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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Body mass index (BMI) and obesity rates have increased sharply since the 1980s. While

multiple epidemiologic studies have found that higher adolescent cognitive ability is associ-

ated with lower adult BMI, residual and unobserved confounding due to family background

may explain these associations. We used a sibling design to test this association accounting

for confounding factors shared within households.

Methods and findings

We used data from four United States general youth population cohort studies: the National

Longitudinal Study of Youth 1979 (NLSY-79), the NLSY-79 Children and Young Adult, the

NLSY 1997 (NLSY-97), and the Wisconsin Longitudinal Study (WLS); a total of 12,250 sib-

lings from 5,602 households followed from adolescence up to age 62. We used random

effects within-between (REWB) and residualized quantile regression (RQR) models to com-

pare between- and within-family estimates of the association between adolescent cognitive

ability and adult BMI (20 to 64 years). In REWB models, moving from the 25th to 75th per-

centile of adolescent cognitive ability was associated with −0.95 kg/m2 (95% CI = −1.21,

−0.69) lower BMI between families. Adjusting for family socioeconomic position reduced the

association to −0.61 kg/m2 (−0.90, −0.33). However, within families, the association

was just −0.06 kg/m2 (−0.35, 0.23). This pattern of results was found across multiple specifi-

cations, including analyses conducted in separate cohorts, models examining age-

differences in association, and in RQR models examining the association across the distri-

bution of BMI. Limitations include the possibility that within-family estimates are biased due

to measurement error of the exposure, confounding via non-shared factors, and carryover

effects.
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Conclusions

The association between high adolescent cognitive ability and low adult BMI was substan-

tially smaller in within-family compared with between-family analysis. The well-replicated

associations between cognitive ability and subsequent BMI may largely reflect confounding

by family background factors.

Author summary

Why was this study done?

• Obesity is a major contributor to global disease burden, and its prevalence is expected to

continue to rise.

• While obesity rates have increased, body mass has not increased uniformly across the

population, suggesting a role of individual characteristics in determining obesity; one

such characteristic is cognitive ability.

• Existing studies reporting links between cognitive ability and obesity have made adjust-

ment for observed confounders only; they may thus be biased by residual or unobserved

confounding.

What did the researchers do and find?

• We used data from four cohorts of siblings (n = 12,250) to examine the association

between childhood cognitive ability and adult body mass index (BMI) within families.

• This approach can account for unobserved factors that may bias an association between

cognitive ability and BMI that are shared between siblings, such as family socioeco-

nomic position.

• When looking within families, we found little evidence of an association between cogni-

tive ability and (lower) BMI, contrary to results of conventional analysis and existing

studies in this literature: Moving from the 25th to 75th centile of cognitive ability was

associated with a −0.06 kg/m2 (−0.35, 0.23) difference in BMI.

What do these findings mean?

• The results suggest that existing findings on the link between cognitive ability and BMI

are biased by shared family factors.

• Given that associations between cognitive ability and other health outcomes have been

found using similar observational research designs, sibling data may be useful for assess-

ing potential bias for these health outcomes, too.
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Introduction

Obesity rates have increased dramatically across developed countries since the 1980s [1], with

significant consequences for public health and national economies [2,3]. Explanations for ris-

ing obesity rates have highlighted the “Big-Two,” changes to diets—resulting from wider avail-

ability of high energy density foods—and reductions in physical activity, though several other

factors have also been proposed [4–6]. Despite numerous policy efforts to tackle rising obesity

rates [7,8], and increasing public knowledge of its deleterious consequences, obesity remains a

leading cause of disability and mortality [3,8].

While the prevalence of obesity (body mass index [BMI]� 30 kg/m2) has increased in devel-

oped countries, changes across the full distribution of BMI have not been as pronounced, with

relatively little change in the prevalence of underweight and relatively small increases in median

BMI [1,9–13]. This suggests that individuals differ in their exposure to the causes of obesity or

their susceptibility to these causes [14]; estimates of the heritability of BMI from twin studies

range 47% to 90% [15]. Thus, while obesity has increased in response to societal change, indi-

vidual factors still have a role. Identifying these factors is paramount if the causes of the obesity

epidemic are to be understood and potential means to address it are to be to be found.

