
Ultramicroscopy 250 (2023) 113738

Available online 5 April 2023
0304-3991/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

TEMGYM Advanced: Software for electron lens aberrations and parallelised
electron ray tracing

David Landers a, Ian Clancy a, Rafal E. Dunin-Borkowski b, Dieter Weber b, Andrew Stewart c,*

a Department of Physics, University of Limerick, Limerick, Munster, V94 T9PX, Ireland
b Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425 Jülich, Germany
c Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, United Kingdom

A R T I C L E I N F O

Keywords:
Ray Tracing
Parallelisation
Differential Algebra
Aberration Integral
NanoMi

A B S T R A C T

Characterisation of the electron beams trajectory in an electron microscope is possible in a few select commercial
software packages, but these tools and their source code are not available in a free and accessible manner. This
paper introduces the free and open-source software TEMGYM Advanced, which implements ray tracing methods
that calculate the path of electrons through a magnetic or electrostatic lens and allow evaluation of the first-order
properties and third-order geometric aberrations. Validation of the aberration coefficient calculations is per
formed by implementing two independent methods – the aberration integral and differential algebra (DA)
methods and by comparing the results of each. This paper also demonstrates parallelised electron ray tracing
through a series of magnetic components, which enables near real-time generation of a physically accurate beam-
spot including aberrations and brings closer the realisation of a digital twin of an electron microscope. TEMGYM
Advanced represents a valuable resource for the electron microscopy community, providing an accessible and
open source means of characterising electron lenses. This software utilises the Python programming language to
complement the growing ecosystem of free and open-source software within the electron microscopy community,
and to facilitate the application of machine learning to an electron microscope digital twin for instrument
automation. The software is available under GNU Public License number Three (GPL 3).

1. Introduction

Over the last decade, an ecosystem of open-source software for
electron microscopy has evolved through packages such as LiberTEM,
PyXem, HyperSpy & AtomAI [1–4], and these have enabled users to
automate data analysis, share results more easily online via Google
Colab or Jupyter notebooks [5] and facilitate reproducibility and veri
fication of results. There has also been a growing adherence to the FAIR
principles [6] for data, requiring scientists to make their data findable,
accessible, interoperable, and reproducible. However, an area of elec
tron microscopy which has not yet benefited from this approach is that
of electron optics, which includes ray tracing techniques, calculation of
aberration coefficients, and generation of spot diagrams. Commercial
software such as MEBS & EOD [7,8] are available, but often at cost for
researchers, which means they are not ubiquitous within the electron
microscopy community. A growing interest within the electron micro
scopy community to design and modify electron microscope compo
nents [9,10] along with funding bodies beginning to require further

openness and interoperability amongst electron microscope designs
[11], an open-source package capable of producing electron optics cal
culations would help facilitate cooperation, accelerate discovery and
make repetition of experimental results more accessible. This paper in
troduces TEMGYM Advanced, a Python-based electron optics software
for calculating ray tracing paths through electrostatic and electromag
netic lenses for charged particles. Our previous iteration of this software,
TEMGYM Basic [12] (under review) is a 3D interactive environment for
teaching electron microscope alignments which uses a linear description
of the beam path through a series of electron optical components.

In contrast, TEMGYM Advanced correctly calculates the trajectory of
electrons through a lens, deflector, or quadrupole by solving the tra
jectory equations of motion. The development of the software has been
aimed primarily at electron optics, although minor modifications would
enable it to include other charged particles. Our choice of the Python
programming language to develop this software is multifaceted, making
use of numerous packages [13–16] to develop the software efficiently, as
well as in the future allowing our code to interface smoothly with the

* Corresponding author.
E-mail address: andy.stewart@ucl.ac.uk (A. Stewart).

Contents lists available at ScienceDirect

Ultramicroscopy

journal homepage: www.elsevier.com/locate/ultramic

https://doi.org/10.1016/j.ultramic.2023.113738
Received 19 February 2023; Accepted 3 April 2023

mailto:andy.stewart@ucl.ac.uk
www.sciencedirect.com/science/journal/03043991
https://www.elsevier.com/locate/ultramic
https://doi.org/10.1016/j.ultramic.2023.113738
https://doi.org/10.1016/j.ultramic.2023.113738
https://doi.org/10.1016/j.ultramic.2023.113738
http://creativecommons.org/licenses/by/4.0/

Ultramicroscopy 250 (2023) 113738

2

growing community of Python-based electron microscopy software and
machine learning packages. The TEMGYM Advanced software enables
users to perform basic electron optical characterisation routines such as
finding the first-order properties (e.g. magnification and focal length) of
an axially symmetric lens or finding the aberration coefficients of an
analytical lens potential using the aberration integral or the differential
algebra method. The differential algebra (DA) method is an alternative
method to calculating aberration coefficients and negates the need to
derive and calculate aberration integrals by formulating the solution to
the electron equations of motion as a Taylor expansion. As far as the
authors are aware, the DA method in electron microscopy was only
previously available through the academically licensed software COSY
INFINITY or the commercially available software MEBS. A further
unique aspect of TEMGYM Advanced which separates it from commer
cial software is the ability to perform ray tracing calculations in parallel
and form a spot on the detector in real time, which is discussed further in
the section Parallelised Electron Ray Tracing.

2. Analytical electrostatic and magnetic field models with
SymPy

Calculating the trajectory of an electron or charged particle through
a lens first requires a description of the field near the optical axis. The
general expression of a multipole field expansion is given by: [17,18]

φ(x, y, z) =

(
∑m

κ=0

(− 1)κx− 2κ+my2κm!

(2κ)!(− 2κ + m)!

)
∑j+i

κ = i

(− 1)κ4− κ(x2 + y2)
κm!U2κ

0 (z)
κ!(κ + m)!

(1)

Where Um is the axial field potential harmonic, j is the number of
components to calculate in the series, and m represents the harmonic
series to calculate. For m = 0, the series calculates the expansion for a
round electron optical lens. For m = 1, the series calculates the
expansion for a dipole harmonic, m = 2 is the first quadrupole har
monic etc. The κ = i term in the summation determines whether to
calculate the expansion for the coordinates x and y terms which start at κ
= i = 1, or the z coordinate terms, which start at κ = i = 0.

Provided the shape of the field produced by the lens along the z-axis
is known, expanding equation (1) to jth order generates a function that
describes the field beyond the paraxial regime. By paraxial regime, we
mean the case where electrons travel close to the centre of the lens with
a shallow slope.

Equation (1) is implemented in the software via the symbolic
computing toolbox SymPy [14], which allows one to compute de
rivatives & integrals analytically, and its convenient functionality pro
vides a seamless way to expand equation (1) for any required potential.
SymPy symbolically computes derivatives for even the most complex
axial function representations, enabling a quick and convenient func
tional representation of the 3D magnetic & electric field surrounding
any round lens.

