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A B S T R A C T   

Characterisation of the electron beams trajectory in an electron microscope is possible in a few select commercial 
software packages, but these tools and their source code are not available in a free and accessible manner. This 
paper introduces the free and open-source software TEMGYM Advanced, which implements ray tracing methods 
that calculate the path of electrons through a magnetic or electrostatic lens and allow evaluation of the first-order 
properties and third-order geometric aberrations. Validation of the aberration coefficient calculations is per
formed by implementing two independent methods – the aberration integral and differential algebra (DA) 
methods and by comparing the results of each. This paper also demonstrates parallelised electron ray tracing 
through a series of magnetic components, which enables near real-time generation of a physically accurate beam- 
spot including aberrations and brings closer the realisation of a digital twin of an electron microscope. TEMGYM 
Advanced represents a valuable resource for the electron microscopy community, providing an accessible and 
open source means of characterising electron lenses. This software utilises the Python programming language to 
complement the growing ecosystem of free and open-source software within the electron microscopy community, 
and to facilitate the application of machine learning to an electron microscope digital twin for instrument 
automation. The software is available under GNU Public License number Three (GPL 3).   

1. Introduction 

Over the last decade, an ecosystem of open-source software for 
electron microscopy has evolved through packages such as LiberTEM, 
PyXem, HyperSpy & AtomAI [1–4], and these have enabled users to 
automate data analysis, share results more easily online via Google 
Colab or Jupyter notebooks [5] and facilitate reproducibility and veri
fication of results. There has also been a growing adherence to the FAIR 
principles [6] for data, requiring scientists to make their data findable, 
accessible, interoperable, and reproducible. However, an area of elec
tron microscopy which has not yet benefited from this approach is that 
of electron optics, which includes ray tracing techniques, calculation of 
aberration coefficients, and generation of spot diagrams. Commercial 
software such as MEBS & EOD [7,8] are available, but often at cost for 
researchers, which means they are not ubiquitous within the electron 
microscopy community. A growing interest within the electron micro
scopy community to design and modify electron microscope compo
nents [9,10] along with funding bodies beginning to require further 

openness and interoperability amongst electron microscope designs 
[11], an open-source package capable of producing electron optics cal
culations would help facilitate cooperation, accelerate discovery and 
make repetition of experimental results more accessible. This paper in
troduces TEMGYM Advanced, a Python-based electron optics software 
for calculating ray tracing paths through electrostatic and electromag
netic lenses for charged particles. Our previous iteration of this software, 
TEMGYM Basic [12] (under review) is a 3D interactive environment for 
teaching electron microscope alignments which uses a linear description 
of the beam path through a series of electron optical components. 

In contrast, TEMGYM Advanced correctly calculates the trajectory of 
electrons through a lens, deflector, or quadrupole by solving the tra
jectory equations of motion. The development of the software has been 
aimed primarily at electron optics, although minor modifications would 
enable it to include other charged particles. Our choice of the Python 
programming language to develop this software is multifaceted, making 
use of numerous packages [13–16] to develop the software efficiently, as 
well as in the future allowing our code to interface smoothly with the 
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growing community of Python-based electron microscopy software and 
machine learning packages. The TEMGYM Advanced software enables 
users to perform basic electron optical characterisation routines such as 
finding the first-order properties (e.g. magnification and focal length) of 
an axially symmetric lens or finding the aberration coefficients of an 
analytical lens potential using the aberration integral or the differential 
algebra method. The differential algebra (DA) method is an alternative 
method to calculating aberration coefficients and negates the need to 
derive and calculate aberration integrals by formulating the solution to 
the electron equations of motion as a Taylor expansion. As far as the 
authors are aware, the DA method in electron microscopy was only 
previously available through the academically licensed software COSY 
INFINITY or the commercially available software MEBS. A further 
unique aspect of TEMGYM Advanced which separates it from commer
cial software is the ability to perform ray tracing calculations in parallel 
and form a spot on the detector in real time, which is discussed further in 
the section Parallelised Electron Ray Tracing. 

2. Analytical electrostatic and magnetic field models with 
SymPy 

Calculating the trajectory of an electron or charged particle through 
a lens first requires a description of the field near the optical axis. The 
general expression of a multipole field expansion is given by: [17,18] 

φ(x, y, z) =

(
∑m

κ=0

(− 1)κx− 2κ+my2κm!

(2κ)!(− 2κ + m)!

)
∑j+i

κ = i

(− 1)κ4− κ(x2 + y2)
κm!U2κ

0 (z)
κ!(κ + m)!

(1)  

Where Um is the axial field potential harmonic, j is the number of 
components to calculate in the series, and m represents the harmonic 
series to calculate. For m = 0, the series calculates the expansion for a 
round electron optical lens. For m = 1, the series calculates the 
expansion for a dipole harmonic, m = 2 is the first quadrupole har
monic etc. The κ = i term in the summation determines whether to 
calculate the expansion for the coordinates x and y terms which start at κ 
= i = 1, or the z coordinate terms, which start at κ = i = 0. 

