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Abstract—We consider an unmanned aerial vehicle (UAV)
based joint radar localization and communication system, where
a UAV transmits the downlink signal to a ground communication
user and the transmitted signal is also exploited to localize a
target coordinates. We aim to optimize the UAV path with energy
constraints. We formulate the trajectory design into a weighted
optimization problem, where a scalable performance trade-off
between localization and communication can be achieved. An
iterative algorithm is exploited then to address the trajectory
design formulation. Numerical results are provided to validate the
effectiveness of the proposed UAV trajectory design approaches.

Index Terms—Cramér-Rao bound, joint sensing and commu-
nication, convex optimization

I. INTRODUCTION

The joint radar localization and communication systems
allow the reuse of hardware for both localization and commu-
nication functionalities, and are recognised as a key technology
for reducing the hardware cost in next generation wireless
systems [1]. Since unmanned aerial vehicle (UAV) network
can provide flexible topology and on demand connectivity in
many emergency situations, it is an important component in
future wireless systems [2]. By jointly designing localization
and communication in one UAV network, which can achieve
a significant decrease of the payload of UAV and an improve-
ment of the UAV network flexibility.

The research in UAV based wireless networks can be
classified into two categories, namely, static UAV deployment
and moving UAV trajectory design. For static UAVs, the
UAV location can be designed to sense the target location
related measurements, i.e., azimuth angle and distance [3]. The
researches in UAV communication systems focus on the UAV
coverage performance determined by the single UAV’s altitude
[4], [5] and topology methods of multi-UAV deployment [6],
[7]. Comparing with static UAVs, moving UAVs can provide a
more flexible UAV service. In regard to radar localization, the
single UAV path [8] and multi-UAV paths [9] are designed
for target localization and tracking. In the communication
side, energy-efficient UAV communication design has received
considerable attentions [10], [11].

There are some existing UAV based joint radar localization
and communication researches. In [12], a power allocation
scheme was proposed in a multi-UAV deployment to maximize
the utility performance for communication and radar sensing.

Fig. 1. Rotary-wing UAV based joint localization and communication system

In [13], a single UAV trajectory design was proposed. The
UAV service strategy was designed to sense multi-user and
transmit the fresh sensing data to the base station.

These current studies of UAV based joint localization and
communication only consider the UAV energy consumption
related to transmission. In practice, the UAV energy consumed
via flying and hovering is the main energy consumption. In
this paper, we consider a UAV based joint localization and
communication with energy constraints. We assume that the
UAV provides downlink communication for a communication
user and performs radar sensing for a target using the same
signal. The joint performance improvement problem is formu-
lated into a trade-off trajectory design problem. An iterative
algorithm based on successive convex approximation (SCA)
is exploited for this problem.

II. SYSTEM MODEL

In Fig. 1, one rotary-wing UAV flies in a given rectangular
area. The communication user and the target are located as
[xc, yc]

T and [xt, yt]
T , respectively. The UAV flies with a

fixed altitude H and the designed flying path is described by
a matrix S = [s1, ..., sn, ..., sN ] ∈ R2×N , where sn ∈ R2×1,
is the waypoint of the UAV path. The flying path between
two continuous waypoints is a line segment, with a constant
velocity denoted as

vn = (sn − sn−1) /Tf , (1)
where Tf is the flying duration. We set a matrix V =
[v1, ...,vn, ...,vN ] to denote UAV flying velocities.



Meanwhile, the UAV hovers at several points in the de-
signed path and performs radar sensing for a ground tar-
get. There are K hovering points, denoted by two vectors
x = [x1, ..., xk, ..., xK ]

T and y = [y1, ..., yk, ..., yK ]
T . The

k-th hovering point is [xk, yk]
T . Specifically, after the UAV

flies over M − 1 waypoints (M is a given integer), it hovers
at the next waypoint with a duration Th to perform one-time
sensing, so that K = floor

(
N
M

)
. The k-th hovering point is

[xk, yk]
T
= sk·M , k = 1, 2, ...,K. (2)

The downlink signal is used to transmit data to the commu-
nication user continuously when it flies following the designed
path. Simultaneously, at each hovering point, the downlink
signal reflected by the target is received by the UAV. Using
time delay between the downlink signal and its echo, the
distance between the k-th hovering point and the target is
estimated. Finally, distance measurements are applied together
to realize target localization.