One characteristic that has been proposed to influence BMI—and health, more generally—

is cognitive ability. The field of cognitive epidemiology [16] has gathered substantial evidence

that higher cognitive ability is associated with better health outcomes, including lower rates of

mortality and major chronic diseases [17]. Cognitive ability is thought to affect health for two

main reasons [17–19]. First, cognitive ability is related to higher socioeconomic position (SEP)

—for instance, greater earnings and higher educational attainment [20]—and cognition may

operate indirectly through this factor. In the present setting, by earning larger incomes, indi-

viduals with higher cognitive ability are likely to have greater access to healthier and more var-

ied diets and to live in safer, more walkable neighbourhoods. Second, cognitive ability is

argued to operate more directly by increasing individuals’ ability to understand and use nutri-

tional, and other health-relevant, information. Correctly using nutritional labelling, for exam-

ple, requires integrating existing nutritional knowledge with literacy and numeracy skills to

decode information and make inferences about the healthiness of food items [21]. Health liter-

acy was described in a 2022 WHO report as an “unrecognized obesity determinant” [8], and

many people struggle to understand food labels and other health information [22–24]. Impor-

tantly, there is considerable overlap between the concepts of literacy and general cognitive abil-

ity [18] such that between-person differences in health literacy may be well captured by

general intelligence tests [25].

Many studies have examined the association between cognitive ability and BMI [26]. Some

have adopted a longitudinal design and investigated the link between childhood or adolescent

cognitive ability and adult BMI, given the possibility of reverse causality in cross-sectional data

[27]. Existing longitudinal studies span multiple countries, including several Scandinavian

countries marked by low social inequality. Most [28–41], but not all [39], find that individuals

with higher cognitive ability have lower BMI and obesity rates in adulthood. Effect sizes are

typically stronger for obesity than (mean) BMI [33,36,40,41], and there is evidence that associ-

ations are stronger at older ages [31,33,37]. The results from longitudinal studies are consistent

with mendelianAU : PleasenotethatasperPLOSstyle; donotcapitalizeeponymicderivatives:Hence; }Mendelian}hasbeenchangedto}mendelian}:randomization (MR) evidence from samples of unrelated individuals showing

an association between genetic predisposition to high (adult) cognitive ability and lower BMI

[42].

Though associations between cognitive ability and BMI are widely found, results in obser-

vational studies could be explained by unobserved or residual confounding. Specifically, asso-

ciations may be driven by differences in early family environments, such as early SEP and
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parenting practices, that are either unmeasured or difficult to measure with available data (see

S1 Fig for a directed acyclic graph): Childhood and adolescent BMI (which are correlated with

adult BMI; [43]) are related to maternal cognitive ability [44], and there are strong socioeco-

nomic gradients in BMI and obesity [45,46]. Dynastic effects operating via parental genetics to

offspring BMI could partly explain genetic associations [42]. Existing studies on the link

between cognitive ability and BMI have attempted to capture early SEP by controlling for one

or a few high-level variables (e.g., parent’s years of education, occupational prestige, and self-

reported income), but these have had limited granularity and spanned a narrow age range of

childhood or adolescence [28,32,33,47].

Sibling comparison designs offer one approach to mitigate such confounding. On the

assumption that early family environments are shared between siblings, comparing outcomes

within sibships removes bias arising from family background (including shared dynastic

effects). To our knowledge, no studies have used a sibling design to examine associations

between early life cognition and BMI during adulthood. In this study, we combined sibling

data from four cohort studies to examine the within-family association between adolescent

cognition and adult BMI; large samples are required to achieve adequate statistical power in

sibling designs [48]. Given existing evidence that associations are stronger for obesity than

BMI, we used a novel statistical approach—residualized quantile regression (RQR) [49]—to

examine (within-family) associations with cognitive ability across the BMI distribution, rather

than just the (conditional) mean.

Methods

Participants

We used data from four cohort studies, each following participants from adolescence across

adulthood and containing measures of adolescent cognitive ability and adult BMI: the National

Longitudinal Surveys of Youth 1979 and 1997 (NLSY-79 and NLSY-97, respectively), the

NLSY-79 Child and Young Adults (NLSY-79 C/YA), and the Wisconsin Longitudinal Study

(WLS). These cohorts are described in detail in S1 File. Briefly, the NLSY-79 [50] and NLSY-

97 [51] are ongoing studies of young people in the United States that began in 1979 and 1997,

respectively. Recruitment to the studies took place at the household level, meaning that multi-

ple sibling sets are included. Beside a nationally representative sample, the NLSY-79 and

NLSY-97 also include an oversample of ethnic minority (and, for the NLSY-79, economically

disadvantaged) individuals, which we treated as separate cohorts. The NLSY-79 C/YA is a

study of the children of all females who participated in the NLSY-79. The WLS is a study of

graduates from high school in Wisconsin in 1957 (born 1937 to 1938) with a randomly selected

sibling joining in 1977 or 1993. In each cohort, we selected sets of full siblings, restricting to

+/−5-year difference in birth years to improve the plausibility of the assumption of shared fam-

ily background (in sensitivity analyses, we vary this restriction).

