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Bringing AI technology into clinical practice has proved challenging for system designers and medical professionals alike. The academic
literature has, for example, highlighted the dangers of black-box decision-making and biased datasets. Further, end-users’ ability to
validate a system’s performance often disappears following the introduction of AI decision-making. We present the MAP model to
understand and describe the three stages through which medical observations are interpreted and handled by AI systems. These
stages are Measurement, in which information is gathered and converted into data points that can be stored and processed; Algorithm,
in which computational processes transform the collected data; and Presentation, where information is returned to the user for
interpretation. For each stage, we highlight possible challenges that need to be overcome to develop Human-Centred AI systems. We
illuminate our MAP model through complementary case studies on colonoscopy practice and dementia diagnosis, providing examples
of the challenges encountered in real-world settings. By defining Human-AI interaction across these three stages, we untangle some
of the inherent complexities in designing AI technology for clinical decision-making, and aim to overcome misalignment between
medical end-users and AI researchers and developers.
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1 INTRODUCTION

The adoption of Artificial Intelligence (AI) systems in the medical domain [70], most commonly through the application
of Deep Learning or Machine Learning, is typically accompanied by the promise of increased efficiency [122] and a
reduction in medical errors [6]. However, this promise is often not realised in clinical practice [65]. Examples include
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reduced effectiveness when confronted with real-world constraints [54], (racial) biases [81], low levels of patient
trust [120], and adversarial attacks that purposefully trigger incorrect medical decisions [32].

These challenges in realising AI-enabled systems, particularly within the medical context, highlight the need to
better understand the relationship between real-world phenomena and the interpretation and output provided by AI
systems. To support HCI researchers and practitioners, we present the MAP (Measurement, Algorithm, Presentation)
model for conceptualising Human-AI interaction based on our experiences in designing and deploying AI systems and
the growing literature on this topic. Through the MAP model, we contrast the interpretation of phenomena in the real
world as typically carried out by medical personnel with the necessary steps for an AI system to reach an interpretation
and present it to clinicians in actionable form. Through this comparison, we highlight user-centred challenges that may
arise when relying on AI support systems. The MAP model consists of three steps taken by an AI support system to
provide support to end users: Measurement, in which a real-world phenomenon is described and recorded by means of
one or more sets of data, Algorithm, through which the collected data is transformed into a useful outcome signal, and
Presentation, in which the outcome is presented to the user. For each stage, we highlight challenges faced in designing
and deploying AI systems.

Human-Computer Interaction (HCI) researchers and practitioners should play a major role in transforming theo-
retical AI solutions to successful real world deployments. Following decades in which the fields of HCI and AI barely
interacted [12] or competed for funding [40], the technological maturation of AI-based systems means HCI researchers
can now study and evaluate these systems in the real world. It has long been recognised that systems that are not
perceived as usable will be abandoned by their intended users [43, 118], with uptake further restricted by wariness of
AI-based technology among medical staff [70]. As such, HCI researchers and practitioners face the challenges of ensuring
that AI systems are usable, fit for purpose and relevant to real-world tasks, and that the needs of the intended end-users
are taken into account from the earliest stage of a system’s development. However, designing for real-world interaction
with an AI system gives rise to novel design questions [28]. For example, system behaviour evolves over time [39]; it is
thus challenging to integrate these systems within existing clinical settings [54, 119]. Further, AI systems may provide
decision support proactively without waiting for explicit user input [99]. These challenges are further stressed by the
health context, in which errors are potentially grave and raise questions of accountability [57] – increasing the need for
explainability of AI-based recommendations or behaviour [46, 94].

The remainder of the article is organised as follows. Section 2 presents an overview of related work in Human-AI
interaction, focusing on challenges in designing for Human-AI interaction and the integration of AI in clinical contexts,
as well as previous frameworks used to describe the processing of information. We introduce the MAP model in
Section 3, outlining the three stages of Measurement, Algorithm, and Presentation and highlighting challenges faced in
deploying AI in real-world clinical contexts. We illustrate the model’s use through cases studies in colonoscopy practice
(Section 4.1) and dementia diagnosis (Section 4.2). Our article ends with a discussion on the proposed model and its
relation to HCI (Section 5). Specifically, we provide high-level takeaways for the challenges identified in designing,
deploying, and evaluating AI-enabled decision support systems. Further, we discuss considerations on user trust towards
AI-enabled support systems. Finally, we highlight limitations and opportunities for future work.

2 RELATEDWORK

The increasing capabilities of AI technology have given rise to work within HCI on designing and deploying AI-enabled
systems. Of particular relevance to this article are studies focused on integrating AI-enabled systems in clinical contexts.
Healthcare is often highlighted as a domain in which AI can make a significant impact [53], in part due to the pressure
Manuscript submitted to ACM
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to reduce costs and improve medical outcomes. Simultaneously, the field faces challenges in terms of AI integration due
to, inter alia, diverging stakeholder needs, oversimplifications of real-world healthcare processes, and the potentially
severe impact of (algorithmic) decision-making. Lastly, we discuss prior work on the framing of information processing.

2.1 Designing for Human-AI Interaction

With the increasing reliance on AI, the HCI community has been working towards a better understanding of designing
AI-driven systems. Various papers have contrasted these systems with more ‘traditional’ digital systems – highlighting
that a change in perspective is required. For example, Amershi et al. note that “AI-infused systems can violate established

usability guidelines of traditional user interface design” [1]. Similarly, Benjamin et al. highlight that “design research

struggles to engage ML [Machine Learning] as a material for design, as the probabilistic inference of models from data

patterns withdraws from being present-at-hand” [11]. Over 20 years ago, Blandford highlighted areas where there needed
to be greater convergence between AI and HCI to reason about people’s interactions with AI systems [12], including
ensuring conceptual fit (or common ground) between people and systems. While the dominant paradigms in AI since
2001 have shifted from rule-based AI working with minimal data to neural network-based approaches that learn from
vast datasets, the need for common ground remains. This is illustrated by Smith & Koppel, who analyse the data
structure of a widely used health IT system and highlight critical discrepancies between the measures that matter
to clinicians and those recorded within the system [96]. The latter are a poor surrogate for the realities of clinical
practice. Specific factors that these authors [1, 11, 12, 96] point to are the unpredictability of AI systems, the automated
filtering and presentation of information that may result in unintended information loss, and inconsistency over time
in response to consistent input patterns. We discuss relevant work on AI explainability, frameworks for understanding
and mapping Human-AI interaction, and guidelines that aim to support in designing Human-AI interactions.

In the context of clinical decision support, the explainability of recommendations has been recognised as a critical
element in supporting Human-AI interaction. Decision support systems can cover various interventions, ranging from
alerts and reminders to recommending clinical pathways [47]. In 2012, before the recent widespread interest in AI
systems, Horsky et al. published a review of best interface design practices for clinical decision support systems [47].
This review highlighted the need to avoid a black box approach (i.e., systems in which the internal workings are opaque
and only its input and output can be observed), pointing to the goal of cultivating trust within the system user. To do
so, Horsky et al. recommend that “an explanation of medical logic, including formulas for calculating values, should be

accessible on demand so that the justification for alerting is transparent and verifiable” [47]. Similar recommendations are
made in the context of AI systems; for example, Yang et al. investigate how clinicians make decisions in the context of a
heart pump implant, identifying a perceived lack of need for and trust in clinical decision support tools [119]. Further,
they highlight an opportunity for computational support outside the direct decision-making moment. In a subsequent
paper, Yang et al. seek to address the critique of clinical decision support tools providing a poor contextual fit [118],
proposing what they term an ‘unremarkable’ form of AI support. This augments existing user routines, in this case by
embedding prognostics in the slides of clinicians’ decision meetings, rather than introducing a technology that seeks to
replace existing work practices.

To aid practitioners in the design of Human-AI systems, several sets of guidelines have been developed. Amershi
et al. proposed 18 design guidelines for Human-AI interaction based on input from designers who evaluated the
guidelines against existing AI-infused products [1]. Similarly, Liao et al. worked with design practitioners to develop
guidelines for explainable AI systems [66]. As stated by Amershi et al., guidelines are typically a generalisation and
might not address all types of AI systems. For example, Van Berkel et al. expand on these guidelines by highlighting
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user needs in continuous AI-support scenarios [99]. Large et al. provide an example of an application domain that
requires specific considerations beyond established guidelines [60]. More generally, Dix encourages designers to design
for appropriation [27], allowing users to take ownership of a technology in ways that might not have been initially
predicted. This can help reinforce users’ adaptability to complex AI-enabled systems.

Finally, several researchers have aimed to capture lessons learned into models or frameworks to provide generalisable
guidance to other researchers. For example, Wang et al.’s work on user-centred explainable AI [112] builds on existing
theory from Decision Science to propose a framework of explanations for AI decisions or suggestions. The proposed
conceptual framework describes how human reasoning processes inform explainable AI techniques – and how AI can
help overcome common flaws in our reasoning. The work further aligns with Miller, who states that the main reasons
for seeking explanations are to facilitate learning and to generalise observations so that a conceptual model can be
constructed to predict and control future similar phenomena [73]. Wang et al. further highlight that AI explanations
should consider the typical caveats in human decision-making [112], such as biases introduced by the use of heuristics
to speed up decision-making (see Dual-Process Model for more information [21]). They subsequently evaluated their
framework in an intensive care unit and concluded that explainable AI should support different reasoning techniques.
Yang et al. propose a framework that helps identify whether and how designing a given AI system differs from a
‘traditional’ digital system [117]. Their framework distinguishes between four levels of AI design complexity, ranging
from probabilistic systems (level 1) to evolving adaptive systems (level 4). By applying this framework as an analytical
tool, the authors hope to overcome the gap between conventional AI research and conventional HCI design research to
identify the distinct challenges in Human-AI interaction [117].

These works highlight some of the challenges that arise when designing for Human-AI interaction. Recognising the
diversity of these challenges, we provide the MAP model for reasoning about how AI systems gather data from the real
world, interpret that data, and present the resulting computation back to users to support their decision-making. While
our focus is on clinical decision-making, we believe the MAP model applies beyond clinical contexts.

