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Signatures of T cell immunity revealed using
sequence similarity with TCRDivER algorithm
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Changes in the T cell receptor (TCR) repertoires have become important markers for

monitoring disease or therapy progression. With the rise of immunotherapy usage in cancer,

infectious and autoimmune disease, accurate assessment and comparison of the “state" of

the TCR repertoire has become paramount. One important driver of change within the

repertoire is T cell proliferation following immunisation. A way of monitoring this is by

investigating large clones of individual T cells believed to bind epitopes connected to the

disease. However, as a single target can be bound by many different TCRs, monitoring

individual clones cannot fully account for T cell cross-reactivity. Moreover, T cells responding

to the same target often exhibit higher sequence similarity, which highlights the importance

of accounting for TCR similarity within the repertoire. This complexity of binding relationships

between a TCR and its target convolutes comparison of immune responses between indi-

viduals or comparisons of TCR repertoires at different timepoints. Here we propose

TCRDivER algorithm (T cell Receptor Diversity Estimates for Repertoires), a global method of

T cell repertoire comparison using diversity profiles sensitive to both clone size and sequence

similarity. This approach allowed for distinction between spleen TCR repertoires of immu-

nised and non-immunised mice, showing the need for including both facets of repertoire

changes simultaneously. The analysis revealed biologically interpretable relationships

between sequence similarity and clonality. These aid in understanding differences and

separation of repertoires stemming from different biological context. With the rise of avail-

ability of sequencing data we expect our tool to find broad usage in clinical and research

applications.
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An individuals T cell repertoire changes throughout a
lifetime as a result of foreign- and self-stimulation. The T
cell compartment of adaptive immunity plays a crucial

role in cancer immunity, auto-immune and infectious diseases.
Adaptive immune responses as a whole draw on diverse T cell
receptors (TCRs). This vast pool of TCRs is generated through
the imprecise stochastic process of V(D)J recombination giving
rise to 1020 (or more) possible TCR combinations1,2. The number
of possible generated TCRs is much larger than those estimated to
be present within any individual T cell repertoire3–5. T cells
activate and proliferate upon epitope-specific contact, thereby
increasing their clone size. Due to the phenomenon of epitope
spreading, T cells can diversify their antigen-specific response by
reacting to non-dominant epitopes present on the antigen, in
addition to the main dominant-epitope driven response6,7.
Moreover, T cells are cross-reactive meaning that a single TCR
can bind multiple epitope targets. However, T cells responding to
the same antigen might not proliferate and increase their clone
size in the same manner thereby adding complexity to the T cell-
epitope response. Most importantly, this binding promiscuity
ensures broad epitope recognition responses, despite the limited
number of unique TCRs within each repertoire8–10. On the other
hand, a single epitope can be bound by multiple different TCRs. It
has been shown that T cells responding to the same epitope share
more sequence similarity11. This complexity of composition of
TCR repertoires makes it difficult to compare and stratify indi-
viduals based on immune status or to even establish a healthy
baseline.

Initial experimental approaches, such as spectratyping12–15 and
flow cytometry16,17 aimed to reveal oligoclonal expansions of
T cells by tracking clonal sizes of CDRβ3s with the same length
with the aim of capturing immune responses. However, T cell
expansions in an organism are not exclusive to encounters with
disease-associated antigens and these methods provided no
insight into TCR similarity. Recent advances in high throughput
sequencing (HTS) now allow for characterisation of adaptive
immune receptors in increasing depth and with improved
quantitation. HTS methods supply information on both clone
sizes and sequence relatedness. However, this development has
given rise to the need for summary measures to interpret the data
generated by such experiments. Several methods have emerged to
fulfil the demand to stratify repertoires either by the TCR antigen
specificities11,18,19 or by finding characteristics of TCR
sequences20–24. Still, many of the employed methods aim to
uncover epitope similarity without simultaneously examining
T cell clone sizes, or vice versa. We hypothesised that measures
that capture the global repertoire structure by incorporating both
characteristics of the adaptive immune response could potentially
be used to stratify patients for disease outcome or therapy. Pro-
viding the complexity of the immune response is encoded both in
sequence similarity and TCR clone sizes, such an analysis could
allow for applications in immune monitoring e.g., following
immunisation, therapy at different points in time or disease
progression by comparison of “snapshots" of the repertoire state.
Thereby, transcending the notion of “public TCRs" into “public
repertoire structures" responsible for therapeutic outcome.

