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Abstract: Offline reinforcement learning leverages previously collected offline datasets to learn optimal policies with no necessity to
access the real environment. Such a paradigm is also desirable for multi-agent reinforcement learning (MARL) tasks, given the combin-
atorially increased interactions among agents and with the environment. However, in MARL, the paradigm of offline pre-training with
online fine-tuning has not been studied, nor even datasets or benchmarks for offline MARL research are available. In this paper, we facil-
itate the research by providing large-scale datasets and using them to examine the usage of the decision transformer in the context of
MARL. We investigate the generalization of MARL offline pre-training in the following three aspects: 1) between single agents and mul-
tiple agents, 2) from offline pretraining to online fine tuning, and 3) to that of multiple downstream tasks with few-shot and zero-shot
capabilities. We start by introducing the first offline MARL dataset with diverse quality levels based on the StarCraftll environment,
and then propose the novel architecture of multi-agent decision transformer (MADT) for effective offline learning. MADT leverages the
transformer’s modelling ability for sequence modelling and integrates it seamlessly with both offline and online MARL tasks. A signific-
ant benefit of MADT is that it learns generalizable policies that can transfer between different types of agents under different task scen-
arios. On the StarCraft II offline dataset, MADT outperforms the state-of-the-art offline reinforcement learning (RL) baselines, includ-
ing BCQ and CQL. When applied to online tasks, the pre-trained MADT significantly improves sample efficiency and enjoys strong per-
formance in both few-short and zero-shot cases. To the best of our knowledge, this is the first work that studies and demonstrates the ef-
fectiveness of offline pre-trained models in terms of sample efficiency and generalizability enhancements for MARL.

Keywords: Pre-training model, multi-agent reinforcement learning (MARL), decision making, transformer, offline reinforcement
learning.

Citation: L. Meng, M. Wen, C. Le, X. Li, D. Xing, W. Zhang, Y. Wen, H. Zhang, J. Wang, Y. Yang, B. Xu. Offline pre-trained multi-
agent decision transformer. Machine Intelligence Research, vol.20, no.2, pp.233-248, 2023. http://doi.org/10.1007/s11633-022-1383-7

1 Introduction

Multi-agent reinforcement learning (MARL) al-
gorithmsl!l play an essential role in solving complex de-
cision-making tasks by learning from the interaction data
between computerised agents and (simulated) physical
environments. It has been typically applied to self-driv-
ingl24, order dispatchingl® 6, modelling population dy-
namics”l, and gaming AlIsl 9. However, the scheme of
learning policy from experience requires the algorithms
with high computational complexity[l9 and sample effi-
ciency due to the limited computing resources and high
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cost resulting from the data collection(11"14], Furthermore,
even in domains where the online environment is feasible,
we might still prefer to utilize previously-collected data
instead; for example, if the domain’s complexity requires
large datasets for effective generalization. In addition, a
policy trained on one scenario usually cannot perform
well on another even under the same task. Therefore, a
universal policy is critical for saving the training time of
general reinforcement learning (RL) tasks.

Notably, the recent advance of supervised learning has
shown that the effectiveness of learning methods can be
maximized when they are provided with very large mod-
elling capacity, trained on very large and diverse
datasets[!5717, The surprising effectiveness of large, gener-
ic models supplied with large amounts of training data,
such as GPT-3[18], spurs the community to search for
ways to scale up thus boosting the performance of RL
models. Towards this end, Decision transformer(l% is one
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of the first models that verifies the possibility of solving
conventional (offline) RL problems by generative traject-
ory modelling, i.e., modelling the joint distribution of the
sequence of states, actions, and rewards without tempor-
al difference learning.

The technique of transforming decision-making prob-
lems into sequence modelling problems has opened a new
gate for solving RL tasks. Crucially, this activates a nov-
el pathway toward training RL systems on diverse data-
sets2022] in much the same manner as in supervised
learning, which is often instantiated by offline RL tech-
niques(?3]. Offline RL methods have recently attracted tre-
mendous attention since they enable agents to apply self-
supervised or unsupervised RL methods in settings where
online collection is infeasible. We, thus, argue that this is
particularly important for MARL problems since online
exploration in multi-agent settings may not be feasible in
many settings24, but learning with unsupervised or meta-
learned?5] outcome-driven objectives via offline data is
still possible. However, it is unclear yet whether the ef-
fectiveness of sequence modelling through transformer ar-
chitecture also applies to MARL problems.

In this paper, we propose multi-agent decision trans-
formers (MADT), an architecture that casts the problem
of MARL as conditional sequence modelling. Our man-
date is to understand if the proposed MADT can learn
through pre-training a generalized policy on offline data-
sets, which can then be effectively used to other down-
stream environments (known or unknown). As a study
example, we specifically focus on the well-known chal-
lenge for MARL tasks: the StarCraft multi-agent chal-
lenge (SMAC)20l, and demonstrate the possibility of solv-
ing multiple SMAC tasks with one big sequence model.
Our contribution is as follows: We propose a series of
transformer variants for offline MARL by leveraging the
sequential modelling of the attention mechanism. In par-
ticular, we validate our pre-trained sequential model in
the challenging multi-agent environment for its sample ef-
ficiency and transferability. We built a dataset with dif-
ferent skill levels covering different variations of SMAC
scenarios. Experimental results on SMAC tasks show that
MADT enjoys fast adaptation and superior performance
via learning one big sequence model.