Provided the shape of the field produced by the lens along the z-axis 
is known, expanding equation (1) to jth order generates a function that 
describes the field beyond the paraxial regime. By paraxial regime, we 
mean the case where electrons travel close to the centre of the lens with 
a shallow slope. 

Equation (1) is implemented in the software via the symbolic 
computing toolbox SymPy [14], which allows one to compute de
rivatives & integrals analytically, and its convenient functionality pro
vides a seamless way to expand equation (1) for any required potential. 
SymPy symbolically computes derivatives for even the most complex 
axial function representations, enabling a quick and convenient func
tional representation of the 3D magnetic & electric field surrounding 
any round lens. 

Expansion of equation (1) requires choosing the order of the 
expansion, m, and the number of terms to calculate j. Calculation of a 
single component (for example, x) of the series expansion of an axially 
symmetric electrostatic lens (m = 0) with two terms, (j = 1) using 
equation (1) is performed as follows: 

∑m=0

k=0

(− 1)κx− 2κy2κ

(2κ)!(− 2κ)!
= 1

φ(x, y, z) =

(
∑j=2

κ=1

(− 1)κ4− κU2κ
0 (z)

κ!2
(
x2 + y2)κ

)

Ex = −
dφ
dx

= U′′(z)
x
2
− U′′′′(z)

x(x2 + y2)

16

(2) 

To calculate the x component of the expansion for an axially sym
metric magnetic field with two terms, B(z), the potential φ(z) must be 
replaced by the magnetic scalar potential ω(z), and the axial potential 

U(z) must be replaced by the axial magnetic potential Ω(z), where the 
quantities B(z) and Ω(z) are connected by: 

B(z) = − μΩ′

(z) (3)  

where μ is the permeability. thus: 

ω(x, y, z) =

(
∑j=2

k=1

(− 1)κ4− κB2κ− 1
0 (z)

κ!2
(
x2 + y2)κ

)

Bx =
dω
dx

= − B′

(z)
x
2
+ B′′′ (z)

x(x2 + y2)

16

(4) 

A similar process can be followed to obtain the y and z components of 
an axially symmetric field distribution. Although usually for an axially 
symmetric field distribution, cylindrical coordinates are more appro
priate, in this work we opt to use the cartesian representation because it 
enables us to more easily compare the results of our aberration calcu
lations to previous work which also uses the cartesian representation 
[19,20], and also because it more readily enables us to calculate the 
trajectory of the electron in 3D as shown in the section parallelised 
electron ray tracing. Once an axial field function is specified for a given 
lens configuration, it is possible to reuse this expansion for numerous 
calculations. For example, this paper shows how to use equation (1) with 
two terms to trace thousands of rays in parallel through a series of 
magnetic components and obtain an image of the electron spot that 
contains third-order geometric aberrations, or use the expansion to 
calculate the aberration coefficients for a round magnetic or electro
static lens using the aberration integral or the differential algebra 
method. 

The analytical axial field functions analysed in this paper are Glaser’s 
Bell Shaped Field and Schiske’s Electrostatic Lens [21,22] 

B(z) =
1

1 +
(

z
a

)2 (5)  

ϕ(z) = ϕ0

⎛

⎜
⎝1 −

k2

1 +
(

z
a

)2

⎞

⎟
⎠ (6) 

a and k in equation (5) and equation (6) are variables which affect 
the shape of the axial distribution, and ϕ0 is the acceleration voltage of 
the electron. 

Although outside of the scope of this paper, it is possible to generate 
the expanded series for a dipole, quadrupole & octupole and so on, 
provided one knows the axial harmonic functions. However, in general, 
this is not a straightforward problem to solve, and the author is only 
aware of one example in the literature displaying how to calculate the 
axial harmonics of a dipole system [23]. 

3. Linearised ordinary differential equation solutions of electric 
and magnetic fields 

The series expansion of a round electron optical lens field, as shown 
by equation (1), enables the calculation of higher-order aberrations, but 
only the axial field function is needed to calculate the first-order prop
erties of a lens. Combining the axial field function with the equations of 
motion for an electron in a magnetic or electrostatic field creates a lin
earised ordinary differential equation (ODE) (equation (7)) which, when 
solved, will calculate the first-order properties (focal length, magnifi
cation, principal image plane) of a lens [17,18] and provide a general 
solution for any ray path with a different initial position or slope in the 
plane of the object. The following function represents the 
non-relativistic linearised ODE for magnetic & electrostatic lenses: 
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x′′ +
ϕ

′

(z)
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x′

+
ϕ′′(z) + η2B(z)2

4ϕ0
x = 0

y′′ +
ϕ

′

(z)
2ϕ̂
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+
ϕ′′(z) + η2B(z)2

4ϕ0
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(7)  