2.2 Integrating AI in Clinical Contexts

The research community has identified a plethora of opportunities for AI technology to contribute to improved patient
outcomes or a more efficient healthcare system. For example, in radiology, AI has proven helpful in increasing efficacy
and efficiency in detection, characterisation, and monitoring of diseases [48]. In surgery, AI can offer real-time clinical
decision support, as well as assistance during actual operations [42]. In ophthalmology, AI is showing promise in
diagnosis and referral for retinal disease [25]. The use of AI technology is not limited to physical health, as highlighted
in an extensive review by Thieme et al. on the use of machine learning in mental health [97].

Amidst high expectations of AI [78], case studies have highlighted the practical challenges medical personnel face
when interacting with AI in their daily work environment. For example, Cai et al. identified pathologists’ need to
contrast the images of patients’ biopsies with the biopsies of previous patients to confirm or reject their hypotheses [16].
While AI systems were able to surface similar-looking images, their study highlighted that algorithmically similar
images might not be medically similar. As such, the researchers developed and evaluated a ‘refinement’ tool that allows
pathologists to redefine the criteria for similarity, e.g. a specific region or visual pattern. Cai et al. conclude that through
refinement, doctors obtained “the agency to hypothesis-test and apply their domain knowledge, while simultaneously

leveraging the benefits of automation” [16]. Gaube et al. compare clinicians’ behaviour in radiological tasks when
presented with advice claimed to originate from either an AI-based support system or experienced radiologists [34].
While the purported source of the advice did not affect clinicians’ performance, clinicians with high expertise (i.e.,
Manuscript submitted to ACM
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radiologists) rated the quality of advice significantly lower when it was said to originate from an AI system as opposed
to a human expert. This highlights the algorithmic aversion that may exist among clinical experts. Wang et al. present
a case study on an AI-enabled clinical decision support system (CDSS) in rural clinics [110]. This CDSS presents an
AI diagnosis of patients, and is integrated with the existing electronic health record system. The results highlight a
disconnect between the workflow supported by the system and the real world. For example, Wang et al. point to the
fact that many patients require a referral or a refill of their medications [110]; such cases are relatively trivial for the
clinician, but the AI support system requires extensive information before giving a recommendation. Given the time
pressures medical staff work under, the CDSS is left untouched. These examples highlight the practical challenges faced
when integrating AI systems in clinical contexts, where real-world constraints such as room availability [54] restrict
the potential effectiveness of AI recommendations. To address these obstacles, Li et al. argue for developing a ‘delivery
science’ for AI in healthcare, in which multiple disciplines collaborate to integrate AI solutions into complex healthcare
scenarios [65].

In this paper, we present a model for studying and developing AI systems that support human interaction. The
critical nature of healthcare work, combined with widely established work procedures, particular domain knowledge,
and complex care scenarios result in unique challenges to technology adoption.

2.3 Framing Information Processing

The growing reliance on information systems has prompted the development of frameworks to reason about systems’
effectiveness in capturing and providing interpretable information for users. People continuously and almost effortlessly
interpret the world around us – with our brains playing a prominent role in filtering out content deemed irrelevant to
us in the moment [77].

One widely established model in system analysis aimed at explaining information processing is the Input-Process-
Output (IPO) model [4]. The model describes systems as being subject to an external feed as provided by the system’s
environment (i.e., input); this external feed can represent a variety of entities, such as user input in computing or
raw materials in manufacturing. Subsequently, the system performs a predetermined procedure as based on the input
given (i.e., process), which results in the final product (i.e., output) – for example a specific application operation [23].
The system has to fully rely on the provided input, which is always a limited representation of a complex reality and
will therefore influence the output in return [23]. The IPO model has been applied to a variety of contexts, such as
information systems [4], understanding of human communication [38], and decision-making [83].

Other models that find their foundation in cognitive science have tried to account for a more complex representation
of the external reality. Soar [64] and ACT-R [2] are cognitive architectures: specialised systems that, given an input,
produce an accurate simulation akin to human cognitive processes to produce an output. One example can be that of
activating a set of memory resources and procedural action to solve a complex task – e.g., in aviation [15].

The nuances that characterise AI, particularly in the medical field, made us realise that prior models were insufficient
to fully interpret this area of application. The uncertainty in both the observation and interpretation of clinical
phenomena, the range of stakeholders, and the highly context-dependent interpretation of observations provide unique
challenges faced in the deployment of AI-enabled decision support systems. This encouraged us to develop the MAP
model.
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3 CHALLENGES IN INTERPRETING MEDICAL REALITY IN AI: THE MAP MODEL

This section introduces the MAP model and its three stages: Measurement, Algorithm, and Presentation. Figure 1
provides an overview of these three stages required for an AI system to interpret any input. We highlight for each stage
relevant challenges encountered when designing and deploying AI-enabled decision support systems in the real world.
The first conceptualisations of our model date back more than 15 years to work which discusses the roles, value, and
validation of computational models of cognition [13] and the nature of ‘computational thinking’ [114]. The need to
reason about the validity of cognitive models (or of simulations of other real-world systems) was evident, but it was
unclear how to measure cognition meaningfully and compare the output of a cognitive model (such as Soar [64] or
ACT-R [2]) with the outcomes of naturalistic studies. Fast forward to the recent advances in AI, and it is evident that
we face similar challenges in relation to confidence in the validity of AI models designed to support decision-making
(or make decisions) in safety-critical situations such as healthcare. We found that we could draw on the same ideas of
considering the inputs to a computational model, the processing of that model, and the outputs.

Clinical
phenomenon

Interpretation
by medical expert

Artificial Intelligence systemReal world Real world

Stage 1:
Measurement

Computational
outcome

Stage 2:
Algorithm

Stage 3:
Presentation

Computational
representation

Fig. 1. Systematic representation of the MAP model highlighting the interconnection between the real world and an AI system across
the three stages of Measurement, Algorithm, and Presentation.

Information processing systems in medical environments face unique challenges. Interpretation of a patient’s status
often follows strict procedures to determine the right course of action and offer immediate care when necessary. For
example, the ‘ABC’ protocol for resuscitation prescribes the order in which patients are to be examined (Airway,
Breathing, and Circulation) [90]. Through experience and education, medical professionals increase their knowledge
on what to look for and which information to filter out. Eye-tracking experiments on medical image analysis have
shown that experienced radiologists achieve better results despite having a reduced number of fixations and shorter
decision time than their less experienced peers [69]. The ability to directly transfer an observation (e.g., sight, hearing)
of a phenomenon into an interpretation allows humans to rapidly build an understanding of their environment, even
when faced with an unfamiliar phenomenon.

For AI systems, on the other hand, the interpretation of our surroundings is anything but second nature. AI systems
have to be taught what to look for and what judgement to assign to their observations. While trained radiologists
will easily spot a broken bone or advanced cancer growth without scanning individual pixels, an AI system requires a
computational representation of the image on which it can conduct a computational analysis.

We outline this procedure of computation based on three stages. In the first stage,Measurement, analogue information
needs to be quantified into measurable data points (by a person or a computer system) for any AI algorithms to be
applied to the data. These data points can then be utilised in the second stage, Algorithm, in which the AI computes a
classification outcome based on a predetermined algorithm and the offered data. In the third and final stage, Presentation,
Manuscript submitted to ACM
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the system provides the user with the outcome of the computation. The interaction does not end there, as the user still
has to interpret the presented outcome to determine an appropriate action; this is ultimately the user’s goal in using the
system.

Conceptually, this has much in common with the IPO model, in that there is an evident mapping between the three
stages of each respective model. However, our emphasis is notably different and makes the model less exposed to risky
generalisations and misinterpretations. The system receives ‘Measurements’, indicating that the information entering
the system is a limited representation of reality rather than an absolute reflection of it. ‘Algorithm’ plays a similar role
to the ‘Process’ element in the IPO model, though given our focus on AI models and the question of how algorithms
are validated, we chose to describe the processing stage as ‘Algorithm’. IPO’s ‘Output’ stage focuses solely on how
the system sends out the results from the processing stage. In contrast, our focus in ‘Presentation’ is on the interface
between the system and the user. How the system presents or communicates an output that has been generated in
machine language to user language is paramount to the user’s ability to use that system and information. This includes
support for the interpretation of the output and how users can have confidence in the recommendations of AI models
and in their interpretation of those outputs to inform clinical practice.

We next detail each stage and highlight relevant challenges that must be overcome to develop Human-Centred AI
systems. Figure 2 provides an overview of the challenges for each stage.

Stage 1: Measurement

The MAP Model: Challenges in Interpreting Medical Reality in AI

Measurement challenges:

Description, recording, and quantification of 
(analogue) information of real-world phenomena 
into measurable data points and data sets.

Identifying valid 
measures to represent 
real-world phenomena.

Stage 2: Algorithm

Integrating a wider set 
of data sources.

Assessing validity and 
completeness of the data.

Communicating proxy 
variables to end users.

Stage 3: Presentation

x(y) =

f(x)

Algorithm challenges:

Computation of a classification outcome as 
based on a predetermined algorithm and the 
offered data.

Presentation challenges:

Presentation of the computation’s outcome 
and subsequent interpretation of this 
outcome by the user(s) to determine an 
appropriate action.

Ensuring representative 
training data.

Providing inspectable and 
adaptable algorithms.

Ensuring computation is 
relevant to the task at hand.

Ensuring replicability and 
generalisability.

Ensuring the interpretability 
of the results.

Adjusting to task context.

Supporting collaboration 
between team members.

Ensuring timeliness of 
presentation.