The main challenges in our offline pre-training and on-
line fine-tuning problems are the out-of-distribution and
training paradigm mismatch problems. We tackle these
two problems with the sequential model and pre-train the
global critic model offline.

2 Related work

Offline deep reinforcement learning. Recent
works have successfully applied RL in robotics con-
trol?”, 28] and gaming AlIs? online. However, many works
attempt to reduce the cost resulting from online interac-
tions by learning with neural networks from an offline
dataset named offline RL methods?3l. There are two
classes to divide the offline RL methods: constraint-based
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and sequential model-based methods. For the constraint-
based methods, a straightforward method is to adopt the
off-policy algorithm and regard the offline datasets as a
replay buffer to learn a policy with promising perform-
ance. However, experience existing in offline datasets and
interaction with online environments have different distri-
butions, which causes the overestimation in the off-policy
(value-based) method3%. Substantial works presented in
offline RL aim at resolving the distribution shift between
the static offline datasets and the online environment in-
teractions(30-32l, In addition, depending on the dynamic
planning ability of the transition model, Matsushima et
al.83, 34 learn different models offline and regularize the
policy efficiently. In particular, Yang et al.35 36 con-
strain off-policy algorithms in the multi-agent field. Re-
lated to our work for the improvement of sample effi-
ciency, Nair et al.37 derive the Karush Kuhn-Tucker
(KKT) conditions of the online objective, generating an
advantage weight to avoid the out-of-distribution (OOD)
problem. For the sequential model-based methods, De-
cision transformer outperforms many state-of-the-art off-
line RL algorithms by regarding the offline policy train-
ing process as a sequential modelling and testing it
onlinel'® 38, In contrast, we show a transformer-based
method in the multi-agent field, attempting to transfer
across many scenarios without extra constraints. By shar-
ing the sequential model across agents and learning a
global critic network offline, we conduct a pre-trained
multi-agent policy that can be continuously fine-tuned
online.

Multi-agent reinforcement learning. As a natur-
al extension from single-agent RL, MARLI[ attracts
much attention to solve more complex problems under
Markov games. Classic algorithms often assume multiple
agents to interact with the environment online and col-
lect the experience to train the joint policy from scratch.
Many empirical successes have been demonstrated in
solving zero-sum games through MARL methodsl® 39
When solving decentralized partially observable Markov
decision processes (Dec-POMDPs) or potential games/40l,
the framework of centralized training and decentralized
execution (CTDE) is often employed=43 where a cent-
ralized critic is trained to gather all agents’ local observa-
tions and assign credits. While CTDE methods rely on
the individual-global-max assumption4®], another thread
of work is built on the so-called advantage decomposition
lemmal4”l, which holds in general for any cooperative
game; such a lemma leads to provably convergent multi-
agent trust-region methods/4¥l and constrained policy op-
timization methods[9.

Transformer. Transformer® has achieved a great
breakthrough to model relations between the input and
output sequence with variable length, for the sequence-to-
sequence problems/5l], especially in machine translation!5?]
and speech recognition3. Recent works even reorganize
the vision problems as the sequential modelling process
and construct the state-of-the-art (SOTA) model with
pretraining, named vision transformers (ViT)[I6, 54, 55,
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Due to the Markovian property of trajectories in offline
datasets, we can utilize Transformer as that in language
modelling. Therefore, Transformer can bridge the gap
between supervised learning in the offline setting and re-
inforcement learning in online interaction because of the
representation capability. We claim that the components
in Markov games are sequential, then utilise the trans-
former for each agent to fit a transferable MARL policy.
Furthermore, we fine-tune the learned policy via trial-
and-error.

3 Methodology

In this section, we demonstrate how the transformer is
applied to our offline pre-training MARL framework.
First, we introduce the typical paradigm and computa-
tion process for the multi-agent reinforcement learning
and attention-based model. Then, we introduce an offline
MARL method, in which the transformer sequentially
maps between the local observations and actions of each
agent in the offline dataset via parameter sharing. Then
we leverage the hidden representation as the input of the
MADT to minimize the cross-entropy loss. Furthermore,
we introduce how to integrate the online MARL with
MADT in constructing our whole framework to train a
universal MARL policy. To accelerate the online learning,
we load the pre-trained model as a part of the MARL al-
gorithms and learn the policy based on experience in the
latest buffer stored from the online environment. To train
a universal MARL policy quickly adapting to other tasks,
we bridge the gap between different scenarios from obser-
vations, actions, and available actions, respectively. Fig. 1
overviews our method from the perspective of offline pre-
training with supervised learning and online fine-tuning
with MARL algorithms. The main contributions of this
work are summarized as follows: 1) We conducted an off-
line dataset for multi-agent offline pre-training on the
well-known challenging task, SMAC; 2) To improve the
sample efficiency online, we propose fine-tuning the pre-
trained multi-agent policy instantiated with the sequence
model by sharing policy among agents and show the
strong capacity of sequence modelling for multi-agent re-
inforcement learning in the few-shot and zero-shot set-
tings; 3) We propose pre-training an actor and a critic to
fine-tune with the policy-based network. In contrast to