The free-space path loss model is applicable to both com-
munication and radar sensing. The signal-to-noise ratio (SNR)
from the UAV to the user can be expressed as

SNRc(n) =
P · α0

σ2
0 [dc (n)]

2 , n = 1, 2, ..., N, (3)

where P is the transmit power. σ2
0 is the noise power at the

receiver. α0 is the channel power at the reference distance
dc (n) = 1m, where ∥sn − [xc, yc]

T ∥ = dc (n).
We assume that ∥sn−1 − sn∥ ≪ H . Therefore, the distance

between the UAV to the communication user when the UAV
flies between sn−1 and sn is approximately unchanged. There-
fore, the UAV average downlink data rate can be expressed as

R (S) =
1

N

N∑
n=1

Blog2

(
1 +

P · α0

σ2
0 [dc (n)]

2

)
. (4)

For target localization, the target location [xt, yt]
T is deter-

mined by at least 3 different distance measurements, which
indicates that at least K = 3. In the radar sensing model,
ds(k) is the distance from the UAV to the target, which is

ds(k) =

√
H2 + ∥ [xk, yk]

T − [xt, yt]
T ∥2. (5)

We represent the distance between the target and all hovering
points as a vector ds = [ds (1) , ..., ds (K)]

T . ds (k) is
d̂s(k) = ds(k) + wd (k) , (6)

where wd (k) denotes the measurement Gaussian noise
with zero mean and variance of σ2

k. Let d̂s =[
d̂s(1), ..., d̂s(k), ..., d̂s(K)

]T
. Note that σ2

k is subject to in-
dividual Gaussian distribution, which is inversely proportional
to the received SNR of the echo [14].

The two-way channel power gain from [xk, yk]
T to [xt, yt]

T

plus from [xt, yt]
T to [xk, yk]

T is

gk =

√
β0

[ds (k)]
4 , (7)

where β0 is the channel power at the reference distance
ds (k) = 1m. Thus, the received echo at [xk, yk]

T is

SNRs(k) =
P ·Gp · g2k

σ2
0

=
P ·Gp · β0

σ2
0 [ds(k)]

4 (8)

where Gp is the signal processing gain. So that we remark

σ2
k = a× σ2

0 [ds(k)]
4

PGpβ0
, (9)

where a is pre-determined constant related to the system.
In the target localization problem, let u = [xt, yt]

T and
û = [x̂t, x̂t]

T is the estimation of u. Since mean squared error
(MSE) is difficult to calculate in a closed-form and accordingly
the minimization of MSE is almost intractable, we employ the
Cramér-Rao bound (CRB) which provides a lower bound for
MSE [15], [16] as localization evaluation.

Thus, the CRB of xt and yt is calculated. First, we obtain
the CRB matrix of u, which is denoted as

CRBu = J−1 (u) , (10)
where J (u) is the Fisher’s information matrix (FIM) of u.
The FIM with respect to ds is attained easily, so we can
first construct the FIM with ds and exploit the mathematical
relationship between ds and u to derive the FIM with u [15].

From (6) and (9), we observe that both d̂s (k) and σ2
k are

depended on ds (k). Thus the measurement vector d̂s and its
covariance matrix C (ds) are

d̂s ∼ N (ds,C (ds)) , (11)

C (ds) =
aσ2

0

PGpβ0
diag

(
[ds (1)]

4
, [ds (2)]

4
, ..., [ds (K)]

4
)
.