To address this hypothesis we sought to further develop a
popular approach in characterisation of repertoires through
measures of diversity. They have been widely used in evaluation
of therapy and disease effects23,25–29 or attempts at repertoire
classification and diagnosis4,30,31. Yet, there are a variety of ways
in which the intuitive idea of diversity can be formalised. In the
naive sense, diversity is estimated based on the number of and
clone sizes of unique TCRs in a repertoire. Commonly used
diversity estimates are richness (number of different TCR clones),
clonality (number of large clones) and diversity indices such as

Shannon entropy32, Simpson33, Gini-Simpson34 and Berger-
Parker35 index. Different diversity indices will weight large clones
differently, thereby imposing a threshold on the clone frequencies
within the repertoire. Thus, counting unique clones by richness
will give rare or small clones the same weight as large clones.
Entropy, will give more weight to large clones than to small or
rare clones. No single index will capture all information about the
clone size distribution. Notably, this ambiguity has led to no clear
consensus which diversity index should be applied in practical
cases of interpreting immune diversity36,37. The approach of
using individual diversity indices provides no repertoire char-
acteristics truly independent of sample size3. Moreover, it can
lead to erroneous conclusions on ordering repertoires based on
the choice of diversity index (Fig. 1a). And finally, measures of
diversity should not only rely on clone counts, but should also
account for sequence similarity of receptors.

The first problem of debatable usage of individual indices, can
be surmounted by estimating them simultaneously in a single
expression of diversity: the diversity of order q, D(q), which
subsumes most of the commonly used indices34,38. Accounting
for the distribution of clone sizes, diversity can be estimated in
the form of “diversity profiles"37,39,40. Such profiles define
“effective numbers" of receptors when viewed at different reso-
lutions, making use of a single parameter (q) to systematically
shift focus from counting each unique clone to giving weight only
to the largest clone in a repertoire (Fig. 1a, c). The use of diversity
profiles gives insight into T cell clone size distributions, as the
relationship between diversities calculated at different clonality
weights q can be correlated to the ratio of large to small clones
within a repertoire41. This approach has been previously imple-
mented for one B- and three T cell repertoires in the work of
Greiff et al.39. Keeping in mind that the study focused solely on
clonal frequency, the authors report remarkable separation based
on immunological status, in 3 out of 4 immune repertoire data-
sets. However, as naive diversity estimates only take clone fre-
quencies into account they are not sensitive to minor polyclonal
expansions of TCRs reacting to the same antigen, which can
theoretically mount a unified front of antigen-specific similar
T cells.

The second problem, of incorporating sequence similarity in
diversity estimates, has been less thoroughly explored. One
approach is to count clusters of similar receptors19. Another
approach is to use an effective number with sensitivity to
sequence similarity42. The authors find that “similarity redefines
the diversity of complex systems" and it is lower than naive
diversity. This indicates that there are cohorts of similar TCRs in
the repertoires and it is not excluded that they might have the
same biological function e.g., bind similar epitopes. These
approaches suffer from a similar limitation as use of a single
diversity index in that they adopt either a single arbitrary cutoff
or a single sequence similarity distance in their definition of
effective number e.g., a single similarity corrected diversity index.
Here we make use of approach used by Leinster and Cobbold41 in
ecology to explore 2 dimensional profiles of effective numbers.
Our approach of using similarity scaled diversity D(q, λ) allows
for simultaneous characterisation of the clonal distributions and
similarity of receptor repertoires (Fig. 1b). Instead of depending
on a single parameter, q, our profiles depend on two parameters,
q and λ. As in conventional diversity profiles, the q parameter
probes the structure of the clone size distribution. The λ para-
meter plays an analogous role for sequence similarity (Fig. 1d). As
λ varies from infinity down to zero the effective diversity gra-
dually merges together more and more similar sequences.
Incorporating this additional aspect to the diversity estimation
allows us not only to probe the clone size distribution, but also
TCR similarity which may provide information on repertoire
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convergence through expansion of similar clones. This concept
can be visualised in changes of diversity profiles of four mock
repertoires linked to varying sequence similarity and clonal dis-
tributions which are represented in Fig. 1e, f.

In this study, we showcase a new tool for estimating and com-
paring TCR repertoire diversity using similarity sensitive diversity
estimates: TCRDivER. TCRDivER compares similarity scaled
diversity of snapshots of repertoires stemming from different
immunological settings, be it different treatments, diseases, time-
points or their combinations. We would like to note that even
though the algorithm can be used to compare repertoires from

different timepoints, it at no point takes in longitudinal data as
input. We apply TCRDivER to previously published murine TCRβ
sequence data from CD4+ T cells following immunization21. We
show that TCRDivER, by simultaneously probing clonal expansion
and sequence similarities reveals novel TCR repertoire traits. Using
features of the similarity scaled diversity profile we detect differences
in response to immunisation protocols at all sampling times, indi-
cating unique features arise within repertoires can be detected as
early as 5 days and persist for several months.

