using orthofinder. 1217 
 1218 
Scaffold Position CMH  

p-value 
AMATA  
gene AT gene Orthologue Blastn 

1 59264411 6.08 x 10-10 2592 NA NA Nuclear Fusion Defective 4-like 
1 55158523 3.29 x 10-9 2285 At4g34215 SGNH-hydrolase   
1 54510509 8.91 x 10-9 2244 NA NA NA 
1 12324718 1.93 x 10-7 825 AT5G09550.1 Guanosine nucleotide diphosphate dissociation inhibitor (GDI) 
1 64789405 2.39 x 10-7 3031 AT4G38380.4 Protein DETOXIFICATION 452C chloroplastic (DTX45) 
10 15265237 7.25 x 10-8 22183 NA NA NA 
10 26222541 1.03 x 10-7 22540 AT3G29385.1 Dentin sialophosphoprotein-like protein 
10 5374087 2.74 x 10-7 21789 NA NA NA 
11 24079642 8.55 x 10-11 25990 AT5G63460.1 Lower temperature 1  
11 24078348 3.09 x 10-10 25990 AT5G63460.1 Lower temperature 1  
11 24086055 1.10 x 10-9 25990 AT5G63460.1 Lower temperature 1  
11 24006946 2.18 x 10-9 25984 AT5G14220.4 PPO2  
11 24062979 2.36 x 10-9 25989 AT5G50380.1 Exocyst complex component EXO70B1 
11 24080739 4.33 x 10-9 25990 AT5G63460.1 Lower temperature 1  
11 32783081 7.71 x 10-9 26623 NA NA NA 
11 24048769 1.30 x 10-8 25988 AT4G14110.1 COP9 signalosome complex subunit 8 (CSN8) 
11 24047019 4.13 x 10-8 25988 AT4G14110.1 COP9 signalosome complex subunit 8 (CSN8) 
11 24083434 4.40 x 10-8 25990 AT5G63460.1 Lower temperature 1  
11 24070607 4.79 x 10-8 25989 AT5G50380.1 Exocyst complex component EXO70B1 
11 26024805 1.35 x 10-7 26127 AT1G75125.1 Plastid transcriptionally active protein 
11 25369807 1.47 x 10-7 26088 AT5G39610.1 Nucleobase-ascorbate transporter 6 (NAC6) 
11 24021382 1.69 x 10-7 25985 AT5G16550.1 Ldap interacting protein  
11 24024155 1.69 x 10-7 25985 AT5G16550.2 Ldap interacting protein  
11 24048722 2.07 x 10-7 25988 AT4G14110.1 Constitutive photomorphogenic 9 
11 24046969 2.55 x 10-7 25988 AT4G14110.1 Constitutive photomorphogenic 9 
12 29335314 7.69 x 10-10 24987 ATMG00310.1 Orf154  
12 29335422 3.09 x 10-9 24987 ATMG00310.1 Orf154  
12 29327164 3.31 x 10-9 24987 ATMG00310.1 Orf154  
12 29343299 1.81 x 10-8 24987 ATMG00310.1 Orf154  
12 29336458 3.50 x 10-8 24987 ATMG00310.1 Orf154  
12 29333763 5.83 x 10-8 24987 ATMG00310.1 Orf154  
12 11427671 7.91 x 10-8 24182 NA NA PPX2L 
12 29328119 1.21 x 10-7 24987 ATMG00310.1 Orf154  
12 11429925 2.10 x 10-7 24182 NA NA PPX2L 
12 29333575 2.30 x 10-7 24987 ATMG00310.1 Orf154  
12 29333622 2.30 x 10-7 24987 ATMG00310.2 Orf155  
13 35715956 8.71 x 10-9 19321 NA Calmodulin (Physarum polycephalum OX%253D5791) 
13 38847060 6.31 x 10-8 19605 NA NA WIP2-like protein 
13 26858220 8.73 x 10-8 18867 NA NA NA 
13 33084574 1.93 x 10-7 19117 AT4G14310.2 KIN14B-interacting protein 
13 41600578 2.63 x 10-7 19862 AT3G24160.1 Putative type 1 membrane protein 
2 53114550 8.86 x 10-8 5599 NA NA NA 
2 10688517 9.38 x 10-8 3997 AT3G09630.1 Suppressor of acaulis 56 (sac56) 
3 4797458 8.95 x 10-9 6345 NA NA ATHB13 
3 1072396 9.09 x 10-9 5998 AT1G23820.1 Spermidine synthase 1 
3 1072448 8.96 x 10-8 5998 AT1G23820.1 Spermidine synthase 1 
3 16438213 1.27 x 10-7 7059 AT1G10150.1 Carbohydrate-binding protein 
3 5632229 1.80 x 10-7 6414 AT4G09650.1 Atp synthase delta-subunit gene (atpd) 
6 18669007 1.54 x 10-7 15047 AT4G35830.1 Aconitase 1 (ACO1)  
8 15398786 1.13 x 10-8 20978 AT3G14310.1 Pectin methylesterase 3  
 1219 
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Table S3. Selection-migration differentiation statistics for 8 resistance alleles, along with 1221 
maximum likelihood estimates of selection based on allele frequency through time. Ag, 1222 
agricultural sites; Nat, natural sites. Cost and benefit estimates shown here for the 1223 
additive (h=0.5) case.  S1960-2018 represents the maximum likelihood estimate of selection 1224 
from the binomial sampling equation of allele frequency change from 1960-2018 based 1225 
on a diploid model of selection, along with the associated 95% confidence interval. In the 1226 
main text, Cost:Ben is only presented for alleles with significant differences in frequency 1227 
between natural and agricultural habitats (*). 1228 
 1229 
  Ag freq Nat freq Ag benefit (sA/mA) Nat cost (sN/mN) Cost:Ben  S1960-2018 95% CI of s 