the imitation learning that only fits a policy network off-
line, MADT trains the actor and critic offline together
and fine-tunes them online in the RL-style training
scheme. We also give some empirical conclusions, such as
the effect of reward-to-go in the online fine-tuning stage
and the multi-task padding method on SMAC.

Multi-agent reinforcement learning. For the
Markov game, which is a multi-agent extension of the
Markov decision process (MDP), there is a tuple repres-
enting the essential elements (S, A, R, P, n,v), where S de-
notes the state space of n agents, S; x Sz--- xS, — S.
A; is the action space of each agent i, P:S; Xx A; —
PD(S;) denotes the transition function emitting the dis-
tribution over the state space and A is the joint action
space, R;: S x A; = R is the reward function of each
agent and takes action following their policies
m(als) € II; : S — PD(A) from the policy space II;, where
IT; denotes the policy space of agent i, a € A;, and s € S;.
Each agent aims to maximize its long-term reward
> ~'rt, where rf € R; denotes the reward of agent i in
time ¢ and 7 denotes the discount factor. In the cooperat-
ive setting, we also denote the r; with r shared among
agents for the simplification.

Attention-based model. The attention-based mod-
el has shown its stable and strong representation capabil-
ity. The scale dot-production attention uses the self-at-
tention mechanism demonstrated in [50]. Let @ € Rf1*da
be the quries, K € R**% be the keys, and V € Rtv*%
be the values, where t. are the element numbers of differ-
ent inputs and d. are the corresponding element dimen-
sions. Normally, ¢, = t, and dq = d. The outputs of self-
attention are computed as

T
Attention(Q, K,V) = softmax(?/I;; 4 (1)
k

where the scalar 1/1/d; is used to prevent the softmax

function from entering regions that have very small
gradients. Then, we introduce the multi-head attention
process as follows:

MultiHead(Q, K, V') = Concat(heady, - - - 7headh)Wo

(2)

head; = Attention(QWS°, KW, vw).  (3)
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Fig. 1  Overview of the pipeline for pre-training the general policy and fine-tuning it online
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The position-wise feed-forward network is another
core module of the transformer. It consists of two linear
transformations with a ReLU activation function. The di-
mensionality of inputs and outputs is dyoder, and that of
the feed forward layer is dss. Specially,

FFN(z) = max(0,2W1 + b1)W> + b, (4)

where Wy € R¥modet X455 and Wy € R 5> dmodel are the
weights, and b; € R7f and by € R%medel are the biases.
Across different positions are the same linear transform-
ations. Note that the position encoding for leveraging the
order of the sequence is as follows:

PE(pos, 2i) = sin(pos/10 OOOQi/d"wdel)
PE(pos, 2i + 1) = cos(pos/10 0002i/dm°d€l). (5)

3.1 Multi-agent decision transformer

Algorithm 1 shows the offline training process for a
single-task of MADT, in which we autoregressively en-
code the trajectories from the offline datasets in offline
pre-trained MARL and train the transformer-based net-
work with supervised learning. We carefully reformulate
the trajectories as the inputs of the causal transformer
that are different from those in the Decision transfor-
merll%, We deprecate the reward-to-go and actions that
are encoded with states together in the single-agent DT.
We will interpret the reason for this in the next section.
Similar to the seq2seq models, MADT is based on the
autoregressive architecture with reformulated sequential
inputs across timescales. The left part of Fig.2 shows the
architecture. The causal transformer encodes the agent 's
trajectory sequence 77 at the time step ¢ to a hidden rep-
resentation h§ = (h1,h2,-++ ,h) with a dynamic mask.
Given h:, the output at the time step ¢ is based on the
previous data and then consumes the previously emitted
actions as additional inputs when predicting a new ac-
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tion.