This is a secondary data analysis of publicly available data and did not require ethical

approval.

Measures

Adult body mass index. We calculated BMI by dividing weight by squared height (kg/

m2). We focused on BMI measured at age 20 to 64 to reduce the risk of bias due to differential

mortality rates. To remove the influence of outliers and biologically implausible values, we set

height values less than 4.5 feet (1.37 meters) and more than 7 feet (2.13 metres) and BMI values

outside the range of 13 to 70 to missing (approximately 0.1% of observations).
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Adult height and weight were measured by self-report in each cohort. Adult height and

weight were measured on multiple occasions in the NLSY-79, NLSY-97, and NLSY-79 C/YA

and only once (1992 to 1994) in the WLS (see S1 File for more detail). In cases where weight

but not height was available at a given data collection, we used the last observed value for

height, provided it was collected at age 20 or later, given the broad stability of height during

adulthood [52].

Adolescent cognitive ability

Cognitive ability was measured in each cohort using validated tests capturing multiple domains

of cognition. In the NLSY-79 and NLSY-97, this was tested using the Armed Services Voca-

tional Aptitude Battery (ASVAB), which participants sat in 1980 (age 15 to 23) and 1998 to 1999

(age 13 to 20), respectively. For both studies, and to ensure comparability with other cohorts,

we used age-normed centile scores (range 0 to 100) provided with the data. These combine

weighted scores for the mathematical knowledge, arithmetic reasoning, word knowledge, and

paragraph comprehension subsections of the ASVAB (for the NLSY-79, this is the 2006 norm-

ing exercise). In sensitivity analyses, we converted cognitive ability centiles to z-scores instead.

In the NLSY-79 C/YA, cognitive ability was measured using three subscales from the Pea-

body Individual Achievement Test (PIAT), administered at ages 5 to 14 years (reading com-

prehension, reading recognition, and mathematical ability). Age-normed centile scores are

available for each test, which we averaged. Given the PIAT was administered on multiple occa-

sions, for age comparability with the NLSY-79 and NLSY-97, we used the last available mea-

surement. Note, children were not eligible to complete the reading comprehension test if they

obtained a low score on the reading recognition test, so we averaged the reading recognition

and mathematical ability if only these were available [44]. Two- and three-test averaged PIAT

scores were highly correlated (ρ = 0.97).

Cognitive ability was measured in the WLS using the Henmon–Nelson test, a group-

administered, multiple-choice assessment containing verbal and quantitative items. The Hen-

mon–Nelson test was sat by students in all Wisconsin high schools at varying school grades

from the 1930s through the 1960s. We again used centile scores, with norming based on

national test takers (range 0 to 100).

We report results from statistical models, such that a one unit change in cognitive ability is

equivalent to moving from the 25th to 75th centiles of its distribution.

Socioeconomic position. We included a measure of early SEP to examine whether adjust-

ing for this factor generates similar associations between cognitive ability and BMI between
families as within families. For the NLSY-79, we used a composite measure of SEP [53] that has

been used in multiple studies in the cognitive epidemiology literature [44,47], including a

study examining the association between cognitive ability and BMI [28]. The measure averages

z-scores for family income, parental occupational prestige, and mother’s and father’s years of

education, each measured in 1978 or 1979. For the NLSY-79 CYA, we followed a similar

approach and averaged z-scores for family income and mother’s education [44], using observa-

tions closest to a participant’s 18th birthday (information on father’s education and on occupa-

tion is not available). For the NLSY-97, we averaged z-scores for mother’s and father’s years of

education and family income (data on occupation are not available), each of which were mea-

sured in 1997. For the WLS, we used a variable extracted from a factor analysis of family

income (averaged between 1957 and 1960), parental occupational prestige, and mother’s and

father’s years of education (recorded in 1957) that is supplied with the dataset. Note, in each

cohort except the NLSY-79 CYA, the measure of SEP is fixed within a sibling set. More infor-

mation on the SEP variables can be found in the S1 File.
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Covariates. Sibling designs do not control for confounding factors that vary among sib-

lings. We included variables for cohort, sex, ethnic group (White, Black, and Hispanic), age at

BMI assessment, birth order, and maternal age at birth. Other potential confounding variables

were not measured consistently across cohorts, though data on childhood health were available

in the NLSY-79 and NLSY-97, which we use in a robustness check (see below). Note, cohort

and ethnic group are fixed within sibships and were included to reduce bias in between family

associations. See S1 File for more detail on the definitions of the covariates.