Where x & y are electron coordinates as a function of z. Primes repre
sent a derivative w.r.t z, i.e. the slope of a ray. ϕ(z) and B(z) are axial 
potential and field functions of a lens, respectively. ϕ0 is again the ac

celeration voltage of the electron. η is given by 
̅̅̅̅̅
|e|
2m

√

. 

e ∼ − 1.60217663 × 10− 19 C, and m ∼ 9.1093837 × 10− 31 kg. 
When solving these equations to obtain a general solution, two rays 

are traced with specific initial conditions through the electrostatic or 
magnetic field, denoted g and h. The conventional method noted in the 
literature proceeds as follows [18,24–26]: From a starting object posi
tion denoted z0, trace a ray denoted g that starts at a radial position of 
1 m, with a slope of 0, and when traced through the lens, will determine 
the focal length with respect to the centre of the lens. Calculation of a 
second ray denoted h, that begins with a slope of 1, and a position of 0 m 
at the object plane, traced through the lens determines the gaussian 

Fig. 1. Linearised ODE solutions to Schiske’s Electrostatic Lens & Glaser’s Bell Shaped Field. Shown are the rays g (blue) and h (red) and how the object (black up 
arrow) is imaged (black down arrow) by the lens. The inset shows the principal image plane (where the ray appears to come from) and its location behind the lens. 
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image plane. When the ray g is traced further to the gaussian image 
plane, its height determines the magnification of the image (see Fig. 1 
for clarification). These two-ray solutions also form any other solution 
beginning with a different set of initial conditions, which has the prac
tical use of enabling a full first-order description of the beam path with 
any set of initial conditions for a single starting object position. The 
solution rays g & h are also necessary when one wishes to calculate the 
aberration coefficients of an electron optical component, which is dis
cussed further in Calculating aberrations of round lenses in Python. 

4. Ordinary differential equation Solvers 

The most common method chosen to solve the electron equations of 
motion through an electron optical lens is usually an adaptive step size 
Runge Kutta method [20,27]. The method chosen in this paper is the 
RK5(4) method with Dormand Prince coefficients (RKDP54) [28]. This 
method is an adaptive step size method which uses a fifth-order step to 
advance the calculation, and a fourth-order step to estimate the error. If 
the error is below a user-defined tolerance, the step size h of the algo
rithm is reduced until the error is below tolerance. The RKDP54 method 
contains certain drawbacks, as it requires seven force evaluations per 
step, which are the most expensive calculation when solving the equa
tions of motion, and the method is not symplectic, meaning the kinetic 
energy of the system is not conserved. Thus, even though the error in the 
calculation seems low, an unphysical particle trajectory can result when 
solving the equations of motion. A symplectic integrator is of great 
importance in the field of charged particle tracing of nuclear fusion 
reactor designs, which requires tracing particles through magnetic fields 
for an extended time in a periodic orbit. Fortunately, the distances and 
time over which the electrons are propagated through electrostatic and 
magnetic fields (and the accuracy required) within the electron micro
scope are low enough such that kinetic energy drift does not become an 
issue. The linearised ODE (equation (7)) & the differential algebra 
method (see Lens aberration analysis via the Differential Algebra 
Method) presented solve the electron equations of motion via the 
RKDP54 method, which allow the calculation to be sped up significantly 
due to its adaptive step size feature. 

However, when parallelising the ray tracing algorithm for real-time 
beam visualisation, the code uses the symplectic first-order Euler 
Cromer method, which only requires one force evaluation per propa
gation step. As a result, the Euler-Cromer method performs calculations 
significantly faster per step than the RKDP54 method, with the trade-off 
that the step size is non-adaptive and the global error rate is proportional 
to the step size O(h). Furthermore, because the Euler-Cromer method is 
far easier to implement, the parallelised version of this software opts for 
the Euler-Cromer method when implementing the parallelised algo
rithm. 

Fig. 1 shows the ray paths obtained when solving equation (7) with 
the analytical field equations of (5) and (6) for a magnetic and elec
trostatic lens, and the initial conditions of g = 1, g′

= 0 & h = 0, h′

= 1 
to obtain the first order properties of each lens. The inset in each figure 
displays the principal image plane, where the ray appears to be deflected 
from if the lens was treated as a thin lens that performs a single 
deflection. 

Table 1 shows the first-order properties of Glaser’s Bell-shaped field 
and Schiske’s Electrostatic field that are obtained when solving the 
linearised ODE via the RKDP54 method, and compares these results to 
the analytical solutions of the first-order properties presented in [19, 
29]. Good agreement between both methods is found, which allows us to 
verify that the non-symplectic nature of the RKDP54 method does not 
significantly impact the path of the electron ray and the first-order 
properties. Results in Table 1 are presented with 15 significant figures. 