Expansion of equation (1) requires choosing the order of the
expansion, m, and the number of terms to calculate j. Calculation of a
single component (for example, x) of the series expansion of an axially
symmetric electrostatic lens (m = 0) with two terms, (j = 1) using
equation (1) is performed as follows:

∑m=0

k=0

(− 1)κx− 2κy2κ

(2κ)!(− 2κ)!
= 1

φ(x, y, z) =

(
∑j=2

κ=1

(− 1)κ4− κU2κ
0 (z)

κ!2
(
x2 + y2)κ

)

Ex = −
dφ
dx

= U′′(z)
x
2
− U′′′′(z)

x(x2 + y2)

16

(2)

To calculate the x component of the expansion for an axially sym
metric magnetic field with two terms, B(z), the potential φ(z) must be
replaced by the magnetic scalar potential ω(z), and the axial potential

U(z) must be replaced by the axial magnetic potential Ω(z), where the
quantities B(z) and Ω(z) are connected by:

B(z) = − μΩ′

(z) (3)

where μ is the permeability. thus:

ω(x, y, z) =

(
∑j=2

k=1

(− 1)κ4− κB2κ− 1
0 (z)

κ!2
(
x2 + y2)κ

)

Bx =
dω
dx

= − B′

(z)
x
2
+ B′′′ (z)

x(x2 + y2)

16

(4)

A similar process can be followed to obtain the y and z components of
an axially symmetric field distribution. Although usually for an axially
symmetric field distribution, cylindrical coordinates are more appro
priate, in this work we opt to use the cartesian representation because it
enables us to more easily compare the results of our aberration calcu
lations to previous work which also uses the cartesian representation
[19,20], and also because it more readily enables us to calculate the
trajectory of the electron in 3D as shown in the section parallelised
electron ray tracing. Once an axial field function is specified for a given
lens configuration, it is possible to reuse this expansion for numerous
calculations. For example, this paper shows how to use equation (1) with
two terms to trace thousands of rays in parallel through a series of
magnetic components and obtain an image of the electron spot that
contains third-order geometric aberrations, or use the expansion to
calculate the aberration coefficients for a round magnetic or electro
static lens using the aberration integral or the differential algebra
method.

The analytical axial field functions analysed in this paper are Glaser’s
Bell Shaped Field and Schiske’s Electrostatic Lens [21,22]

B(z) =
1

1 +
(

z
a

)2 (5)

ϕ(z) = ϕ0

⎛

⎜
⎝1 −

k2

1 +
(

z
a

)2

⎞

⎟
⎠ (6)

a and k in equation (5) and equation (6) are variables which affect
the shape of the axial distribution, and ϕ0 is the acceleration voltage of
the electron.

Although outside of the scope of this paper, it is possible to generate
the expanded series for a dipole, quadrupole & octupole and so on,
provided one knows the axial harmonic functions. However, in general,
this is not a straightforward problem to solve, and the author is only
aware of one example in the literature displaying how to calculate the
axial harmonics of a dipole system [23].

3. Linearised ordinary differential equation solutions of electric
and magnetic fields

The series expansion of a round electron optical lens field, as shown
by equation (1), enables the calculation of higher-order aberrations, but
only the axial field function is needed to calculate the first-order prop
erties of a lens. Combining the axial field function with the equations of
motion for an electron in a magnetic or electrostatic field creates a lin
earised ordinary differential equation (ODE) (equation (7)) which, when
solved, will calculate the first-order properties (focal length, magnifi
cation, principal image plane) of a lens [17,18] and provide a general
solution for any ray path with a different initial position or slope in the
plane of the object. The following function represents the
non-relativistic linearised ODE for magnetic & electrostatic lenses:

D. Landers et al.

Ultramicroscopy 250 (2023) 113738

3

x′′ +
ϕ

′

(z)
2ϕ̂

x′

+
ϕ′′(z) + η2B(z)2

4ϕ0
x = 0

y′′ +
ϕ

′

(z)
2ϕ̂

y′

+
ϕ′′(z) + η2B(z)2

4ϕ0
y = 0

(7)

Where x & y are electron coordinates as a function of z. Primes repre
sent a derivative w.r.t z, i.e. the slope of a ray. ϕ(z) and B(z) are axial
potential and field functions of a lens, respectively. ϕ0 is again the ac

celeration voltage of the electron. η is given by
̅̅̅̅̅
|e|
2m

√

.

e ∼ − 1.60217663 × 10− 19 C, and m ∼ 9.1093837 × 10− 31 kg.
When solving these equations to obtain a general solution, two rays

are traced with specific initial conditions through the electrostatic or
magnetic field, denoted g and h. The conventional method noted in the
literature proceeds as follows [18,24–26]: From a starting object posi
tion denoted z0, trace a ray denoted g that starts at a radial position of
1 m, with a slope of 0, and when traced through the lens, will determine
the focal length with respect to the centre of the lens. Calculation of a
second ray denoted h, that begins with a slope of 1, and a position of 0 m
at the object plane, traced through the lens determines the gaussian

Fig. 1. Linearised ODE solutions to Schiske’s Electrostatic Lens & Glaser’s Bell Shaped Field. Shown are the rays g (blue) and h (red) and how the object (black up
arrow) is imaged (black down arrow) by the lens. The inset shows the principal image plane (where the ray appears to come from) and its location behind the lens.

D. Landers et al.

Ultramicroscopy 250 (2023) 113738

4

image plane. When the ray g is traced further to the gaussian image
plane, its height determines the magnification of the image (see Fig. 1
for clarification). These two-ray solutions also form any other solution
beginning with a different set of initial conditions, which has the prac
tical use of enabling a full first-order description of the beam path with
any set of initial conditions for a single starting object position. The
solution rays g & h are also necessary when one wishes to calculate the
aberration coefficients of an electron optical component, which is dis
cussed further in Calculating aberrations of round lenses in Python.