PPOdel* 0.334 0.0464 2.59 13.00 5.03 1.16 0.19, ∞ 
EPSPSamp* 0.496 0.236 2.08 2.88 1.39 NA NA 
EPSPS106 0.127 0.087 0.72 1.01 1.40 1.12 0.11, ∞ 
ALS122 0.0301 0 2.06 NA NA -0.01 -∞, ∞ 
ALS197 0.0132 0.0169 -0.57 -0.45 1.26 0.29 -∞, ∞ 
ALS574* 0.337 0.191 1.31 1.89 1.45 0.09 0.088, 0.334 
ALS376 0.0824 0.0358 1.23 2.70 2.19 0.59 0.046, ∞ 
ALS653 0.0596 0.0627 -0.11 -0.11 1 0.55 0.058, ∞ 
 1230 
  1231 



 

46 

Table S4. The top 15 loci with the strongest estimates of selection (s) between 1970 and 1232 
2018 based on logistic regression. AT = Arabidopsis thaliana 1233 
 1234 
s p-value 

of s SE  
of s Allele freq 

change Scaffold position AMATA annotated gene AT orthologue AT gene 
name 

0.106 4.7 x 10-4 0.030 0.846 Scaffold_11 26068182 AMATA_chromosomes_26131 NA NA* 
0.081 1.1 x 10-4 0.021 0.823 Scaffold_2 10755264 AMATA_chromosomes_03999 Subtilase family protein AT5G58840 
0.057 2.4 x 10-3 0.019 0.512 Scaffold_10 22995135 AMATA_chromosomes_22407 phosphotyrosyl phosphatase activator (PTPA 

family protein) AT4G08960 
0.052 8.2 x 10-3 0.020 0.402 Scaffold_11 26024805 AMATA_chromosomes_26127 plastid transcriptionally active protein AT1G75125* 
0.052 6.1 x 10-5 0.013 0.646 Scaffold_3 14213167 AMATA_chromosomes_06976 WRKY DNA-binding protein 13 AT4G39410 
0.047 2.5 x 10-7 0.009 0.783 Scaffold_10 36863790 AMATA_chromosomes_23250 hypothetical protein AT1G36320 
0.046 1.3 x 10-1  0.030 0.162 Scaffold_3 49332690 AMATA_chromosomes_08117 NA NA 
0.045 2.9 x 10-5 0.011 0.677 Scaffold_6 18669007 AMATA_chromosomes_15047 ACO1 AT4G35830 
0.043 8.6 x 10-5 0.011 0.599 Scaffold_12 21792253 AMATA_chromosomes_24760 NA NA 
0.043 4.6 x 10-8 0.008 0.888 Scaffold_3 5632229 AMATA_chromosomes_06414 ATPD (F-type H+-transporting ATPase subunit 

delta) AT4G09650 
0.036 8.1 x 10-6 0.008 0.666 Scaffold_12 5658420 AMATA_chromosomes_23853 NA NA 
0.033 4.7 x 10-7 0.007 0.831 Scaffold_10 20690917 AMATA_chromosomes_22321 CCB2 (chaperone DUF2930)  AT5G52110 
0.032 1.8 x 10-7 0.006 0.819 Scaffold_10 16005835 AMATA_chromosomes_22202 NA NA 
0.032 3.9 x 10-5 0.008 0.708 Scaffold_10 24312710 AMATA_chromosomes_22452 BPA4 (RNA-binding RRM/RBD/RNP motifs 

family protein, AT1G14340) AT1G14340 
0.031 5.2 x 10-6 0.007 0.764 Scaffold_2 17891465 AMATA_chromosomes_04209 NA NA 
* ~2 Mb from PPO 1235 
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