Statistical analysis

Our main analytical approach was to estimate linear random effects “within-between”

(REWB) [54] models of the following form, pooling data from the individual cohorts:

BMIiht ¼ b0ih þ b1 �
�Cogh þ b2 � DCogih þ bK � Xit þ εi ð1Þ

b0iht ¼ b0 þ m0i þ m0h

m0i � Nð0; s2

0iÞ; m0h � Nð0; s2

0hÞ

where BMIiht is BMI for individual i from household h at time t; β0ih is the intercept, compris-

ing a fixed-effect (β0) and random intercepts at the individual (μ0i) and household (μ0h) levels;

�Cogh is the mean level of cognitive ability in a given household h (the between-family effect);

and ΔCogih is the sibling-specific deviation from the mean household cognitive ability (the

within-family effect). Xit is a vector of control variables, specified above, with age, birth order,

and maternal age modelled with natural cubic splines (2 degrees of freedom each) [55] to

account for potential nonlinearities in their relationship with BMI [10]. To account for poten-

tial cross-cohort differences, we also included interaction terms between cohort and sex, ethnic

group, age, and (depending on the model) SEP. We estimated models including and not

including adjustment for SEP. Our interest was in the change in the coefficient β1 (between-

family association between cognitive ability and BMI) following adjustment for SEP and the

relative size of the coefficient β2 (within family association).

The association between cognitive ability and BMI may differ markedly across the cohorts,

so we repeated Model 1 for each cohort separately and excluding a single cohort, in turn

(excluding individual random intercepts when analyzing the WLS on its own). We also

repeated Model 1 including interactions between mean cognitive ability and cognitive ability

deviations (ΔCogih) and (linear) age as the previous results suggest a strengthening association

across the life course [28,33]. As a robustness check, we ran Model 1 including further control

for childhood self-rated health (categories: excellent, very good, good, fair, poor) in the subset

of cohorts with this data (NLSY-79 and NLSY-97).

Sibling designs can introduce bias through “carryover effects,” where one sibling influences

another. Estimates may be attenuated if a sibling’s cognitive ability is important not just for

their own BMI but their siblings’ BMI, too (for instance, through modelling a particular health

behaviour such as smoking). To explore this possibility, we repeated Model 1 splitting the set

of two sibling households according to whether the older or younger sibling had the higher

cognitive ability score. On the assumption that older siblings will be more influential, within-

family associations between cognitive ability and BMI should be smaller where the older sib-

ling has the higher cognitive ability.

Next, we examined the association between cognitive ability and BMI across the distribu-

tion of BMI using RQR [49]. Unlike standard conditional quantile regression [56], RQR allows

for the inclusion of (family) fixed effects in quantile regression models while retaining clear
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interpretability [57], a necessity here given we have more than one observation per family.

RQR involves two steps. In the first step, the exposure variable (here, cognitive ability) is

regressed upon control variables using linear regression from which residuals are calculated

(we used the same control variables as in the REWB models). Where control variables have

been chosen satisfactorily, these residuals represent exogenous variation in the exposure,

which can be used to estimate causal effects. In the second step, the outcome variable (here,

BMI) is then regressed upon the residuals using quantile regression to obtain estimates of the

effect of the exposure upon the unconditional outcome distribution. Bootstrapping is used to

calculate standard errors and confidence intervals. Here, we used 500 (cluster-robust) boot-

straps and produced quantile regression estimates for each decile (10th, 20th, . . ., 90th centiles)

of the BMI distribution. As our measure of cognitive ability was time-invariant, we only used

one observation per individual in the RQR procedure. In the main analysis, we used the first

observation per individual but also repeated the analysis using participants’ last observations.

To obtain a comparable RQR estimate of the between-family association, we estimated RQR

models using data from a single randomly selected individual in each household, dropping the

household fixed effects from the first stage regression.

