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Abstract 

Background and objectives: Functional outcomes after stroke are strongly related to focal 

injury measures. However, the role of global brain health is less clear. Here, we examined the 

impact of brain age, a measure of neurobiological aging derived from whole brain structural 

neuroimaging, on post-stroke outcomes, with a focus on sensorimotor performance. We 

hypothesized that more lesion damage would result in older brain age, which would in turn be 

associated with poorer outcomes. Related, we expected that brain age would mediate the 

relationship between lesion damage and outcomes. Finally, we hypothesized that structural 

brain resilience, which we define in the context of stroke as younger brain age given matched 

lesion damage, would differentiate people with good versus poor outcomes. 

Methods: We conducted a cross-sectional observational study using a multi-site dataset of 

3D brain structural MRIs and clinical measures from ENIGMA Stroke Recovery. Brain age 

was calculated from 77 neuroanatomical features using a ridge regression model trained and 

validated on 4,314 healthy controls. We performed a three-step mediation analysis with 

robust mixed-effects linear regression models to examine relationships between brain age, 

lesion damage, and stroke outcomes. We used propensity score matching and logistic 

regression to examine whether brain resilience predicts good versus poor outcomes in 

patients with matched lesion damage.  

Results: We examined 963 patients across 38 cohorts. Greater lesion damage was associated 

with older brain age (β=0.21; 95% CI 0.04,0.38, P=0.015), which in turn was associated with 

poorer outcomes, both in the sensorimotor domain (β=-0.28; 95% CI: -0.41,-0.15, P<0.001) 

and across multiple domains of function (β=-0.14; 95% CI: -0.22,-0.06, P<0.001). Brain age 

mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI: 

3%,58%, P=0.01). Greater brain resilience explained why people have better outcomes, given 

matched lesion damage (OR=1.04, 95% CI: 1.01,1.08, P=0.004).  

Conclusions: We provide evidence that younger brain age is associated with superior post-

stroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based 

assessments of brain age and brain resilience may improve the prediction of post-stroke 

outcomes compared to focal injury measures alone, opening new possibilities for potential 

therapeutic targets. 

 



 

 

Introduction 

A critical topic in stroke research is understanding why some patients demonstrate better 

outcomes than others, despite similar amounts of lesion damage. To address this question, 

research has traditionally focused on two spatial levels of brain injury: the focal level (i.e., the 

lesion and how it injures individual brain structures, such as the corticospinal tract
1-4

) and the 

network level (i.e., how brain structures that are functionally or structurally connected to the 

lesioned area but distant from the injury are nonetheless affected, e.g., via diaschisis
5-7

). 

However, a third level has also recently begun to garner attention in stroke research: global 

brain health, which represents the cellular, vascular, and structural integrity of the entire 

brain. The integrity of residual brain tissue may be critical for neural plasticity following 

stroke.
8,9

 Acute stroke studies show that early measures of poor brain health, such as atrophy, 

markers of white matter disease, and prior infarcts throughout the brain, are associated with 

poorer outcomes on the modified Rankin scale and cognition at 90 days,
10

 while better 

structural integrity is associated with better modified Rankin scores.
11

 However, little 

attention has been given to the role of global brain health in chronic stroke or in relation to 

domain-specific rehabilitation outcomes,
12

 such as sensorimotor impairment.  

Here, we specifically focused on a measure of global brain health known as brain age, a 

neurobiological construct derived from whole brain structural neuroimaging.
13,14

 To calculate 

brain age, a machine learning algorithm is trained to associate chronological age with 

neuroimaging-based indices of interest (e.g., patterns of whole brain structural integrity from 

regional thickness, surface area, and volumes). The trained model is then used to predict 

brain age in new individuals. A higher brain predicted age difference (brain-PAD), calculated 

as the difference between a person’s predicted brain age minus their chronological age, 

suggests that the brain appears to be older than the person’s chronological age. An older-

appearing brain has been associated with different disease states, including Alzheimer’s 

disease,
15

 major depression,
16

 and traumatic brain injury,
17

 as well as with increased risk of 

mortality
14

 and more severe disease progression
18,19

 However, brain age has not been widely 

explored in stroke. Two studies have demonstrated that brain-PAD is higher after stroke 

compared to healthy controls
20

 and reliable across time.
21

 However, no associations have 

been reported between brain age and either infarct volume or post-stroke sensorimotor 

outcomes.  



 

 

Beyond brain age, we also examine the concept of structural brain resilience, which we 

define in the context of stroke as the maintenance of structural whole brain integrity, 

measured as younger brain age, despite matched lesion damage. This concept draws upon 

research on cognitive resilience in “super-agers,” or older adults who demonstrate 

exceptional cognitive performance despite their advanced age.
22

 These individuals are 

thought to demonstrate biological resilience to traditional aging pathways (e.g., identified 

through neuroimaging, genetic, or histologic profiles) compared to their peers.
22,23

 However, 

while cognitive resilience refers to maintained behavioral performance despite common age-

related neurological changes, here we aimed to study maintained brain structural integrity 

despite matched focal injury. We suggest that greater brain resilience to focal lesion damage 

should result in younger-appearing brains, while less brain resilience should make the brain 

more vulnerable to widespread degeneration after the same amount of injury and manifest as 

older-appearing brains, with subsequent changes in behavior.  