(12)
Therefore, given by [17], the i,j-th element in the FIM of ds

is shown in (13) at the top of the next page.
Then, the FIM for coordinates xt and yt can be derived

by the chain rule in the form of
J (u) = QJ (ds)Q

T , (14)
where Q is a Jacobian matrix in the form of

Q =
∂dT

s

∂u
=

[
x1−xt

ds(1)
... xK−xt

ds(K)
y1−yt

ds(1)
... yK−yt

ds(K)

]
. (15)

Finally, substituting (13) and (15) into (14), J (u) is obtained
and the CRB matrix of coordinates xt and yt is

CRBu = [J (u)]
−1

=
1

ΘaΘb − [Θc]
2

[
Θb Θc

Θc Θa

]
, (16)

Θa =

K∑
k=1

{
PGpβ0

aσ2
0

(xk − xt)
2

[ds (k)]
6 +

8 · (xk − xt)
2

[ds (k)]
4

}
, (17)

Θb =

K∑
k=1

{
PGpβ0

aσ2
0

(yk − yt)
2

[ds (k)]
6 +

8 · (yk − yt)
2

[ds (k)]
4

}
, (18)

Θc =

K∑
k=1

{
PGpβ0

aσ2
0

× (xk − xt) (yk − yt)

[ds (k)]
6

}

+

K∑
k=1

{
8 · (xk − xt) (yk − yt)

[ds (k)]
4

}
. (19)



[J (ds)]ij =

[
∂ds

∂ds (i)

]T
C−1 (ds)

[
∂ds

∂ds (j)

]
+

1

2
tr

[
C−1 (ds)

∂C (ds)

∂ds (i)
C−1 (ds)

∂C (ds)

∂ds (j)

]
, where, i, j = 1, ...,K. (13)

The CRB of xt and yt are diagonal entries of CRBu as

CRBxt =
Θb

ΘaΘb − [Θc]
2 , (20)

CRByt =
Θa

ΘaΘb − [Θc]
2 . (21)

The sum of the CRB of coordinates xt and yt is

CRBxt,yt
(x,y) =

Θb +Θa

ΘaΘb − [Θc]
2 . (22)

Finally, the objective of localization is to minimize
CRBxt,yt

(x,y). Notice that since the exact values of xt

and yt are unknown in CRBxt,yt (x,y), we use an initial
estimation [x̂t, ŷt]

T to substitute CRBxt,yt
(x,y) in problem

formulation. Then, the metric is CRBx̂t,ŷt
(x,y).

III. PROBLEM FORMULATION AND PROPOSED ALGORITHM

A. Weighted Problem Formulation

We formulate a UAV path design problem by applying a
weighting factor η to characterize the trade-off between R (S)
and CRBx̂t,ŷt

(x,y). The trade-off problem is formulated as

P1 : min
{S,x,y,V}

η ·
CRBx̂t,ŷt

(x,y)

CRBnorm
− (1− η) · R (S)

Rnorm

s.t. ∥vn∥ ≤ Vmax, n = 1, 2, ..., N, (23)
0 ≤ xn ≤ Lx, 0 ≤ yn ≤ Ly, n = 1, 2, ..., N, (24)

Tf ·
N∑

n=1

P (∥vn∥) + Th ·
K∑

k=1

P (0) ≤ Etot. (25)

We normalize the two performance metrics with CRBnorm and
Rnorm. CRBnorm is the value of (9) with largest dt and Rnorm

is the date rate with largest dc. Vmax is the UAV maximum
flying speed. Etot denotes the total on-board energy of the
UAV. The power consumption in (25) can be modeled as [18]

P (V ) =P0

(
1 +

3V 2

Utip
2

)
+ Pi

(√(
1 +

V 4

4v0
4

)
− V 2

2v02

) 1
2

+
1

2
d0ρsAV 3. (26)

B. Proposed Algorithm

As P1 includes non-convex objective function and con-
straints, it is unlikely to obtain a globally optimal solution.
Here we propose an iterative algorithm to address P1 and seek
a locally optimal solution.

