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ABSTRACT (250/250 words) 

Purposes: The study aimed to optimize diffusion-weighted imaging (DWI) image acquisition and analysis protocols 

in calf muscles by investigating the effects of different model-fitting methods, image quality, and use of high b-value 

and constraints on parameters of interest (POIs). The optimized modeling methods were used to select the optimal 

combinations of b-values, which will allow shorter acquisition time while achieving the same reliability as that 

obtained using 16 b-values.  

Methods: Test-retest baseline and high-quality DWI images of ten healthy volunteers were acquired on a 3T MR 

scanner, using 16 b-values, including a high b-value of 1200s/mm2, and structural T1-weighted images for calf muscle 

delineation. Three and six different fitting methods were used to derive ADC from monoexponential (ME) model and 

Dd, fp, and Dp from intravoxel incoherent motion (IVIM) model, with or without the high b-value. The optimized ME 

and IVIM models were then used to determine the optimal combinations of b-values, obtainable with the least 

number of b-values, using the selection criteria of coefficient of variance (CV) ≤10% for all POIs. 

Results: The find minimum multivariate algorithm was more flexible and yielded smaller fitting errors. The 2-steps 

fitting method, with fixed Dd, performed the best for IVIM model. The inclusion of high b-value reduced outliers, 

while constraints improved 2-steps fitting only.  

Conclusions: The optimal numbers of b-values for ME and IVIM models were nine and six b-values respectively. Test-

retest reliability analyses showed that only ADC and Dd were reliable for calf diffusion evaluation, with CVs of 7.22% 

and 4.09%. 
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Word Abbreviations 

AHC: Age-matched Healthy Control; AM: Adductor Magnus; AN: Anterior Muscles; BL: Baseline; DM: Diabetes 

Mellitus; DP: Deep posterior calf muscle compartment; DWI: Diffusion-weighted imaging; EHC: Elderly Healthy 

Control; FMM: Find minimum multivariable; GL: Gastrocnemius lateralis muscle; GM: Gastrocnemius medialis 

muscle; HC: Healthy Control; HQ: High-quality; HS: Hamstrings; IVIM: Intravoxel Incoherent Motion; LA: Lateral; LM: 

Levenberg-Marquardt algorithm; LSQ: Nonlinear least-squares; ME: Monoexponential; MED: Medial; MRI: Magnetic 

resonance imaging; PAD: Peripheral arterial disease; PER: Peroneal muscles; POI: Parameter of interest; POS: 

Posterior; QD: Quadriceps; RF: Rectus Femoris; ROI: Region of interest; SOL: Soleus muscle combined with GL 

muscle; TA: Tibialis anterior; YHC: Young HC; TRR: Trust-region-reflective algorithm.  

Parameter Abbreviations 

ADC: Apparent diffusion coefficient from ME; b: b-values of the DWI images in equations; CV: Coefficients of 

variance; Dd: Diffusion coefficient from IVIM; Dp: Pseudodiffusion or perfusion coefficient; fp: Perfusion fraction; ICC: 

Intraclass correlation coefficient; k: Number of measurements per subject; MSB: Mean square measurements 

between subjects; MSE: Mean square error; MST: Mean square between test-retest measurements; n: Total number 

of subjects and regions of interest; r: Pearson correlation; rpc: Reproducibility coefficient; S: Measured signal; S0: 

Measured signal at b = 0 s/mm2; Sint:  y-intercept or the extrapolated signal of the fitted logarithmic ME equation; 

SNR: Signal-to-noise ratio; SSE: Sum of squared error;  
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1 INTRODUCTION  

Diffusion-weighted imaging (DWI) is a non-invasive means to measure the diffusion of water molecules in tissue 

water using magnetic resonance imaging (MRI) [1]. DWI is applied in oncology for the detection of malignant lesions 

[2], as water diffusion is significantly reduced in malignant tissues, and also in neurology for the detection of ischemia 

onset or to provide information on white matter structural integrity [1]. Quantitative evaluation of diffusion is 

achieved by acquiring multiple DWI images at different diffusion gradient strengths, named b-values. The b-values 

are dependent on the amplitude, duration, and interval between the applied gradients, and higher b-values meant 

higher gradient amplitude, duration, and interval between gradient pulses, and thus longer acquisition time [2]. At 

the same time, signal attenuation also increases with b-values, which resulted in a form of monoexponential (ME) 

decay [3]. 

Conventionally, the apparent diffusion coefficient (ADC) is then estimated by modeling the DWI signals across the 

different b-values using a ME model, by assuming Gaussian or free diffusion. However, the DWI signal is 

contaminated by blood perfusion from the capillary networks, which leads to signal attenuation observed at very 

low b-values. Intravoxel incoherent motion (IVIM) was thus proposed to separate the effect of blood perfusion from 

water diffusion in tissues [4]. Although IVIM does not measure perfusion directly, the pseudodiffusion or perfusion 

parameter (Dp), and the perfusion fraction (fp) have been shown to correlate with micro-perfusion or 

microvasculature [5]. IVIM thus allowed studies to assess both diffusion and “perfusion” simultaneously in various 

muscle groups before and after simulation such as exercise to investigate age-related muscle perfusion impairment 

[6-7] or diseases with microvascular dysfunction, such as peripheral arterial disease (PAD) [7-11]. Under metabolic 

stress or inflammation, interstitial fluid, and blood flow increases in the muscles and hence the overall DWI signal 

[9,12]. Still, the estimation of IVIM parameters may be noisy, especially at small b-values [3]. This can be resolved 

either by acquiring DWI images at many different small b-values, or multiple signals at a few b-values and averaging 

them out to obtain “high-quality” images. 

The acquisition of multiple MR images increases scan time and patient discomfort, which may lead to subject motion 

and hence poor image quality. Moreover, despite the value of MR imaging in disease diagnosis and management, 

there is literature showing the limited reproducibility of some MR parameters across centers, scanner parameters, 

and imaging platforms [13]. DWI, in addition, is affected by the number and choice of b-values, mathematical models, 

and fitting methods applied to derive the parameters of interest (POIs) [14]. We are interested in using DWI to 

evaluate diffusion and perfusion in the calf muscles of patients with PAD. Therefore, we are motivated to reduce the 

image acquisition time for increased patient comfort, but obtain reliable parameters for evaluation, similar to that 

obtained with more b-values. 

Our study objective was to optimize the DWI image acquisition and analysis protocols to evaluate diffusion and 

perfusion in calf muscles, with a focus to derive reliable diffusion and perfusion parameters, while reducing scan 

time. This protocol will reduce the DWI scan time and support clinical studies with multiple image acquisition in 

patients. To achieve this goal, we first evaluated the performance of different fitting methods for both ME and IVIM 

mathematical models. The results of this evaluation would allow us to determine the most reliable method to derive 

the POIs, namely ADC from the ME model and, diffusion coefficient (Dd), fp, and Dp from the IVIM model.  