Using subsets of the data, we tested the following four hypotheses: First, we hypothesized 

that more lesion damage and longer time since stroke should be related to higher brain-PAD, 

which may reflect loss of structural integrity due to post-stroke secondary atrophy. Second, 

we hypothesized that higher brain-PAD would be associated with worse sensorimotor 

outcomes, as well as worse global outcomes across multiple functional domains, due to less 

residual brain tissue available to support neuroplastic changes required for recovery. We 

anticipated that this relationship would be strongest in the ipsilesional hemisphere, which 

should undergo more changes with functional relevance compared to the contralesional 

hemisphere, and in chronic stroke, allowing for time after stroke for secondary atrophy to 

occur.
24-26

 Third, we hypothesized that brain-PAD would mediate the impact of known focal 

injury measures, such as corticospinal tract lesion load (CST-LL),
1-3

 on sensorimotor 

outcomes, and that this relationship would again be strongest in the ipsilesional hemisphere in 

chronic stroke. Finally, we hypothesized that greater brain resilience despite stroke-related 

injury would distinguish people with better versus worse sensorimotor outcomes. That is, 

given the same amount of focal brain damage, we expected people with less global brain 

damage, as indexed by lower brain-PAD, to have better outcomes than people with more 

global brain damage.  

 



 

 

Methods 

Study design and patients 

Cross-sectional, multi-site data were pooled from the ENIGMA Stroke Recovery Working 

Group, and frozen for this analysis on January 24, 2022. A full description of the data and 

procedures used by the ENIGMA Stroke Recovery Working Group has been reported 

elsewhere (see also eMethods in the Supplement).
24,27

 Briefly, stroke neuroimaging and 

behavioral data from retrospective studies are contained in a repository, which is queried to 

extract data meeting study-specific eligibility criteria. For the current study, we extracted data 

that had: (1) FreeSurfer outputs from 3D T1-weighted structural brain MRI volumes (see 

MRI Data Analysis), (2) a sensorimotor behavioral outcome measure (see Behavioral Data), 

(3) covariates of age and sex, and (4) a primary stroke reported in either cerebral hemisphere. 

Some analyses used subsets of this data with specific characteristics (e.g., early stroke (≤6 

weeks post-stroke) versus chronic stroke (≥180 days post-stroke), or manually segmented 

lesion masks to extract focal injury metrics (see Lesion Analysis)). See eMethods and eFigure 

1 for more information about subanalyses.  

Standard Protocol Approvals, Registrations, and Patient Consents 

All data were collected in accordance with the Declaration of Helsinki and in compliance 

with local ethics boards at each respective institute. Written informed consent was obtained 

from all participants in the study. Approval was received from the University of Southern 

California Health Science Campus Institutional Review Board (IRB# 00002881) to conduct 

the current study.  

MRI Data Analysis 

Brain Age Analysis 

As previously detailed,
24,27

 MRI data from each cohort were visually inspected upon receipt 

for quality control and again after each processing step. The brain imaging software 

FreeSurfer (version 5.3) was used to automatically segment the T1-weighted MRIs. 

Subsequently 153 features of interest were extracted: 68 measures of cortical thickness, 68 

measures of cortical surface area, 14 measures of subcortical volume, 2 lateral ventricle 

volumes, and the total intracranial volume (ICV). Left and right hemisphere features were 

then averaged, resulting in a total of 77 features of interest.  



 

 

We calculated predicted brain age using a model published by Han et al., which is a ridge 

regression model trained on a cohort of 4,314 healthy controls between 18-75 years old.
16

 

Although there are many excellent methods for defining brain age, we specifically selected 

this model as it was developed on multi-site retrospective data collected from 19 cohorts from 

different countries, similar to our multi-site dataset. In addition, this model is publicly 

available, allowing for greater scientific reproducibility (https://www.photon-

ai.com/enigma_brainage). The model requires tabular data from FreeSurfer outputs (i.e., the 

77 features of interest described above), rather than raw image data. Following Han et al.,
16

 

we estimated brain age using separate models for males and females. We then calculated 

brain-PAD by subtracting chronological age from predicted brain age: 

                                               

Brain age was derived from the mean of both hemispheres for all analyses, except for 

ipsilesional versus contralesional brain age analyses, which were derived from only 

ipsilesional or only contralesional brain measures. As lesioned tissue could have impacted 

brain age estimation, we also include lesion volume and corticospinal tract lesion load in the 

models to account for the possible confounding effect of lesion damage on brain age (see 

eMethods in the Supplement for more information on quality control and model performance 

metrics). 