Algorithm 1. MADT-Offline: Multi-agent decision
transformer

1) Input:  Offline dataset D : {7 : (s, 0, al,vf, d},

r_ 1}y, vf denotes the available action

2) Initialize 6 for the Causal transformer

3) Initialize « as the learning rate, C' as the context
length, and n as the maximum agent number

,Tn} in D do

5) Chunk the trajectory into 7 = {r!,s! al}ic1.c as

4) for 7 ={m, -+, T, -

the ground truth samples, where C' is the context
length and mask the trajectory when d! is true

6) for 7} {T T ‘Tic} in 7: do

7) Mask illegal actions via P(a}|7 % 9/) =0if
vl is true

8) Predict the action &} = argmax,, P(a:|T % 0/)

9) Update 6 with 6 = arg H;E;LX = S P(al)x

log P(af|7*;0")

10) end for
11) end for

Trajectories reformulation as input. We model
the lowest granularity at each time step as a modelling
unit z; from the static offline dataset for the concise rep-
resentation. MARL has many elements, such as
(global__state, local__observation), different from the single
agent. It is reasonable for sequential modelling methods
to model them in a MDP. Therefore, we formulate the
trajectory as follows:

T = (21, @, x0),  where e = (s, 01, a;)

where s¢ denotes the global shared state, o} denotes the
individual observation for agent i at time step ¢, and a!
denotes the action. We regard z: as a token and process
the whole sequence similar to the scheme in the language
modelling.

Output sequence construction. To bridge the gap
between training with the whole context trajectory and

! Critic loss
(;D—. e.g., Huber loss
Actor loss
aval, e.g., PPO loss

I

Critic network

Ei

@ Local observation @ Global state
@ Agent's action @ All agents’ actions

Fig.2 Detailed model structure for offline and online MADT
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testing with only previous data, we mask the context
data to autoregressively output in the time step ¢ with
previous data in (1,---,¢t—1). Therefore, MADT pre-
dicts the sequential actions at each time step using the
decoder as follows:

Y = a; = arg mgxpg(ah', a1, ,Qt—1) (6)
where 6 denotes the parameters of MADT and 7 denotes
the trajectory including the global state s, local
observation o before the time step ¢, pp is the distribution
over the legal action space under the available action v.

Core module description. MADT differs from the
transformers in conventional sequence modelling tasks
that take inputs with position encoding and decode the
encoded hidden representation autoregressively. We use
the masking mechanism with a lower triangular matrix to
compute the attention:

T
Attention(Q, K,V) = softmax(?/Idi + M) v (7
k

where M is the mask matrix that ensures that the input
at the time step t can only correlate with the input from
(1,---,t —1). We employ the cross-entropy (CE) as the
total sequential prediction loss and utilize the available
action v to ensure agents take those illegal actions with a
probability of zero. The CE loss can be represented as
follows:

1
C

Mo

LCE(G) = P(CL;) log P(dt\n, &<t; 6) (8)

t

1

where C is the context length, a; is the ground truth
action, 7¢ includes {si:t,01:t}. @ denotes the output of
MADT. The cross-entropy loss shown above aims to
minimize the distribution distance between the prediction
and the ground truth.

3.2 Multi-agent decision transformer with
PPO

The method above can fit the data distribution well,
resulting from the sequential modelling capacity of the
transformer. However, it fails to work well when pre-
training on the offline datasets and improves continually
by interacting with the online environment. The reason is
the mismatch between the objectives of the offline and
online phase. In the offline stage, the imitation-based ob-
jective conforms to a supervised learning style in MADT
and ignores measuring each action with a value model.
When the pre-trained model is loaded to interact with the
online environment, the buffer will only collect actions
conforming to the distributions of the offline datasets
rather than those corresponding to high reward at this

state. That means the pre-trained policy is encouraged to
choose an action to be identical to the distribution in the
offline dataset, even though it leads to a low reward.
Therefore, we need to design another paradigm, MADT-
PPO, to integrate RL and supervised learning for fine-
tuning in Algorithm 2. Fig.2 shows the pre-training and
fine-tuning framework. A direct method is to share the
pre-trained model across each agent and implement the
REINFORCE algorithmPS. However, only actors result in
higher variance, and the employment of a critic to assess
state values is necessary. Therefore, in online MARL, we
leverage an extension of PPO, the state-of-the-art al-
gorithm on tasks of StarCraft, multi-agent particle envir-
onment (MPE), and even the return-based game
Hanabil’”. In the offline stage, we adopt the strategy
mentioned before to pre-train an offline policy for each
agent m(0;,a;) and additionally use the global state to
pre-train a centralized critic Vg(s). In the fine-tuning
stage, we first load the offline pre-trained sharing policy
as each agent’s online initial policy m;(0s,a;). When the
critic is pre-trained, we instantiate the centralized critic
with the pre-trained model as V;(s). To fine-tune the pre-
trained multi-agent policy and critic model, multiple
agents clear the buffer and interact with the environ-
ment to learn the policy via maximizing the following
PPO objective:

; E S POy AT [min(wA(s,a), clip(w,
1—e,1+€)A(s,a))] 9)

where w = m9(0;,a:)/mo,,,(0i,a;) denotes the importance

weight using in PPO-style algorithms, A denotes the

advantage function computed by reward and the critic

model and € denotes the clip parameter. The detailed

fine-tuning pipeline can be found in Algorithm 2.

Algorithm 2. MADT-Online: Multi-agent decision

transformer with PPO

1) Input: Offline dataloader D, Pretrained MADT policy
with parameter 6

2) Initialize § and ¢ are the parameters of an actor
mo(ai|o;) and critic Vi (s) respectively, which could be
inherited directly from pre-trained models

3) Initialize n as the agent number, v as the discount
factor, and € as clip ratio.