Proper estimation of diffusion and perfusion parameters may require high b-values of > 1000 s/mm2 [1,3]. Thus, we 

investigated whether the inclusion of one high b-value of 1200 s/mm2 will help to improve the IVIM modeling. The 

estimation of fp and Dp is dependent on image acquisition at the smaller b-values, which can be noisy and lead to 

great variations in the derived values. The impact of image quality on the POIs was thus investigated by comparing 

baseline and high-quality (acquired with more averages) images. The selected methods were then used to select the 

optimal combinations of b-values for deriving reliable POIs. The optimal combinations will allow shorter acquisition 

time with reduced number of b-values required while achieving the same reliability as that obtained using 16 b-

values. Test-retest reproducibility analyses were performed to determine the reliability of the POIs acquired using 



4 
 

16 b-values (ground truths) and the optimal combinations of b-values from both baseline and high-quality DWI 

images. 

2 MATERIALS AND METHODS 

2.1 Overview 

The study consisted of three main parts (Fig. 1): (1) Image acquisition and processing to extract the signals in the 

DWI images acquired at different b-values, (2) modeling the signals across the b-values to obtain the diffusion and 

perfusion POIs and (3) determine the minimum combinations of b-values for ME and IVIM model fitting that can 

obtain reliable POIs. Three and six different model-fitting methods were investigated for ME and IVIM modeling. In 

addition, the effects of image quality, and the use of high b-value and constraints on modeling were investigated. 

The best ME and IVIM model-fitting methods were then selected for further investigation.  

The optimal b-value combinations for ME and IVIM models were determined in three steps: (1) From 16 b-values, 

progressively reduce one b-value until only 3 b-values were used for modeling, excluding b-value = 0 s/mm2, (2) 

calculate coefficients of variance (CVs) for all POIs, and (3) select the minimum combination of b-values that yielded 

CV ≤ 10% for 90% of all regions, subjects and image types. Test-retest reliability analyses were performed using four 

reliability metrics, as well as statistical analyses to determine the reliability of each POI and the power of the test.  

 

Figure 1: Overview of the analysis workflow: (1) image acquisition and processing, (2) modeling and derivation of 

parameters of interest, and (3) selection of optional b-values and reliability analysis. 

2.2 Image Acquisition 

10 healthy volunteers (M/F: 6/4, Age: 30 ± 6 [22 – 44] years, Weight: 61.4 ± 8 [47 - 72] kg) were recruited for this 

study, with informed consent obtained from the subjects. Subjects were positioned supine with their feet first and 

covered with a blanket to keep them warm. They were asked to lie on the scanner for 10 minutes before the start 

of image acquisition and to stay still during image acquisition. Structural T1-weighted images were acquired before 

a set of baseline and high-quality DWI images. The subject was then asked to come off the scanner and walk around 

for about 3 minutes before lying down on the scanner bed for 5 minutes for a retest set of baseline and high-quality 
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DWI images. This led to a total of 4 sets of DWI images, namely baseline, high-quality, baseline-retest, and high-

quality-retest (Fig. 1). To ensure that the measurements were not due to physiological conditions after getting off 

the scanner, 5 subjects had their baseline scans first followed by high-quality scans and vice-versa for the other 5 

subjects. The total scan times for each set of baseline and high-quality DWI images were 2.5 minutes and 7.5 minutes. 

The axial MR images were acquired on the 3T Siemens Biograph mMR (Siemens Healthineers, Germany), with a 12-

channel external phased-array coil covering both legs and positioned around the mid-point of the lower leg. The 

acquisition sequence used was a spin-echo weighted diffusion sequence with single-shot EPI (echo planar imaging) 

readout, with TR/TE = 3000/80 ms/ms, Flip angle = 90°. A single 10 mm 2D slice was acquired at the largest diameter 

of the calves, with a field of view of 349 mm sufficient to cover both legs. We chose to scan a single slice to minimize 

the effects of geometrical distortion, non-linearity of ADC, crosstalk, B1 inhomogeneity, and magnetization transfer, 

which can affect the signal value. Diffusion sensitization was achieved conventionally using a pair of Stejskal-Tanner 

gradients around the 180° refocusing pulse to allow shorter TE and the use of very low b-values. Diffusion was 

applied to 3 orthogonal directions separately and combined to form a trace-weighted image, which is independent 

of diffusion direction. 

16 b-values of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 400, 600, 800, and 1200 s/mm2 were used and images 

were acquired in temporal sequence. For the high-quality scan, multiple averages were acquired for different b-

values to increase the signal-to-noise-ratio (SNR) for the images to be clinically acceptable. 2 averages were used for 

the 1st to 11th b-values (b-values of 0 to 100 s/mm2), 3 averages for the next 3 (b-values of 200, 400, 600 s/mm2), 

and 8 averages for the last 2 (b-values of 800, 1200 s/mm2), with increasing compensation required for the reduced 

SNR at higher b-values. This resulted in an acquisition time of 7min 27s. For the normal/standard image quality, a 

scan was acquired with the minimum possible 1 average for all b-values, resulting in the fastest acquisition time of 

2 min 27s, with all other parameters kept identical. The trace-weighted DWI images were then reconstructed into a 

final matrix size of 192 × 126 (1.83 × 1.83 mm2). Structural 3D T1-weighted SPACE was acquired with TR = 520 ms, 

TE = 27 ms, and Flip angle = 120°, from which a slice that matched the DWI images was selected and reconstructed 

into a final matrix volume of 484 × 484 (0.651 × 0.651 mm2). 

2.3 Image Processing and Regions of Interest (ROIs) Delineation 

5 main regions of interest (ROIs) were delineated on each calf (total of 10 ROIs) on the T1-weighted MR image, 

specifically, Tibialis anterior (TA), Peroneal muscles (PER), deep posterior calf muscle compartment (DP), 

Gastrocnemius medialis muscle (GM) and Soleus muscle (SOL) combined with Gastrocnemius lateralis muscle (GL), 

while avoiding tibia and fibula bones and major blood vessel regions, as shown in Fig 2. ROI delineation was 

performed by an MD-PhD student and reviewed by an experienced senior consultant in cardiology and radiology 

with over 27 years of experience. Each set of DWI images was realigned to correct for motion using SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/). The structural T1-weighted MR images and the corresponding ROIs were 

then registered to each set of DWI images using a geometric transformation program in MATLAB (R2019a, The 

MathWorks, Inc., US), with non-reflective similarity transformation consisting of translation, rotation, and scaling. 

The quality of realignment of the DWI images, and structural T1-weighted MR and DWI image registration was 

assessed visually and deemed to be good. Good registration was generally obtained as the structural MR image was 

acquired before each set of baseline and high-quality DWI images in the same MR scanner, and not much subject 

motion was observed during DWI acquisition (maximum translation of 1.02 mm and rotation of 1.15°). Only one 

subject moved one leg slightly in the axial direction, which affected the slice acquisition of one DWI image at a b-

value of 90 s/mm2 and may affect modeling, especially for combinations with few b-values. 

https://www.fil.ion.ucl.ac.uk/spm/


6 
 

 
Figure 2: Structural T1-weighted SPACE image (Left-Top) registered to DWI image (b-value = 0 s/mm2, Left-Bottom) 
and the corresponding regions of interest (ROIs, Right), drawn on the T1-weighted image, registered to and overlaid 
on the DWI image. TA = Tibialis anterior, PER = Peroneal muscles, DP = Deep posterior calf muscle compartment, 
SOL = Soleus muscle, GL = Gastrocnemius lateralis muscle, GM = Gastrocnemius medialis muscle. 