5. Calculating aberrations of round lenses in Python 

In a few cases, a straightforward analytic solution to the aberration 

coefficients of an analytical axial lens function can be found in the 
literature [29,30]. However, no such method usually exists, and mi
croscopists must resort to other computational methods such as the 
aberration integral or differential algebra method [18,31]. The differ
ential algebra method formulates the solution to the general electron 
equations of motion as a Taylor expansion, whose polynomial co
efficients represent the aberration coefficients, and this method is 
available in MEBS & Cosy Infinity [7,32]. Another approach to obtaining 
aberration coefficients should also be mentioned which is implemented 
in the software EOD [8], which utilises a polynomial fitting method 
[33], although this work does not implement this method. 

This software implements both the aberration integral and differ
ential algebra methods into TEMGYM Advanced and recreates aberra
tion calculations found in the literature for the analytical potentials 
presented by M.Cheng et al. and Z.Liu [20,27]. Note that the methods 
presented here only calculate the real aberration coefficients. In the case 
of asymptotic aberration coefficients, which occur when either or both 
the object and image are located inside the lens field, then a different set 
of aberration integrals must be solved [18]. The differential algebra 
method implemented can only calculate the real aberration coefficients. 

6. Aberration Polynomial 

The polynomial form of the third-order geometric aberration co
efficients of an electron optical system can be obtained via a variational 
method described by Hawkes [34] and can be written as follows: 

x(3)i

M
= [ x′

0 x0 − y0 ]Ar (8)  

with 

A =

⎡

⎣
B 2F D 2f
F 2C E c
f c e 0

⎤

⎦

r =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x′2
0 + y′2

0

x0x′2
0 + y0y′2

0

x2
0 + y2

0

x0y′

0 + x0y′

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where x0 and x′

o are the position and slope of the ray at the object plane, 
M is the magnification of the image, x(3)

i is the third-order deviation of 
the ray from the ideal paraxial ray at the image plane, and the matrix A is 
composed of the individual aberration coefficients where B = Spherical 
Aberration, C = Isotropic Astigmatism, D = Field Curvature, E =
Isotropic Distortion, F = Isotropic Coma, c = Anisotropic Astigmatism, e 
= anisotropic astigmatism, f = anisotropic coma. B, F, C, D and E are 
known as the five “Seidel Aberrations” [35], and a graphical represen
tation of their meaning can be found here by J. Savard [36]. c, f and e are 
the anisotropic aberrations coefficients, and appear because of the 
rotation applied to the electron as it passes through a magnetic field. The 

Table 1 
Comparison of first-order properties calculated via analytical solutions against 
solving the linearised equations of motion.   

Glaser’s Bell-Shaped 
Field 

Schiske’s Electrostatic 
Field 

Analytic Focal Length 0.04241592856688 0.31079488270664 
ODE Solution Focal 

Length 
0.04241592856914 0.31079488270697 

Relative Error 2.26 × 10− 12 3.30 × 10− 13 

Analytic Magnification -0.728140280754384 -1.63329918013632 
ODE Solution 

Magnification 
-0.728140280754499 -1.63329918013632 

Relative Error 1.58 × 10− 13 0  
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values of each of the aberration coefficients for a particular starting 
position of the object on the z-axis can be obtained by solving the 
appropriate aberration integral. See textbooks from P.Hawkes, J.Orloff 
and M.Szilagyi [17,18,37] also for a more in depth overview. Numerous 
formulations of aberration integrals for round magnetic & electrostatic 
lenses can be found in the literature, and this software implements the 
aberration integrals printed by P. Hawkes [18] for magnetic lenses and 
those by Z. Liu [38] for electrostatic lenses. See the supplementary 
section for the specific equations implemented in this software. 

Expanding equation (6) creates a polynomial expression which de
scribes the third-order geometric aberrations:   

The software in TEMGYM Advanced combines the linearised ODE 
solutions, which return the principal rays g and h, with the symbolic 
package SymPy that calculates derivatives of the analytic potential or 
field to obtain the aberration integral. The software then utilises Simp
son’s rule implemented in the package SciPy [39] to solve the aberration 
integral numerically. It is important to note also that only the aniso
tropic coefficients c, f & e appear with a non-zero value for a magnetic 
lens. 

7. Lens aberration analysis via the Differential Algebra method 

The differential algebra method was introduced to electron optics by 
M.Berz in the particle accelerator physics community in 1990 [40] as a 
technique to calculate the aberrations of electron optical systems to 
machine precision. This implementation can be found in a program 
entitled "CosyInfinity" [32]. Eric Munro subsequently introduced the 
differential algebra method into the electron beam design software 
MEBS [7] and extended the method to calculate the aberration co
efficients of electron mirrors [41]. Radlicka has made further use of the 
DA method to analyse the parasitic aberrations of a hexapole corrector 
[42]. 

As far as the authors are aware, our software TEMGYM Advanced 
represents the first time that the DA method for electron/ion optics has 
been used in an open-source project and made freely accessible. This is 

made possible by the freely accessible python wrapper for the C++ DA 
library, DaceyPy [15]. 