4. Ordinary differential equation Solvers

The most common method chosen to solve the electron equations of
motion through an electron optical lens is usually an adaptive step size
Runge Kutta method [20,27]. The method chosen in this paper is the
RK5(4) method with Dormand Prince coefficients (RKDP54) [28]. This
method is an adaptive step size method which uses a fifth-order step to
advance the calculation, and a fourth-order step to estimate the error. If
the error is below a user-defined tolerance, the step size h of the algo
rithm is reduced until the error is below tolerance. The RKDP54 method
contains certain drawbacks, as it requires seven force evaluations per
step, which are the most expensive calculation when solving the equa
tions of motion, and the method is not symplectic, meaning the kinetic
energy of the system is not conserved. Thus, even though the error in the
calculation seems low, an unphysical particle trajectory can result when
solving the equations of motion. A symplectic integrator is of great
importance in the field of charged particle tracing of nuclear fusion
reactor designs, which requires tracing particles through magnetic fields
for an extended time in a periodic orbit. Fortunately, the distances and
time over which the electrons are propagated through electrostatic and
magnetic fields (and the accuracy required) within the electron micro
scope are low enough such that kinetic energy drift does not become an
issue. The linearised ODE (equation (7)) & the differential algebra
method (see Lens aberration analysis via the Differential Algebra
Method) presented solve the electron equations of motion via the
RKDP54 method, which allow the calculation to be sped up significantly
due to its adaptive step size feature.

However, when parallelising the ray tracing algorithm for real-time
beam visualisation, the code uses the symplectic first-order Euler
Cromer method, which only requires one force evaluation per propa
gation step. As a result, the Euler-Cromer method performs calculations
significantly faster per step than the RKDP54 method, with the trade-off
that the step size is non-adaptive and the global error rate is proportional
to the step size O(h). Furthermore, because the Euler-Cromer method is
far easier to implement, the parallelised version of this software opts for
the Euler-Cromer method when implementing the parallelised algo
rithm.

Fig. 1 shows the ray paths obtained when solving equation (7) with
the analytical field equations of (5) and (6) for a magnetic and elec
trostatic lens, and the initial conditions of g = 1, g′

= 0 & h = 0, h′

= 1
to obtain the first order properties of each lens. The inset in each figure
displays the principal image plane, where the ray appears to be deflected
from if the lens was treated as a thin lens that performs a single
deflection.

Table 1 shows the first-order properties of Glaser’s Bell-shaped field
and Schiske’s Electrostatic field that are obtained when solving the
linearised ODE via the RKDP54 method, and compares these results to
the analytical solutions of the first-order properties presented in [19,
29]. Good agreement between both methods is found, which allows us to
verify that the non-symplectic nature of the RKDP54 method does not
significantly impact the path of the electron ray and the first-order
properties. Results in Table 1 are presented with 15 significant figures.

5. Calculating aberrations of round lenses in Python

In a few cases, a straightforward analytic solution to the aberration

coefficients of an analytical axial lens function can be found in the
literature [29,30]. However, no such method usually exists, and mi
croscopists must resort to other computational methods such as the
aberration integral or differential algebra method [18,31]. The differ
ential algebra method formulates the solution to the general electron
equations of motion as a Taylor expansion, whose polynomial co
efficients represent the aberration coefficients, and this method is
available in MEBS & Cosy Infinity [7,32]. Another approach to obtaining
aberration coefficients should also be mentioned which is implemented
in the software EOD [8], which utilises a polynomial fitting method
[33], although this work does not implement this method.

This software implements both the aberration integral and differ
ential algebra methods into TEMGYM Advanced and recreates aberra
tion calculations found in the literature for the analytical potentials
presented by M.Cheng et al. and Z.Liu [20,27]. Note that the methods
presented here only calculate the real aberration coefficients. In the case
of asymptotic aberration coefficients, which occur when either or both
the object and image are located inside the lens field, then a different set
of aberration integrals must be solved [18]. The differential algebra
method implemented can only calculate the real aberration coefficients.

6. Aberration Polynomial

The polynomial form of the third-order geometric aberration co
efficients of an electron optical system can be obtained via a variational
method described by Hawkes [34] and can be written as follows:

x(3)i

M
= [x′

0 x0 − y0]Ar (8)

with

A =

⎡

⎣
B 2F D 2f
F 2C E c
f c e 0

⎤

⎦

r =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x′2
0 + y′2

0

x0x′2
0 + y0y′2

0

x2
0 + y2

0

x0y′

0 + x0y′

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where x0 and x′

o are the position and slope of the ray at the object plane,
M is the magnification of the image, x(3)

i is the third-order deviation of
the ray from the ideal paraxial ray at the image plane, and the matrix A is
composed of the individual aberration coefficients where B = Spherical
Aberration, C = Isotropic Astigmatism, D = Field Curvature, E =
Isotropic Distortion, F = Isotropic Coma, c = Anisotropic Astigmatism, e
= anisotropic astigmatism, f = anisotropic coma. B, F, C, D and E are
known as the five “Seidel Aberrations” [35], and a graphical represen
tation of their meaning can be found here by J. Savard [36]. c, f and e are
the anisotropic aberrations coefficients, and appear because of the
rotation applied to the electron as it passes through a magnetic field. The

Table 1
Comparison of first-order properties calculated via analytical solutions against
solving the linearised equations of motion.

Glaser’s Bell-Shaped
Field

Schiske’s Electrostatic
Field

Analytic Focal Length 0.04241592856688 0.31079488270664
ODE Solution Focal

Length
0.04241592856914 0.31079488270697

Relative Error 2.26 × 10− 12 3.30 × 10− 13

Analytic Magnification -0.728140280754384 -1.63329918013632
ODE Solution

Magnification
-0.728140280754499 -1.63329918013632

Relative Error 1.58 × 10− 13 0

D. Landers et al.

Ultramicroscopy 250 (2023) 113738

5

values of each of the aberration coefficients for a particular starting
position of the object on the z-axis can be obtained by solving the
appropriate aberration integral. See textbooks from P.Hawkes, J.Orloff
and M.Szilagyi [17,18,37] also for a more in depth overview. Numerous
formulations of aberration integrals for round magnetic & electrostatic
lenses can be found in the literature, and this software implements the
aberration integrals printed by P. Hawkes [18] for magnetic lenses and
those by Z. Liu [38] for electrostatic lenses. See the supplementary
section for the specific equations implemented in this software.

Expanding equation (6) creates a polynomial expression which de
scribes the third-order geometric aberrations:

The software in TEMGYM Advanced combines the linearised ODE
solutions, which return the principal rays g and h, with the symbolic
package SymPy that calculates derivatives of the analytic potential or
field to obtain the aberration integral. The software then utilises Simp
son’s rule implemented in the package SciPy [39] to solve the aberration
integral numerically. It is important to note also that only the aniso
tropic coefficients c, f & e appear with a non-zero value for a magnetic
lens.

7. Lens aberration analysis via the Differential Algebra method

The differential algebra method was introduced to electron optics by
M.Berz in the particle accelerator physics community in 1990 [40] as a
technique to calculate the aberrations of electron optical systems to
machine precision. This implementation can be found in a program
entitled "CosyInfinity" [32]. Eric Munro subsequently introduced the
differential algebra method into the electron beam design software
MEBS [7] and extended the method to calculate the aberration co
efficients of electron mirrors [41]. Radlicka has made further use of the
DA method to analyse the parasitic aberrations of a hexapole corrector
[42].