 

Lesion Analyses 

In a subset of the data for which we received raw T1-weighted MRIs and could identify 

observable lesions, lesion masks were manually segmented by trained research team 

members based on a previously published lesion segmentation protocol.
28,29

 Lesions were 

preprocessed with intensity non-uniformity correction, intensity standardization, and 

registration to the MNI-152 template, as detailed previously.
29

 Lesion volume (measured in 

voxels) and percent of CST-LL, or overlap, were calculated using the open-source Pipeline 

for Analyzing Lesions after Stroke toolbox.
30

 We used a publicly available CST template that 

includes origins from both primary and higher order sensorimotor regions,
31

 which was found 

to be more strongly associated with post-stroke sensorimotor impairment than a CST 

template derived from primary motor cortex alone.
1
  

 

 

https://www.photon-ai.com/enigma_brainage
https://www.photon-ai.com/enigma_brainage


 

 

Behavioral Data Analysis 

We harmonized different behavioral measures collected across cohorts by defining a primary 

sensorimotor outcome score, which was the percentage of the maximum possible score each 

individual achieved, as done previously
24

 (eMethods in the Supplement). This resulted in a 

score where 100 indicated no impairment and 0 indicated severe impairment. We also 

examined a single measure of sensorimotor impairment (FMA-UE), as well a single measure 

of global stroke severity across several domains (e.g., sensorimotor, language, and cognitive 

deficits; NIHSS; eMethods),
32

 in subsets of the data with these specific measures. Given the 

associations of brain-PAD with many different clinical disease states, we expected brain-

PAD to be related to all functional outcome measures.  

Statistical Analysis 

We used a one-way ANOVA to examine differences between the standard brain age 

prediction calculated from the mean of both hemispheres, from the ipsilesional hemisphere 

only, and from the contralesional hemisphere only. We used robust linear mixed-effects 

regression models to examine associations between brain-PAD, sensorimotor outcomes, and 

lesion damage. Full methodological details can be found in the eMethods in the Supplement. 

We performed a mediation analysis using a three-step segmentation approach.
33,34

 In this 

analysis, we examined: (1) the effect of the independent variable (lesion damage) on the 

mediator (brain-PAD), (2) the effect of the mediator (brain-PAD) on sensorimotor outcomes, 

and (3) the mediation effects of brain-PAD on the relationship between lesion damage and 

sensorimotor outcome.  

In the first step, we tested whether CST-LL influenced brain-PAD. We included covariates of 

lesion volume, age, sex, ICV, and days post stroke as fixed effects and cohort as a random 

effect.  

In the second step, we examined whether brain-PAD impacted sensorimotor impairment, 

with covariates of age, sex, and ICV and a random effect of cohort. We also examined if this 

relationship was maintained when looking specifically at sensorimotor impairment in a subset 

of participants with the FMA-UE and in a subset with a multi-domain measure (NIHSS; 

eMethods in the Supplement). We further hypothesized that if this brain-behavior relationship 

is reflective of post-stroke atrophy, it should be strongest in the ipsilesional hemisphere in 

chronic stroke. We therefore examined ipsilesional versus contralesional brain-PAD 

separately, and at two different times post-stroke as in our previous work
24

 (early stroke (≤6 



 

 

weeks post-stroke, thought to represent the premorbid brain prior to secondary 

degeneration)
20

 and chronic stroke (≥180 days post-stroke)). 

In the last step, we performed a mediation analysis to examine whether brain-PAD mediates 

the impact of CST-LL on sensorimotor outcomes. We tested the significance of the indirect 

effect using bootstrapping procedures. Unstandardized indirect effects were computed for 

5,000 bootstrapped samples, and the 95% confidence interval was computed by determining 

the indirect effects at the 2.5
th

 and 97.5
th

 percentiles (eMethods in the Supplement). As part of 

the mediation analysis, we replicated the previously-shown relationship between CST-LL and 

sensorimotor outcomes.
1-3

 To further explore the relationship between brain-PAD and CST-

LL, we also performed a supplemental regression analysis to test whether there is an 

interaction between these two factors on sensorimotor outcomes (eMethods).  

Finally, we examined whether structural brain resilience explains why some people have 

better versus worse outcomes, despite the same amount of lesion damage. We operationally 

defined structural brain resilience as lower brain-PAD (younger brain age) despite equal 

amounts of lesion damage (both CST-LL and lesion volume), which we expected to be 

associated with better outcomes. We used logistic regression to test whether brain-PAD could 

distinguish those with better versus worse outcomes, after matching for extent of focal lesion 

damage between groups. As previously published guidelines for the FMA-UE established 

cut-offs for mild versus severe impairment at above 42 and below 27 points, respectively 

(corresponding to sensorimotor scores of 63.6% and 40.9%).
35

 As our dataset is comprised of 

the FMA-UE along with other sensorimotor measures, we adapted this guideline by dividing 

the data into the top and bottom thirds (roughly corresponding to the FMA-UE cut-offs) to 

represent good versus poor outcomes, respectively. We matched the groups on both lesion 

damage to the corticospinal tract (CST-LL) and extent of lesion damage (lesion volume), 

using 1:1 nearest neighbor propensity score matching without replacement and a stringent 

caliper of 0.05 standard deviations of the propensity score.
36

 We estimated propensity score 

using logistic regression of the outcome on the covariates of CST-LL and lesion volume. We 

then used logistic regression on the matched dataset to predict better versus worse outcomes 

as a binary variable, with brain-PAD as the primary predictor and covariates of age, sex, ICV, 

and cohort.  