Differential algebra (DA), also known as truncated power series 
algebra (TPSA), is a method that can generate Taylor series expansions 
of an output expression as a function of its input. The underlying 
mathematical principles of differential algebra called "Dual Numbers" 
were first introduced by William Clifford [43], which enables the alge
braic calculation of derivates and avoids the pitfalls of the finite dif
ference method. Dual numbers are the mathematical backbone of 

automatic differentiation, enabling backpropagation at scale in many 
machine-learning packages such as JAX [44] & PyTorch [45]. DA adopts 
the dual number system such that any function of n variables can be 
expanded into its Taylor series. Expanding a function as a Taylor series 
via the DA method has an interesting application in the realm of aber
ration analysis in electron microscopy, as when the technique of DA is 
used to solve the ODE of a particle transmitting through a lens, it readily 
obtains the final coordinates of the particle as a Taylor expansion of the 
initial conditions, whose coefficients represent the aberration co
efficients of the lens. 

When computing a Taylor expansion, the number of coefficients σ 

associated with each variable v as the order of the expansion n increases 
is as follows - 

σ =
(n + v)!
(n!v!)

(10) 

To describe a linear solution (n = 1) of an optical system via a Taylor 
expansion with four variables (x, y, x′

, y′ , v = 4), the number of Taylor 
coefficients, σ is equal to 5 for each variable. In the case of third-order 
geometric aberration coefficients, n = 3, and the number of total co
efficients per variable (and thus the number of derivatives) increases to 
35 according to (10), hence the importance of automatic differentiation 
& dual numbers in the DA method, which enables rapid and accurate 
calculation of functions that contain multiple higher order derivatives. 

The relationship between the initial and final coordinate of the 
electron with Taylor series coefficients takes the following form: 

n

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xf

x′

f

yf

y′

f

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
∑i+j+k+l=n

i, j, k, l=0∼n
x0

ix
′ j
0 y0

ky
′ l
0 n

⎡

⎢
⎢
⎣

Aijkl
Bijkl
Cijkl
Dijkl

⎤

⎥
⎥
⎦ (11) 

Expanding the terms of this series with n = 3 generates a polynomial 
whose coefficients are equal to the aberration coefficients obtained by 
solving the appropriate aberration integral.   

For example, A0300 and A0102 in (12) are equivalent to B in (9). Co
efficients which do not appear in (9) will have a value of zero in (12). 

This work employs the Python package DaceyPy [15], a wrapper for 
the C++ differential algebra library "DACE" [46] that enables us to 
perform differential algebra in Python. 

This software uses the trajectory equations of motion in a rotational 
coordinate system to perform the DA computation and obtain the ab
erration coefficients, and are given by: [47] 

x(3)i

M
= Bx′3

0 + Bx′

0 y′2
0 + 2Cx2

0x′

0 + 2Cx0y0y′

0 + Dx2
0x′

0 + Dy2
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0 + Ex3
0 + Ex0y2

0 + 3Fx0x′2
0 + Fx0y′2

0 +

2Fx′

0y0y′
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0y′
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0y0 − cy2
0y′
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0 + 2f x0x′
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0 − 3f x′2
0 y0 − f y0y′2

0

(9)   

x(3)i

M
= A3000x3

0 + A2010x2
0y0 + A1020x0y2

0 + A0030y3
0 + A0300x′3
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0 y′
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0 +

A1200x0x′2
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0y′
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0y0y′
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0+
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0x′
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0y′
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0 + A0201y2
0y′

0

(12)   
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′
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′

y)2
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′
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′

x)2
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1
ρ
[
Bz + (x′

− θ
′

y)Bx + (y′
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′

x)By
]

θ
′

=
ηB(z)
2
̅̅̅̅̅
ϕ0

√

θ′′ =
ηB

′

(z)
2
̅̅̅̅̅
ϕ0

√

where θ is the rotation angle of the rotating coordinate frame relative to 
the fixed frame, B(z) is the magnetic axial field distribution, ϕ(z) is the 
electrostatic axial potential distribution equivalent to the following, and 
again, ϕ0 is the initial acceleration voltage of the electron, and primes 
denote derivatives w.r.t. z. 

In the case of an electrostatic lens, the rotational coordinate system is 
equivalent to the fixed coordinate system, as the electron does not rotate 
about the axis. When calculating aberrations, the rotational coordinate 
system is only relevant in the case of solving the electron trajectory in a 
magnetic lens, as it allows direct interpretation of the results without 
further calculation. If the object’s location is inside the field of a mag
netic lens, then an effect called Object Magnetic Immersion (OMI) [48] 
further modifies the aberration coefficient values. To account for the 
OMI effect, one must solve the electron trajectory in a fixed coordinate 
system and then transfer it to the rotational coordinate system at the 
end, which calculates the aberration coefficients with OMI included. 
TEMGYM Advanced has not included this step, but see Z. Liu [20] for 
more detail. 