2.4 Signal-to-Noise (SNR) Evaluation 

The signal-to-noise (SNR) was determined using all the signals within all the ROIs across the different b-values for 
each set of DWI images [15]: 

 𝑆𝑁𝑅(𝑏) = 𝑀𝑒𝑎𝑛(𝑆(𝑏))/𝑆𝑡𝑑(𝑆(𝑏)) (1) 

where S refers to the measured signal, b refers to the b-values of the DWI images and Std refers to the standard 
deviation. 

2.5 Monoexponential (ME) and Intravoxel Incoherent Motion (IVIM) models 

Water diffusion is commonly modeled using the ME model, from which the apparent diffusion coefficient (ADC) of 

free water diffusion can be estimated from DWI images acquired with different b-values: 

 
𝑆(𝑏)

𝑆0
= 𝑒(−𝑏∙𝐴𝐷𝐶) (2) 

Where S refers to the measured signal, b refers to the b-values of the DWI images and S0 is the measured signal at b 

= 0 s/mm2. 

Le Bihan et al. introduced the IVIM model to separate perfusion from the surrounding capillary networks from water 

molecular diffusion within the tissue space [4]:  

 
𝑆(𝑏)

𝑆0
= 𝑓

𝑝
∙ 𝑒(−𝑏∙𝐷𝑝) + (1 − 𝑓

𝑝
) ∙ 𝑒(−𝑏∙𝐷𝑑) (3) 

Where S refers to the measured signal, b refers to the b-values of the DWI images, S0 is the measured signal at b = 0 

s/mm2, fp is the perfusion fraction, Dp is the pseudo-diffusion or “perfusion” coefficient, and Dd is the molecular 

diffusion of water. 

2.6 ME, 1-Step and 2-Steps IVIM Model Fitting 

The ME and 1-step IVIM model fitting were performed by fitting equations (2) and (3) respectively using the 

nonlinear least-squares (LSQ) method with trust-region-reflective (TRR) or Levenberg-Marquardt (LM) algorithms, 

as well as the find minimum multivariable (FMM) method with non-negative constraints of 0 ≤ fp ≤ 1, ADC > 0, Dd > 

0, and Dp > 0. Non-negative constraints were used to first compare the stability of the different model-fitting 

methods. The initial starting values for all IVIM modeling were 0.1, 1.1 × 10-3 mm2/s, and 12 × 10-3 mm2/s for fp, Dd, 
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and Dp, selected by comparing the average values from literature and values of the first subject. The same initial 

starting value for Dd was used for ADC.  

The 2-steps IVIM model fitting was carried out by first estimating Dd (or ADC) from the linear fitting of the logarithmic 

equation (2) for DWI images with b-values ≥ 200 s/mm2 [10]. fp is then estimated using Sint, the y-intercept, or the 

extrapolated signal of the fitted logarithmic equation (2) [15]. 

 𝑓
𝑝
=
𝑆0 − 𝑆𝑖𝑛𝑡

𝑆0
 (4) 

The final Dd, fp, and Dp were determined by fitting equation (3) with three methods: (1) using the estimated Dd and 

fp as starting estimates to determine Dd, fp, and Dp [15], (2) fixing Dd and using the estimated fp as a starting estimate 

to determine both Dp and fp [7-9,12], or (3) fixing both Dd and fp and determine Dp only [10]. Model fitting was 

performed with the FMM algorithm and the same constraints as the 1-step model fitting.  

2.7 Impact of High B-value and Constraints 

Most centers typically use a maximum b-value of 800 s/mm2 or 1000 s/mm2 for general body diffusion, as a 

compromise between SNR, scan time, and sensitivity and specificity of the lesion against background detection. 

Therefore, the impact of including a high b-value of 1200 s/mm2 was investigated between baseline and high-quality 

DWI images to determine if it will improve IVIM modeling to yield more reliable and consistent Dd, fp, and Dp values. 

In theory, higher b-values would accentuate the difference between diffusion and perfusion, but noise in 

measurements at high b-values of > 1000 s/mm2 may make the measurements unreliable. 

Comparison was performed between all 16 b-values and without the high value of 1200 s/mm2 using the three 

different 1-step fitting methods, and three different 2-steps IVIM model-fitting methods. Model fitting performed 

with the FMM function had the same constraints applied as described in section 2.6. The best method was 

determined for all subjects and all regions using all 16 b-values, as well as 15 b-values excluding the high b-value of 

1200 s/mm2, by comparing the quality of fit with the sum of squared error (SSE), as well as the estimated Dd, fp, and 

Dp parameters. All model fitting and analyses were performed using MATLAB (R2019a, The MathWorks Inc., USA). 

Default MATLAB optimization parameters were applied except for the maximum number of function evaluations, 

and iterations, which were changed to 1 and 0.2 million respectively. 

In addition, voxel analysis was performed using the selected model-fitting methods for the ME model, and 1-step 

and 2-steps IVIM models, with both lenient and stringent constraints and using all 16 b-values on one subject who 

had a set of baseline DWI images acquired during the pre-cuffing resting, ischemia, hyperemia and post-cuffing 

resting phases of 5 minutes per phase. Cuffing was done within 30 s with 50 mmHg pressure exerted on the left 

thigh. Further details and results can be found in Supplementary Material: Investigation of IVIM during Ischemia 

and Hyperemia Phases. 

2.8 Selection of Optimal b-values 

Signals measured from the respective DWI images were input into the ME and IVIM models, with the corresponding 

b-values of the DWI images to derive ADC and Dd, fp, and Dp parameters. The ME and IVIM modeling methods were 

selected based on results obtained for section 2.7. Different combinations of b-values were used for modeling, 

starting from all 16 b-values and reduced progressively in step of one until only three b-values, including the b-value 

of 0 s/mm2. This led to 513 different combinations for each ROI. In cases where no b-values > 200 s/mm2 exist for 

the selected 2-steps IVIM model-fitting method, 1-step model fitting was performed using the selected constraints. 

The selection of optimal b-values was performed by calculating the coefficients of variance (CVs) of ADC and Dd 

between each combination of b-values with the “ground truth” obtained using all 16 b-values. The selection criteria 

for choosing the optimal combinations of b-values were set according to the selected metric, specifically CV, and its 

requirements for good reliability. Combinations that managed to yield CV of ≤ 10% for 90% of all regions and subjects 
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(10 ROIs, 10 subjects) for both test-retest baseline and high-quality DWI images were selected for further evaluation 

to select the combinations of b-values that yield ADC and Dd values close to the “ground truth” values. 

2.9 Test-Retest Reliability Analyses 

Test-retest reliability analyses were performed for ADC, Dd, Dp, and fp for baseline and high-quality DWI images, using 

all 16 b-values and optimal combinations of b-values obtained in section 2.8. Four reliability metrics, namely 

intraclass correlation coefficient (ICC), reproducibility coefficient (rpc), coefficients of variance (CV), and Pearson 

correlation (r) were calculated using programs written in MATLAB [16,17]. ICC with the two-way random effects, 

absolute agreement, single measurement model (ICC(2,1)), and α = 0.05, was determined as follows [18-20]: 

 𝐼𝐶𝐶(2,1) =
𝑀𝑆𝐵 −𝑀𝑆𝐸

𝑀𝑆𝐵 + (𝑘 − 1) ∙ 𝑀𝑆𝐸 + 𝑘 ∙ (𝑀𝑆𝑇 −𝑀𝑆𝐸)/𝑛
 (5) 

where MSB is the mean square measurements between subjects, MSE is the mean square error, MST is the mean 

square between test-retest measurements, k is the number of measurements per subject (k = 2) and n is the total 

number of subjects and regions of interest (n = 10 x 10 = 100). 