,Tn} in D do

5) Sample 7; = {s’,0},at}ie1.c as the ground truth,

4)for 7 = {11, - , 70, -

where C is the context length

6) Compute the advantage
5,25, a1) — Vi(s)

7) Compute the important weight w = mg(0s,a:)/
0514 (01, a:)

8) Update 0; for i € 1,--- ,n via:

9) 0; = argmax Eswpy  a~mg, [Clip(w, 1 — €, 1+
)A(s, as)]

function A(s,a;) =
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10) Compute the MSE loss Lg = $[>,v'r" — Vi(s)]?
11) Update the critic network via ¢ = arg m(gn Ly
12) end for

3.3 Universal model across scenarios

To train a universal policy for each of the scenarios in
the SMAC which might vary with agent number in fea-
ture space, action space, and reward ranges, we consider
the modification list below.

Parameters sharing across agents. When offline
examples are collected from multiple tasks or the test
phase owns the different agent numbers from the offline
datasets, the difference in agent numbers across tasks is
an intractable problem for deciding the number of actors.
Thus, we consider sharing the parameters across all act-
ors with one model as well as attaching one-hot agent IDs
into observations for compatibility with a variable num-
ber of agents.

Feature encoding. When the policy needs to gener-
alize to new scenarios that arise from different feature
shapes, we propose encoding all features into a universal
space by padding zero at the end and mapping them to a
low-dimensional space with fully connected networks.

Action masking. Another issue is the different ac-
tion spaces across scenarios. For example, fewer enemies
in a scenario means fewer potential attack options as well
as fewer available actions. Therefore, an extra vector is
utilized to mute the unavailable actions so that their
probabilities are always zero during both the learning and
evaluating processes.

Reward scaling. Different scenarios might vary in
reward ranges and lead to unbalanced models during
multi-task offline learning. To balance the influence of ex-
amples from different scenarios, we scale their rewards to
the same range to ensure that the output models have
comparable performance across different tasks.

4 Experiments

We show three experimental settings: offline MARL,
online MARL by loading the pre-trained model, and few-
shot or zero-shot offline learning. For the offline MARL,
we expect to verify the performance of our method by
pre-training the policy and directly testing on the corres-
ponding maps. In order to demonstrate the capacity of
the pre-trained policy on the original or new scenarios, we
aim to demonstrate the fine-tuning in the online environ-
ment. Experimental results in offline MARL show that
our MADT-offline in Section 3.1 outperforms the state-of-
the-art methods. Furthermore, MADT-online in Section
3.2 can improve the sample efficiency across multiple
scenarios. Besides, the universal MADT trained from
multi-task data with MADT-online generalizes well in
each scenario in a few-shot or even zero-shot setting.
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4.1 Offline datasets

The offline datasets are collected from the running
policy, MAPPO[8, on the well-known SMAC task[26],
Each dataset contains a large number of trajectories:
T := (8¢, 0¢, Ay, 7t, dones, v;)f—y. Different from D4RLEY,
our datasets conform to the property of DecPOMDP,
which owns local observations and available actions for
each agent. In the appendix, we list the statistical proper-
ties of the offline datasets in Tables A1l and A2.

4.2 Offline multi-agent reinforcement lear-
ning

In this experiment, we aim to validate the effective-
ness of the MADT offline version in Section 3.1 as a
framework for offline MARL on the static offline datasets.
We train a policy on the offline datasets with various
qualities and then apply it to an online environment,
StarCraft(26l. There are also baselines under this setting,
such as behavior cloning (BC), as a kind of imitation
learning method showing stable performance on single-
agent offline RL. In addition, we employ the convention-
al effective single-agent offline RL algorithms, BCQ[&2,
CQLBY, and ICQMB, and then use the extension method
by simply mixing each agent value network proposed by
[35] for multi-agent setting, denoting it as “xx-MA”. We
compare the performance of the MADT offline version
with other abovementioned offline RL algorithms under
online evaluation in the MARL environment. To verify
the quality of our collected datasets, we chose data from
different levels and trained the baselines as well as our
MADT. Fig.3 shows the overall performance on various
quality datasets. The baseline methods enhance their per-
formance stably, indicating the quality of our offline data-
sets. Furthermore, our MADT outperforms the offline
MARL baselines and converges faster across easy, hard,
and super hard maps (2s3z, 3sbz, 3sbz VS. 3s6z,
corridor). From the initial performance in the evalu-
ation period, our pretrained model gives a higher return
than baselines in each task. Besides, our model can sur-
pass the average performance in the offline dataset.