All statistical analyses were run in R (version 3.6.3; R Core Team, 2020);
37

 see the eMethods 

in the Supplement for the full list of libraries. For all analyses, we present beta coefficients 



 

 

(β) for predictors, along with the sample size (n), t-value, standard error (SE), degrees of 

freedom (df), 95% confidence interval (CI), and p-value in tables. 

Data availability  

The brain age model
16

 can be freely accessed from: https://www.photon-

ai.com/enigma_brainage, and code for extracting FreeSurfer features of interest and 

formatting them for brain age analyses can be from: https://github.com/npnl/ENIGMA-

Wrapper-Scripts. The CST region of interest atlas
31

 can be freely accessed from: 

http://lrnlab.org/. Our T1w MRI data and accompanying lesion masks are publicly available 

here:
29

 http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html. Additional summary data and 

code from this study are available upon reasonable request from the corresponding author 

(see eMethods in the Supplement).  

 

Results  

As of January 24, 2022, the ENIGMA Stroke Recovery Working Group
27

 dataset contained 

data from 1,221 patients. Cross-sectional data from 963 individuals with stroke from 38 

cohorts across 10 countries met the current eligibility criteria and were included in this 

analysis (Table 1; eTable 1 in the Supplement). There were 607 males and 356 females, with 

a median age of 61 years (interquartile range (IQR):16 years). Stroke severity (i.e., primary 

sensorimotor score) ranged from 0-100 (median:78.46, IQR:49.78). Chronicity ranged from 

1-7,439 days (median:244 days, IQR:875 days; ). Data were collected early after stroke (≤ 6 

weeks) in 205 participants and in the chronic stage (≥ 180 days) in 558 participants. Lesion 

volume ranged from 0.013-294.80 mL (median:6.38 mL, IQR:3.47 mL). A probabilistic 

lesion overlap map can be found in eFigure 2.  

Older predicted brain age was positively associated with older chronological age and larger 

ventricle volumes and was negatively correlated with smaller regional cortical thickness, 

cortical surface area, and subcortical volume measures (Figure 1; eResults in the 

Supplement). Ipsilesional brain-PAD was significantly higher than brain-PAD calculated 

from the mean of both hemispheres, while contralesional brain-PAD was significantly lower 

(F(2,2802) = 53.69, P<0.001). 

https://www.photon-ai.com/enigma_brainage
https://www.photon-ai.com/enigma_brainage
https://github.com/npnl/ENIGMA-Wrapper-Scripts
https://github.com/npnl/ENIGMA-Wrapper-Scripts
http://lrnlab.org/
http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html


 

 

1. Higher brain-PAD occurs with more lesion damage and longer time after 

stroke 

In the first step of our three-step mediation analysis, we examined the effect of the 

independent variable (lesion damage) on the mediator (brain-PAD). We tested our first 

hypothesis that brain-PAD is larger when there is more lesion damage and longer time since 

stroke. Using a subset of data with lesion metrics and days since stroke (n=639), we found 

that both CST-LL (β=0.21, P=0.015) and lesion volume (β=2.83, P<0.001) were positively 

associated with brain-PAD, such that more CST-LL and larger lesions resulted in higher 

brain-PAD (eTable 2 in the Supplement). Longer time post-stroke (e.g., more chronic stroke) 

was significantly associated with higher brain-PAD (β=1.14, P=0.026). Age was negatively 

correlated with brain-PAD (β=-0.53, P<0.001), such that younger adults showed higher 

brain-PAD. This was anticipated due to a known regression dilution effect,
38

 in which 

younger samples are predicted to be older and older samples are predicted to be younger due 

to a regression towards the mean; this is a key reason why chronological age is included as a 

covariate (see eMethods).  

2. Poorer sensorimotor outcomes are associated with higher brain-PAD 

In the second step of our mediation analysis, we examined whether the mediator (brain-PAD) 

influences the dependent variable (post-stroke outcomes), testing our second hypothesis that 

higher brain-PAD would be associated with worse outcomes. Across the entire cohort 

(n=963), higher brain-PAD was associated with worse sensorimotor outcomes (β=-0.28, 

P<0.001; Table 2). There was also an association with sex (β=3.40, P=0.028), with females 

demonstrating worse sensorimotor behavior than males. The brain age relationship was also 

maintained when examining a specific measure of sensorimotor impairment (FMA-UE; 

n=528; β=-0.30, P=0.004) and a multi-domain measure of stroke severity (NIHSS; n=238, 

β=-0.14, P<0.001; eTable 3 in the Supplement).  