Minimising confirmation 
bias and automation 
complacency.

x

+

f(x) =

Fig. 2. Overview of the three stages of the MAP model and identified challenges for each stage.1

1Images based on icons by Shmidt Sergey.
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3.1 Stage 1: Measurement

The first step in our model deals with data and measurement, and any inference that requires data. For a healthcare
professional, the ‘collection’ of data can be as straightforward as the observation of a patient (though such data is not
necessarily quantitative or computable). Klein refers to this near-instant observation and decision-making, in which
individuals rely on their skills and experience, as naturalistic decision-making [58]. Computational systems rely on the
conversion of analogue information into digital data. An example of this can be found in the use of heart rate monitors.
In the case of ECGs, a measurement of the heart’s electrical activity is converted into a digital signal that a trained
operator can interpret. In the case of PPGs (photoplethysmogram, as found in finger pulse measurement devices), a
measurement of the changes in the light absorption of the skin, caused by the blood being pumped through the body, is
converted into a heart rate signal. As illustrated in these examples, neither of which directly measures the heart rate, a
computational representation is typically not an exact virtual representation of an analogue phenomenon. Instead, it
offers a gateway to obtain the desired information.

This disconnect between reality and eventual representation through measurement, while required by computational
systems, raises several challenges for developing Human-Centred AI systems. Based on prior work in this domain, we
identified four challenges related to the measurement of analogue phenomena in computational systems.

Challenge: Identifying valid measures to represent real-world phenomena. One of the critical challenges
faced in developing and deploying AI systems is the selection of appropriate computational representations. Easily
capturable variables might not serve as an adequate proxy for the real-world phenomenon due to these variables’
incomplete or incorrect insights. Well-known examples outside the medical context point to a mismatch between
conveniently available and seemingly effective proxy variables and the real-world phenomenon of interest. For example,
time using an app may be taken as a proxy for engagement, though in other circumstances time taken to complete a task
may be interpreted as a measure of how difficult it is. Unsurprisingly, such examples also exist within healthcare, where
they can result in severe consequences. For example, Obermeyer et al. describe a widely used commercial algorithm
that guides health decisions in the US based on patients’ health costs as a proxy for their health needs [81]. However,
due to unequal access to care, more money is spent on White patients than on Black patients who are at equal levels of
sickness. As such, the risk score calculated by the algorithm provides an incorrect assessment – with Black patients
being considerably sicker than White patients at the same score. The system’s designers failed to assess the validity of
the chosen measure (spend care costs) to represent care needs.

Challenge: Integrating a wider set of data sources. AI-enabled systems frequently rely on the integration of
multiple, extensive data sources, often referred to as big data. This enables clinicians to identify trends that are typically
not detectable without AI support, generating better and more quantitative insights into a particular condition, creating
greater consistency and the potential for systematic improvement over time. The combination of data on prior medical
outcomes with a detailed patient profile can ultimately support the development of personalised medicine [26]. Despite
these prospects, integrating a variety of data sources can be hard to manage clinically [24] and can introduce unexpected
and unintended confounds. Similarly, data collected as part of a clinical trial may not be directly comparable to real-world
data due to differences in the data collection protocols.

Challenge: Assessing validity and completeness of the data. Health data can be notoriously inaccurate and
incomplete. As an example of the inaccuracy of healthcare data, Maling et al. analysed the 2011–2020 records of the
UK’s National Hip Fracture Database (NHFD) for errors [67]. Over 20% of joint replacement records (across a total of
4531 records) were found to be incorrect, with the most common error found in reporting of the cementing technique.
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In addition, missing data can be common. In an analysis across four self-report studies, a widely used method for
collecting long-term insights into an individual’s well-being, Van Berkel et al. found a substantial difference in the
number of responses collected between participants [101]. Across all studies, 50% of the total data was collected from
roughly 30% of respondents. Invalid or incomplete data used to train AI systems can cause serious harm. As highlighted
by Maling et al. in their analysis of the NHFD, invalid data “has serious consequences for evidence based on ‘historic’

NHFD data, causing ambiguity in the ongoing debates over choice of surgery, implant or cement for hip fractures” [67].
Further, invalid or incomplete patient data used as input to an AI system can result in inappropriate and potentially
harmful recommendations.

Challenge: Communicating proxy variables to end users. Finally, the variables used as computational repre-
sentations of real-world phenomena are often unknown by the end users. This hampers people’s ability to construct
a mental model of a system’s behaviour, which has been highlighted as critical to supporting the interaction with a
system [17, 96]. Smith & Koppel describe how healthcare information technology is “both a medium of communication

and a representation of much information—some of which is conflicting, some of which is missing, and all of which interacts

with the mental models of designers and users. It is both a microcosm of medical care and it shapes medical care.” [96].
Providing end users with an understanding of the variables used can prevent users from constructing an incorrect
mental model of the AI system’s behaviour and having misconceptions regarding the inner workings of AI systems [115].
The transparency of AI systems is receiving increased legislative attention, and is highlighted in a recent proposal for
regulation by the European Commission [31].

3.2 Stage 2: Algorithm

The second stage of our model deals with algorithms, with day-to-day healthcare relying heavily on both in-the-moment
and long-term reflective algorithmic computation. For example, to assess a patient’s pulse, a healthcare professional
typically calculates the patient’s heartbeat per minute based on observation. Then, through an established categorisation
‘algorithm’, the heart rate is assessed together with the patient’s age and sex to identify whether the heart rate is
concerning or within an acceptable range [124]. Best practices for care and observation are determined based on
historical successes and failures. This practice is well established, with one of the most well-known examples found
in the pioneering work of Florence Nightingale. She collected, interpreted, and visualised data on sanitary practices
to propose actionable recommendations to improve health standards in the ward [71]. AI systems similarly rely on
historical data to interpret and assess any new information that is presented.

In brief, the development and testing (or validation) of an AI algorithm for deployment in clinical practice typically
involves several stages ‘from bench to bedside’, with iterations to update the algorithm: initial training of an algorithm
using a training dataset; technical validation using an independent test dataset (often drawn from the same larger
dataset as the training data); and external (or clinical) validation in a chosen clinical context, using locally available
data [49]. The algorithm may be further refined as it is deployed in clinical practice, applied to the data for a particular
patient. As widely discussed in the AI and HCI literature, reliance on past datasets and inadequate validation processes
raises several concerns.

Challenge: Ensuring representative training data. The outcome of any algorithm relies on the data on which it
is trained, and is, therefore, inevitably a reflection of what this data represents [41, 50]. As highlighted by Caruana et al.,
historical healthcare data can be highly misleading [18]. Caruana et al. discovered that a rule-based system learned that
patients with pneumonia that also have asthma have a lower risk of dying than the general population. This surprising
and incorrect prediction was based on historical events in which patients with asthma and pneumonia would receive
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immediate care; this was so effective that the mortality rate dropped below that of the general population. However, if
such a system were deployed in the real world, patients would be erroneously turned away from the hospital based
on low predicted risk. Another common scenario refers to the datasets used for face detection and tracking. Often,
training data excludes marginalised groups, as reported by Buolamwini & Gebru in their report on accuracy disparities
in gender classification software [14].

Challenge: Providing inspectable and adaptable algorithms. Healthcare settings require, perhaps more than
almost any other AI application domain, that models’ outputs are verifiable by clinical experts. Cai et al. state that AI
systems are unlikely to perform without error, and that users would therefore benefit from the ability to modify and
steer the algorithm in its computation [16]. Hu et al. note that data from a new source (e.g., different hospital) may have
different properties from earlier datasets [49]. Despite the ongoing advances in AI technology, this situation will likely
remain for some time. Similarly, users may require different support from the AI system as their task progresses, such
as moving from a search task to an explanation task. By adjusting the support provided by AI systems, users optimise
the tool to fit their current needs and provide new data points that can be used to optimise the support system for
future encounters.

Challenge: Ensuring computation is relevant to the task at hand. Despite the promise of AI applications,
clinicians are often concerned about their practical application. As Bellio et al. note, “nominally significant results do not

necessarily constitute clinically meaningful or informative findings at the population, group, or individual level” [10]. Yang
et al. conducted a field study exploring clinicians’ current decision-making practices related to heart pump implantation
and the potential for a CDSS to support these decisions [119]. One of the most significant barriers for adoption was
a mismatch between the algorithm’s quantitative prediction and the clinicians’ information need, which is mostly
focused on critical factors that are not captured by the system. In the analysed case, the CDSS was most helpful in
automating the retrieval of patient data prior to a clinical meeting rather than actual decision support.

Challenge: Ensuring replicability and generalisability. Replicability and generalisability are amongst the essen-
tial requirements for the widespread adoption of AI-enabled decision support systems. Replicability is needed to verify
that the outcomes from an AI application in a healthcare scenario remain consistent even after numerous repetitions of
the same procedure [108]. Vollmer et al. acknowledged the relevance of this factor in their TREE model, a checklist of
20 critical questions to address transparency, replicability, ethics, and effectiveness [108]. Generalisability, on the other
hand, promotes the scaling up of a system developed not only for a specific condition or population but also allows for
broader applicability [87]. Predictive modelling, for example, struggles to meet scalability criteria, as datasets used for
training and validation are often customised and processed [37], limiting their shift to a different domain. For example,
the system developed by De Fauw et al. could make a reliable diagnostic prediction when using Optical Coherence
Tomography (OCT) scans from one machine, but not from another, implying that a normalisation process was needed
on each machine to ensure generalisability [25]. In their work, Yang et al. investigated the most suitable characteristics
for a CDSS in the heart surgery field [118]. However, in defining their key design requirements, they explored other
medical domains to ensure the tool’s scalability.

3.3 Stage 3: Presentation

The final stage of our model describes the presentation of information to the user, through which the user interprets
the results to infer the real-world meaning. This makes the presentation of information critical in deploying AI support
systems. While the HCI literature has recently provided a large number of studies and insights regarding the display,
explainability, and interpretability of the outcomes of AI systems, only a fraction of this work has focused on deployment
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in a healthcare context (see Section 2.2 for a discussion of notable exceptions). Consequently, how to embed AI support
in the often hectic day-to-day workflow of medical experts remains an open research area.