All analyses were performed in R version 4.1.2 [58]. Complete-case data were used in each

analysis, given the difficulty accounting for the complex, multilevel structure of the data in

multiple imputation models. Participants were deemed lost to follow-up after the point at

which they last provided BMI data. Robust regression was used to absorb the household fixed

effects in the RQR first stage regression.

There was no prespecified analysis plan for this observational data analysis study. The main

analytical plan was decided before access to the data. The specific implementation of this anal-

ysis plan was informed by the data upon inspection once accessed. Multiple sensitivity analyses

were subsequently planned to test if the main results identified were robust. A sensitivity anal-

ysis examining associations in REWB models using sex-concordant and sex-discordant house-

holds separately was carried out following a reviewer comment that results may be biased due

to sex differences in self-report measures of height and weight. Results were qualitatively simi-

lar to those presented below and are available on request. This study is reported as per

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines

(S1 STROBE Checklist).

Results

Descriptive statistics

We identified 20,889 individuals (9,726 households) who were part of sibling sets. Of these,

14,560 individuals (6,665 households) had valid data for adult BMI for two or more siblings.

Approximately 16% of individuals were excluded due to missing cognitive ability or covariate

data, or lack of discordance in cognitive ability by siblings (N = 28). The analytical sample size

was therefore 12,250 siblings from 5,602 households (118,355 observations), 59% of the adult

sibling sample. The mean number of BMI measurements per individual was 9.7 (SD = 7.4;

range 1 to 22), and BMI was observed up to age 62. S1 and S2 Tables detail sample sizes and

number of measurement occasions for each cohort.

Descriptive statistics for time-invariant characteristics are displayed in Table 1. S2 Fig

shows the distribution of cognitive ability in each cohort. Cognitive ability levels were close to

the population mean in the NLSY-79 and NLSY-97 Main samples and the NLSY-79 CYA. The

NLSY-79 and NLSY-97 Oversamples were below population means, while cognitive ability lev-

els in the WLS were above population means. While there was less variation in cognitive ability

scores within than between families, variability was still substantial; the within-family SD for
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cognitive ability was between 50% and 70% of the between-family SD in each cohort. Overall,

values for sex, age, ethnic group, and birth order were similar among those who had above

(family-specific) average cognitive ability and below (family-specific) average cognitive ability

(see Tables 1 and S3 and S3 Fig). However, there was some evidence that siblings with above

(family-specific) average cognitive ability had better childhood health (S4 Fig).

Associations between adolescent cognitive ability and adult BMI

In between-family analysis, higher adolescent cognition was associated with lower adult BMI;

the difference in BMI moving from the 25th to 75th centile of cognition was −0.95 kg/m2 (95%

CI = −1.21, −0.69; Fig 1). Adjusting for SEP attenuated the association to −0.61 kg/m2 (−0.90,

−0.33). However, in within-family analysis, the association was substantially weaker and confi-

dence intervals crossed the null: a −0.06 kg/m2 (−0.35, 0.23) difference, approximately 90%

smaller than the adjusted between-family association. A weak within-family association

between cognitive ability and BMI was found when conducted in each cohort separately, with

confidence intervals overlapping the null in all cohorts (Fig 1). Expressed alternatively, for a

person of average adult height (1.68m), a −0.06 kg/m2 difference in BMI is equivalent to a

0.17 kg lower weight.

Results examining age differences in the association between cognitive ability and BMI also

showed a similar difference in between- and within-family results (Fig 2). In between-family

Table 1. Descriptive statistics for time-invariant variables by cognitive ability in four cohort studies. Mean (SD) and N (%). Cognitive ability group refers to an indi-

vidual’s cognitive ability relative to the average level of cognitive ability in their household (i.e., whether they have above or below average cognitive ability among their sib-

lings). Note, this is why the number of households is the same for below and above average cognitive ability groups—cognitive ability group is defined within each

household (i.e., whether a given sibling is above or below average cognitive ability for that household).