The main advantage of the differential algebra method is that it 
avoids the need to formulate and calculate a series of aberration in
tegrals for an electron optical system to find the aberration coefficients. 
In the case of electrostatic & magnetic lenses, the aberration integrals 
are straightforward to formulate and solve up to third order, hence their 
use as verification of aberration coefficients calculated in our TEMGYM 
Advanced implementation. However, for more exotic systems involving 
multiple components and for higher order aberrations, this procedure 
becomes increasingly complicated [18]. 

The DA method is also comparatively simple to compute as only a 
single ray needs to be traced through a system from the object plane to 
the image plane to obtain the aberration coefficients to any desired 
order. In previously published works results have been described up to 
the fifth order [47]. 

The disadvantages are that the DA method requires an analytical 
representation of the electric or magnetic field on the optical axis. 
Requiring an analytical representation is a disadvantage because the 
finite element method calculates the field of practical electron optical 
lens designs (i.e. CAD models of a lens), which only returns a discrete set 
of values that describe the field along the optical axis. Therefore, one 
must either employ a suitable interpolation routine [49] or a fitting 
measure of the axial field [50,51] to enable the analytical determination 
of field values and their derivatives. 

A Python-specific disadvantage is that the DA package DaceyPy is 
incompatible with the standard ODE solvers available in other popular 
python packages, such as SciPy’s odeint. One must implement an ODE 
solver in pure Python to utilise this software, which will almost always 

be slower than the highly optimised routines implemented in languages 
such as Fortran. 

Our programme TEMGYM Advanced is tested via two analytical axial 
fields for electrostatic & magnetic lenses, attempting to repeat results 
from M.Cheng et al. [27] and Z.Liu et al. [20], where the code in this 
work also calculates the gaussian image plane for each of these lenses via 
the linearised ODE solution (7), enabling us to know with certainty 
where to trace the ray to obtain the aberration coefficients at the object 
plane. 

Reproducing some of the results found in the literature was chal
lenging, with the necessary details required for a faithful reproduction of 
the work either missing or implied. For example, in the case of Z. Liu 
et al.[20], the gaussian image plane’s location was omitted; to recreate 
their results, a user must know this value exactly. The method to 
calculate it is detailed by P. Hawkes [29], which requires solving an 
elliptic integral and the details of this calculation can be found on the 
GitHub repository associated with this publication [52]. 

Table 2 & Table 3 shows the results of our software which has 
repeated calculations of the aberration coefficients of Glaser’s Bell- 
Shaped magnetic field and Schiske’s Electrostatic field using the dif
ferential algebra method and the aberration integral method, with re
sults presented to 15 significant figures. Recreating the results of 
previous publications to high precision to validate our implementation, 
and required utilisation of the RKDP54 method with an adaptive step
size. The RKDP54 method’s adaptive step size feature significantly re
duces the time required to calculate the electron path through Glaser’s 
bell-shaped field, where the object plane location is at z0 ∼ 0.034 m, 

Table 2 
Comparison of aberration coefficients calculated via the aberration integral 
method, and calculated via the differential algebra method for Glaser’s bell- 
shaped field.  

Aberration 
Type 

Glasers Bell-Shaped Field 
– Aberration Integral 

Glasers Bell-Shaped Field 
– Differential Algebra 

Relative 
Error 

B -122.772441936280 -122.772441936290 8.14 ×
10− 14 

F -3240.95230904754 -3240.95230904682 2.22 ×
10− 13 

C -74284.4192292685 -74284.4192292831 1.96 ×
10− 13 

D -142976.368793181 -142976.368793201 1.40 ×
10− 13 

E -3251938.05175000 -3251938.05199103 7.41 ×
10− 11 

c -938.227788619450 -938.227788619490 4.25 ×
10− 14 

e -43364.7964718281 -43364.7964718253 6.41 ×
10− 14 

f -874382.646193524 -874382.646193516 1.01 ×
10− 14  

Table 3 
Comparison of aberration coefficients calculated via the aberration integral 
method, and calculated via the differential algebra method for Schiske’s elec
trostatic field.  

Aberration 
Type 

Schiske’s Electrostatic 
Field – Aberration 
Integral 

Schiske’s Electrostatic 
Field – Differential 
Algebra 

Relative 
Error 

B -122.772441936280 -122.772441936290 8.14 ×
10− 14 

F -3240.95230904754 -3240.95230904682 2.22 ×
10− 13 

C -74284.4192292685 -74284.4192292831 1.96 ×
10− 13 

D -142976.368793181 -142976.368793201 1.40 ×
10− 13 

E -3251938.05175000 -3251938.05199103 7.41 ×
10− 11  
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and the gaussian image plane location is at zg ∼ 34.0 m. The distance 
that the code must trace the ray is of the order of 3 × 101 m, yet to 
achieve the required precision, a step size of ~ 1 × 10− 6 m must be used 
when the electron is in the vicinity of the central field. The calculation 
will run significantly longer if it utilises a fixed step size because the lens 
field is located within a small window around 0 m. The higher-order 
adaptive step size of the RKDP54 method will complete the calcula
tion with the appropriate step size when the field values are large, and as 
the ray exits the field, the step size will increase, enabling the comple
tion of the calculation in a matter of seconds. It is important to note that 
the software in its current form can only calculate aberration coefficients 
of non-relativistic electrons. In future versions, we plan to include this 
ability in our ray-tracing routines. In the case of magnetic fields, this is 
trivial, as the kinetic energy of the electron in constant. In the case of 
electrostatic fields, this becomes slightly more involved, as the gamma 
factor will change as the electron moves through the electrostatic lens 
and this must be accounted for correctly. 