Challenge: Ensuring the interpretability of the results. In the medical context, the interpretability of results
is often critical. Visualisations can play an important role in AI interpretability, for example when highlighting
areas that ‘tipped off’ the AI in medical imaging. However, supporting end-user interpretation can take many forms,
including, for example, text-based explanations [102], interactive applications to contrast AI behaviour across different
configurations [113], or through conversation with a conversational agent [51]. Here, we consider any information
used to clarify the behaviour of an AI system to the user as contributing to the interpretability of AI systems. Given the
often critical nature of clinical decision-making, intelligible models (which can be more easily explained) are favoured
or even required over more accurate but non-intelligible models (e.g., random forests, neural nets) [18]. Existing
tools on interpretability are often aimed at the designers of the algorithms (see e.g. Google’s What-if-Tool [113] or
Microsoft’s InterpretML [79]) rather than the end-users of these systems (i.e., clinical staff). For clinical end-users, AI
recommendations need to not only be interpretable, but also lead to clear implications for (medical) action.

Challenge: Adjusting to task context. The situations in which AI systems are deployed within the medical context
are diverse. Even within a single procedure, clinicians typically perform several tasks. Consequently, it is critical for AI
systems to present the right information at the right time. This includes prioritising the presentation of warnings or
alerts but also intelligently switching between different types of support that the clinical team might require.

While existing recommendations on Human-AI interaction have long stressed the need for AI suggestions to be
accompanied by explanations (see e.g., Amershi et al. [1]), such explanations can also be experienced as interrupting or
even harmful when the user is currently mentally and physically occupied, for example during surgery [103].

Challenge: Supporting collaboration between team members. Existing research on supporting collaboration
between team members when engaging with an AI system is limited. Guidelines on designing for Human-AI interaction,
such as those presented by Amershi et al. [1], fail to account for teamwork collaboration—focusing instead on individual
user interaction with AI systems. Given the collaborative nature of medical practice, AI systems need to support the
coordination of tasks between individuals [88].Malone&Crowston highlight the importance of coordination in designing
cooperative work systems [68]. They subsequently define coordination as “the act of managing interdependencies between

activities performed to achieve a goal” [68]. How to manage these interdependencies, which can necessitate prerequisite
activity, demand shared resources, or require simultaneity of activity, in the context of medical AI systems is an open
research question.

Challenge: Ensuring timeliness of presentation. AI calculation is not always instantaneous, either due to
hardware constraints on location, the need to transfer information back and forth between locations, or simply the
complexity of the analysis required. This can introduce challenges, as clinicians may need to decide promptly. Such
instantaneous decision-making might occur during surgery but could also include other contexts in which urgency
is required due to the patient’s or colleagues’ availability. While relevant to all contexts, Wahl et al. highlight how
resource-constrained settings, in particular, may face challenges concerning the timeliness of presentation [109]. Wahl
et al. point to the reliance on hand-written healthcare records, limited access to the internet, and varying connection
stability as some of the challenges that may inhibit timeliness in AI support. It is important to note that the timeliness
of presentation requires the availability and access to the correct data (Measurement) and a sufficiently quick analysis
of these data (Algorithm).

Challenge: Minimising confirmation bias and automation complacency. Clinicians may rely too much on
the CDSS’s advice without verifying the opposite statement, especially when the provided recommendation aligns
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with their expectations [19]. This phenomenon is called confirmation bias. One example is provided in a study by
Lehman et al., in which they compared breast cancer diagnosis by a group of radiologists with and without CDSS
availability [63]. The use of the system led to a higher rate of false negatives than diagnoses without CDSS. A related
concept is automation complacency, which describes the tendency of people to neglect errors in systems that have
generally been reliable [19].

4 CASE STUDIES

How does our model apply in a clinical setting? As well as referencing existing literature (above), we present two case
studies, both of which involved exploratory AI systems aimed at experts in the healthcare sector. The first case study,
which focuses on colonoscopy practice, is part of a project that aims to support endoscopists in identifying polyps in
the colon during an inspection [99, 103]. These polyps are often challenging to identify, with up to 27% of polyps left
unidentified [105, 125]. The second case study focuses on dementia diagnosis and interpreting patient biomarkers to
predict a patient’s neurological decline and identify a suitable care trajectory [8, 9]. Both case studies cover all three of
the presented model stages and focus on individual clinical encounters.

4.1 Case study I: Colonoscopy

Collaborating with endoscopists and an AI startup company, we studied AI-enabled prototype applications for
colonoscopy. During a colonoscopy, a clinician inserts a flexible tube inside the body. This tube, known as an en-
doscope, contains a camera, light, and track to deploy various tools (e.g., a snare) or run water through to flush the colon.
The procedure typically involves the clinician inserting the endoscope to the beginning of the colon, known as the
cecum, after which the clinician slowly retracts the endoscope and carefully inspects the colon wall for possible polyps.

We designed and evaluated different visual markers to highlight areas of interest as detected by AI systems [99].
We overlaid these different visual markers on recorded real-world patient footage, resulting in realistic videos of an
AI support system in a colonoscopy context. We subsequently deployed these videos in an online survey targeting
relevant clinical staff (N = 36) to evaluate these designs and gain insights into the way these clinical staff envision AI
support. Our analysis focused on participants’ self-reported ability to detect and localise polyps, as well as perceived
interference with their task, all of which were reported through Likert-style questions. Finally, participants ranked the
various visual designs and commented on the integration of AI support systems into their daily work environment.

In a second study, we assessed the impact of AI recommendations on clinicians during medical procedures [103].
Here, we presented endoscopists with pre-recorded endoscopic videos, which we overlaid with manually annotated
recommendations to mimic the behaviour of an AI system. Using a controller, participants could navigate through these
videos and provide a clinical assessment of the presented patient footage (polyp or non-polyp, as all videos contained
an AI recommendation: true positive or false positive). We captured the navigation behaviour and polyp assessment of
21 endoscopists as they navigated through these videos. Our results highlight that the time between the presentation of
the AI recommendation and the participant’s clinical assessment is significantly longer for incorrect recommendations.
Further, the type of content (e.g., mucus, polyp) significantly affected this decision time. These results highlight the
potentially disruptive nature of AI recommendations, which over time can build up end-user frustration and lead to
eventual discarding of the AI support tool. This reinforces the importance of reducing false positives in clinical AI
recommendation systems to facilitate real-world adoption.

These studies aimed to obtain insights into how clinicians envision integrating AI-enabled systems into their daily
practice. While our evaluations did not involve patients, given clear medical and ethical concerns, we aimed to ensure a
Manuscript submitted to ACM



MAP: Framing Interactions with AI-Enabled Decision Support 13

high level of ecological validity to evaluate how data would be measured and results presented (and interpreted) within
live clinical practice [100]. We reflect on our design and evaluation of this case study in relation to the MAP model.

4.1.1 Measurement. During a colonoscopy, an endoscopist’s primary task is to identify and locate polyps. The clinician
typically removes any potential polyp for further pathological analysis. Failing to identify a polyp can have severe
consequences, with early removal of precancerous lesions and early detection of cancers increasing patient survival
rates [86]. AI support in this context is, therefore, typically aimed at supporting endoscopists in identifying polyps. To
achieve this, AI systems are trained on recorded patient image material. These image data banks are manually annotated
and subsequently labelled by clinical experts as either non-polyp or polyp.
Assessing validity and completeness of the data. These AI-enabled systems can only identify polyps when they
are present in the view of the endoscope’s camera. Highlighting potential polyps in the endoscope’s view provides only
a partial solution for the problem of polyp miss rates. In addition to the situation where the clinician is unable to reach
the starting point of the colon (known as cecal intubation) [35], the clinician may fail in mapping the entire colon. This
can be because colonic folds conceal part of the colon wall, because parts are covered in mucus, or simply because
difficult-to-reach regions were insufficiently brought into view. AI-enabled solutions that aim solely to identify polyps
that are already visible and at the surface of the colon may, therefore, not provide a complete measure of real-world
phenomena (hidden polyps). Instead, representing the real-world challenges would require an AI-enabled system to
also provide support in guiding clinicians in ensuring complete coverage of the colon.

4.1.2 Algorithm. Polyps are manually demarcated to cover the entire polyp area across all image frames in which
the polyp is visible to ensure that a future algorithm can recognise polyps from multiple angles. Additional ground
truth information regarding the potential polyp and its histological classification can be obtained only if the area has
been removed from the patient’s colon and histologically examined. Being a highly laborious and time-intensive task,
the open sharing of annotated video material is of high value to the future development of AI support systems. One
example of such a dataset is the Kvasir-SEG dataset [52].
Ensuring representative training data. Our clinical collaborators raised concerns about the possibility and conse-
quences of false positives once AI-enabled decision support systems are integrated into clinical practices. Currently
available systems frequently show false positives when presented with non-polyp material present in the colon, such as
bubbles, stool, or wrinkles on the surface of the colon. Given the frequent occurrence of these features, the system
can become highly distracting to the operator—potentially resulting in the clinician ignoring the system’s correct
recommendations or turning the system off entirely. These false positives result from incomplete training datasets,
which render the AI system unable to distinguish between anomalies present in the colon and actual polyps.
Providing inspectable and adaptable algorithms. Following the identification and localisation of a polyp, a subse-
quent step for the clinician is to classify the polyp’s type. Highlighting the need for AI systems to adapt to different
end-user sub-tasks, this on-the-spot polyp classification increasingly determines the colonoscopist’s subsequent ac-
tions. Relatively new practices are that of ‘resect and discard’, in which diminutive polyps (smaller than 5 mm and
almost universally benign) are resected but do not pass through a pathological exam [55], and ‘diagnose and leave’,
in which hyperplastic polyps are left untouched. This may increase patient safety, as any interference with the colon
can potentially result in a colon perforation or other unintended side effects [55]. Given the importance of correctly
classifying polyps during colonoscopy, AI support is proposed to aid in polyp classification [76]. A relevant HCI question
is how to enable endoscopists in switching between the required modes of support (detection vs classification) while
simultaneously ensuring that they are not inspecting the colon with the incorrect support system active. During
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our interviews, endoscopists expressed concerns that disabling the AI detection support could result in the clinician
forgetting to turn the detection back on: “I don’t want to be able to turn it off by mistake without realising it, but it does

need to be quick and easy and reliable to do—I would suggest a reminder to turn it on again after a set time (e.g., 1 minute)

if it is silenced/switched off ” [99].
Ensuring computation is relevant to the task at hand. The clinicians with whom we collaborated were well aware
of the high miss rates reported in the literature [105, 125]. While some clinicians expressed concerns regarding the
long-term effects of AI systems on clinicians’ capabilities, there was consensus on the need for algorithmic support
in identifying polyps. As such, our discussions focused primarily on the successful integration and presentation of
algorithmic outcomes.