ICC score ≥ 0.90 indicates excellent reliability, 0.75 ≤ ICC < 0.90 indicates good reliability, 0.5 ≤ ICC < 0.75 indicates 

moderate reliability and ICC < 0.5 indicates poor reliability (Koo, 2016). Bland-Altman analysis was performed using 

a normal distribution assumption for Dd and fp, but using a non-parametric distribution assumption for Dp. The CV 

was calculated as the ratio of standard deviation over the average value. For functional MR images, we followed the 

same CV definition of parameter reproducibility as Aronhime et al. [21] where reproducibility or reliability is 

excellent when CV ≤ 10%, good when 10% < CV ≤ 20%, acceptable when 20% < CV ≤ 30%, and poor when CV > 30%. 

The reproducibility coefficient (rpc) was determined as 1.96 times the standard deviation of the differences in 

measurements, where the smaller the rpc, the higher the reliability in measurements. The correlation scatter plots 

were also plotted, with the Pearson correlation (r) displayed.  

2.10 Statistical Analyses 

Statistical analyses were performed using paired-sample t-tests and Wilcoxon signed rank test for normally-

distributed and non-parametric data of ADC, Dd, fp, and Dp parameters, with Gaussian distribution determined using 

the Kolmogorov-Smirnov test. All statistical analyses were performed with significance defined at p ≤ 0.05, for all 

parameters derived from baseline and high-quality DWI images, test and retest datasets using all 16 b-values and 

without the b-value of 1200 s/mm2, and using only the optimal number of b-values. 

3 RESULTS 

3.1 ME, 1-Step and 2-Steps IVIM Model Fitting 

The SSEs of the ME model fits were relatively similar between the LSQ with LM and FMM methods, but LSQ with TRR 

method yielded higher SSEs (Supplementary Table 1). The ADC values derived using LSQ with TRR were also 

significantly smaller (Fig. 3a). The SSEs of the 1-step IVIM model fits were relatively similar between both LSQ 

methods but were much smaller using the FMM method (Supplementary Table 1). As expected, the SSEs were higher 

using the ME model than the IVIM model except for TA and DP using either LSQ method. See Supplementary Fig. 1 

for examples of how the different fitting methods performed in fitting the measured data.  

For the IVIM model, the spread of fp and Dd values were smaller across subjects and regions using both LSQ methods, 

with fewer outliers compared to FMM, making LSQ appealing for IVIM modeling (Fig. 3c-d). However, the resulting 

Dd values were generally significantly lower than those derived from other methods (Fig. 3b). Moreover, the SSEs 

were highest using the LSQ methods (Supplementary Table 1), as shown by the poorer fitting (Supplementary Fig. 

1d-f). The LSQ methods might be stuck in local minimum in determining fp and Dp values, thus yielding small 
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differences in fp and Dd values and higher SSEs. Thus, the FMM method is more reliable in determining the POIs from 

the ME and IVIM models. 

The SSEs were relatively close for 1-step fit and 2-steps fit, using the estimated Dd and fp as starting points, for all 

regions and types of DWI images (Supplementary Table 1). Moreover, the values of Dd, fp, and Dp derived from the 

1-step IVIM model with FMM were relatively similar to those obtained from the 2-steps IVIM model with the 

estimated Dd and fp as starting estimates. These indicated that the selected initial values for model fitting were 

generally suitable, but as expected, the 2-steps IVIM model yielded slightly smaller SSEs. However, none of the three 

2-steps fitting methods stood out as the clear winner, though fixing both Dd and fp yielded much smaller SSEs in DP 

when the other methods all yielded high SSEs (Supplementary Table 1). The 1-step fitting method with FMM and 2-

steps fitting method with the estimated Dd and fp as starting points generally have larger inter-subject variations in 

fp and Dp (Fig. 3c-d).  

 
Figure 3: Boxplots showing the distributions of (a) ADC from the monoexponential (ME) model, (b) Dd, (c) fp, and (d) 
Dp from the intravoxel incoherent motion (IVIM) model derived from baseline images (BL), baseline-retest images 
(BL-R), high-quality images (HQ), and high-quality-retest images (HQ-R), obtained using all 16 b-values. Three and six 
different modeling methods for ME and IVIM models, namely 1-step fitting with least square (LSQ) method with 
trust-region-reflective (TRR, blue) or Levenberg-Marquardt (LM, red) algorithms and find minimum multivariable 
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method (FMM, yellow), and 2-steps fitting with the estimated Dd and fp as starting points (purple), or fixed Dd and 
used the estimated fp as starting point (green), or fixed both Dd and fp and determine Dp only (cyan). TA = Tibialis 
anterior, PER = Peroneal muscles, DP = Deep posterior calf muscle compartment, SOL = Soleus muscle and 
Gastrocnemius lateralis muscle, GM = Gastrocnemius medialis muscle. For each boxplot, the central mark indicates 
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles. + indicates an outlier 
that lies outside 1.5 times the interquartile range. * Significant differences between specified groups, where colored 
lines were used between test-retest, while black lines were used between different fitting methods. # indicates 
significant differences between LSQ (TRR and LM) with the bracketed group(s). 

3.2 Impact of Image Quality and High B-value in Model Fitting 

High-quality DWI images generally yielded smaller SSE for all model-fitting methods, and resulted in smaller 

variations and fewer outliers in Dp and fp values, compared to baseline images (Fig. 3c-d). Moreover, the average 

SNRs were more consistent across all 10 subjects and were closer between the test and retest scans for high-quality 

DWI images compared to the baseline DWI images across the 16 b-values (Supplementary Fig. 2). In addition, the 

test and retest values of all parameters across all regions were closer, with fewer outliers, particularly in Dp, which 

showed that high-quality DWI images improve IVIM modeling and parameter estimation. 

The inclusion of a high b-value for IVIM model fitting led to smaller inter-subject variations of Dd, Dp, and fp and fewer 

outliers in fp and Dp (Fig. 3 vs. Fig. 4), particularly for the 2-steps fit method with fixed Dd and fp. The impact of a high 

b-value was less obvious for ADC from the ME model. Image quality then further reduced the variations and number 

of outliers in fp and Dp (Fig. 3 vs. Fig. 4). Generally, the fitted curves decayed faster without the high b-value, which 

led to slightly higher Dd values (Supplementary Fig. 3). Similar to that obtained by Cho et al [22], we obtained fp 

values of < 0 (Fig. 2-3) and Dp values > 1000 mm2/s (Fig. 4), particularly using the 2-steps fit method with fixed Dd 

and fp. The 2-steps fitting method of fixing Dd and using the estimated fp as starting point to determine both Dp and 

fp generally worked well with fewer cases of fp ≤ 0, compared to the other two 2-steps fitting methods. Inter-subject 

variations of Dd, Dp, and fp were also generally smaller for all types of DWI images using this method. Therefore, the 

2-steps fitting method with fixed Dd, strict constraints, and the inclusion of high b-value, was selected as the optimal 