Variable Group, cognitive ability NLSY-79 Main NLSY-79 Oversample NLSY-79 CYA NLSY-97 Main NLSY-97 Oversample WLS

N Total Sample 2,556 1,755 2,809 1,873 628 2,629

Below Average 1,276 (49.9%) 897 (51.1%) 1,396 (49.7%) 936 (50%) 319 (50.8%) 1,314 (50%)

Above Average 1,280 (50.1%) 858 (48.9%) 1,413 (50.3%) 937 (50%) 309 (49.2%) 1,315 (50%)

Observations Total Sample 45,842 27,332 13,954 21,332 7,266 2,629

Below Average 22,886 (49.9%) 14,041 (51.4%) 6,894 (49.4%) 10,507 (49.3%) 3,668 (50.5%) 1,314 (50%)

Above Average 22,956 (50.1%) 13,291 (48.6%) 7,060 (50.6%) 10,825 (50.7%) 3,598 (49.5%) 1,315 (50%)

Households Total Sample 1,113 750 1,246 889 291 1,313

Below Average 1,113 (100%) 750 (100%) 1,246 (100%) 889 (100%) 291 (100%) 1,313 (100%)

Above Average 1,113 (100%) 750 (100%) 1,246 (100%) 889 (100%) 291 (100%) 1,313 (100%)

Cognitive Ability Total Sample 50.03 (29.69) 27.93 (22.85) 51.27 (24.84) 50.6 (28.97) 26.56 (22.23) 62.67 (25.15)

Below Average 38.91 (27.48) 18.59 (17.68) 41.68 (23.63) 39.67 (26.45) 17.4 (17.1) 51.39 (24.42)

Above Average 61.11 (27.6) 37.69 (23.56) 60.74 (22.24) 61.52 (27.22) 36.01 (22.96) 73.95 (20.35)

Female Total Sample 1,255 (49.1%) 833 (47.46%) 1,410 (50.2%) 916 (48.91%) 302 (48.09%) 1,378 (52.42%)

Below Average 620 (48.59%) 426 (47.49%) 725 (51.93%) 435 (46.47%) 146 (45.77%) 678 (51.6%)

Above Average 635 (49.61%) 407 (47.44%) 685 (48.48%) 481 (51.33%) 156 (50.49%) 700 (53.23%)

Male Total Sample 1,301 (50.9%) 922 (52.54%) 1,399 (49.8%) 957 (51.09%) 326 (51.91%) 1,251 (47.58%)

Below Average 656 (51.41%) 471 (52.51%) 671 (48.07%) 501 (53.53%) 173 (54.23%) 636 (48.4%)

Above Average 645 (50.39%) 451 (52.56%) 728 (51.52%) 456 (48.67%) 153 (49.51%) 615 (46.77%)

Birth Order Total Sample 2.98 (1.8) 3.74 (2.33) 1.94 (0.96) 1.97 (1) 2.26 (1.12) 2.19 (1.31)

Below Average 3 (1.83) 3.69 (2.28) 1.97 (0.94) 2.07 (0.98) 2.27 (1.09) 2.21 (1.29)

Above Average 2.95 (1.77) 3.78 (2.37) 1.9 (0.97) 1.88 (1) 2.25 (1.15) 2.18 (1.32)

Maternal Age Total Sample 25.82 (5.71) 25.88 (6.34) 24.58 (4.9) 25.45 (4.71) 24.41 (5.12) 27.32 (5.16)

Below Average 25.81 (5.79) 25.69 (6.34) 24.68 (4.92) 25.67 (4.75) 24.42 (5.07) 27.28 (5.17)

Above Average 25.83 (5.63) 26.08 (6.33) 24.49 (4.88) 25.23 (4.67) 24.39 (5.17) 27.37 (5.15)

https://doi.org/10.1371/journal.pmed.1004207.t001
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analysis, the association was substantially stronger at older ages, rising from −0.40 kg/m2

(−0.69, −0.11) at age 20 to −0.96 kg/m2 (−1.25, −0.66) at age 60. The within-family association,

however, showed little change with age and was again small with confidence intervals crossing

the null (Fig 2).

Finally, analysis of the association between cognitive ability and BMI, across the distribu-

tion of BMI, showed a similar pattern of results. In between-family analysis, cognitive ability

was associated with lower BMI across most of the BMI distribution (Fig 3). Effect sizes were

relatively stronger (in absolute terms) at higher deciles, suggesting lower cognitive ability was

associated with a stretching of the BMI distribution—with higher rates of obesity in particular

—though confidence intervals overlapped the null. The effect size was 0.0 kg/m2 (−0.35, 0.29)

at the 10th percentile and −0.50 kg/m2 (−1.44, 0.37) at the 90th percentile (see S4 Table for full

results). In the within-family analysis, cognitive ability was associated with higher BMI at lower

deciles of the BMI distribution and lower BMI at upper deciles. However, effect sizes were

weak and typically smaller than between-family associations with confidence intervals consis-

tently crossing the null (90th centile = −0.23 kg/m2; 95% CI = −0.99, 0.47; Fig 3).