We first deal with (25). Since the second term of the left-
hand-side (LHS) of (26) is non-convex, we introduce variables
δ = {δ1, δ2, ..., δN} to recast this term by relaxing it to an
inequality as

δ2n ≥

√(
1 +

∥vn∥4
4v40

)
− ∥vn∥2

2v20
, (27)

δn ≥ 0. (28)

And (27) is equivalent to
∥vn∥2

v20
≥ 1

δ2n
− δ2n, n = 1, 2, ..., N. (29)

(25) can be rewritten by (28), (29) and the following constraint

Etot ≥ Th ·
K∑

k=1

{P0 + Pi}

+ Tf ·
N∑

n=1

{
P0

(
1 +

3∥vn∥2

Utip
2

)
+ Piδn +

1

2
d0ρsA∥vn∥3

}
.

(30)
(29) can be addressed with SCA algorithm. Specifically, any
convex function is globally lower-bounded by its first-order
Taylor expansion at any point [19]. We approximate LHS of
(29) by its first-order Taylor expansion near a given point as

∥vn∥2

v20
≥ ∥v(l−1)

n ∥2

v20
+

2

v20
v(l−1)
n

(
vn − v(l−1)

n

)T
≥ 1

δ2n
− δ2n.

(31)
Thus, we find the lower bound for the LHS of (29). As the
right-hand-side (RHS) of (29) is still non-convex, we introduce
variables ξ = {ξ1, ξ2, ..., ξN} and rewrite the RHS of (29) as

1

δ2n
− ξn ≥ 1

δ2n
− δ2n, n = 1, 2, ..., N, (32)

δ2n ≥ ξn, n = 1, 2, ..., N, (33)

ξn ≥ 0, n = 1, 2, ..., N. (34)

We can observe that the newly introduced constraint (33) is
non-convex. To tackle this issue, we approximate the LHS of
(33) by its first-order Taylor expansion near δ(l−1) as

δ2n ≥
[
δ(l−1)
n

]2
+2δ(l−1)

n

(
δn − δ(l−1)

n

)
≥ ξn, n = 1, 2, ..., N.

(35)
Finally, the lower bound of the LHS of (29) and the upper
bound of the RHS of (29) are revealed. A new constraint to
substitute (29) with new variables is obtained as
∥v(l−1)

n ∥2

v20
+

2

v20
v(l−1)
n ·

(
vn − v(l−1)

n

)T
≥ 1

δ2n
− ξn. (36)

Through the above process, all constraints in P1 are ap-
proximated by convex functions. But P1 is still non-convex
because of the non-convex objective term CRBx̂t,ŷt

(x,y).
Now, we approximate CRBx̂t,ŷt

(x,y) by its first-order Tay-
lor expansion near given points x(l−1) and y(l−1) in (37),
where ∇CRBxk

and ∇CRByk
represent the gradient of

CRBx̂t,ŷt
(x,y) with respect to xk and yk respectively.

We rewrite P1 as

P1′ : min
{S,x,y,V,δ,ξ}

η · F (x,y)

CRBnorm
− (1− η) · R (S)

Rnorm

s.t. (23), (24), (28), (30), (34) and (36).

The solution of x and y in P1′ are x∗ and y∗ respectively.
In the l-th iteration, x∗ − x(l−1) and y∗ − y(l−1) are descent



CRBx̂t,ŷt
(x,y)

≈ CRBx̂t,ŷt

(
x(l−1),y(l−1)

)
+

K∑
k=1

∇CRBxk

(
x(l−1),y(l−1)

)(
xk − x

(l−1)
k

)
+

K∑
k=1

∇CRByk

(
x(l−1),y(l−1)

)(
yk − y

(l−1)
k

)
= CRBx̂t,ŷt

(
x(l−1),y(l−1)

)
+ F (x,y) . (37)

TABLE I
SIMULATION PARAMETERS

parameter value parameter value
P0 80 W Pi 88.6 W
Utip 120 m/s v0 4.03 m/s
d0 0.6 s 0.05 m3