4.1.3 Presentation. A key characteristic of the endoscopy case is the need for actionable and prompt decision-making
since the procedure is not easily paused and later resumed. This need for immediate decision-making stands in contrast
to most of the existing work on medical imaging, in which the patient is not physically present during image analysis
(see e.g. [16]). We propose that this difference in the decision-making procedure requires an alternative perspective
on AI support, called continuous AI-support [99, 104], i.e. “systems that ‘listen’ to a stream of uninterrupted user input

rather than individual instructions and can respond to this input throughout the duration of the interaction.” [104]. In the
presented case, the clinician does not proactively request AI support but receives a sustained input of images throughout
the procedure, raising novel questions around the presentation of AI assessments.
Adjusting to task context. Alerting the endoscopist to the presence of potential polyps is a key feature of the studied
system. It is, therefore, important that the clinician does not miss these alerts. At the same time, the alert should
not distract the user from their current task. Through the aforementioned surveying of relevant clinical experts, we
evaluated a total of seven unique marker designs (as shown in Figure 3) [99]. The designs of two markers are based
on existing systems, namely Figure 3-VI; in which a continuously updating percentage sign indicates the likelihood
of a polyp being visible in the current frame, and Figure 3-VII; in which the corners outside the live video change
colour to indicate the detection of a polyp. While this display of information in the periphery avoids interfering with
the view of the user, the real-world interpretation by the clinician is hampered by missing critical information on the
location of the potential polyp. On the other hand, false positives of objects easily identifiable by the human operator as
non-polyps (e.g., pills floating in the colon) presented directly on the colon footage might be considered as interrupting.
While some of the clinicians reported not being affected by false positives during our evaluation, the consensus was
that a large number of false positives would strain clinicians when a system is deployed in the real world. Further, if
the user’s attention is on the colon, they might fail to notice a change in the corners of the display. As stated by one
participant; “This [design] takes the attention away from the mucosa for a number that is almost continuously changing.

[...] This display is very inefficient on its own and with continuous variation” [99].
Support collaboration between team members. While most research on AI in colonoscopy focuses on supporting
the endoscopist in their task of localising polyps, colonoscopy procedures are team efforts that involve multiple medical
professionals. Relevant information needs to be presented to all team members. For example, staff nurses and healthcare
assistants are responsible for delivering medical instruments through the endoscope when requested by the acting
endoscopist, as well as maintaining patient sedation or physically moving the patient [99]. Timely indication to the
nursing staff of the needs of both patient and clinician could reduce the procedure time, thereby increasing patient
comfort and potentially reducing healthcare costs. Furthermore, the active involvement of experienced nurses as ‘second
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Fig. 3. Visual marker designs to highlight AI recommendations in the context of colonoscopy [99].

observers’ during colonoscopy increases polyp detection rates [62]. A critical assessment on supporting collaboration
between team members when using an AI-support system in the clinic is currently lacking.
Ensuring timeliness of presentation. The assessment of individual video frames at near real-time speed requires
substantial computational resources. Delays in the presentation of the algorithmic assessment are detrimental to the
usefulness of the AI system, as clinicians require direct feedback when manipulating the endoscope. Further, a prolonged
inspection time would result in increased patient discomfort and reduce the effectiveness of an endoscopy unit. To
support the timeliness of presentation in remote and rural areas in which the required computational resources are
unavailable, early work has started on using high-speed satellite communication to facilitate real-time AI diagnosis of
endoscopic images [98].
Minimising confirmation bias and automation complacency. Assessing the potential impact of increased bias
and complacency among medical staff following the introduction of AI support requires a thorough longitudinal
evaluation. While this was outside the scope of our studies, we observed that confirmation bias affects colonoscopy
differently than binary decision problems in stationary imaging [19, 63]. For example, false positives result in increased
clinical effort – while the closer inspection of an area can be considered a positive side-effect, it also leads to higher
patient discomfort and healthcare costs. As stated by one clinician: “Knowing that optical diagnosis is imperfect, I would

worry when disregarding an area the AI has flagged as potentially abnormal in case I am wrong. I am a naturally cautious

practitioner and worry the extra inspection of potentially normal areas would add a lot of time as I try to really satisfy

myself it is the machine and not myself making the incorrect call.” [103]. Our work focused specifically on the impact
of false positives (i.e., an AI suggestion in case of non-polyps) [103]. Clinical outcomes could be severely impacted
if clinicians fail to recognise false negatives (i.e., the AI support failing to pick up on polyps that are present) due to
increased automation complacency.

Through the presented user studies, we uncovered important implications for the design of AI support in the context
of colonoscopy. While it is often challenging to evaluate AI systems in the real world due to ethical concerns, the
discussed studies highlight distinct but effective ways for HCI researchers to evaluate different Human-AI interactions.
Such outcomes can provide clear-cut takeaways for the design of AI systems (e.g., visual marker, integration into existing
practice [99]), as well as novel theory on Human-AI interaction (e.g., designing for continuous interaction [99, 104],
dealing with false positives during interaction [103]).

Manuscript submitted to ACM



16 van Berkel et al.

4.2 Case study II: Dementia

The second case study refers to published work on developing a CDSS for clinicians working with dementia patients [7, 8].
Within a European project developing predictive models to understand the course of neurodegenerative conditions, we
focused on how one specific model for staging and prediction of dementia progress could be brought to clinical practice.

We adopted a user-centred design approach, starting from a study that focused on understanding clinicians’ needs
and current practices, their use of and access to data, and their approach to staging and forecasting [8]. This was
explored through field observations at multidisciplinary clinical team meetings (where lists of patient cases are discussed
and potentially actioned), interviews, and surveys. Interviewees were also exposed to the concept of modelling the
progression of dementia to test the perceived value in clinical practice. Our analysis focused on current barriers and
facilitators for the clinical adoption of these models.

Based on our initial understanding of the clinical setting and the model’s potential, we designed a mock interface for
a CDSS and tested the design concept in a second study with specialist neurologists and psychiatrists in dementia care.
We aimed to understand their potential use of such a tool, as well as their understanding and construction of a mental
model for this innovative and complex concept [7]. We conducted 17 individual sessions with clinicians, in which we
asked them to assess a mock patient at baseline and two follow-ups. We observed high agreement from clinicians with
the output from the model (74%). Clinicians reported that they would use this tool for various purposes, as discussed in
Section 4.2.3.

This set of studies, from the initial problem understanding to prototype testing, added another perspective to our
knowledge of AI-enabled systems integration into clinical practice. Whilst clinicians are again the target users for this
application, the clinical setting, workflow, requirements, and tasks differ substantially from the colonoscopy case study.

4.2.1 Measurement. The diagnosis of a patient with dementia is a particularly prolonged task [91]. It requires a
multidisciplinary team of specialists and a collection of examinations (biological, clinical, imaging), with longitudinal
observations increasing the robustness of the assessment. When evaluating a patient for dementia, specialists need to
determine the level of cognitive and behavioural deterioration, combined with neurological deterioration. Although
guidelines have been defined for diagnosis and treatment [85], dementia diagnosis is heterogeneous, with different
centres and specialists using different measures for assessments andmonitoring, and with an overall qualitative approach
based on experience [61].

Within this context, AI offers several potential improvements. Clinicians would be able to adopt a more quantitative
approach to the way data is reviewed and interpreted. Given the high number of indicators needed to consolidate
a diagnosis for a given patient, and markers for dementia becoming more sophisticated, AI can combine multiple
indicators into an integrated picture of the patient’s status and progress [121]. This could allow dementia specialists
to identify patterns in the data that would not otherwise be noticeable, promote early detection of the condition, and
support the comparison of treatment outcomes [82].
Integrating a wider set of data sources. A unified measurement system for such a heterogeneous condition, however,
has its pitfalls. Different centres adopt distinct clinical tests, collect different indicators, or consider dissimilar cut-off
ranges for biological markers. Moreover, indicators commonly used in clinical trials, where there is an abundance of
clean and complete data for training AI models, might not be available in actual clinical practice [8]. This may result in
misrepresentation of how data is thought to be clinically relevant in one context but not in another. Availability of
measures in the first place is key to training the model and generating results further down the line. Therefore, chosen

Manuscript submitted to ACM



MAP: Framing Interactions with AI-Enabled Decision Support 17

measures for a model should be generalisable or at least adaptable to different contexts and specialisation levels. In the
case of dementia, composite scores from clinical tests could be used instead of test scores themselves [10].

In addition, the flow of collecting, analysing, and merging data to be inputted into the model might happen at slightly
different times, even though they refer to the same ‘assessment window’. For example, there might be delays in receiving
a report from radiologists regarding the brain scan, or clinical tests might be performed on different days or times of
the day, when the patient status might vary substantially [8]. If these data sources are merged and classified as a single
point in time, the picture generated by the model might not be accurate, affecting later stages of decision-making.
Communicating proxy variables to end users. Another source of misrepresentation was the expression ‘early
stages’. Whilst for the computational scientists ‘early stages’ indicated the first abnormalities in dementia markers
related to biological changes (not clinically observable), for clinicians, the same expression described a patient presenting
with initial symptoms affecting cognitive performance. What clinicians consider ‘early stages’ is more advanced disease
than the computational team’s view; “If you put a scale up like that [...] and say right, you’ve just started having memory

problems, it’s all very mild, that means you are at stage 5 out of 12, [the patient might reply] ‘well, I think you blind me, I

am half-way gone!’, whereas we know that, although the disease may be present in their brain for 10 years, symptomatically

they are at the beginning of that journey.” [7]. Another aspect of this misrepresentation was evident in one of the early
visualisations of the model, with stages represented sequentially from the first (stage 1) to the last (stage 12) marker
becoming abnormal. This way of representing stages was not informative to clinicians [8]. In subsequent iterations of
the model’s visualisation, we replaced the numerical stages with the age of the patient [9]. This way, we could represent
the increment in abnormal markers against patient’s age without suggesting potentially misleading information on the
severity of the condition.