IVIM model-fitting method and FMM was selected as the best algorithm for ME modeling, with non-negative 

constraints. See Supplementary Material: Impact of Constraints in Model Fitting for the selection of constraints. 
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Figure 4: Boxplots showing the distributions of (a) ADC from the monoexponential (ME) model, (b) Dd, (c) fp, and (d) 
Dp from the intravoxel incoherent motion (IVIM) model derived from baseline images (BL), baseline-retest images 
(BL-R), high-quality images (HQ), and high-quality-retest images (HQ-R), obtained using all 15 b-values (excluding 
high b-value of 1200 s/mm2). Three and six different modeling methods for ME and IVIM models, namely 1-step 
fitting with least square (LSQ) method with trust-region-reflective (TRR, blue) or Levenberg-Marquardt (LM, red) 
algorithms and find minimum multivariable method (FMM, yellow), and 2-steps fitting with the estimated Dd and fp 
as starting points (purple), or fixed Dd and used the estimated fp as starting point (green), or fixed both Dd and fp and 
determine Dp only (cyan). TA = Tibialis anterior, PER = Peroneal muscles, DP = Deep posterior calf muscle 
compartment, SOL = Soleus muscle and Gastrocnemius lateralis muscle, GM = Gastrocnemius medialis muscle. For 
each boxplot, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 
75th percentiles. + indicates an outlier that lies outside 1.5 times the interquartile range. * indicates significant 
differences between specified groups, where colored lines were used between test-retest, while black lines were 
used between different fitting methods. # indicates significant differences between LSQ (TRR and LM) with the 
bracketed group(s). 
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3.3 Selection of Optimal B-values 

Fig. 5a and 5b show the combinations (x-axis) and the no of times each combination met the selection criteria (CV 

of ≤ 10% for 90% in all regions, subjects, and image types. Only combinations that met the selection criteria were 

shown in Fig. 5. The colors of each bar represent the number of b-values for each combination as explained in the 

legend. For example, the combination for Dd, highlighted by the red arrow in Fig. 5b, has b-values of 0, 40, 80, 200, 

600, and 1200, thus the bar is in dark teal for 6 b-values. Fig 5c and 5d show the corresponding average CVs of fp and 

Dp for the same combinations in Fig. 5b. 

The number of combinations of b-values that were able to meet the selection criteria of having CV of ≤ 10% for 90% 

of all regions and subjects for ADC and Dd were 82 and 179, down to 9 and 4 b-values respectively as shown in the 

legends of Fig. 5a and 5b-d for ME and IVIM modeling. The selected 2-steps IVIM fitting with fixed Dd led to a large 

number of combinations that met the selection criteria with almost all cases having CV of ≤ 10%, even with 4 b-

values of 0, 200, 800, and 1200 s/mm2. However, the average CVs of fp and Dp of the corresponding combinations 

were high (above the dashed line that highlights the selection criteria of CV < 10%). The optimal combination of b-

values, with the smallest number of b-values but achieved average CVs of ≤ 10% for Dd, fp, and Dp, as highlighted 

with red arrows, was six b-values of 0, 40, 80, 200, 600, and 1200 s/mm2. However, for ADC, the optimal combination 

with the smallest number of b-values but met the selection criteria, was nine b-values of 0, 20, 40, 60, 70, 90, 200, 

600, and 1200 s/mm2, as highlighted with a black arrow. 

 
Figure 5: Combinations of b-values that yielded coefficients of variance (CV) of ≤ 10% for 90% in all regions and 
subjects (10 ROIs, 10 subjects) for test-retest of baseline and high-quality DWI images. No. of times (y-axis) each 
combination met the selection criteria for (a) ADC and (b) Dd, where the maximum no is 400 (10 subjects x 10 ROIs 
x 4 image types and the selection criteria of 90% of these combinations is 360) and the corresponding average CVs 
of (c) fp and (d) Dp of the same combinations as Dd as shown in (b). The x-axis refers to the different combinations of 
b-values, with the colors indicating the number of b-values in each combination, as highlighted in the legend, with 
82 and 179 combinations that met the selection criteria for ME and IVIM modeling. The dashed lines highlight the 
selection criteria of CV < 10%. The black and red arrows highlight the optimal combinations of b-values that achieved 
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average CVs of ≤ 10% for ADC from ME modeling and Dd, fp, and Dp from IVIM modeling, with the smallest number 
of b-values. 

3.4 Test-Retest Reliability 

ADC derived from baseline DWI images was the only parameter that achieved an acceptable ICC value of > 0.7 (Table 

1) [20]. However, the SSEs from the ME model were generally higher in baseline DWI images and also compared to 

all IVIM models, thus ICC may not be suitable for evaluating the test-retest reliability of the POIs. Among the four 

reliability metrics, only CV yielded results similar to expectations where Dd performed the best, with the smallest CV, 

followed by ADC, fp then Dp, and the CV values were smaller for high-quality images compared to baseline images 

for Dd, fp, and Dp (Table 1). The results confirmed our choice of using CV as the metric for selection criteria in selecting 

the optimal combinations of b-values in section 3.3. Dd yielded the smallest CV of < 5%, followed by ADC, with CV < 

10%, which indicated that Dd and ADC have excellent reproducibility. However, fp and Dp have poor reliability with 

CV > 30%, even when derived from high-quality images, with reduced number of outliers (Fig. 3-4), and improved 

modeling fit (Supplementary Tables 1-2). However, high-quality images reduced the variance in the POIs by up to 4 

times (Table 1). Refer to Supplementary Fig. 8-9 for Bland-Altman and correlation scatter plots of all POIs of baseline 

and high-quality DWI images.  

All four reliability metrics for ADC were generally better using the selected fitting method with FMM than those 

derived using other model-fitting methods (Table 1). The 1-step IVIM model fitting with LSQ methods generally 

yielded better reliability, with much lower CV for fp and Dp of < 1% and < 20%. However, a comparison of distributions 

of fp and Dp values (Fig. 3-4), SSEs (Supplementary Tables 1-2), and model fits (Supplementary Fig. 1 and 3) revealed 

that LSQ got stuck in local minima and may not be reliable. Comparing the other IVIM model-fitting methods using 

FMM, the 2-steps fitting method with fixed Dd and fp showed good reliabilities for Dd and fp with all 4 reliability 

metrics but poor reliability for Dp. The selected 2-steps IVIM modeling method with fixed Dd performed next best for 

Dd and fp. It also yielded good reliability for Dp after the 1-step model-fitting methods with LSQ. This supported our 

choice of optimal ME and IVIM model-fitting methods (Table 1). 

The values of the four reliability metrics were slightly poorer using the optimal combinations of b-values for ADC 

than those obtained using all 16 b-values. However, for Dd, fp, and Dp, the four reliability metrics were poorer when 

derived from baseline DWI images but were relatively similar if not better when derived using high-quality images. 

These further supported the selection of the optimal combinations of b-values and the use of high-quality images in 

ensuring reliable parameters for evaluation. Refer to Supplementary Fig. 10-11 for Bland-Altman and correlation 

scatter plots of ADC, Dd, fp, and Dp of baseline and high-quality DWI image obtained using the optimal combinations 

of b-values. The mean values of ADC and Dd, derived using all b-values and the optimal combinations of b-values, 

were relatively similar across the different regions and within each image type. However, that of fp and Dp differed 

slightly in most regions but differed greatly in a few regions (Supplementary Table 3). 