As far as the authors are aware, our software TEMGYM Advanced
represents the first time that the DA method for electron/ion optics has
been used in an open-source project and made freely accessible. This is

made possible by the freely accessible python wrapper for the C++ DA
library, DaceyPy [15].

Differential algebra (DA), also known as truncated power series
algebra (TPSA), is a method that can generate Taylor series expansions
of an output expression as a function of its input. The underlying
mathematical principles of differential algebra called "Dual Numbers"
were first introduced by William Clifford [43], which enables the alge
braic calculation of derivates and avoids the pitfalls of the finite dif
ference method. Dual numbers are the mathematical backbone of

automatic differentiation, enabling backpropagation at scale in many
machine-learning packages such as JAX [44] & PyTorch [45]. DA adopts
the dual number system such that any function of n variables can be
expanded into its Taylor series. Expanding a function as a Taylor series
via the DA method has an interesting application in the realm of aber
ration analysis in electron microscopy, as when the technique of DA is
used to solve the ODE of a particle transmitting through a lens, it readily
obtains the final coordinates of the particle as a Taylor expansion of the
initial conditions, whose coefficients represent the aberration co
efficients of the lens.

When computing a Taylor expansion, the number of coefficients σ

associated with each variable v as the order of the expansion n increases
is as follows -

σ =
(n + v)!
(n!v!)

(10)

To describe a linear solution (n = 1) of an optical system via a Taylor
expansion with four variables (x, y, x′

, y′ , v = 4), the number of Taylor
coefficients, σ is equal to 5 for each variable. In the case of third-order
geometric aberration coefficients, n = 3, and the number of total co
efficients per variable (and thus the number of derivatives) increases to
35 according to (10), hence the importance of automatic differentiation
& dual numbers in the DA method, which enables rapid and accurate
calculation of functions that contain multiple higher order derivatives.

The relationship between the initial and final coordinate of the
electron with Taylor series coefficients takes the following form:

n

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xf

x′

f

yf

y′

f

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
∑i+j+k+l=n

i, j, k, l=0∼n
x0

ix
′ j
0 y0

ky
′ l
0 n

⎡

⎢
⎢
⎣

Aijkl
Bijkl
Cijkl
Dijkl

⎤

⎥
⎥
⎦ (11)

Expanding the terms of this series with n = 3 generates a polynomial
whose coefficients are equal to the aberration coefficients obtained by
solving the appropriate aberration integral.

For example, A0300 and A0102 in (12) are equivalent to B in (9). Co
efficients which do not appear in (9) will have a value of zero in (12).

This work employs the Python package DaceyPy [15], a wrapper for
the C++ differential algebra library "DACE" [46] that enables us to
perform differential algebra in Python.

This software uses the trajectory equations of motion in a rotational
coordinate system to perform the DA computation and obtain the ab
erration coefficients, and are given by: [47]

x(3)i

M
= Bx′3

0 + Bx′

0 y′2
0 + 2Cx2

0x′

0 + 2Cx0y0y′

0 + Dx2
0x′

0 + Dy2
0x′

0 + Ex3
0 + Ex0y2

0 + 3Fx0x′2
0 + Fx0y′2

0 +

2Fx′

0y0y′

0 + cx2
0y′

0 − 2cx0x′

0y0 − cy2
0y′

0 − ex2
0y0 − ey3

0 + 2f x0x′

0y′

0 − 3f x′2
0 y0 − f y0y′2

0

(9)

x(3)i

M
= A3000x3

0 + A2010x2
0y0 + A1020x0y2

0 + A0030y3
0 + A0300x′3

0 + A0201x′2
0 y′

0 + A0102x′

0y′2
0 + A0003y′3

0 +

A1200x0x′2
0 + A1101x0x′

0y′

0 + A1002x0y′2
0 + A0210y0x′2

0 + A0111x′

0y0y′

0 + A0012y0y′2
0 + A2100x2

0x′

0+

A1110x0y0x′

0 + A2001y2
0x′

0 + A0201x2
0y′

0 + A1101x0y0y′

0 + A0201y2
0y′

0

(12)

D. Landers et al.

Ultramicroscopy 250 (2023) 113738

6

x′′ =
ρ2

2ϕ

(
dϕ
dx

− (x
′

− θ
′

y)
dϕ
dz

)

+
ηρ2
̅̅̅̅
ϕ

√ × (ρ
(
By − (y

′

+ θ
′

x)Bt
)
+ Fx

y′′ =
ρ2

2ϕ

(
dϕ
dy

− (y′

+ θ
′

x)
dϕ
dz

)

+
ηρ2
̅̅̅̅
ϕ

√ × (− ρ(Bx + (x′

− θ
′

y)Bt) + Fy

(13)

with

Fx = 2θ
′

y′

+ θ
′

x + θ′′y

Fy = − 2θ
′

x′

+ θ
′

y − θ′′x

ρ =

̅̅

1 + (x
′

− θ
′

y)2
+ (y

′

+ θ
′

x)2
√

Bt =
1
ρ
[
Bz + (x′

− θ
′

y)Bx + (y′

+ θ
′

x)By
]

θ
′

=
ηB(z)
2
̅̅̅̅̅
ϕ0

√

θ′′ =
ηB

′

(z)
2
̅̅̅̅̅
ϕ0

√

where θ is the rotation angle of the rotating coordinate frame relative to
the fixed frame, B(z) is the magnetic axial field distribution, ϕ(z) is the
electrostatic axial potential distribution equivalent to the following, and
again, ϕ0 is the initial acceleration voltage of the electron, and primes
denote derivatives w.r.t. z.

In the case of an electrostatic lens, the rotational coordinate system is
equivalent to the fixed coordinate system, as the electron does not rotate
about the axis. When calculating aberrations, the rotational coordinate
system is only relevant in the case of solving the electron trajectory in a
magnetic lens, as it allows direct interpretation of the results without
further calculation. If the object’s location is inside the field of a mag
netic lens, then an effect called Object Magnetic Immersion (OMI) [48]
further modifies the aberration coefficient values. To account for the
OMI effect, one must solve the electron trajectory in a fixed coordinate
system and then transfer it to the rotational coordinate system at the
end, which calculates the aberration coefficients with OMI included.
TEMGYM Advanced has not included this step, but see Z. Liu [20] for
more detail.

The main advantage of the differential algebra method is that it
avoids the need to formulate and calculate a series of aberration in
tegrals for an electron optical system to find the aberration coefficients.
In the case of electrostatic & magnetic lenses, the aberration integrals
are straightforward to formulate and solve up to third order, hence their
use as verification of aberration coefficients calculated in our TEMGYM
Advanced implementation. However, for more exotic systems involving
multiple components and for higher order aberrations, this procedure
becomes increasingly complicated [18].