4.2.2 Algorithm. Expert clinicians examining a person with dementia can rely on past experiences that give them
the context to diagnose that patient and define a treatment plan. Disease progression models for dementia follow the
same principle: they learn how to describe an individual patient’s status and possible progression based on a dataset of
previously classified patients. Although models might be considered more reliable than human judgement, clinicians
reported various concerns when using them for decision-support [8].
Ensuring representative training data. To test a model for any given population, the training dataset needs to be
representative of the setting and the reference population. In our case, the training data came from a highly controlled
dataset, based on an American observational study [84]. Consequently, applying the algorithm to a different population
could result in inaccurate staging and predictions for the patients. Clinicians interviewed in the UK and Belgium asked
whether results were validated against their local population [8], and expressed a lack of trust in the algorithm at this
stage of the model’s development. Although having sufficiently large training datasets for different populations and
types of markers for dementia might be unrealistic at present, it is important to document the characteristics of the
training data so that clinicians can determine whether or not the dataset is representative for the target population.
Providing inspectable and adaptable algorithms. The Event-Based Model [121] used in our study works under
two critical assumptions. The first is that in the training phase, the algorithm generates the most likely sequence of
events the patients will go through in their disease progression. An event is characterised by a single disease marker
(be it clinical, biological, or imaging-related) becoming abnormal. The second assumption is that the progression is
monotonic, meaning that an abnormal marker cannot change back to normal. Whilst a model is an approximation of
reality, dementia is a heterogeneous condition, and no patient’s journey is like another; “It can be misleading, I mean,

we have to work with some level of uncertainty. And when people ask about progression, we are very cautious in terms of
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saying very strong statements about what’s coming in the future, because we know there’s some huge variability between

patients” [7]. Even if the algorithm’s outcome factors in this uncertainty, it should still allow specialists to understand
how it came to its conclusions.
Ensuring computation is relevant to the task at hand. When innovation originates from the computational rather
than the clinical side, it might be challenging to verify and address the actual clinical need [8], which can result in
limited adoption. In this case, the predictive model for staging and forecasting dementia was developed as part of a
work-stream building on extensive data collection initiatives [84], but no work had explored the value for day-to-day
practice. During a workshop, one of the computational scientists developing the models stated: “My perspective is that it

might be less a question of ‘are the models ready?’, it’s more a question of ‘are they needed?’” [7] We explored the current
clinical practice in specialised dementia centres, using field observations and interviews, and displaying an early version
of a CDSS clickable prototype [7, 8]. By following this approach, we could frame the gap between the model’s output
and the clinical expectations, the future intended use in practice, and the barriers to its adoption.

4.2.3 Presentation. In our studies with dementia specialists, we wanted to define the intended use of our model-based
CDSS to optimise the what and when of its inclusion in the clinical workflow. Clinicians reported that they anticipated
using the CDSS in three main scenarios: (1) as preparation for upcoming appointments; (2) to support the discussion in
multidisciplinary team meetings; and (3) for training.
Ensuring interpretability of the results. To visualise the algorithm within the CDSS (icompass: Fig. 4), we designed
the output from the monotonic event-based model as a downward trajectory that decrements depending on the number
of markers that turn abnormal. Although this visualisation aimed to pair the characteristics of the model’s output with
clinicians’ familiarity with survival curves, the clinical reality is quite different from this interpretation, with patients’
markers fluctuating and following different sequences of events. Nevertheless, specialists reported finding this tool
and the visualisation helpful in integrating multiple assessments and aiding individual and collaborative thinking. The
model can additionally forecast the future patient trajectory. This is represented with a dashed line for the most likely
prediction and an opaque area for the probability range. Whilst specialists are more positive regarding the trajectory to
date, which they can validate based on their expertise and observations, the predicted trajectory was more controversial.
Clinicians are themselves uncertain of unexpected turns that dementia can take in a patient’s life, and they admitted
that prediction might be a game-changer when a treatment is available.
Adjusting to task context. Based on clinicians’ responses, we designed a user journey that illustrates four levels in
current dementia clinical practice (patient interaction, decision-making, data collection/analysis, and peer discussion)
and how icompass could be embedded in the workflow. Icompass is also expected to have an impact on speeding up
work and easing cognitive workload, thus facilitating adoption in clinical practice; “It could be useful when it isn’t

obviously clear from numbers that there is a decline. Just by placing the numerical output of an image registration and of a

psychometric registration side by side and giving you some kind of global decline measure” [7].
Supporting collaboration between team members. Clinicians envisioned a tool that needs to be accessed from
different settings and by various team members. Consequently, data displays and descriptions need to be understood by
care team members with different roles and expertise levels. Most participants did not expect the system to be used
with patients. Hence the system could be used individually by multiple professional figures or as a support tool for
multidisciplinary team meetings. As one clinician stated: “In one MDT session a multitude of cases are discussed and that

implies remembering numbers of all tests, eventually compared with previous scores and other information. It is hard to

keep track of all information for each” [7]. By summarising various data into a coherent picture of the patient progress
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Fig. 4. Example of icompass output screen [7].

and forecast, clinicians could see its value in saving time and supporting the conversation through visualisations of the
model.

Based on the findings of the user studies, recognising the current model’s limitations, and considering the uncertainty
in the prognosis and absence of disease-modifying treatments, we conclude that this system is not yet ready for
deployment. Given the facilitated access to more sophisticated markers, controlled data collection, and population
access, a clinical trial is a suitable setting to further test icompass, representing a sound transition towards its use in
clinical practice [116].

5 DISCUSSION

By introducing AI-enabled systems into the already complex day-to-day operation of medical practice, we risk increasing
the complexity of interpreting health-related phenomena and their representation as offered by digital tools. Our MAP
model can support high-level reasoning about how AI systems gather data from the real world (including through human
data entry), interpret that data, and present the resulting computation back to users to support their decision-making.
We have outlined the three stages of the MAP model; Measurement, Algorithm, and Presentation. To support the
development of future Human-Centered AI systems, building a clear understanding of these three steps is necessary to
ensure adoption and alignment with end-user needs.
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Phase Challenge Case I Case II Selected refs.
M
ea
su
re
m
en
t Identifying valid measures to represent real-world phenomena. [81]

Integrating a wider set of data sources. Ë [8, 24, 26]
Assessing validity and completeness of the data. Ë [67, 101]
Communicating proxy variables to end users. Ë [17, 96, 115]

A
lg
or
ith

m Ensuring representative training data. Ë Ë [14, 18, 45]
Providing inspectable and adaptable algorithms. Ë Ë [16, 99]
Ensuring computation is relevant to the task at hand. Ë Ë [10, 119]
Ensuring replicability and generalisability. [87, 108, 118]

Pr
es
en
ta
tio

n Ensuring the interpretability of the results. Ë [18, 51, 102]
Adjusting to task context. Ë Ë [1, 72, 99]
Supporting collaboration between team members. Ë Ë [68]
Ensuring timeliness of presentation. Ë [109]
Minimising confirmation bias and automation complacency. Ë [63, 103, 123]

Table 1. Overview of challenges discussed across the Measurement, Algorithm, and Presentation phases. We indicate their occurrence
across the case studies and provide references for additional reading.

Next, we position our work within Human-AI interaction. In Section 5.1, we discuss the application of the MAP
model by contrasting our two case studies. Further, we provide concrete takeaways for each of the identified challenges
to support in designing, deploying, and evaluating AI-enabled decision support systems. Section 5.2 provides a detailed
examination of end-user trust in AI-enabled systems when deployed in real-world clinical systems. Finally, in Section 5.3
we highlight the limitations of our contribution and outline opportunities for future work.

The field of HCI has thus far predominantly focused on the final stage of the MAP model: Presentation. For example,
our community has studied how to best design AI-enabled systems [1, 11] and evaluated the interaction with AI and
decision support systems through case studies [8, 47, 103, 119]. However, it is critical to highlight that the interpretation
of phenomena by AI systems covers all three stages of MAP.While most end-user interaction surfaces at the Presentation
stage, a restricted focus on this stage could have a detrimental effect on the design of AI-enabled decision support
systems. This is especially true when considering the transition from prototype development and evaluation in the lab
toward deployment in the wild. For example, appropriately selected and communicated measurement variables not
only ensure the correct operation of the AI system, but can also support end-users in building a correct mental model
of the system’s operation. Such a model can aid users during regular operations and assist in their reasoning when the
system produces unexpected results.

While our article focuses on clinical decision support systems, the MAP model applies to contexts outside the medical
domain. The interpretation of real-world phenomena by AI-enabled systems, illustrated in Figure 1, commonly follows
the three stages of Measurement, Algorithm, and Presentation. We summarise the challenges introduced and discussed
in this article in Table 1, and indicate which apply to each of the two case studies discussed above. Our identification
of challenges was made inductively, based on our experiences obtained through the case studies and a review of the
literature. As such, not all the challenges apply to both (or even either) of the case studies. Finally, Table 1 also provides
pointers to relevant references in relation to the challenges discussed.
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Phase Description AI-Enabled Decision Support Systems in the Wild

M
ea
su
re
m
en
t Initial stage of an AI system’s inter-

pretation of a real-world phenom-
enon, in which the AI system cap-
tures digital measures. Results in a
computational representation of the
phenomenon.

Similarities. Both cases involve AI-systems designed to align with the
existing workflow of the clinicians.
Differences. Clinical observations were carried out on different tempo-
ral scales.
Suggestion. Enable users to evaluate the validity and completeness of
data and datasets that are input to the AI algorithm.