4.3 Offline pre-training and online fine-
tuning

The experimental designed in this subsection intends
to answer the question: Is the pre-training process neces-
sary for online MARL? First, we compare the online ver-
sion of MADT in Section 3.2 with and without loading
the pre-trained model. If training MADT only by online
experience, we can view it as a transformer-based
MAPPO replacing the actor and critic backbone net-
works with the transformer. Furthermore, we validate
that our framework MADT with the pre-trained model
can improve sample efficiency on most easy, hard, and
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Fig. 3 Performance of offline MADT compared with baselines on four easy or (super-)hard SMAC maps. The dotted lines represent the
mean values in the training set. Columns (a)—(d) are average returns from (poor, medium, good) datasets from top to the bottom.

super hard maps.

Necessity of the pretrained model. We train our
MADT based on the datasets collected from a map and
fine-tune it on the same map online with the MAPPO al-
gorithm. For comparison fairness, we use the transformer
as both actor and critic networks with and without the
pre-trained model. Primarily, we choose three maps from
easy, hard, and super hard maps to validate the effective-
ness of the pre-trained model in Fig.4. Experimental res-
ults show that the pre-trained model converges faster
than the algorithm trained from scratch, especially in
challenging maps.

Improving sample efficiency. To validate the
sample efficiency improvement by loading our pre-trained
MADT and fine-tuning it with MAPPO, we compare the
overall framework with the state-of-the-art algorithm,
MAPPODBSE], without the pre-training phase. We measure
the sample efficiency in terms of the time to threshold
mentioned in [60], which denotes the number of online in-
teractions (timesteps) to achieve a predefined threshold in
Table 1, and our pre-trained model needs much less than
the traditional MAPPO to achieve the same win rate.

4.4 Generalization with multi-task pre-
training

Experiments in this section explore the transferability
of the universal MADT mentioned in Section 3.3, which
is pre-trained with mixed data from multiple tasks. De-
pending on whether the downstream tasks have been seen
or not, the few-shot experiments are designed to validate

the adaptability of the seen tasks. In contrast, the zero-
shot experiments are designed for the held-out maps.

Few-shot learning. The results in Fig.5(a) show
that our method can utilize multi-task datasets to train a
universal policy and generalize to all tasks well. Pre-
trained MADT can achieve higher returns than the mod-
el trained from scratch when we limit the interactions
with the environment.

Zero-shot learning. Fig.5(b) shows that our univer-
sal MADT can surprisingly improve performance on
downstream tasks even if it has not been seen before (3
stalkers VS. 4 zealots).

4.5 Ablation study

The experiments in this subsection are designed to an-
swer the following research questions: RQ1: Why should
we choose MAPPO for the online phase? RQ2: Which
kind of input should be used to make the pre-trained
model beneficial for the online MARL? RQ3: Why can-
not the offline version of MADT be improved in the on-
line fine-tuning period after pre-training?

Suitable online algorithm. Although the selection
of the MARL algorithm for the online phase should be
flexible according to specific tasks, we design experi-
ments to answer RQ1 here. As discussed in Section 3, we
can train Decision Transformer for each agent and fine-
tune it online with an MARL algorithm. An intuitive
method is to load the pre-trained transformer and take it
as the policy network for fine-tuning with the policy
gradient method, e.g., REINFORCEPS. However, for the
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Fig. 4 Average returns with and without the pre-trained model

Table 1 Number of interactions needed to achieve the win rate 20%, 40%, 60%, 80% and 100% for the training policy with
(MAPPO/pre-trained MADT). “~” means no more samples are needed to reach the target win rate.
“o00” represents that policies cannot reach the target win rate.

# Samples to achieve the win rate # Samples to achieve the win rate
Maps Maps
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
2mVS. 1z : : ~ 2 _ 3sVS.5z : _ 87E+5/  9E+5/ 2E+6/
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Fig. 5 Few-shot and zero-shot validation results. (a) shows the average returns of the universal MADT pre-trained from all five tasks
data and the policy trained from scratch, individually. We limit the environment interaction to 2.5M steps. (b) shows the average
returns of a held-out map (3s VS. 4z), where the universal MADT is trained from data on (2m VS. 1z, 2s VS. 1sc, 3m, 3s VS. 3z).

reason of the high variance mentioned in Section 3.2, we performance in improving the sample efficiency during

choose MAPPO as the online algorithm and compare its the online period in Fig.6(a).
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Fig. 6 Ablation results on a hard map, 5m_vs_6m, for validating the necessity of (a) MAPPO in MADT-online, (b) Input formulation,

(c) online version of MADT.

Dropping reward-to-go in MADT. To answer
RQ2, we compare different inputs embedded into the
transformer, including the combination of state, reward-
to-go, and action. We find reward-to-go harmful to on-
line fine-tuning performance, as shown in Fig.6(b). We
suppose the distribution of reward-to-go is the mismatch
between offline data and online samples. That is, the re-
wards of online samples are usually lower than those of
offline data due to stochastic exploration at the begin-
ning of the online phase. It deteriorates the fine-tuning
capability of the pre-trained model, and based on
Fig.6(b), we only choose states as our inputs for pre-
training and fine-tuning.