Sensitivity analyses

Qualitatively similar results were observed when varying the maximum age range to select sib-

ling sets between 1 and 10 years (S5 Fig), when excluding a single cohort from REWB models

(S6 Fig), and when using cognitive ability z-scores rather than ranks (S7 Fig). Within-family

Fig 1. Between- and within-family associations between cognitive ability (centile rank) and BMI (+ 95% CIs). Estimates show predicted difference in BMI

(kg/m2) comparing individuals at the 25th and 75th percentiles of cognition. Derived from linear mixed effects models with random intercepts at the

household and individual levels and age (two natural cubic splines), sex, cohort, birth order, and maternal age included as control variables. BMIAU : Abbreviationlistshavebeencompiledforthoseusedthroughoutthetext:Pleaseverifythatallentriesarecorrectlyabbreviated:, body mass

index; NLSY, National Longitudinal Study of Youth; SEP, socioeconomic position; WLS, Wisconsin Longitudinal Study.

https://doi.org/10.1371/journal.pmed.1004207.g001
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estimates in the NLSY-79 and NLSY-97 combined were attenuated still further when including

adolescent self-rated as a control variable. Consistent with a carryover effect, the within-family

association was weaker among two sibling families where the older sibling had the higher cog-

nitive ability score, though confidence intervals had considerable overlap (S8 Fig). Within-

family associations between cognitive ability and the distribution of BMI generally remained

weak when the last observation was used in RQR models (S9 Fig).

Discussion

Main findings

Using sibling data from four cohort studies, we found a sizeable difference in the between- and

within-family estimates between adolescent cognitive ability and adult BMI. While higher cog-

nitive ability was associated with lower BMI in between-family analysis, effect sizes in within-

family analysis were small and confidence intervals overlapped the null. This difference was

found across multiple specifications, including analyses conducted in separate cohorts, exam-

ining age-differences in association, and examining differences in association across the distri-

bution of BMI.

Explanation of findings

Our results are consistent with the hypothesis that the association between adolescent cogni-

tive ability and adult BMI observed in this and other studies [28–41] is substantially biased by

factors that are shared by siblings. This finding is also consistent with recent work showing a

marked attenuation in the genetic correlation between educational attainment and BMI when

Fig 2. Between- and within-family associations between cognitive ability (percentile) and BMI by age. Derived from linear mixed effects

models with random intercepts at the household and individual levels and age (two natural cubic splines), sex, cohort, birth order, maternal

age, and SEP included as control variables. The lines show, at a given age, the predicted difference in BMI moving from 25th to 75th

cognitive ability centiles. BMI, body mass index; SEP, socioeconomic position.

https://doi.org/10.1371/journal.pmed.1004207.g002
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using sibling data [59]. One plausible confounder that is shared between siblings is childhood

SEP, which is, in turn, associated with both adolescent cognition [60] and adult BMI [61,62].

Consistent with this, adjustment for childhood SEP attenuated associations markedly in

between-family analysis. However, SEP is a multidimensional construct typically captured

with measurement error, leading to possible residual confounding. For instance, years of edu-

cation does not capture quality of schooling and household income does not capture wealth.

Besides SEP, other possible confounders shared between siblings include parenting practices

and early neighbourhood (social and built) environments, which may influence the formation

of diet and exercise habits, and maternal obesity, which may influence development in utero

[63] and, subsequently, offspring BMI into adulthood (at least for extreme maternal obesity)

[64]. Further, given that siblings share on average 50% of their genes with other siblings and

50% with each parent, associations could therefore be confounded by shared genetic factors

that influence cognition and BMI [65].