A
lg
or
ith

m Transformation of digital represen-
tation into a classification as based
on predetermined assessment cri-
teria, generally based on historical
data. Results in a computational out-
come.

Similarities. Both cases are characterised by uncertainties in assessing
and diagnosing.
Differences. Homogeneous and locally sourced training data as com-
pared to heterogeneous and internationally sourced training data.
Suggestion. Facilitate algorithm inspection by users through access to
pertinent information about training data, validation, and performance.

Pr
es
en
ta
tio

n The AI system provides a presenta-
tion of the computational outcome,
typically intended for the system’s
end-user to interpret.

Similarities. Both cases augmented the diagnosis by the clinicians;
neither case employed automatic AI diagnosis.
Differences. Acute and immediate diagnosis versus a more deliberate
and complex diagnosis.
Suggestion. Ensure that the presentation of the output is timely, clini-
cally pertinent, and easily interpreted, including any measures of uncer-
tainty in the outcome.

Table 2. Overview of the MAP model and the questions raised about the use of AI systems in the wild.

5.1 AI-Enabled Decision Support Systems: Overcoming Challenges in the Wild

Based on existing literature as well as our own experience, we identified and illustrated 13 challenges across the three
stages of measurement, algorithm, and presentation (Sections 3.1–3.3). Next, we presented the two cases on colonoscopy
and dementia as concrete and illustrative examples of ‘in the wild’ studies of AI-enabled decision support systems. These
cases involved user interaction studies with clinicians from distinct health domains. Next, we discuss experiences and
considerations for the two cases by highlighting similarities and differences between them. To support researchers and
engineers in overcoming these identified challenges in their own research scenarios, we provide high-level takeaways
for each stage of the MAP model.

5.1.1 Measurement. The first stage of our MAP model deals with observing real-world phenomena and converting
analogue information into digital data. Our cases showed similarities in the way work was conducted with and without
AI support, but they also differed significantly on the timescale of measurements. The cases shared similarities in
how existing workflows were supported and maintained. Both cases utilised AI decision support to augment current
practices and measures rather than drastically transforming practices to align with a new support tool. Furthermore,
in both cases, the clinician is still in control of the measurements provided to the AI system: either by directing the
endoscope to a specific target area (colonoscopy) or by manually entering data into the system (dementia).

On the other hand, our two case studies employed differentways of observing real-world phenomena and consequently
differed in how analogue information should be converted into digital data. They involved different diagnosis procedures,
as reflected in the measures used to inform the AI decisions and the integration into the clinical workflow. For
colonoscopy, the procedure can be characterised by short, focused interactions with the AI-enabled decision support to
inspect patients’ colons. Decision-making has to happen immediately and on the spot, with limited opportunity to
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revisit prior decisions. In the dementia case, the procedure is more long-term and involves multiple indicators. Thus,
for the dementia case, big data and high numbers of variables seem essential for consolidating a diagnosis.

5.1.2 Overcoming Measurement Challenges.

Identifying valid measures to represent real-world phenomena. Appropriate representations can be identified
only through a thorough understanding of the application context. This requires engaging deeply with domain experts
to establish successful Human-AI interaction. This engagement does, however, introduce some considerations to be
made by the researchers or designers. Informants may have various concerns towards the introduction of AI-enabled
systems, such as job automation [111], fear of loss of manual skills [103], or legal/responsibility implications [76].
While the behaviour of AI systems might be challenging to envision for stakeholders and designers alike [28, 117],
the initial stage of identifying valid measures to represent real-world phenomena is similar to the discovery phase
in a user-centred design process. It can, therefore, best be approached through exploratory research methods (e.g.,
stakeholder interviews, diary studies).
Integrating a wider set of data sources. Researchers and designers may consider how AI systems’ measurements
can be combined or enriched by qualitative data collected by a domain expert. For clinicians this can, for example,
include observations of a patient’s current mood or quality of life. Combining purely quantitative outcomes with an
expert’s contextualisation of these outcomes not only allows for personalisation of the AI outcomes to a given context,
but also provides specialists with ownership over the data, potentially fostering adoption. The clinicians involved in our
studies often mentioned that the course of a condition is very different for each patient and it is, therefore, inappropriate
to reason only around numbers [7].
Assessing validity and completeness of the data. Researchers should consider the validity and completeness of
integrated data for the domain. This has been stressed by previous studies [67, 101] and, unsurprisingly, incomplete
data constituted a concern for our involved clinicians. Of particular importance within critical domains of Human-AI
interaction is to focus not merely on ‘regular operations’, but pay particular attention to exceptions, edge-cases, and
alternative ways of working. Such deviations from the norm are most likely to introduce challenges in AI-enabled
support, as they can result in unexpected or undesired outputs. Obtaining a complete (or as complete as possible)
overview of work protocols and relevant input data requires a thorough, human-centred understanding of end-users’
challenges.
Communicating proxy variables to end users. End user knowledge of what a system is capable of and, equally
important, incapable of is crucial to successful Human-AI collaboration [5]. Ensuring that users are aware of and
understand the variables used in the operation of AI systems is essential in creating correct mental models. The
importance of mental models has been long highlighted in HCI [80]. While existing HCI knowledge on supporting
users in creating mental models is therefore of value, Eiband et al. warn that AI systems raise new questions due to
their increased complexity; “if mental models are erroneous, or do not adequately reflect the complexity of a system, users

may experience difficulty in predicting and explaining the system behavior” [29]. While mental models typically develop
over time [80], safety-critical AI-enabled systems should enable users to quickly grasp which measures are used in its
computation.

5.1.3 Algorithm. The second stage of MAP deals with the algorithm and usually takes historical data to interpret and
predict based on new data. Our cases were both characterised by uncertainties in the assessment and diagnosis, while
they differed in involving either heterogeneous or homogeneous variables and measures. Unsurprisingly, both cases
had uncertainties in the diagnosis and assessment. Ideally, introducing an AI-enabled CDSS would remove or at least
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reduce the uncertainties clinicians face when diagnosing patients, for example, during a colonoscopy procedure or
when assessing a patient’s dementia state. While uncertainties in interacting with AI systems are not new [11], both
our cases displayed uncertainties as a result of whether the included dataset was, in fact, representative or complete.
Such concerns can undermine clinicians’ trust in the system or result in incorrect diagnoses.

At the same time, the cases were distinctly different in the types of training data used. In the colonoscopy case,
training data was homogeneous and was collected (recorded from patient footage), labelled, and entered into the system
at one institution. The dementia data was much more heterogeneous, with different data elements being brought
together through international collaboration.

Researchers should consider diverse diagnostic approaches using different measures for AI-enabled decision support
systems. When designing and employing AI technology in decision support situations, researchers and practitioners
should be aware of different diagnosis methods and how these differences affect transforming real-world information
into digital data.

5.1.4 Overcoming Algorithm Challenges.

Ensuring representative training data. Documenting the source of training data is an essential step toward iden-
tifying undesired biases. Accurate documentation furthermore provides ways to interrogate the characteristics of
the dataset(s). One example of achieving this is ‘The Label’ proposed by Holland et al. [45], a diagnostic framework
to explore the various ingredients of a training dataset before its use in AI model development. Another example
is the ‘Datasheets for Datasets’ project by Gebru et al. [36], which proposes that each dataset is accompanied by
documentation, including inter alia its motivation, data collection process, and recommended use. Addressing the same
concern, Mitchell et al. developed the Model Cards, short reports about a trained model’s characteristics, disclosing
intended use and performance evaluation [74]. In addition to ensuring accurate and complete documentation of the
dataset used, assessing the validity of the dataset to the target context and population is essential for reliability and
end-user trust.
Providing inspectable and adaptable algorithms. AI-enabled decision support systems should be sufficiently
flexible to allow end-users to steer recommendations to align with their current task. This can be achieved by, for
example, enabling the user to specify the elements most relevant to their current task and updating the AI’s assessment
accordingly (see e.g. [16]). Allowing users to update recommendations by adding or removing specific input variables
(e.g., family health history) can enhance an algorithm’s inspectability.
Ensuring computation is relevant to the task at hand.More broadly, the lack of a user-centred approach can result
in digital systems that fail to meet end-user needs [33]. These systems often fail to be adopted, as they do not provide
sufficient value to the intended target group or are too cumbersome to be used in practice. A thorough understanding
of (clinical) end-user needs prior to algorithm development will help to overcome these challenges and ensure that the
AI-based support offered is relevant to the user’s task.
Ensuring replicability and generalisability. While it is impossible to perfectly predict the behaviour of AI-enabled
decision support systems across future cases, which are by definition partially unknown, it is paramount to assess
the system’s replicability. One approach is to verify the AI’s assessment with (clinical) experts, using prior clinical
assessments of patients as a ground truth against which to compare. A well-known and highly recommended approach
is the use of ‘training’, ‘validation’, and ‘test’ data sets. While developing the AI system, it is vital that not all of the data
is used for training, as it raises the risk of overfitting on a specific dataset without being able to validate its performance
on ‘new’ observations. As such, the widespread recommendation is to use a training set for training, a validation set to
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tune the AI’s parameters, and a test set to evaluate an algorithm on data that it has not been trained on to reduce the
potential for biases [89].

5.1.5 Presentation. The last stage of MAP considers the presentation of algorithmic outcomes and enables the clinician
to infer the real-world meaning of the health situation or patient. We found that our cases shared similarities in
augmentation, while they differed in diagnosis characteristics. Both cases involved decision support for clinicians by
augmenting existing work practices.

At the same time, the cases differed in how the AI systemwas used in the real world, relating to the temporal dimension
of diagnosis within colonoscopy and dementia. There is little time for debate and reflection within colonoscopy, as
the diagnosis is carried out directly and repeatedly throughout the procedure. The dementia case, on the other hand,
provided an example of a medical case in which there is more room for reflection and involvement of other clinical
specialities. Hence, the diagnosis usually takes place over an extended period.