The DA method is also comparatively simple to compute as only a
single ray needs to be traced through a system from the object plane to
the image plane to obtain the aberration coefficients to any desired
order. In previously published works results have been described up to
the fifth order [47].

The disadvantages are that the DA method requires an analytical
representation of the electric or magnetic field on the optical axis.
Requiring an analytical representation is a disadvantage because the
finite element method calculates the field of practical electron optical
lens designs (i.e. CAD models of a lens), which only returns a discrete set
of values that describe the field along the optical axis. Therefore, one
must either employ a suitable interpolation routine [49] or a fitting
measure of the axial field [50,51] to enable the analytical determination
of field values and their derivatives.

A Python-specific disadvantage is that the DA package DaceyPy is
incompatible with the standard ODE solvers available in other popular
python packages, such as SciPy’s odeint. One must implement an ODE
solver in pure Python to utilise this software, which will almost always

be slower than the highly optimised routines implemented in languages
such as Fortran.

Our programme TEMGYM Advanced is tested via two analytical axial
fields for electrostatic & magnetic lenses, attempting to repeat results
from M.Cheng et al. [27] and Z.Liu et al. [20], where the code in this
work also calculates the gaussian image plane for each of these lenses via
the linearised ODE solution (7), enabling us to know with certainty
where to trace the ray to obtain the aberration coefficients at the object
plane.

Reproducing some of the results found in the literature was chal
lenging, with the necessary details required for a faithful reproduction of
the work either missing or implied. For example, in the case of Z. Liu
et al.[20], the gaussian image plane’s location was omitted; to recreate
their results, a user must know this value exactly. The method to
calculate it is detailed by P. Hawkes [29], which requires solving an
elliptic integral and the details of this calculation can be found on the
GitHub repository associated with this publication [52].

Table 2 & Table 3 shows the results of our software which has
repeated calculations of the aberration coefficients of Glaser’s Bell-
Shaped magnetic field and Schiske’s Electrostatic field using the dif
ferential algebra method and the aberration integral method, with re
sults presented to 15 significant figures. Recreating the results of
previous publications to high precision to validate our implementation,
and required utilisation of the RKDP54 method with an adaptive step
size. The RKDP54 method’s adaptive step size feature significantly re
duces the time required to calculate the electron path through Glaser’s
bell-shaped field, where the object plane location is at z0 ∼ 0.034 m,

Table 2
Comparison of aberration coefficients calculated via the aberration integral
method, and calculated via the differential algebra method for Glaser’s bell-
shaped field.

Aberration
Type

Glasers Bell-Shaped Field
– Aberration Integral

Glasers Bell-Shaped Field
– Differential Algebra

Relative
Error

B -122.772441936280 -122.772441936290 8.14 ×
10− 14

F -3240.95230904754 -3240.95230904682 2.22 ×
10− 13

C -74284.4192292685 -74284.4192292831 1.96 ×
10− 13

D -142976.368793181 -142976.368793201 1.40 ×
10− 13

E -3251938.05175000 -3251938.05199103 7.41 ×
10− 11

c -938.227788619450 -938.227788619490 4.25 ×
10− 14

e -43364.7964718281 -43364.7964718253 6.41 ×
10− 14

f -874382.646193524 -874382.646193516 1.01 ×
10− 14

Table 3
Comparison of aberration coefficients calculated via the aberration integral
method, and calculated via the differential algebra method for Schiske’s elec
trostatic field.

Aberration
Type

Schiske’s Electrostatic
Field – Aberration
Integral

Schiske’s Electrostatic
Field – Differential
Algebra

Relative
Error

B -122.772441936280 -122.772441936290 8.14 ×
10− 14

F -3240.95230904754 -3240.95230904682 2.22 ×
10− 13

C -74284.4192292685 -74284.4192292831 1.96 ×
10− 13

D -142976.368793181 -142976.368793201 1.40 ×
10− 13

E -3251938.05175000 -3251938.05199103 7.41 ×
10− 11

D. Landers et al.

Ultramicroscopy 250 (2023) 113738

7

and the gaussian image plane location is at zg ∼ 34.0 m. The distance
that the code must trace the ray is of the order of 3 × 101 m, yet to
achieve the required precision, a step size of ~ 1 × 10− 6 m must be used
when the electron is in the vicinity of the central field. The calculation
will run significantly longer if it utilises a fixed step size because the lens
field is located within a small window around 0 m. The higher-order
adaptive step size of the RKDP54 method will complete the calcula
tion with the appropriate step size when the field values are large, and as
the ray exits the field, the step size will increase, enabling the comple
tion of the calculation in a matter of seconds. It is important to note that
the software in its current form can only calculate aberration coefficients
of non-relativistic electrons. In future versions, we plan to include this
ability in our ray-tracing routines. In the case of magnetic fields, this is
trivial, as the kinetic energy of the electron in constant. In the case of
electrostatic fields, this becomes slightly more involved, as the gamma
factor will change as the electron moves through the electrostatic lens
and this must be accounted for correctly.

8. Parallelised Electron Ray Tracing

TEMGYM Advanced utilises the high-performance python compila
tion package numba [53] to accelerate the time to solve the electron
equations of motion through a series of electrostatic or magnetic fields
and increases the number of rays that can be calculated simultaneously
via parallelisation. Parallelisation utilises multiple threads on a CPU or
GPU to perform many calculations simultaneously. The GitHub re
pository [52] associated with this work demonstrates the potential of
this feature by presenting an example Jupyter notebook and two inter
active models using the visualisation package PyQTGraph [54].

The Jupyter notebook demonstrates the capabilities of running
parallelised code on a modern workstation CPU or GPU and gives users
who wish to explore further a minimal working example to trace elec
tron rays in parallel for their problem. Fig. 2 shows an example of tracing
many rays in parallel through a single lens. Our hardware can trace 1024
rays through 0.02 m with 20000 steps (stepsize = 1 × 10− 5) in a time
of ∼ 84.8 ms ± 4.83 ms.

Parallelised ray tracing code such as this also enables the creation of
basic interactive models which demonstrate some of the basic align
ments of a TEM in a physically accurate manner. The first interactive
model designed in PyQTGraph mimics the behaviour of a double
deflection system and a magnetic lens, recreated via two saddle coils and
a magnetic lens model via Glaser’s bell-shaped field (Fig. 3).