Models Parameters 
Baseline  High-Quality 

ICC rpc CV (%) r  ICC rpc CV (%) r 

ME (LSQ-TRR) ADC 0.634 0.245 8.423 0.632  0.552 0.342 11.682 0.552 
ME (LSQ-LM) ADC 0.716 0.222 7.239 0.727  0.628 0.294 9.522 0.645 
ME (FMM) α ADC 0.717 0.221 7.218 0.729  0.629 0.294 9.524 0.645 

ME (FMM) β ADC 0.709 0.234 7.679 0.720  0.618 0.309 10.074 0.637 

1-step IVIM (LSQ-TRR) Dd 0.733 0.166 6.496 0.754  0.642 0.227 8.823 0.661 
 fp 0.291 0.059 0.302 0.303  0.323 0.072 0.369 0.335 
  Dp 0.252 3.645 16.762 0.259  0.486 3.037 13.640 0.488 

1-step IVIM (LSQ-LM) Dd 0.733 0.166 6.496 0.754  0.642 0.227 8.823 0.661 
 fp 0.291 0.059 0.302 0.303  0.323 0.072 0.369 0.335 
  Dp 0.252 3.645 16.762 0.259  0.486 3.037 13.640 0.488 

1-step IVIM (FMM) # Dd 0.634 0.154 5.633 0.713  0.593 0.167 6.196 0.636 
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 fp 0.561 12.885 86.773 0.564  0.617 12.347 69.728 0.616 
 Dp 0.500 32.858 154.27 0.582  0.475 5.636 41.853 0.500 

1-step IVIM (FMM) * Dd 0.607 0.203 7.397 0.646  0.582 0.194 7.181 0.614 
 fp 0.597 12.600 76.793 0.597  0.605 12.217 67.758 0.604 
 Dp 0.090 12.909 131.33 0.090  0.391 5.458 57.183 0.410 

2-step IVIM  
(start Dd, fp)# 

  

Dd 0.620 0.157 5.704 0.709  0.591 0.168 6.241 0.633 

fp 0.543 12.647 89.740 0.557  0.618 12.396 70.246 0.617 

Dp 0.299 56.159 204.66 0.450  0.517 6.011 42.604 0.533 

2-step IVIM  
(start Dd, fp)* 
  

Dd 0.623 0.156 5.620 0.699  0.551 0.175 6.507 0.586 

fp 0.310 12.669 99.551 0.318  0.570 12.439 71.501 0.569 

Dp 0.280 57.133 203.29 0.282  -0.002 27.878 221.17 -0.003 

2-step IVIM  
(fixed Dd & fp)# 

Dd 0.516 0.121 4.489 0.640  0.597 0.108 4.090 0.684 

fp 0.622 7.329 49.471 0.628  0.647 6.864 38.561 0.645 

Dp 0.653 1659.1 372.839 0.655  0.387 1658.8 659.82 0.393 

2-step IVIM  
(fixed Dd & fp)* 

Dd 0.516 0.121 4.489 0.640  0.597 0.108 4.090 0.684 

fp 0.622 7.329 49.471 0.628  0.647 6.864 38.561 0.645 

Dp 0.573 37.520 155.87 0.572  0.344 33.625 191.54 0.348 

2-step IVIM  
(fixed Dd)# 

Dd 0.516 0.121 4.489 0.640  0.597 0.108 4.090 0.684 

fp 0.540 9.180 55.528 0.547  0.628 10.007 48.896 0.628 
 Dp 0.427 39.008 205.779 0.712  0.163 6.432 58.795 0.163 

2-step IVIM  Dd 0.516 0.121 4.489 0.640  0.597 0.108 4.090 0.684 
(fixed Dd) *, α fp 0.510 8.968 53.146 0.517  0.613 9.945 48.188 0.613 
 Dp 0.633 21.968 139.17 0.780  0.334 5.346 54.882 0.335 

2-step IVIM  Dd 0.515 0.129 4.783 0.625  0.600 0.109 4.159 0.683 
(fixed Dd) β fp 0.487 8.285 49.247 0.488  0.647 7.521 36.759 0.645 
 Dp 0.281 31.984 197.51 0.280  0.453 5.590 53.751 0.455 

Table 1: Test-retest reliability analysis results: Intraclass correlation coefficient (ICC), reproducibility coefficient (rpc), 
coefficients of variance (CV), and Pearson correlation (r) of 4 parameters from baseline (left) and high-quality (right) 
DWI images, using all 16 b-values: (1) ADC derived from monoexponential (ME) model using 1-step least square 
(LSQ) method with trust-region-reflective (TRR) or Levenberg-Marquardt (LM) algorithms and find minimum 
multivariable method (FMM), as well as (2) Dd, (3) fp and (4) Dp derived from intravoxel incoherent motion (IVIM) 
model using 1-step and 2-steps model-fitting methods, with the estimated Dd and fp as starting estimates, or fixed 
Dd and used the estimated fp as starting estimate, or fixed both Dd and fp and determine Dp only. # Lenient constraints 
applied. * Strict constraints applied. α Selected as optimal modeling method. β Modeling was performed using the 
selected optimal modeling methods and optimal combinations of b-values instead of all 16 b-values. 

4 DISCUSSION 

Our study investigated the effects of different models and fitting methods, image quality, and the use of high b-value 

and constraints to optimize the modeling process. From the optimized fitting methods, we determine the minimum 

number and combinations of b-values required for ME and IVIM modeling to obtain ADC, Dd, fp, and Dp, while 

ensuring the reliability of these POIs were similar to that obtained using all 16 b-values in calf muscles. To the best 

of our knowledge, this is the first study where an inter-scan reproducibility study of ADC, Dd, fp, and Dp was 

performed in the calf, and the evaluation of the effects of high-quality DWI images was investigated using high-

quality DWI images generated directly from the scans with increased averages, and not from using image denoising 

tools [23].  

4.1 Comparison with Previous Studies 

Most previous works only considered only one or a few modeling methods (Table 2, [15,24-27]) and few investigated 

the impact of factors like image quality and high b-value on modeling [28]. Moreover, optimal b-values were 
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obtained from simulation [6,15] and not using actual clinical data. We obtained nearly similar ADC values but our Dd 

values were generally slightly lower due to the inclusion of the high b-value of 1200 s/mm2. Still, their Dd values were 

similar to our results obtained without the high b-value (Supplementary Table 3 vs. Table 2). The fp and Dp values 

differed greatly across different studies even at resting states, which may be due to different numbers and 

combinations of b-values, model-fitting methods and regions of interest used, and the subjects’ ages and physical 

conditions. Still, we obtained fairly similar ranges in these values to that obtained by Ohno et al [9] and Jungmann 

et al [12] using the same 2-steps fitting method with fixed Dd. Most reproducibility studies, especially cancer-related 

studies, investigated the reliabilities of the POIs from the ROIs delineated by multiple readers, with fewer b-values 

in different regions and using different models or fitting methods (Supplementary Table 4). These studies did not 

investigate the reliability of the output POIs from different models or acquired from different image qualities for 

clinical evaluation. This made comparison difficult but, we obtained similar trends where the inclusion of higher b-

values (highest included: 1000 s/mm2) led to more reliable POIs [29] and CV (%) of Dd was smaller than fp, which was 

smaller than that of Dp [29,30].  