Integrating online MARL with MADT. To an-
swer RQ3, we directly apply the offline version of MADT
for pre-training and fine-tune it online. However, Fig.6(c)
shows that it cannot be improved during the online
phase. We analyse the results caused by the absence of
motivation for chasing higher rewards and conclude that
offline MADT is supervised learning and tends to fit its
collected experience even with unsatisfactory rewards.

5 Conclusions

In this work, we propose MADT, an offline pre-
trained model for MARL, which integrates the trans-
former to improve sample efficiency and generalizability

in tackling SMAC tasks. MADT learns a big sequence
model that outperforms the state-of-the-art methods in
offline settings, including BC, BCQ, CQL, and ICQ.
When applied in online settings, the pre-trained MADT
can drastically improve the sample efficiency. We ap-
plied MADT to train a generalizable policy over a series
of SMAC tasks and then evaluated its performance un-
der both few-shot and zero-shot settings. The results
demonstrate that the pre-trained MADT policy adapts
quickly to new tasks and improves performance on differ-
ent downstream tasks. To the best of our knowledge, this
is the first work that demonstrates the effectiveness of
offline pre-training and the effectiveness of sequence mod-
elling through transformer architectures in the context of
MARL.

Appendix A Properties of datasets

We list the properties of our offline datasets in Tables A1
and A2.

Appendix B Detailsofhyper-parameters

Details of hyper-parameters used for MADT experi-
ments are listed from Tables B1-B5.

Table A1 Properties for our offline dataset collected from the experience of multi-agent PPO on the easy maps of SMAC

Maps Difficulty Data quality # Samples Reward distribution (mean (%std))

3m Easy 3m-poor 62 528 6.29 (£ 2.17)
3m-medium - -

3m-good 1775 159 19.99 (+ 0.18)
8m Easy 8m-poor 157 133 6.43 (+ 2.41)
8m-medium 297 439 11.95 (+ 0.94)
8m-good 2781 145 20.00 (+ 0.16)
253z Easy 2s3z-poor 147 314 7.69 (£ 1.77)
2s3z-medium 441474 12.85 (+ 1.37)
2832-good 4177 846 19.93 (£ 0.67)
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Table Al (continued) Properties for our offline dataset collected from the experience of multi-agent PPO on the easy maps of SMAC

Machine Intelligence Research 20(2), April 2023

Maps Difficulty Data quality # Samples Reward distribution (mean (+std))
2s vs_lsc Easy 2s_vs_lsc-poor 12 887 6.62 (£ 2.74)
2s vs_lsc-medium 33232 11.70 (£ 0.73)
2s_vs_lsc-good 1972972 20.23 (£ 0.02)
3s_vs 4z Easy 3s_vs_4z-poor 216 499 7.58 (£ 1.45)
3s_vs_4z-medium 335 580 12.13 (£m 1.38)
3s_vs_4z-good 3080 634 20.19 (£ 0.40)
MMM Easy MMM-poor 326 516 7.64 (+ 2.05)
MMM-medium 648 115 12.23 (+ 1.37)
MMM-good 2423 605 20.08 (+ 1.67)
So_many_baneling Easy So_many_baneling-poor 1542 9.08 (£ 0.66)
So_many_baneling-medium 59 659 13.31 (+ 1.14)
So_many baneling-good 1376 861 19.46 (+ 1.29)
3s vs 3z Easy 3s_vs_3z-poor 52 807 8.10 (£ 1.37)
3s_vs 3z-medium 80 948 11.87 (+ 1.19)
3s_vs 3z-good 149 906 20.02 (£ 0.09)
2m_vs_lz Easy 2m_vs_lz-poor 25 333 5.20 (+ 1.66)
2m_vs_lz-medium 300 11.00 (£ 0.01)
2m_vs_lz-good 120 127 20.00 (£ 0.01)
Bane_vs_bane Easy Bane_vs_bane-poor 63 1.59 (£ 3.56)
Bane_vs_bane-medium 3507 14.00 (% 0.93)
Bane_vs_bane-good 458 795 19.97 (£ 0.36)
1c3s5z Easy 1c3s5z-poor 52988 8.10 (£ 1.65)
1c3sbz-medium 180 357 12.68 (+ 1.42)
1c3s5z-good 2400 033 19.88 (+ 0.69)
Table A2 Properties for our offline dataset collected from the experience of multi-agent
PPO on the hard and super hard maps of SMAC
Maps Difficulty Data quality # Samples Reward distribution (mean (£std))
5m_vs_6m Hard 5m_vs_6m-poor 1324213 8.53 (£ 1.18)
5m_vs_6m-medium 657 520 11.03 (* 0.58)
5m_vs_6m-good 503 746 20 (£ 0.01)
10m_vs 11m Hard 10m_vs_11m-poor 140 522 7.64 (£ 2.39)
10m_vs_1lm-medium 916 845 12.72 (+ 1.25)
10m_vs_11m-good 895 609 20 (£ 0.01)
2¢_vs 64zg Hard 2¢_vs_64zg-poor 10 830 8.91 (+ 1.01)
2c_vs_64zg-medium 97 702 13.05 (+ 1.37)
2c_vs_64zg-good 2631121 19.95 (+ 1.24)
8m_vs_9m Hard 8m_vs_9m-poor 184 285 8.18 (£ 2.14)
8m_vs_9m-medium 743 198 12.19 (+ 1.14)
8m_vs _9m-good 911 652 20 (£ 0.01)
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Table A2 (continued) Properties for our offline dataset collected from the experience of multi-agent
PPO on the hard and super hard maps of SMAC