Although in a TEM, the electron’s velocity is usually so high that a
single deflector can model a deflection in the centre of the component
via the high energy approximation [55], this example illustrates the
modelling of multiple magnetic components in succession using TEM
GYM Advanced. Magnetic deflection systems can be modelled in many
ways. For example, akin to a rotationally symmetric lens, our software
can use equation (1) to model the field of a deflector dipole system
everywhere in 3D space if the axial fields and their harmonics along the
z-axis are known. Although Lencova has shown how to calculate the
harmonic fields of a saddle and deflector coil [23], and these results
could interface with the SymPy expression to expand equation (1), this
code has opted instead to use an alternative representation.

The alternative method chosen recreates the shape of a saddle coil via
a series of conducting wires and solves the Biot-Savart numerically using
the open-source package bfieldtools [16], to obtain a 3D array of the
magnetic field value surrounding the saddle coil. A linear interpolation
routine then finds the field values at the required location to update the
electrons’ velocity and position. Once a ray has exited the field of a
component and is in field-free space, it is trivial to propagate the dis
tance to the next component in a straight line, thus saving computational
cost to transport the electron between components. The arrangement of
components in this model mimics a deflector lens system. The GitHub
repository [52] contains an interactive model of a double-deflector lens
system that demonstrates this software’s real-time calculation
capabilities.

The next interactive model recreates the astigmatism correction
alignment of two quadrupole magnets and a magnetic lens. Akin to a
dipole, the software models a quadrupole via a series of conducting
wires. A quadrupole field focuses rays more strongly on one axis,
enabling correction of the astigmatism aberration in a magnetic lens that

Fig. 2. 1024 electron rays calculated in parallel over 0.02 m and a step size of 10 μm. Inset shows the effect of aberrations on the beam when using multiple terms in
Laplace’s Expansion while solving the equation of motion.

D. Landers et al.

Ultramicroscopy 250 (2023) 113738

8

suffers from astigmatism. To create a toy model of astigmatism via
Glaser’s bell-shaped lens, the response of the field includes an angular
component, which results in a different focal length on each axis, rec
reating an elliptical beam spot. Users can adjust the strength of each
quadrupole to correct for the astigmatic Glaser’s bell-shaped lens. This
interactive demo calculates 2048 electron rays in parallel through two
deflectors and a lens and includes a coarse and fine adjustment of the
deflector ratio that enables the user to find the beam tilt/beam shift
alignment in this example. The beam spot window displays the final
location of all 2048 ray paths, but note that in the 3D window, the
software only displays a subset of ray paths (512 electron rays) to keep
the calculation fast. Further improvements to the software could enable
it to display more electron ray paths.

Although these models are simplified representations, they demon
strate how to apply parallelisation with a modern CPU or GPU to elec
tron microscopy. Typically, commercial microscope designs are
unavailable to users; however, users can easily implement an axial field
function and interface it with our software or use designs from an open-
source microscope, such as the NanoMi project [56], that could pair with
this code. Access to the designs of an electron microscope would more
easily enable the creation of a complete digital twin of a microscope via
our software. A digital twin of a TEM that can accurately calculate the
electron beam path and generate a realistic beam spot in near real-time
has the potential for many exciting applications in the future. For
example, it could enable exploration of automated control of the base
alignment steps via machine learning, akin to how many researchers are
using digital twin models of many complicated systems such as Tokamak
reactors to achieve state-of-the-art automated control in complicated
environments where classic control methods struggle to perform
[57–60]. A digital twin simulation also has value as an interactive
teaching tool, helping to train the next generation of microscopists by
providing them with a behind-the-scenes view of how an electron mi
croscope behaves. Furthermore, the methods presented in this paper can
be used to calculate the first order properties of real electron optical

lenses, which can then be used to create a first-order microscope model
via the code presented in TEMGYMBasic [12].

9. Conclusion

A suite of open-source tools that model and characterise analytic
fields of electron microscope lenses has been presented, which enables
the performance analysis of lens designs and the visualisation of a beam
spot in real time. The software demonstrates how users can use the
expansion of an electron lens potential/field with methods to solve the
electron equations of motion to calculate the first-order lens properties
or third geometric aberration coefficients. Two methods have been
implemented to calculate aberration coefficients via the DA and the
aberration integral method, enabling us to verify each algorithm’s re
sults. The software has also reproduced the aberration coefficient results
of Glaser’s Bell-Shaped Field and Schiske’s Electrostatic lens from pre
viously published results. Furthermore, this paper presents a method to
achieve parallelised ray tracing of an electron beam through a series of
electron optical components, generating an electron beam spot with
third-order aberrations in a model electron microscope in near real-time.
These models help to move us closer towards a realisation of a digital
twin of the electron microscope while doing so with an open-source
ethos that enables reproducible and verifiable results.

TEMGYM Advanced demonstrates how the rich ecosystem of pack
ages available in Python enable rapid prototyping and development. For
example, the packages available in Python enable symbolic equation
manipulation via SymPy [14], hardware acceleration of functions that
parallelise and speed up the code via Numba [53], calculation of mag
netic fields surrounding a wire via bfieldtools [16], fast calculation of
Taylor expansions via DaceyPy [15], and development of a basic GUI via
PyQTGraph [54]. In the current iteration of this software, we have
focused on applying our methods to the most basic of microscope
components operating in TEM mode, and there is a rich number of ways
to improve and expand upon the code presented in this paper. The

Fig. 3. Screenshot of interactive TEM models that perform real-time ray tracing in parallel through a series of components. Top – Double deflector system and lens,
with the beam spot and GUI displayed on the right-hand side and the 3D model on the left. Bottom – Astigmatism correction system with two quadrupoles and a lens.
The beam spot and GUI are displayed on the right-hand side, and the 3D model is on the left.

D. Landers et al.

Ultramicroscopy 250 (2023) 113738

9

software could also easily be adapted to calculate aberrations and
electron paths through a microscope operating in STEM mode. TEMGYM
Advanced could also calculate the aberration coefficients of practical
lens designs whose field was calculated via FEM methods and enable the
calculation of aberration coefficients for relativistic electrons, and future
work will focus on completing this goal. It is also possible to calculate
fifth-order geometric and chromatic aberration coefficients with rela
tively few changes. With more effort, the software will be able to model
more exotic microscope components such as Wien filters, electron mir
rors, aberration correctors and an electron gun, and we plan to also
include these features in future versions of the software.

Code availability

The code associated with this paper is available in the corresponding
GitHub repository [52]: https://github.com/AMCLab/TEMGYM
Advanced

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The research was supported by the Irish Research Council EPSPG/
2019/509 and the Ernst Ruska-Centre for Microscopy and Spectroscopy
with Electrons (ER-C).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.ultramic.2023.113738.