5.1.6 Overcoming Presentation Challenges.

Ensuring the interpretability of the results. A key criterion for any successful AI-enabled decision support system
is that it allows the end-user to put the algorithm’s outcome to good use. Here, the presentation does not need to be an
exact replication of the clinical reality or the AI’s inner calculations. Instead, designers should provide cues (e.g., textual
or visual descriptors) that enable the end-user to convert the results into actionable next steps. Here, cues often provide
a summarisation or subset of the algorithm’s results. Furthermore, interpretability often goes beyond individual roles
and specific moments in time, but instead should support repeated reflection and group reasoning across disciplinary
boundaries. This embraces the collaborative and iterative nature of clinical decision-making [72].
Adjusting to task context. Integrating with existing real-world practices is vital, stressing the need for a human-
centred understanding of the context in which the system is deployed. We found that close involvement of the intended
end-users, such as through co-design or participatory design processes, is key for understanding the task context. While
this sometimes leads to subtle changes in the presentation of the AI recommendations, at other times we found that
design decisions that go against established design norms are required to integrate the AI system into the context
satisfactorily. For example, to overcome the fact that AI systems can miss vital information, it may be necessary to
display all task-related information to the user rather than displaying only what is marked as relevant by the AI system.
Supporting collaboration between team members. Existing research on Human-AI collaboration largely ignores
the fact that professionals often operate in a team, instead framing end-users as soloists with full autonomy and direction
over a given task. In collaborative work environments, however, tasks and task responsibilities can change frequently
and unexpectedly between individuals. AI support systems should, therefore, support multi-user interaction with the
AI system, allowing multiple users to (simultaneously) provide input and request support during cooperative tasks
(e.g., surgery). Further, to support the coordination of tasks between team members [68], AI-enabled decision support
systems should maintain an updated presentation of the relevant interdependencies between sub-tasks. This can, for
example, include a live system status, last decisions made by either human or AI system, or the currently relevant AI
recommendations.
Ensuring timeliness of presentation. In designing and studying AI-enabled CDSS, there is a clear need to align the
presentation of AI recommendations according to the clinical pertinence. This requires careful consideration of the
timeliness of the information presented and an understanding of the information desired at the moment by the clinical
staff. We therefore urge designers to thoroughly map the different possible interactions. Here, established techniques
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from service design – in which multiple actors engage with information across numerous points in time – could provide
a practical guide. For example, ‘service blueprints’ is a widely used technique to map and visualise user journeys [95].
Minimising confirmation bias and automation complacency. Human biases, such as confirmation bias, can be
remedied by implementing bias mitigation strategies in designing AI support systems. Strategies such as ‘multiple
explanations’, in which people consider plausible alternative outcomes for an event, have been shown to debias
participant judgements [44]. While the design and integration of these bias mitigation strategies for AI-enabled systems
is an open research question, with the suitability of specific mitigation strategies dependent on task context, they
provide a possible way forward for designers and researchers concerned with confirmation bias. In addressing concerns
related to automation complacency, prior work highlights the value of enhanced quality and safety control measures
for different clinical domains [123].

5.2 Building and Maintaining Appropriate User Trust

The successful adoption of AI technology in the clinical domain is dependent on end-user trust. A recent meta-analysis
on trust in AI found that trust can be affected by a wide range of factors, related to the user (e.g., personality traits,
expertise), the AI (e.g., performance, behaviour), or the context (e.g., risk, communication) [56]. In the colonoscopy case,
this wide range of trust-affecting factors was evident. Different roles (e.g., consultant, nurse endoscopist) highlighted
various factors which affect their trust towards the AI, and AI failures were assessed differently in different clinical
contexts. Alexandra et al. found that trust is not only affected by AI performance but also by factors such as appearance
and usability [56]. Barriers to adopting AI systems are therefore highly diverse, including ethical, legal, user experience,
and medical aspects. By carefully considering the design and integration of AI systems into clinical workflows, HCI can
help to overcome some of these barriers.

Researchers and practitioners have long highlighted the limited explainability, interpretability, and ambiguous
accountability of decision-making as significant concerns relating to the use of AI in medicine [3]. Such concerns have
been raised from the perspectives of professional healthcare staff [99, 107], patients [106, 107] and users of assistive
technology [93]. These rising concerns have led to the creation of numerous principles and guidelines for designing AI
systems. However, such high-level principles alone cannot guarantee the development of AI that aligns with medicine’s
professional, ethical, and regulatory standards. Mittelstadt proposes various pathways towards the development of
ethical AI in medicine, including the “pursuing of ethics as a process, not technological solutionism” [75]. Such a viewpoint
requires a thorough understanding of the actual deployment and use of technology in the work environment, an area in
which HCI and related disciplines have built extensive experience [33]. This holds especially true in environments in
which agents are expected to cooperate with multiple individuals, a currently underexplored [92] but relevant concern
for Human-AI interaction in clinical contexts. For example, in dementia care, clinicians place a high level of trust in
colleagues from different disciplines during medical assessment and intervention. Consequently, even if AI systems
can explain why a specific recommendation is made, these explanations may not be satisfactory to all members of an
interdisciplinary team if they assume high levels of particular domain knowledge. Aligning with Mittelstadt’s argument
of moving beyond high-level principles [75], we argue that technical fixes alone cannot remove all AI-related concerns.
Only by aligning AI systems with the challenges and needs of users can we develop AI systems that function in the real
world.

By applying the MAP model during the design of AI-enabled systems, researchers, designers, and developers can
contribute to the goal of trust-building in three distinct ways.
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First, by making explicit to both system designers and end-users which parameters are used for interpreting a
real-world phenomenon, we ensure transparency in how the AI’s decision-making comes about. This contributes to
the user’s understanding of the inner workings of the system (i.e., mental model as intended by Smith & Koppel [96]:
“the way clinicians internally represent and then reason about actions in their clinical world”), which in turn can enable
users to build an understanding of expected and actual AI behaviour during a given task. A lack of transparency in
decision-making has been shown to negatively impact user acceptance [20] and satisfaction [59]. To address this, Eiband
et al. argue for a participatory process to guide the development of transparent interfaces [29]. Here, the MAP model
can help to outline the various parameters and processes leading to the decision outcome. Similarly, the MAP model
can assist researchers by informing the use of existing methods for studying trust, such as elicitation cards [93] and
focus groups [107]. As indicated by prior work [56], the factors affecting trust are diverse and context-dependent. The
MAP model can therefore assist in delimiting the relevant factors to the case being studied.

Second, building on existing medical practices when constructing algorithms can alleviate concerns surrounding the
use of automated classification algorithms. Here, the inspectability of the algorithm serves to confirm alignment with
proven medical practice and the representativeness of the training dataset.

Third, end-users will only accept new technology if it integrates well with existing work practices. For instance,
being presented with an overabundance of false positives results not only in annoyance due to the additional work
but ultimately leads to distrust in the system’s capabilities [103]. Similarly, adding distractions or delays to the user
achieving their goal due to poor contextual fit will result in the abandonment of the AI-enabled decision support system.

5.3 Limitations & Future Work

We recognise several limitations in our work. First, the MAP model presented here covers many everyday situations in
which AI systems are deployed in healthcare, and supports reasoning about users’ interactions with them. Our case
studies demonstrate distinct usage scenarios of AI, one during medical procedures and one in clinical case discussions
and investigations. Still, particular kinds of innovative systems may not so readily fit the presented model. While
we have not identified such cases, this does not mean they do not exist. Further, we highlight that we have focused
exclusively on the usage of AI systems in clinical practice. The role of AI-enabled systems in the education or training
of clinical staff is an essential area for future work.

Second, our model focuses on human-in-the-loop systems, particularly within CDSS, rather than AI systems that
operate autonomously. Autonomous systems in the medical domain, sometimes called closed-loop systems, have been
contentious due to the potential negative impact of autonomous AI systems on patient safety. Regulatory organisations,
such as the FDA (U.S. Food and Drug Administration), have traditionally not approved systems that exclude the
human operator [22]. While increasingly intelligent AI systems might one day challenge this paradigm, we believe that
human-in-the-loop systems will continue to play a dominant role in medical decision-making due to the high stakes,
need for accountability, and ability to communicate and weigh decisions with patients and clinical team members.
Supporting end-user interaction (whether patient, clinician, or other stakeholders) with fully autonomous systems is
likely to require different interaction paradigms, as can be seen, for example, in the discussion on autonomous driving.

Finally, in this article, we consider the interaction with AI systems from a clinician’s point of view.With the increasing
use of AI in medical practice, patients will also be confronted with AI systems more frequently as part of their medical
interactions. As such, HCI researchers should carefully consider supporting patients and their caregivers in interacting
with AI-enabled systems. These requirements are likely to differ due to their typically limited domain knowledge
compared to medical professionals, a desire and need to balance medical decisions with other aspects of life, widely
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varying technical skills and proficiency, and other factors. We, therefore, consider the design of solutions that support
patients in interacting with AI systems as a critical area for future work in HCI to support and maintain the vital
practice of shared patient-clinician decision-making [30].

6 CONCLUSION

The challenges of medical practice, ranging from ‘first, do no harm’ (‘primum non nocere’ in the Hippocratic Oath)
to patients’ right to privacy and access to appropriate care, demands careful consideration of the introduction of
AI-enabled systems in healthcare. Based on the rich literature that has emerged in this space, combined with our prior
experiences designing and evaluating AI-enabled systems for endoscopy and dementia, we have identified a three-stage
procedure through which AI systems interpret medical reality. We formalise this procedure in the MAP model, in
which we distinguish three stages through which medical observations are interpreted and handled by AI systems. For
each stage, Measurement, Algorithm, Presentation, we have inductively identified challenges that apply to the design of
Human-Centred AI systems, focusing on CDSS. If such systems are to be accepted and effective in clinical practice, these
challenges need to be addressed. While the list of challenges may not yet be complete, it provides an evidence-based
checklist to guide researchers and practitioners in the design and evaluation of AI-enabled systems in healthcare.
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