Maps Difficulty Data quality # Samples Reward distribution (mean (%std))
3s_vs_5z Hard 3s_vs_5z-poor 423 780 6.85 (& 2.00)
3s_vs 5z-medium 686 570 12.12 (*+ 1.39)
3s_vs_5z-good 2604 082 20.89 (+ 1.38)
3sbz Hard 3sbz-poor 365 389 8.32 (£ 1.44)
3s5z-medium 2047601 12.61 (+ 1.32)
3s52-good 1448 424 18.45 (+ 2.03)
3sbz_vs_3s6z Super hard 3s5z_vs_3s6z-poor 594 089 7.92 (£ 1.77)
3s5z_vs_3s6z-medium 2214201 12.56 (+ 1.37)
3s5z_vs_3s6z-good 1542571 18.35 (+ 2.04)
27m_vs 30m Super hard 27m_vs_30m-poor 102 003 7.18 (£ 2.08)
27m_vs_30m-medium 456 971 13.19 (+ 1.25)
27m_vs_30m-good 412941 17.33 (£ 1.97)
MMM2 Super hard MMM2-poor 1017 332 7.87 (£ 1.74)
MMM2-medium 1117508 11.79 (+ 1.28)
MMM2-good 541 873 18.64 (+ 1.47)
Corridor Super hard Corridor-poor 362 553 4.91 (£ 1.71)
Corridor-medium 439 505 13.00 (+ 1.32)
Corridor-good 3163243 19.88 (+ 0.99)

Table Bl Common hyper-parameters for all MADT experiments for pre-training on a map, taking 3m (easy) as an example

Hyper-parameter Value Hyper-parameter Value Hyper-parameter Value
Offline_train_critic True Max_timestep 400 Eval_epochs 32
n_layer 2 n_head 2 n_embd 32
Online_buffer_size 64 Model_type State_only Mini_batch_size 128

Table B2 Hyper-parameters for MADT experiments in Fig. 3

Maps offline_episode_num offline_Ir
2s3z 1000 1E-4
3s5z 1000 1E-4
3s5z_vs 3s6z 1000 5E-4
Corridor 1000 5E-4

Table B3 Hyper-parameters for MADT experiments in Figs. 4, 6 and Table 1

Maps Offline_episode_num Offline_Ir Online_Ir Online_ppo_epochs
2c_vs_64zg 1000 5E-4 5E-4 10
10m_vs_11m 1000 5E-4 5E-4 10
8m_vs_9m 1000 1E-4 5E-4 10
3s_vs_bz 1000 1E4 5E—4 10
3s5z 1000 1E-4 5E—4 10
3m 1000 1E-4 5E-4 15
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Table B3 (continued) Hyper-parameters for MADT experiments in Figs. 4, 6 and Table 1
Maps Offline_episode_num Offline_Ir Online_Ir Online_ppo_epochs

2s_vs_lsc 1000 1E-4 5E-4 15
MMM 1 000 1E-4 1E-4 5
So_many_baneling 1000 1E-4 1E-4 5
8m 1000 1E-4 1E-4 5
3s_vs 3z 1000 1B-4 1E-4 5
3s vs_dz 1000 1E-4 1E-4 5
Bane_vs_bane 1000 1E-4 1E-4 5
2m vs 1z 1000 1E-4 1E-4 5
2c_vs_64zg 1000 1E-4 1E-4 5
5m_vs_6m 1000 1E-4 1E-4 10
Corridor 1000 1E-4 1E-4 10
3s5z_vs_3s6z 1000 1E-4 1E-4 10

Table B4 Hyper-parameters for MADT . The i@ages or .other thir(} party mat.:erial in this ar‘?—

experiments in Fig. 5(a) icle are included in the article’'s Creative Commons li-

cence, unless indicated otherwise in a credit line to the

Hyper-parameter Value material. If material is not included in the article’s Creat-

Offline_map_lists  [3s_vs_4z, 2m_vs_1z, 3m, 2s_vs_lsc, 3s_vs_3z]

Offline_episode num [200, 200, 200, 200, 200]

Offline Ir 5E-4
Online Ir 1E-4
Online_ppo_epochs 5

Table B5 Hyper-parameters for MADT
experiments in Fig. 5(b)

Hyper-parameter Value

Offline_map_lists [2m_vs_1z, 3m, 2s_vs_1sc, 3s_vs_3z]

Offline_episode_num [250, 250, 250, 250]

Offline Ir 5E-4
Online_Ir 1E-4
Online_ppo_epochs 5
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