References

[1] A. Clausen, et al., LiberTEM: Software platform for scalable multidimensional data
processing in transmission electron microscopy, J. Open Source Softw. 5 (2020)
2006.

[2] Johnstone, D. N. et al. pyxem/pyxem: pyxem 0.10.0. (2019). 10.5281/ZENODO.
3533653.

[3] F. De La Peña, et al., hyperspy/hyperspy: Release v1.6.5, zndo (2021), https://doi.
org/10.5281/ZENODO.5608741.

[4] M. Ziatdinov, A. Ghosh, C.Y.(Tommy) Wong, S.V. Kalinin, AtomAI framework for
deep learning analysis of image and spectroscopy data in electron and scanning
probe microscopy, Nat. Mach. Intell. 2022 (2022) 1–12, https://doi.org/10.1038/
s42256-022-00555-8.

[5] T. Kluyver, et al., Jupyter Notebooks – a publishing format for reproducible
computational workflows, in: Position. Power Acad. Publ. Play. Agents Agendas -
Proc. 20th Int. Conf. Electron. Publ. ELPUB 2016, 2016, pp. 87–90, https://doi.
org/10.3233/978-1-61499-649-1-87.

[6] M.D. Wilkinson, et al., The FAIR Guiding Principles for scientific data management
and stewardship, Sci. Data 3 (2016) 1–9, 2016 31.

[7] E. Munro, Numerical simulation methods for electron and ion optics, Nucl.
Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
645 (2011) 266–272.

[8] B. Lencová, J. Zlámal, A new program for the design of electron microscopes, Phys.
Procedia 1 (2008) 315–324.

[9] P. McBean, P. Murphy, R. Sagawa, L. Jones, The User Adjustable Pole-piece:
Expanding TEM Functionality Without Compromise, Microsc. Microanal. 28
(2022) 2636–2638.

[10] T. Harvey, C. Ophus, Automated Design of Electron Mirrors for Multipass Electron
Microscopy and 4D-STEM+EELS, Microsc. Microanal 28 (1927) 2022.

[11] R. Ciancio, et al., e-DREAM: the European Distributed Research Infrastructure for
Advanced Electron Microscopy, Microsc. Microanal 28 (1927) 2022.

[12] Landers, D., Clancy, I., Dunin-Borkowski, R. E., Weber, D. & Stewart, A. TEMGYM
Basic: A Transmission Electron Microscopy ray tracing software for training and
progress towards a digital twin. Submitted.

[13] C.R. Harris, et al., Array programming with NumPy, Nat. 585 (2020) 357–362,
2020 5857825.

[14] A. Meurer, et al., SymPy: Symbolic computing in python, PeerJ Comput. Sci. 2017
(2017) e103.

[15] giovannipurpura/daceypy: Python wrapper of DACE, the Differential Algebra
Computational Toolbox. Available at: https://github.com/giovannipurpur
a/daceypy. (Accessed: 21st December 2022).

[16] A.J. Mäkinen, et al., Magnetic-field modeling with surface currents. Part I. Physical
and computational principles of bfieldtools, J. Appl. Phys. 128 (2020), 063906.

[17] M. Szilagyi, Motion of Charged Particles in Electric and Magnetic Fields, Electron
Ion Opt. (1988) 13–50, https://doi.org/10.1007/978-1-4613-0923-9_2.

[18] H. Peter, K. Erwin, Principles of Electron Optics, Basic Geometrical Optics, Elsevier,
2018.

[19] M. Cheng, T. Tang, Y. Zhenhua, Study on differential algebraic aberration method
for electrostatic electron lenses, Optik (Stuttg) 112 (2001) 250–254.

[20] Z. Liu, On the map method for electron optics, Institute of Physics Conference
Series 175 (2005) 185–192.

[21] W. Glaser, Strenge Berechnung magnetischer Linsen der Feldform, Zeitschrift für
Phys 117 (1941) 285–315.

[22] P. Schiske, An Electrostatic Single Lens permitting Rigorous Calculation, Nat. 171
(1953) 443–444, 1953 1714349.

[23] M. Lenc, B. Lencovà, Analytical and numerical computation of multipole
components of magnetic deflectors, Rev. Sci. Instrum. 68 (1998) 4409.

[24] M.De Graef, Introduction to Conventional Transmission Electron Microscopy,
Introd. to Conv. Transm. Electron Microsc. (2003), https://doi.org/10.1017/
CBO9780511615092.

[25] M. Szilagyi, Electron and Ion Optics, Electron Ion Opt (1988), https://doi.org/
10.1007/978-1-4613-0923-9.

[26] El-Kareh, A. Electron beams, lenses, and optics. (2012).
[27] M. Cheng, T. Tang, Z Yao, Study on differential algebraic chromatic aberration

method for Glaser’s bell-shaped magnetic lenses, Opt 112 (2001) 483–486.
[28] J.R. Dormand, P.J Prince, A family of embedded Runge-Kutta formulae, J. Comput.

Appl. Math. 6 (1980) 19–26.
[29] P.W. Hawkes, E.(Erwin) Kasper, Principles of electron optics, Applied geometrical

optics Volume 2 (1989).
[30] P.W. Hawkes, The relation between the spherical aberration and distortion

coefficients of electron probe-forming and projector lenses, J. Phys. D. Appl. Phys.
1 (1968) 1549–1558.

[31] A.J. Dragt, E Forest, Lie Algebraic Theory of Charged-Particle Optics and Electron
Microscopes, Adv. Electron. Electron Phys. 67 (1986) 65–120.

[32] K. Makino, M. Berz, COSY INFINITY Version 9, Nucl. Instruments Methods Phys.
Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 558 (2006) 346–350.

[33] M.A.R. Krielaart, P. Kruit, Flat electron mirror, Ultramicroscopy 220 (2021).
[34] Hawkes, P. W. Magnetic electron lenses. 462 (1982).
[35] L. Seidel, Seidel, L. Zur Dioptrik, Über die Entwicklung der Glieder 3ter Ordnung

welche den Weg eines ausserhalb der Ebene der Axe gelegene Lichtstrahles durch
ein System brechender Medien bestimmen, vo Herrn Dr. L. Seidel, AN 43 (1856)
289.

[36] Savard, J. J. G. The Five Seidel Aberrations. Available at: http://www.quadibloc.
com/science/opt0505.htm. (Accessed: 3rd February 2023).

[37] J. Orloff, Handbook of charged particle optics, CRC Press/Taylor & Francis, 2009.
[38] Z. Liu, Differential algebraic method for aberration analysis of typical electrostatic

lenses, Ultramicroscopy 106 (2006) 220–232.
[39] P. Virtanen, et al., SciPy 1.0: fundamental algorithms for scientific computing in

Python, Nat. Methods 17 (2020) 261–272, 2020 173.
[40] M. Berz, Computational aspects of optics design and simulation: COSY INFINITY,

Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc.
Equip. 298 (1990) 473–479.