8. Parallelised Electron Ray Tracing 

TEMGYM Advanced utilises the high-performance python compila
tion package numba [53] to accelerate the time to solve the electron 
equations of motion through a series of electrostatic or magnetic fields 
and increases the number of rays that can be calculated simultaneously 
via parallelisation. Parallelisation utilises multiple threads on a CPU or 
GPU to perform many calculations simultaneously. The GitHub re
pository [52] associated with this work demonstrates the potential of 
this feature by presenting an example Jupyter notebook and two inter
active models using the visualisation package PyQTGraph [54]. 

The Jupyter notebook demonstrates the capabilities of running 
parallelised code on a modern workstation CPU or GPU and gives users 
who wish to explore further a minimal working example to trace elec
tron rays in parallel for their problem. Fig. 2 shows an example of tracing 
many rays in parallel through a single lens. Our hardware can trace 1024 
rays through 0.02 m with 20000 steps (stepsize = 1 × 10− 5) in a time 
of ∼ 84.8 ms ± 4.83 ms. 

Parallelised ray tracing code such as this also enables the creation of 
basic interactive models which demonstrate some of the basic align
ments of a TEM in a physically accurate manner. The first interactive 
model designed in PyQTGraph mimics the behaviour of a double 
deflection system and a magnetic lens, recreated via two saddle coils and 
a magnetic lens model via Glaser’s bell-shaped field (Fig. 3). 

Although in a TEM, the electron’s velocity is usually so high that a 
single deflector can model a deflection in the centre of the component 
via the high energy approximation [55], this example illustrates the 
modelling of multiple magnetic components in succession using TEM
GYM Advanced. Magnetic deflection systems can be modelled in many 
ways. For example, akin to a rotationally symmetric lens, our software 
can use equation (1) to model the field of a deflector dipole system 
everywhere in 3D space if the axial fields and their harmonics along the 
z-axis are known. Although Lencova has shown how to calculate the 
harmonic fields of a saddle and deflector coil [23], and these results 
could interface with the SymPy expression to expand equation (1), this 
code has opted instead to use an alternative representation. 

The alternative method chosen recreates the shape of a saddle coil via 
a series of conducting wires and solves the Biot-Savart numerically using 
the open-source package bfieldtools [16], to obtain a 3D array of the 
magnetic field value surrounding the saddle coil. A linear interpolation 
routine then finds the field values at the required location to update the 
electrons’ velocity and position. Once a ray has exited the field of a 
component and is in field-free space, it is trivial to propagate the dis
tance to the next component in a straight line, thus saving computational 
cost to transport the electron between components. The arrangement of 
components in this model mimics a deflector lens system. The GitHub 
repository [52] contains an interactive model of a double-deflector lens 
system that demonstrates this software’s real-time calculation 
capabilities. 

The next interactive model recreates the astigmatism correction 
alignment of two quadrupole magnets and a magnetic lens. Akin to a 
dipole, the software models a quadrupole via a series of conducting 
wires. A quadrupole field focuses rays more strongly on one axis, 
enabling correction of the astigmatism aberration in a magnetic lens that 

Fig. 2. 1024 electron rays calculated in parallel over 0.02 m and a step size of 10 μm. Inset shows the effect of aberrations on the beam when using multiple terms in 
Laplace’s Expansion while solving the equation of motion. 
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suffers from astigmatism. To create a toy model of astigmatism via 
Glaser’s bell-shaped lens, the response of the field includes an angular 
component, which results in a different focal length on each axis, rec
reating an elliptical beam spot. Users can adjust the strength of each 
quadrupole to correct for the astigmatic Glaser’s bell-shaped lens. This 
interactive demo calculates 2048 electron rays in parallel through two 
deflectors and a lens and includes a coarse and fine adjustment of the 
deflector ratio that enables the user to find the beam tilt/beam shift 
alignment in this example. The beam spot window displays the final 
location of all 2048 ray paths, but note that in the 3D window, the 
software only displays a subset of ray paths (512 electron rays) to keep 
the calculation fast. Further improvements to the software could enable 
it to display more electron ray paths. 