We then tested our hypothesis that the impact of brain-PAD on sensorimotor outcomes is 

driven by post-stroke secondary atrophy, in which case, we expected to see the strongest 

associations in the ipsilesional hemisphere in chronic stroke. Indeed, larger ipsilesional brain-

PAD was negatively associated with worse sensorimotor outcome (β=-0.30, P<0.001; Table 

2). This relationship was maintained when adding total lesion volume and CST-LL into the 

model (β=-0.17, P=0.008), suggesting these effects are independent of direct lesion damage 

(eTable 4 in the Supplement). There was no detectable association with contralesional brain-



 

 

PAD (β=-0.05, P=0.436; eTable 5). We also found a significant relationship between worse 

sensorimotor behavior and larger brain-PAD in chronic stroke (n=558; β=-0.26, P=0.002; 

Table 2), but not in early stroke (n=205; β=-0.13, P=0.386; eTable 6). 

3. Brain-PAD mediates the impact of lesion damage on post-stroke 

outcomes  

In the third step of our mediation analysis, we tested our hypothesis that the relationship 

between the independent variable (CST-LL) on the dependent variable (post-stroke 

outcomes) is mediated by brain-PAD. We examined this in a subset of the sample with lesion 

measures (n=674; see eMethods, eResults, eDiscussion and eTables 7–12 in the Supplement), 

as well as in the ipsilesional hemisphere of patients with chronic stroke only (n=437), 

expecting strongest results in ipsilesional, chronic stroke in line with our results above. In the 

whole sample, there was a marginally significant effect of brain-PAD mediating the impact of 

CST-LL on sensorimotor outcomes (Figure 2), with indirect effects of -0.045 (P=0.068; 95% 

CI from -0.11 to 0.00). The proportion of the effect of CST-LL on sensorimotor outcome that 

goes through the mediator (brain-PAD) was 0.04 (P=0.068; 95% CI from -0.004 to 0.12). 

However, as expected, when only examining ipsilesional brain-PAD in chronic stroke (Figure 

2), the mediation effect of brain-PAD was significantly stronger, Brain-PAD mediated the 

impact of CST-LL on chronic sensorimotor outcomes (Figure 2), with indirect effects of -

0.11 (P=0.007; 95% CI from -0.24 to -0.02). The proportion of the effect of CST-LL on 

sensorimotor outcome that goes through the mediator (brain-PAD) was 0.15 (P=0.01; 95% 

CI from 0.03 to 0.58). In a supplementary analysis, we also show an interaction between 

CST-LL and brain-PAD, in which brain-PAD has the largest impacts on outcomes when 

there is little to no CST-LL (n=748; β=0.02, P=0.05; eTable 13). 

4. Structural brain resilience dissociates good versus poor outcomes in 

people with matched focal lesion damage 

For any given amount of lesion damage, we found that brain-PAD was highly variable (IQR: 

16.16 years; range: -28.48 to 36.08 years). We therefore tested our fourth hypothesis that 

greater structural brain resilience, measured as younger brain age despite matched lesion 

damage, explains why some people have good versus poor outcomes. Propensity score 

matching was applied to participants with good (n=249) versus poor (n=250) sensorimotor 

outcomes on both lesion volume and CST-LL, resulting in a final matched sample of 244 

participants (122 matched samples; 255 unmatched samples were discarded from subsequent 



 

 

analysis). The matching was successful, as evidenced by no difference in either CST-LL or 

lesion volumes between groups after matching (eTable 14 in the Supplement).  

Using logistic regression, we found that brain-PAD significantly dissociated people with 

good versus poor outcomes (brain-PAD: OR=1.04, 95% CI from 1.01 to 1.08, P=0.004; 

Table 3), such that people with poor outcomes had higher brain-PAD than people with good 

outcomes, despite matched CST-LL and lesion volume (brain-PAD: -3.07 ± 10.3 years versus 

2.52 ± 11.3 years in better versus worse groups, respectively; Figure 3), even after controlling 

for age, sex, ICV, and site. Similar results were found when examining only people with 

chronic stroke using ipsilesional brain-PAD (OR=1.05, 95% CI from 1.02 to 1.08, P=0.002; 

eTables 15–16 in the Supplement). 

 

Discussion  

In this study, we demonstrate that larger brain age gap is associated with greater stroke 

damage and longer time after stroke, as well as with worse post-stroke functional outcomes. 

We also show that brain age mediates the relationship between lesion damage and 

sensorimotor outcomes. This is important because CST integrity has repeatedly been shown 

to be a robust biomarker of post-stroke sensorimotor performance and recovery, and these 

findings suggest that brain age and brain resilience may modify the impact of focal lesion 

damage on sensorimotor outcomes, underscoring the key role of neuroimaging markers of 

biological aging in stroke research.  

 

Brain age gap is larger with greater stroke damage and longer time after 

stroke 

Stroke has a deleterious effect on the whole brain.
39-42

 Here, we show that after unilateral 

stroke, older brain age is correlated with smaller cortical and subcortical measurements and 

larger ventricles, suggesting that brain age captures measures of whole-brain atrophy in 

stroke. Brain age predicted from the ipsilesional hemisphere was older than brain age 

predicted from the contralesional hemisphere, suggesting stronger effects in ipsilesional 

tissue. Larger brain age gap is associated with larger lesion extent, more damage to 

sensorimotor structures (CST-LL), and longer time after stroke (i.e., more chronic stroke). 