ρ 1.225 kg/m3 A 0.503 m2

α0 -40dB β0 -39dB
N0 -170dBm/Hz σ2

0 N0B
P 20 dBm B 1 MHz
Gp 0.1B N 80
Vmax 30 m/s Tf 1.2 s
H 200 m Th 1.5 s
V0 10 m/s M 4
Lx 2000 m Ly 2000 m

directions of x and y [19]. Next, we use stepsize ω (0 ≤
ω ≤ 1) and seek points that are able to obtain the minimum
CRBx̂t,ŷt

(x,y) following the descent direction. The result
points are expressed respectively as

x(l) = x(l−1) + ω
(
x∗ − x(l−1)

)
, (38)

y(l) = y(l−1) + ω
(
y∗ − y(l−1)

)
. (39)

Since the proposed algorithm above is an iterative process,
initial inputs of x(0)

k , y(0)k , v(0)
n , δ(0)n and ξ

(0)
n are needed. Here,

we design an initial trajectory and calculate x
(0)
k , y(0)k , v(0)

n ,
δ
(0)
n , and ξ

(0)
n based on the trajectory. We use a straight line

from the start point directly to the communication user with
a fixed flying speed V0 as the initial trajectory.

IV. NUMERICAL ANALYSIS

This section provides numerical results to evaluate the
performance of our proposed approaches. In the simulation, we
set the charging base for the UAV to charge its battery energy
at [xB, yB]

T
= [100, 100]

T . The simulation related parameters
are shown in Table I.

In Fig. 2 and Fig. 3, we first compare the proposed
algorithm performance with different measurement Gaussian
noise. In Fig. 2, we use “MSE” to present the MSE of the tar-
get coordinates estimate using maximum likelihood estimation
(MLE). “CRB” is the value of (22). In Fig. 3, “CRB” denotes
the objective function value in P1, and “MSE” denotes that
we use MSE to substitute CRBxt,yt

(x,y) in P1. In Fig. 2,
it is shown that when a = 10, which means the measurement
Gaussian noise with a larger variance, the estimation error
increases compared with a = 1. That is because when the
distance measurement has a higher measurement error, a
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Fig. 2. Sensing performance of different a with an increasing Etot
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coordinate estimate with higher error occurs. In Fig. 2, we
also observe that with Etot increase, trends of “MSE” and
“CRB” are both decreasing. CRB provides a lower bound
for the MSE of MLE. The increasing energy realizes a lower
estimation error, resulting in a performance improvement for
radar sensing. In Fig. 3, it shows that the joint radar sensing
and communication performance is improved with the growth
of the total energy budget of the UAV.

We set [xt, yt]
T

= [380, 1600]
T and [xc, yc]

T
=

[1700, 1800]
T . In Fig. 4 and Fig. 5, we aim to show the

performance trade-off between communication and sensing.
It can be seen that there exists a trade-off between the
average data rate and estimation error. When η increases,
that means the CRB value contributes more to the objective,
a lower estimation error and a lower average data rate are
achieved, i.e. when η = 0.7, the squared estimation error is
around 1.5 × 10−3m2 and data rate is around 9.4 Mbits/s.
On the contrary, a lower η realizes a better communication
performance, i.e., when η = 0.3, the squared estimation
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error increases to 2.5 × 10−3m2 and data rate increases to
9.7 Mbits/s. Fig. 5 shows the UAV paths with different η to
explicate the trade-off between communication and sensing. It
can be observed that with a larger η, the UAV trajectory is
more suitable for it to perform target sensing. For example,
the UAV flies closer to the target, so that the sensing can be
performed in lower noise environment.

V. CONCLUSION

In this paper, we have considered a trade-off UAV path
design for a UAV based joint radar localization and commu-
nication system. Firstly, the CRB is exploited to substitute
MSE as the target localization metric. Then, a weighted
problem for the UAV path design to achieve a flexible trade-
off between radar sensing and communication is formulated.
We further developed an iterative algorithm to address the
objective and constraints in the path design formulation. The
simulations have shown that the UAV battery capacity increase
can improve the joint performance in this scenario. The
weighting factor can provide a flexible trade-off between the
joint performance of communication and radar localization.
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