Although these models are simplified representations, they demon
strate how to apply parallelisation with a modern CPU or GPU to elec
tron microscopy. Typically, commercial microscope designs are 
unavailable to users; however, users can easily implement an axial field 
function and interface it with our software or use designs from an open- 
source microscope, such as the NanoMi project [56], that could pair with 
this code. Access to the designs of an electron microscope would more 
easily enable the creation of a complete digital twin of a microscope via 
our software. A digital twin of a TEM that can accurately calculate the 
electron beam path and generate a realistic beam spot in near real-time 
has the potential for many exciting applications in the future. For 
example, it could enable exploration of automated control of the base 
alignment steps via machine learning, akin to how many researchers are 
using digital twin models of many complicated systems such as Tokamak 
reactors to achieve state-of-the-art automated control in complicated 
environments where classic control methods struggle to perform 
[57–60]. A digital twin simulation also has value as an interactive 
teaching tool, helping to train the next generation of microscopists by 
providing them with a behind-the-scenes view of how an electron mi
croscope behaves. Furthermore, the methods presented in this paper can 
be used to calculate the first order properties of real electron optical 

lenses, which can then be used to create a first-order microscope model 
via the code presented in TEMGYMBasic [12]. 

9. Conclusion 

A suite of open-source tools that model and characterise analytic 
fields of electron microscope lenses has been presented, which enables 
the performance analysis of lens designs and the visualisation of a beam 
spot in real time. The software demonstrates how users can use the 
expansion of an electron lens potential/field with methods to solve the 
electron equations of motion to calculate the first-order lens properties 
or third geometric aberration coefficients. Two methods have been 
implemented to calculate aberration coefficients via the DA and the 
aberration integral method, enabling us to verify each algorithm’s re
sults. The software has also reproduced the aberration coefficient results 
of Glaser’s Bell-Shaped Field and Schiske’s Electrostatic lens from pre
viously published results. Furthermore, this paper presents a method to 
achieve parallelised ray tracing of an electron beam through a series of 
electron optical components, generating an electron beam spot with 
third-order aberrations in a model electron microscope in near real-time. 
These models help to move us closer towards a realisation of a digital 
twin of the electron microscope while doing so with an open-source 
ethos that enables reproducible and verifiable results. 

TEMGYM Advanced demonstrates how the rich ecosystem of pack
ages available in Python enable rapid prototyping and development. For 
example, the packages available in Python enable symbolic equation 
manipulation via SymPy [14], hardware acceleration of functions that 
parallelise and speed up the code via Numba [53], calculation of mag
netic fields surrounding a wire via bfieldtools [16], fast calculation of 
Taylor expansions via DaceyPy [15], and development of a basic GUI via 
PyQTGraph [54]. In the current iteration of this software, we have 
focused on applying our methods to the most basic of microscope 
components operating in TEM mode, and there is a rich number of ways 
to improve and expand upon the code presented in this paper. The 

Fig. 3. Screenshot of interactive TEM models that perform real-time ray tracing in parallel through a series of components. Top – Double deflector system and lens, 
with the beam spot and GUI displayed on the right-hand side and the 3D model on the left. Bottom – Astigmatism correction system with two quadrupoles and a lens. 
The beam spot and GUI are displayed on the right-hand side, and the 3D model is on the left. 
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software could also easily be adapted to calculate aberrations and 
electron paths through a microscope operating in STEM mode. TEMGYM 
Advanced could also calculate the aberration coefficients of practical 
lens designs whose field was calculated via FEM methods and enable the 
calculation of aberration coefficients for relativistic electrons, and future 
work will focus on completing this goal. It is also possible to calculate 
fifth-order geometric and chromatic aberration coefficients with rela
tively few changes. With more effort, the software will be able to model 
more exotic microscope components such as Wien filters, electron mir
rors, aberration correctors and an electron gun, and we plan to also 
include these features in future versions of the software. 
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[16] A.J. Mäkinen, et al., Magnetic-field modeling with surface currents. Part I. Physical 
and computational principles of bfieldtools, J. Appl. Phys. 128 (2020), 063906. 

[17] M. Szilagyi, Motion of Charged Particles in Electric and Magnetic Fields, Electron 
Ion Opt. (1988) 13–50, https://doi.org/10.1007/978-1-4613-0923-9_2. 

[18] H. Peter, K. Erwin, Principles of Electron Optics, Basic Geometrical Optics, Elsevier, 
2018. 

[19] M. Cheng, T. Tang, Y. Zhenhua, Study on differential algebraic aberration method 
for electrostatic electron lenses, Optik (Stuttg) 112 (2001) 250–254. 

[20] Z. Liu, On the map method for electron optics, Institute of Physics Conference 
Series 175 (2005) 185–192. 

[21] W. Glaser, Strenge Berechnung magnetischer Linsen der Feldform, Zeitschrift für 
Phys 117 (1941) 285–315. 

[22] P. Schiske, An Electrostatic Single Lens permitting Rigorous Calculation, Nat. 171 
(1953) 443–444, 1953 1714349. 
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