Exercise 
Type 

No of b-
values 

b-values 
used 

1-step / 
2-steps 

Condition 
Subjects 

(Age) 
Regions 

†ADC / Dd  
(× 10-3 mm2/s) 

fp  
(%) 

Dp  
(× 10-3 mm2/s) 

Ref 

None 
  

8 
 

0, 10, 30, 
70, 150, 
300, 500, 
800 

2-steps Resting-
state 

22 AHC QD 1.46 ± 0.15 9.01 ± 3.36 39.21 ± 18.66 [10] 

HS 1.57 ± 0.10 8.23 ± 3.29 37.14 ± 19.37  

27 DM 
  

QD 1.43 ± 0.18 8.75 ± 2.93 31.38 ± 14.90  

HS 1.58 ± 0.07 8.46 ± 3.08 36.34 ± 15.71  

None 
  

9 
 

0, 20, 50, 
100, 150, 
200, 300, 
500, 800 
  

1-step 
  

Resting-
state 
  

10 AMH  
 

AN 1.53 (1.43-1.56) 5.5 (4.5-6.0) 15.5 (11.0-20.9) [11] 

LA 1.62 (1.52-1.70) 5.6 (3.8-6.1) 19.0 (16.2-21.4)  

SOL 1.52 (1.38-1.67) 5.2 (4.6-5.5) 18.7 (15.6-21.0)  

GM 1.61 (1.50-1.70) 4.7 (3.6-5.3) 19.8 (17.1-21.3)  

14 PAD  
  

AN 1.48 (1.24-2.02) 5.7 (4.5-12.0) 17.2 (11.0-20.5)  

LA 1.51 (0.97-1.72) 5.6 (4.4-14.5) 14.8 (9.1-18.1)  

SOL 1.44 (1.28-1.99) 5.2 (3.7-7.7) 17.2 (9.4-27.5)  

GM 1.51 (1.33-1.88) 5.6 (3.7-7.7) 17.3 (12.5-21.9)  

Isometric 
intermittent 
plantar‐
flexion 
exercise 
  

8 
 

0, 10, 20, 
50, 100, 
200, 350, 
500 
  

*2-steps 
  

Resting-
state 

12 HC 
  

SOL 1.59 ± 0.038 8.5 ± 1.9 32.6 ± 12.8 [8] 

GM 1.54 ± 0.047 6.8 ± 1.3 21.0 ± 6.7  

Exercise SOL 1.72 ± 0.353 16 ± 6.2 43.0 ± 25.8  

GM 1.69 ± 0.348 13 ± 6.0 47.2 ± 22.3  

Rest 
  

SOL 1.61 ± 0.046 8.5 ± 1.2 33.6 ± 8.59  

GM 1.58 ± 0.041 6.8 ± 1.1 25.8 ± 6.61  

None 
  

8 
 

0, 25, 50, 
75, 100, 
200, 500, 
800 

†ME 
*2-steps 
  

Resting-
state 
  

95 HC 
  

AN †1.57 ± 0.05 
1.56 ± 0.048 

8.70 ± 1.80 26.26 ± 4.71 [7] 

MED †1.51 ± 0.05 
1.51 (1.47-1.54) 

9.94 
(8.88-11.1) 

26.21 ± 3.36 
 

POS †1.52 ± 0.09 
1.51 ± 0.048 

11.23 ± 2.51 27.3 (24.7-29.7) 
 

Pedal 
Cycling 

16 0, 3, 7, 10, 
15, 20, 25, 
30, 40, 50, 
70, 100, 
200, 400, 
600, 800 

1-step At 
baseline 

4 YHC  
(21-30) 

AM 1.81 ± 0.01 2.09 ± 0.32 119 ± 18 [6] 

RF 2.19 ± 0.03 4.63 ± 0.62 214.2 ± 15.5  

4 EHC 
(60-90) 

AM 1.87 ± 0.03 1.76 ± 0.11 149.1 ± 17.1  

RF 2.22 ± 0.04 4.33 ± 0.56 204.7 ± 13.5  

After 1st 
exercise 
[after the 

4 YHC  
(21-30) 

AM 1.76 ± 0.03  
[1.81 ± 0.01] 

1.44 ± 0.17 
 [2.10 ± 0.28] 

110.4 ± 24.4 
[148.7 ± 25.7] 

 

RF 2.43 ± 0.03  
[2.30 ± 0.03] 

6.26 ± 0.89  
[5.25 ± 0.48] 

175.4 ± 15.4 
[221.3 ± 12] 
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last 
exercise] 
 

4 EHC 
(60-90) 

AM 1.83 ± 0.02  
[1.83 ± 0.01] 

1.48 ± 0.27  
[1.68 ± 0.24] 

124.8 ± 22.9 
[123.5 ± 19.0] 

 

RF 2.35 ± 0.03 
[2.30 ± 0.02] 

5.1 ± 0.98  
[5.05 ± 0.46] 

241.9 ± 55.2 
[229.5 ± 19.2] 

 

Walking 
and running 
task 
  

9 
 

0, 50, 100, 
150, 200, 
400, 600, 
800, 1000 

*2-steps 
  

Rest 8 HC 
  

Lower 
leg 
  

1.33 ± 0.09 9.1 ± 3.1 11.9 ± 4.8 [12] 

Walking 1.40 ± 0.09 12.0 ± 3.8 13.3 ± 5.0  

Running 1.42 ± 0.08 15.3 ± 4.6 15.9 ± 4.8  

Full 
dorsiflexion 

10 0, 10, 20, 
40, 80, 160, 
240, 320, 
500, 750 

ME 
*2-steps 

Rest 13 HC  
(22-27) 

TA †1.67 ± 0.18 
1.55 ± 0.19 

6.5 ± 3.0 8.9 ± 4.8 [9] 

After 
exercise 

†2.06 ± 0.19 13.1 ± 3.3 20.6 ± 11.3 
 

Table 2: Compilation of IVIM studies in the lower leg. Data are presented as Mean ± Stdev or Median (Min-Max). 
AM = Adductor Magnus, AN = Anterior Muscles, GM = Gastrocnemius medialis muscle, HS = Hamstrings, LA = Lateral, 
MED = Medial, POS = Posterior, QD = Quadriceps, RF = Rectus Femoris, SOL = Soleus Muscles, TA = Tibialis Anterior, 
HC = Healthy Control, YHC = Young HC, EHC = Elderly HC, AHC = Age-matched HC, DM = Diabetes Mellitus, PAD = 
Peripheral arterial disease, ME = Monoexponential model. † ADC from ME modeling. * 2-steps fitting with fixed Dd. 

4.2 Selection of Model-Fitting Methods 

Three fitting methods for deriving ADC from the ME model and six fitting methods for IVIM modeling were compared. 