[41] L. Wang, J. Rouse, E. Munro, H. Liu, X Zhu, Aberration analysis of electron mirrors
by a differential algebraic method, Opt. - Int. J. Light Electron Opt. 119 (2008)
90–96.

[42] T. Radlička, Correction of parasitic aberrations of hexapole corrector using
differential algebra method, Ultramicroscopy 204 (2019) 81–90.

[43] C. Clifford, Preliminary Sketch of Biquaternions, Proc. London Math. Soc. s1-4
(1871) 381–395.

[44] google/jax: Composable transformations of Python+NumPy programs:
differentiate, vectorize, JIT to GPU/TPU, and more. Available at: https://github.
com/google/jax. (Accessed: 21st December 2022).

[45] Paszke, A. et al. Automatic differentiation in PyTorch. (2017).
[46] dacelib/dace: Differential Algebra Computational Toolbox. Available at: htt

ps://github.com/dacelib/dace. (Accessed: 21st December 2022).
[47] Z. Liu, Differential algebraic description for third- and fifth-order aberrations of

electromagnetic lenses, Nucl. Instruments Methods Phys. Res. Sect. A Accel.
Spectrometers, Detect. Assoc. Equip. 519 (2004) 154–161.

[48] J. Ximen, Z Liu, Third-order geometric aberrations in Glaser’s bell-shaped
magnetic lens for object magnetic immersion, Opt 111 (2000) 355–358.

[49] Y. Kang, T. Tang, Y. Ren, X. Guo, Differential algebraic method for computing the
high order aberrations of practical electron lenses, Optik (Stuttg) 118 (2007)
158–162.

[50] M. Berz, Modern map methods for charged particle optics, Nucl. Inst. Methods
Phys. Res. A 363 (1995) 100–104.

D. Landers et al.

https://github.com/AMCLab/TEMGYMAdvanced
https://github.com/AMCLab/TEMGYMAdvanced
https://doi.org/10.1016/j.ultramic.2023.113738
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0001
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0001
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0001
https://10.5281/ZENODO.3533653
https://10.5281/ZENODO.3533653
https://doi.org/10.5281/ZENODO.5608741
https://doi.org/10.5281/ZENODO.5608741
https://doi.org/10.1038/s42256-022-00555-8
https://doi.org/10.1038/s42256-022-00555-8
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0006
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0006
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0007
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0007
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0007
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0008
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0008
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0009
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0009
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0009
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0010
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0010
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0011
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0011
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0013
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0013
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0014
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0014
https://github.com/giovannipurpura/daceypy
https://github.com/giovannipurpura/daceypy
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0016
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0016
https://doi.org/10.1007/978-1-4613-0923-9_2
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0018
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0018
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0019
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0019
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0020
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0020
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0021
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0021
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0022
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0022
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0023
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0023
https://doi.org/10.1017/CBO9780511615092
https://doi.org/10.1017/CBO9780511615092
https://doi.org/10.1007/978-1-4613-0923-9
https://doi.org/10.1007/978-1-4613-0923-9
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0027
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0027
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0028
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0028
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0029
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0029
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0030
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0030
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0030
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0031
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0031
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0032
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0032
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0033
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0035
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0035
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0035
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0035
http://www.quadibloc.com/science/opt0505.htm
http://www.quadibloc.com/science/opt0505.htm
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0037
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0038
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0038
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0039
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0039
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0040
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0040
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0040
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0041
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0041
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0041
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0042
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0042
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0043
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0043
https://github.com/google/jax
https://github.com/google/jax
https://github.com/dacelib/dace
https://github.com/dacelib/dace
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0047
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0047
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0047
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0048
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0048
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0049
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0049
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0049
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0050
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0050

Ultramicroscopy 250 (2023) 113738

10

[51] L. WANG, Simulation of electron optical systems by differential algebraic method
combined with Hermite fitting for practical lens fields, Microelectron. Eng. 73–74
(2004) 90–96.

[52] AMCLab/TEMGYMAdvanced. Available at: https://github.com/AMCLab/TEM
GYMAdvanced. (Accessed: 3rd February 2023).

[53] Lam, S. K., Pitrou, A. & Seibert, S. Numba: A LLVM-based Python JIT Compiler.
Proc. Second Work. LLVM Compil. Infrastruct. HPC - LLVM ’15 10.1145/2833157.

[54] Moore, O. & Campagnola, L. Introduction — pyqtgraph 0.12.4.dev0
documentation. Available at: https://pyqtgraph.readthedocs.io/en/latest/introduc
tion.html. (Accessed: 13th September 2022).

[55] G. Pozzi, Particles and Waves in Electron Optics and Microscopy, Adv. Imaging
Electron Phys. 194 (2016) 1–354.

[56] M. Malac, et al., NanoMi: An open source electron microscope hardware and
software platform, Micron 163 (2022), 103362.

[57] J. Degrave, et al., Magnetic control of tokamak plasmas through deep
reinforcement learning, 414 | Nat 602 (2022).

[58] P.R. Wurman, et al., Outracing champion Gran Turismo drivers with deep
reinforcement learning, Nat. 602 (2022) 223–228, 2022 6027896.

[59] M.G. Bellemare, et al., Autonomous navigation of stratospheric balloons using
reinforcement learning, Nat. 588 (2020) 77–82, 2020 5887836.

[60] O. Vinyals, et al., Grandmaster level in StarCraft II using multi-agent reinforcement
learning, Nature 575 (2019) 350–354.

D. Landers et al.

http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0051
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0051
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0051
https://github.com/AMCLab/TEMGYMAdvanced
https://github.com/AMCLab/TEMGYMAdvanced
https://10.1145/2833157
https://pyqtgraph.readthedocs.io/en/latest/introduction.html
https://pyqtgraph.readthedocs.io/en/latest/introduction.html
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0055
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0055
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0056
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0056
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0057
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0057
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0058
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0058
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0059
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0059
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0060
http://refhub.elsevier.com/S0304-3991(23)00055-4/sbref0060

	TEMGYM Advanced: Software for electron lens aberrations and parallelised electron ray tracing
	1 Introduction
	2 Analytical electrostatic and magnetic field models with SymPy
	3 Linearised ordinary differential equation solutions of electric and magnetic fields
	4 Ordinary differential equation Solvers
	5 Calculating aberrations of round lenses in Python
	6 Aberration Polynomial
	7 Lens aberration analysis via the Differential Algebra method
	8 Parallelised Electron Ray Tracing
	9 Conclusion
	Code availability
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Supplementary materials
	References