Altogether, these findings suggest that focal damage may worsen whole brain structural 



 

 

integrity, with stronger effects over time, possibly representative of post-stroke secondary 

atrophy. However, it is unclear what the underlying effect of added brain aging is at different 

ages in patients with stroke (e.g., a 40-year-old versus a 70-year-old).  Future studies should 

examine the effects of stroke on brain age longitudinally to test the hypothesis that stroke 

accelerates ipsilesional brain aging, with implications for both outcomes and treatment.  

Older brain age is associated with worse post-stroke functional outcomes 

Our study also establishes significant behavioral associations between brain age and 

functional outcomes in people with stroke. We report associations between worse outcomes 

and older brain age, both for sensorimotor impairment specifically (FMA-UE) and for 

general stroke severity (NIHSS). These findings suggest that brain-PAD is a sensitive 

neuroimaging marker of brain health after stroke across multiple domains. Older brain age, 

possibly due to post-stroke atrophy, may reflect limited capacity for post-stroke brain repair 

and subsequent recovery. Structural loss reflected in older brain age may occur following 

stroke via multiple pathways, such as through vascular or glymphatic system dysfunction or 

widespread inflammation.
43,44

 Associations between brain age and sensorimotor impairment 

were strongest in the ipsilesional hemisphere in chronic stroke, suggesting that the 

relationship is impacted by post-stroke atrophy. Brain age may be a valuable non-invasive 

biomarker that represents an amalgamation of neurodegenerative processes, likely 

accumulated both before and after stroke. Further research with longitudinal data and diverse 

measures of function are needed to examine whether and how brain age influences post-

stroke recovery and, conversely, whether and how stroke accelerates brain aging.  

 

Brain age mediates the impact of CST-LL on sensorimotor outcomes 

In the third step of our mediation analysis, we show that, when examined together with a 

known focal injury predictor (CST-LL), brain age additionally predicts outcomes, with a 

causal relationship, such that brain age mediates 15% of the effects of CST-LL on outcomes. 

This mediation effect is strongest in the ipsilesional hemisphere in chronic stroke, again 

suggestive of post-stroke atrophy. Specifically, we found that larger CST-LL is associated 

with older brain age, and the resulting older brain age further worsens outcomes beyond the 

effects of CST-LL alone. Overall, these results suggest that focal damage, plus subsequent 

global damage, have an additive effect on sensorimotor outcomes.  



 

 

Brain resilience differentiates better versus worse outcomes, despite 

matched lesion damage 

Finally, we show that whole brain structural resilience to lesion damage differentiates people 

with good versus poor outcomes. Brain age itself was associated with lesion volume, such 

that larger lesions were associated with larger brain-PAD, but the lesion volume itself did not 

impact sensorimotor behavior. This suggests that what is important is how the rest of the 

brain reacts to the lesion (e.g., secondary damage, or conversely, subsequent plasticity) - 

more so than the amount of damage due to the infarct itself. In line with this, we found that 

brain age was highly variable across individuals with similar amounts of lesion damage (e.g., 

Figure 3). We therefore examined whether brain resilience to the lesion, which we defined as 

lower brain age despite similar amounts of lesion damage, would dissociate people with 

better versus worse sensorimotor outcomes. Using logistic regression, we found that people 

with younger brain age tend to be more resilient: their outcomes are better than expected. 

Contrarily, people with older brain age tend to be less resilient and thus more vulnerable: 

their outcomes are worse than expected for the same amount of injury. This supports our 

hypothesis that greater structural brain resilience - as indexed by smaller brain-PAD despite 

similar amounts of lesion damage - is a significant predictor of better sensorimotor outcomes. 

Altogether, these results suggest that it is not necessarily the amount of lesion damage at the 

time of stroke that solely determines sensorimotor outcomes, but also the susceptibility of the 

brain to widespread deterioration after the focal injury.  

Although concepts such as brain age and brain resilience are being actively explored in other 

neurodegenerative fields of study and in acute stroke,
11,22

 there has been limited extension of 

these concepts particularly to chronic stroke research and in relation to domain-specific 

rehabilitation outcomes
12

 (e.g., Fugl-Meyer Assessment). Further research should examine 

whether brain age can provide a reliable indicator of the brain’s readiness for repair by 

examining whether brain age can predict response to engaging in specific rehabilitation 

therapies.  