While our within-family estimates were still consistent with cognitive ability having a causal

effect on BMI, the small effect sizes we identified are surprising given theory and previous

results that health literacy and SEP (which cognitive ability should in part operate through) are

important predictors of obesity, as well as other results in the wider cognitive epidemiology lit-

erature showing little attenuation when using sibling designs for other outcomes [66–68]. We

note, however, that at a macro level, policies focusing on teaching the public about food

Fig 3. Associations between cognitive ability (percentile) and BMI by quantile of BMI. Derived from RQRs using the first observation

per individual (within-family effect) and one (first) observation per household (between-family effect). Age, maternal age, birth order, sex,

SEP, and cohort were included as control variables in the first stage regressions with household fixed effects also included in within-family

models. Confidence intervals calculated using cluster-robust bootstrapping (percentile method, 500 replications). The estimates show the

predicted difference in BMI moving from 25th to 75th centile of cognitive ability at a given centile of BMI—i.e., the results for the 50th

centile show the predicted difference in the median BMI among persons with 75th centile cognitive ability compared with the median

centile of BMI among individuals with 25th centile cognitive ability. BMI, body mass index; RQR, residualized quantile regression; SEP,

socioeconomic position.

https://doi.org/10.1371/journal.pmed.1004207.g003
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choices appear to have little evidence of impact [7]. Further, quasi-experimental studies of

compulsory schooling reforms—which are associated with small increases in cognitive ability

[69]—and natural experiment studies of income windfalls find inconclusive (and sometimes

conflicting) effects on obesity overall [70,71]. One reason for the small effect sizes found here

may be that non-volitional factors, such as appetite and dietary norms, are of greater impor-

tance than conscious, reflective decision-making for eating and physical activity. Though our

results suggest a limited causal role for cognitive ability on one’s own BMI, it is possible that

parental cognitive ability still has importance [44] through influencing family SEP and parent-

ing practices (public health interventions could have indirect effects through parental prac-

tices, too).

Another possibility is that our within-family estimates are biased and overly conservative.

Sibling designs can introduce bias through three channels: measurement error of the exposure,

confounding via non-shared factors, and carryover effects [48,72,73]. While the cognitive tests

used here have high reliability [74,75], insofar as adolescent cognitive ability is only proxying

for more contemporary cognitive ability levels, changes to cognitive ability over the life course

[76] could lead to attenuated associations. This process may be particularly pronounced in

within-family analyses given the increasing heritability of cognitive ability (and thus the

increasing similarity of siblings) as individuals age [77]. However, we note that we found little

evidence of associations between adolescent cognitive ability and adult BMI becoming smaller

as individuals aged. Regarding non-shared factors, it is unclear which would bias the associa-

tion downwards to such an extent—many candidates would be anticipated to upwardly bias

the association or are otherwise relatively rare at a population level. In our data, adjusting for

childhood self-reported health attenuated estimates still further. Childhood illnesses causing

lifelong wasting are unlikely to be sufficiently common. We did, however, find suggestive and

indirect evidence of carryover effects—associations were weaker when the older sibling had

higher cognition. However, the analysis was low powered and point estimates continued to

show relatively small effect sizes. One potential source of carryover effects that was not

explored in our analyses was differences in parental investments: There is evidence that

parents compensate behaviourally for differences in siblings’ polygenic predisposition to high

cognitive ability, at least in some families [78].

Strengths and limitations

Strengths of this study included the use of multiple samples and the longitudinal design: Mea-

sures of cognitive ability were collected years before BMI, and we were able to increase statisti-

cal precision by including repeat measurement of BMI for each individual. Limitations of this

study included a reliance on self-reported height and weight measurements, which likely con-

tain measurement error [79]. Further, the degree of this error could be feasibly related to cog-

nitive ability level. As noted, while sibling designs account for shared characteristics, non-

shared factors may still bias associations (e.g., childhood infections or disease). There was also

substantial attrition in the cohorts, and, by using complete case data, there is a potential for

selection bias. However, the number of successful follow-ups was similar among above and

below (family) average cognitive ability groups. A final limitation was that our data were from

a single country (the US) and that the median year of follow-up was 2004. It is possible that

causal effects of cognition on BMI could be present in other study contexts yet absent in the

one investigated in this study. For instance, in more recent years, cognitive ability could have

become a stronger predictor of SEP or a more important determinant of the behaviors that

influence obesity. Future research could test the extent to which associations and causal effects

differ by time or place.
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Conclusions

Associations between high adolescent cognitive ability and low adult BMI were partly attenu-

ated by family SEP in between-family analysis and substantially attenuated toward the null in

within-family analysis. Our results are consistent with the hypothesis that the well-replicated

association between high adolescent cognitive ability and low adult BMI is biased by factors

such as SEP, that are shared by siblings. Since such factors may confound associations between

cognitive ability and other health outcomes, further research is required to test whether other

results in the cognitive epidemiology literature are biased.
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