The LSQ method was commonly applied, especially with the LM algorithm. However, our results showed that the 

FMM method was more flexible and performed as well as, if not better, with smaller SSEs obtained in determining 

all POIs than the LSQ method (Fig. 3, Supplementary Table 1). Among the six methods for IVIM modeling, the 2-

steps fitting method with fixed Dd generally worked well with few cases of fp ≤ 0 and Dp values > 1000 mm2/s, and 

smaller inter-subject variations (Fig. 3). The inclusion of a high b-value reduced the number of cases of fp ≤ 0 and Dp 

values > 1000 mm2/s, though its effect was less than the choice of fitting methods (Fig. 3 vs. Fig. 4). The use of 

constraints improved the 2-steps fitting, with smaller SSEs, but was worse for 1-step fitting method (Supplementary 

Material: Impact of Constraints in Model Fitting). Therefore, we recommend the 2-steps fit with fixed Dd, with more 

stringent constraints and inclusion of a high b-value for IVIM modeling, but the FMM method with non-negative 

constraints for ME modeling. 

4.3 Optimal Combinations of B-values & Reliability of Parameters 

The optimal combination of b-values, with the smallest number of b-values but achieved average CVs ≤ 10% for Dd, 

fp, and Dp, was six b-values of 0, 40, 80, 200, 600, and 1200 s/mm2, while that for ADC, was nine b-values of 0, 20, 

40, 60, 70, 90, 200, 600, and 1200 s/mm2 (Fig. 5). Interestingly, more b-values were required for ME modeling to 

derive ADC values, even though three b-values were commonly used to derive ADC. On the other hand, only six b-

values were required for IVIM modeling, which was different from the common view that since the perfusion effect 

is small, more images are required at low b-values (Iima and Le Bihan, 2016). This may however be due to the choice 

of the 2-steps modeling method with fixed Dd. Moreover, the use of a high b-value helped improve model fitting and 

the removal of outliers in fp and Dp. Perucho et al. [31] also obtained an optimal IVIM protocol with six b-values using 

adaptive IVIM with fixed Dd and fp in cervical cancer patients (Supplementary Table 4). Test-retest reliability analysis 

results between baseline and high-quality DWI images showed that only ADC and Dd were reliable enough to 

measure diffusion in the calf muscles, with CV < 10%, while perfusion measurements varied too much (Table 1) and 

may be subjected to noisy measurements even though there was no detected motion in images acquired with 

smaller b-values (Supplementary Fig. 1c, 1f, 1i, 3c, 3f). ADC was slightly less reliable using the optimal combinations 

of b-values than that obtained using all 16 b-values, while Dd, fp, and Dp, were relatively similar if not better especially 

if derived from high-quality images (Fig. 3). This further supported that high-quality images not only improved model 

fitting but also improved reproducibility of POIs (Table 1, Supplementary Table 3).  
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4.4 Voxel-based Evaluation 

IVIM model is a better model in fitting all the measured points to accurately measure diffusion in the calf. However, 

voxel-based analysis of ADC, Dd, fp, and Dp, images, derived using the 1-step fitting method, showed clearer changes 

during ischemia and hyperemia phases of cuffed muscles than that obtained using the selected 2-steps fitting 

method (Supplementary Fig. 6 vs. 7). Similarly, Adelinia et al. [6] also obtained voxel map images that showed clear 

differences using the 1-step fitting method. However, the average values from the voxel maps of Dd, fp, and Dp 

showed that the 2-steps fitting method was more reliable with more consistent parameter values during pre-cuffing 

and post-cuffing resting phases on the uncuffed leg. In addition, Dd showed little differences across the resting, 

ischemia, and hyperemia phases, while fp and Dp showed clear changes.  

4.5 Study Limitations 

The impact of a high b-value was investigated by fitting 16 and 15 points, which may not be a fair comparison. 

However, SSEs were calculated using all 16 points and the fitted curves using 15 b-values decayed faster at the end 

compared to that using 16 b-values, especially for the 2-steps fitting methods (Supplementary Fig. 3). A high b-value 

of 1200 s/mm2 was selected instead of even higher values due to the long scan time, particularly for high-quality 

images. Moreover, due to the nature of the MR imaging signal where a magnitude signal cannot be negative, there 

is always some background noise signal left which causes the diffusion signal to remain above a threshold, instead 

of asymptotically approaching 0. Thus, a curvature effect was obtained at high b-values [3], which should be evaded, 

to avoid over- or underestimation of the model outputs [1]. Our results also showed that ADC and Dd tended to be 

slightly lower by including high b-values. However, contrary to it, our results revealed that the inclusion of a high b-

value helped to stabilize the model fitting to obtain more reliable parameters as mentioned by Iima and Le Bihan [1].  

We did not investigate the impact of scanners, scan parameters, and field strength [13] or evaluate other regions of 

interest, such as the brain, liver, etc. [26,27,32], or the impact of subject motion on modeling as it is beyond the 

scope of our work. Newer methods for optimizing the model fitting were not performed in this study, which may 

further improve the reliability of the measurements [15,24-27]. Simulation was not performed to determine the 

optimal b-values. Instead, the optimal b-values were selected purely from acquired data of both baseline and high-

quality DWI images. This was due to the ease of setting up the imaging protocol to acquire both baseline and high-

quality DWI images within a reasonable scan time. Moreover, we had sufficient subjects and regions of interest to 

provide enough power and variations in the data for modeling. Interrater reliability was not performed as this study 

focused on the reliability of the modeling methods. Test-retest reliability assessment was performed on the same 

day and not over an interval of 1 or 2 weeks [20]. However, the subjects were given time to hydrate and walk around 

and rest before their second scans to replicate nearly similar scanning conditions for determining the inter-scan 

reproducibility. Moreover, baseline and high-quality images were acquired separately, instead of generating 

baseline DWI images by extracting one average each out of the high-quality DWI images, as this would have removed 

confounding variables introduced by rescanning, such as subject movements.  

5 CONCLUSIONS 

We investigated the impact of image quality, high b-value, and constraints, as well as three and six different fitting 

methods for ME and IVIM models on the outcome POIs to determine the suitable DWI analysis protocol in the calf 

muscles. Using the optimized ME and IVIM models, we determine the minimum optimal b-values combinations that 

could obtain nearly similar reliability as that obtained using 16 b-values. Compared to the nonlinear LSQ fitting 

methods with TRR or LM algorithms, the FMM method was more flexible and yielded smaller fitting errors for both 

ME and IVIM models. For IVIM modeling, the 2-steps fitting method, with fixed Dd, yielded more reliable estimates 

of fp and Dp. The inclusion of a high b-value reduces outliers, while the use of constraints improved 2-steps fitting, 

but not 1-step fitting. The optimal combination of b-values in calf muscles for the IVIM model was six b-values of 0, 

40, 80, 200, 600, and 1200 s/mm2, while that for the ME model was nine b-values of 0, 20, 40, 60, 70, 90, 200, 600, 

and 1200 s/mm2. Fewer DWI images can be acquired for calf evaluation in subjects with the optimal b-values 
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combinations, which will help to reduce the scan time and increase patient comfort. High-quality images improved 

model fitting, yielding smaller fitting errors, fewer outliers, and improved reproducibility for IVIM modeling. The CV 

values between test and retest baseline and high-quality DWI images for ADC, Dd, fp, and Dp from the selected models 

were 7.22%, 4.09%, 36.76%, and 54.88%. This indicated that only ADC and Dd were reliable enough for diffusion 

evaluation in calf muscles, with CV <10%. Although IVIM could assess microvascular perfusion in calf muscles, the fp 

and Dp parameters may not reliable enough for evaluation. Better models are required to improve the reliability of 

the parameters.  
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