Limitations and future directions 

Future work would benefit from large-scale longitudinal studies to measure the trajectory of 

brain aging during the weeks following a stroke to ascertain whether stroke accelerates brain 

aging. This is critical, as recent work suggests that cross-sectional brain age may reflect either 

early life differences or volume loss due to isolated incidents, such as stroke.
45

 Furthermore, 



 

 

as noted previously,
24,25

 although our large, heterogeneous dataset provides statistical power 

and diverse data to test hypotheses, there are limited covariates that are present across the 

entire dataset. Additional factors known to influence brain age - such as genetics, 

neurodegenerative co-pathology such as microvascular damage, lifestyle factors, and co-

morbidities - should be examined in future studies. Additional harmonization of prospectively 

collected data across the acute and chronic stroke timeline, as recommended by the Stroke 

Recovery and Rehabilitation Roundtable,
46,47

 would also allow for larger samples to explore 

questions more broadly and with greater power. In addition, while we show that lesion 

volume is related to older brain age, it is possible that larger lesions could bias brain age 

estimation. However, previous papers using similar FreeSurfer-based methods have 

demonstrated reliable brain age estimates in stroke,
20,21

 and we employed several additional 

quality control steps to prevent skewed brain age estimations (see eMethods in the 

Supplement). Finally, as there is now active research examining treatments to prevent or slow 

brain aging (e.g., from aging and Alzheimer’s disease research),
48,49

 these interventions 

should be explored to assess whether they could improve functional outcomes after stroke. 
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Figure Legends 

Figure 1 Brain age associations in people with stroke. (A) Visualization of correlations 

between predicted brain age and region-of-interest measurements (top: cortical thickness, 

middle: cortical surface area, bottom: subcortical volumes). Warmer colors indicate stronger 

negative associations (e.g., larger volumes associated with younger predicted brain age), 

while cooler colors indicate stronger positive associations (e.g., larger ventricles associated 

with older predicted brain age). (B) Chronological age by predicted brain age across the 

entire sample. The identity line (dotted) and fixed effects model regression line (solid) are 

displayed with standard error in gray shading; different research cohorts are indicated by 

color.  

 

 

Figure 2 Brain-PAD mediates the effects of CST-LL on sensorimotor outcome. The 

effects of CST-LL on sensorimotor outcome, as mediated by brain-PAD, are depicted in the 

chronic stroke sample using ipsilesional brain-PAD. The mediated effect of CST-LL is 

shown in the bottom parenthesis. Significance values are denoted as follows: *P<0.05, 

**P<0.01, ***P<0.001. 

 

 



 

 

 

Figure 3 Brain resilience dissociates sensorimotor outcome. Visualization demonstrating 

that lower brain-PAD (shown on the y-axis) dissociates those with good (top third) versus 

poor (bottom third) sensorimotor outcomes (depicted by triangles and circles, respectively), 

when matched for lesion damage (n=244). The solid horizontal gray line is the point of 

inflection where the probability of having a better versus worse outcome is 0.5, with higher 

probability of better outcome depicted in warmer colors. The logarithm of scaled lesion 

volume (cc) is shown on the x-axis. Examples of matched pairs with similar lesion volumes, 

connected by the dotted vertical lines, are shown, with brain resilience shown in association 

with lower brain-PAD and brain vulnerability shown in association with higher brain-PAD. 

 

  



 

 

Tables 

Table 1 Summary of research cohort characteristics. Age and sensorimotor score are 

shown as the median for each cohort, with the interquartile range (IQR) and range 

(minimum-maximum) shown in parentheses. 

 

Abbreviations: F = females, M = males. 

  

Cohort ID Country n Age Sex (F/M) Median Sensorimotor Score 

1 USA 34 60 (16, 31-75) 10 / 24 65.2 (23.5, 0-88) 

2 USA 11 68 (13, 39-74) 5 / 6 53.0 (43.2, 20-73) 

3 USA 12 58 (16, 33-71) 5 / 7 26.5 (30.3, 8-61) 

4 Germany 17 44 (14, 30-68) 5 / 12 14.4 (16.7, 2-51) 

5 USA 25 63 (12, 44-75) 11 / 14 81.8 (40.9, 21-100) 

7 UK 38 56 (14, 18-75) 12 / 26 86.0 (31.6, 37-100) 

8 USA 8 62 (10, 39-75) 2 / 6 55.0 (35.0, 0-100) 

9 Norway 80 68 (17, 24-75) 26 / 54 100.0 (6.4, 57-100) 

10 China 24 59 (13, 42-74) 5 / 19 100.0 (1.5, 68-100) 

11 China 29 57 (11, 44-71) 10 / 19 100.0 (4.5, 9-100) 

12 New 

Zealand 

37 66 (18, 31-74) 18 / 19 66.7 (71.2, 3-97) 

13 New 

Zealand 

33 64 (19, 33-75) 12 / 21 21.2 (37.9, 3-97) 

15 USA 14 57 (11, 45-74) 6 / 8 72.0 (24.6, 38-83) 

17 USA 16 59 (4, 45-68) 5 / 11 54.5 (22.7, 23-74) 

18 USA 11 59 (7, 46-73) 5 / 6 65.2 (22.0, 53-89) 

19 Germany 13 62 (21, 33-74) 3 / 10 84.0 (8.0, 77-92) 

20 Germany 18 64 (12, 49-75) 7 / 11 89.0 (8.8, 71-100) 

21 Germany 8 62 (23, 40-75) 1 / 7 91.6 (13.1, 60-100) 

22 Germany 17 59 (30, 25-72) 4 / 13 62.5 (50.0, 0-81) 

23 USA 10 57 (10, 31-64) 6 / 4 38.6 (18.6, 27-79) 

24 USA 18 62 (11, 32-72) 10 / 8 95.0 (0.0, 60-95) 

25 Canada 22 60 (17, 37-75) 9 / 13 93.5 (39.8, 0-100) 

27 USA 27 56 (9, 37-68) 7 / 20 28.2 (18.0, 0-57) 

28 USA 26 62 (11, 23-75) 7 / 19 75.0 (24.6, 35-100) 

31 USA 31 57 (9, 21-74) 8 / 23 51.5 (35.6, 20-91) 

34 USA 14 58 (13, 32-65) 6 / 8 82.6 (21.2, 58-95) 

35 Brazil 14 63 (18, 31-75) 6 / 8 70.5 (44.7, 15-94) 

38 Italy 68 63 (20, 30-75) 27 / 41 92.5 (46.3, 0-100) 

40 Italy 31 62 (20, 27-75) 16 / 15 65.0 (42.5, 10-100) 

41 Australia 58 65 (10, 32-75) 23 / 35 100.0 (4.2, 83-100) 

42 Brazil 29 48 (15, 25-75) 15 / 14 62.0 (20.0, 21-80) 

46 USA 6 62 (6, 51-63) 1 / 5 43.9 (16.7, 27-91) 

47 Australia 39 64 (10, 43-75) 12 / 27 65.2 (34.8, 6-98) 

48 Canada 31 67 (14, 37-75) 12 / 19 75.8 (43.9, 0-100) 

49 USA 8 62 (15, 37-71) 5 / 3 95.2 (1.2, 90-100) 

52 USA 28 60 (14, 34-74) 11 / 17 43.2 (9.1, 21-52) 

53 UK 48 61 (17, 26-75) 19 / 29 90.5 (19.6, 38-100) 

54 USA 10 64 (10, 51-72) 4 / 6 40.2 (78.4, 3-100) 



 

 

Table 2 Relationship between post-stroke sensorimotor outcomes and brain-PAD. 

Summary statistics from robust mixed-effects linear regression to test associations between 

overall sensorimotor score and brain-PAD (left), brain-PAD derived only from the 

ipsilesional hemisphere (middle), and brain-PAD in chronic stroke only (right). Sex is coded 

as a factor (females=0, males=1). ICV stands for intracranial volume. The sample size (n), 

conditional R
2
, beta coefficient (beta), standard error (SE), 95% confidence interval (CI), and 

p-value for all fixed effect covariates are reported. Significant predictors are denoted in bold.  

  WHOLE COHORT 

N = 963, R2 = 0.596 

IPSILESIONAL BRAIN AGE 

N = 950, R2 = 0.589 

CHRONIC STROKE ONLY 

N = 558, R2 = 0.592 

Predictors beta SE CI p-value beta SE CI p-value beta SE CI p-value 

Brain-PAD -0.28 0.07 -0.41 – -0.15 <0.001 -0.30 0.05 -0.41 – -0.20 <0.001 -0.26 0.09 -0.43 – -0.10 0.002 

Age -0.05 0.06 -0.17 – 0.08 0.462 -0.07 0.06 -0.19 – 0.06 0.299 0.01 0.09 -0.16 – 0.19 0.886 

Sex 3.40 1.55 0.37 – 6.43 0.028 2.93 1.55 -0.10 – 5.96 0.058 2.83 2.01 -1.11 – 6.77 0.159 

ICV -0.61 0.78 -2.14 – 0.92 0.437 -0.35 0.78 -1.88 – 1.17 0.651 -0.99 1.01 -2.98 – 1.00 0.330 

 

 

  



 

 

Table 3 Brain-PAD dissociates good versus poor sensorimotor outcomes. Summary 

statistics from the logistic regression showing impact of brain resilience on outcomes. Good 

outcome is coded as 0, and poor outcome is coded as 1, such that higher (worse) brain-PAD 

is related to a higher likelihood of poor outcome. Sex is coded as a factor (females=0, 

males=1). ICV stands for intracranial volume. The sample size (n), conditional R
2
, odds ratio, 

beta coefficient (beta), standard error (SE), 95% confidence interval (CI), and p-value for all 

fixed effect covariates are reported. Significant predictors are denoted in bold.  Significant 

predictors are denoted in bold.  

  
SENSORIMOTOR OUTCOME (BINARY) 

N = 244, R
2 
= 0.07 

Predictors Odds Ratio beta SE CI p-value 

Brain-PAD 1.04 0.04 0.01 1.01 – 1.08 0.004 

Age 0.99 -0.01 0.01 0.96 – 1.02 0.476 

Sex 1.24 0.22 0.34 0.64 – 2.42 0.521 

ICV 0.86 -0.15 0.17 0.62 – 1.19 0.377 
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