Notably we find strong nonlinear correlations between features
of the similarity scaled diversity profiles, including features which

Fig. 1 An overview of diversity estimates and their application on T cell receptor repertoires. a Naive diversity indices for three model repertoires. The
repertoires contain the same total number of T cells. Each T cell clone within the repertoire is presented as a grey circle and the size of each circle
corresponds to its relative frequency. The number of unique clones falls from repertoire 1 through to repertoire 3. As different diversity indices are applied,
the ordering of repertoires changes. b Formula for calculating similarity scaled diversity D(q, λ). Here pi is the fraction of cells in clone i, Z is a similarity
kernel between clones, q controls sensitivity to clone size, and λ controls sensitivity to sequence similarity. c Relationship of some commonly used diversity
indices to the naive diversity of order q. d Effect of introducing the λ distance scaling in the diversity calculation. As λ increases the distance between clones
increases until at λ=∞ clones have no similarity i.e. the similarity kernel Z is the identity. e Schematic representation of diversity profiles of four model
repertoires are shown along the repertoires in the top right corner of each diversity profile. Repertoire composition is schematically represented with T cells
of varying size and colour. Analogously to A. the size of individual cells corresponds to the clone frequency within the repertoire. More similar colouring
indicates higher T cell sequence similarity in the repertoire. Individual curves correspond to diversity profiles calculated at different λ thresholds. One of the
parameters explored with TCRDivER is highlighted in red - area between lambda curves for higher values of λ. This feature is correlated with the overall
weighted similarity of the repertoire, where repertoires with higher TCR similarity exhibit a larger overall drop in diversity when similarity is included giving
rise to a larger area between the curves. f Further explanation of structure differences between the four model repertoires in e. Repertoires sharing the
same clone distributions are shown in rows (I = II and III = IV). Repertoires sharing same similarity relationships between T cell clones are shown in
columns (I = III and II = IV).
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characterise the average distance between sequences or the bal-
ance between large and small clones. This correlations indicate
biological constraints on repertoire development which link
together clone size with sequence similarity. The nonlinear shape
of the correlations reveal that these features can exist in multiple
discrete equilibria. Most importantly upon randomisation of
T cell repertoires these features lose their nonlinear correlations,
which indicates these are a natural consequence of expansions of
biological repertoires.

We validate our finding that TCR repertoires reside in a non-
linear space on an independent dataset of human bulk TCR
sequences extracted from non-small-cell lung cancer (NSCLC)
patients following CTLA-4 blockade treatment43. We show that
by estimating repertoire diversity with TCRDivER we can unearth
information which might allow us to understand more subtle
differences between repertoires, stratify them and ultimately
guide therapy regimes.

Results
TCRDivER is a tool for estimating T cell repertoire diversity
based on clonality and TCR similarity. TCRDivER is an algo-
rithm for analysis of TCR repertoires that accepts a list of CDRβ3
amino acid sequences with their corresponding counts or fre-
quencies within the repertoire in the form of a .tsv file (Fig. 2a).
Each repertoire is processed individually giving out a .tsv file
containing all the values of similarity scaled diversity D(q, λ) for a
list of chosen λ and q. Individual repertoire analysis begins with
CDRβ3 sequence filtering and subsampling in order to reduce
computational cost and keep only sequences of interest (Fig. 2b).
The filtering consists of removing all “out-of-frame" sequences
and those containing “stop" codons, leaving only “In" frame
CDRβ3 sequences. The filtered repertoire is then sampled for
non-unique CDRβ3s randomly based on the frequency (count)
distribution in the original repertoire in order to preserve the
CDRβ3 frequency distribution. The subsampled CDRβ3s are then
collapsed to form a list of unique CDRβ3s with their respective
counts (frequencies) within the subsampled repertoire. The fil-
tered and subsampled repertoire information on individual
CDRβ3 sequences is used to calculate the naive diversity values
across varying parameter q (Fig. 2d). Any calculation involving an
all-against-all comparison will inevitably scale with the square of
the number sequences. In order to compare similarity of a large
number of sequences in a memory and computational cost-
efficient way, the CDRβ3 sequences comprising the now reduced
repertoire, are split into ordered smaller portions or “chunks" for
the distance matrix calculation (Fig. 2c and Supplementary
Fig. 1). The “chunks" are formed by dividing the list of all CDRβ3s
from the filtered and subsampled repertoire. Each portion of the
list ("chunk") is then pairwise compared with the full list of
CDRβ3s from the filtered and subsampled repertoire. These
portions of the distance matrix contain n rows (n being the chunk
length, default value= 100) and S columns (S being the total
number of CDRβ3 sequences in the filtered and subsampled
repertoire and are outputed in a .tsv format. If concatenated, these
portions of the distance matrix form the full CDRβ3 distance
matrix and its diagonal is equal to 0.

These files along with the frequency information for each
CDRβ3 sequence are used as inputs for calculating values of true
similarity scaled diversity values across a range of λs and qs
(Fig. 2e). Combined, all the diversity values can then be used to
generate diversity profiles for each repertoire (Fig. 2f). The first
part of the algorithm is intended for use in commonly available
computer clusters.

Because TCRDivER is parallelisable, with the 50,000 sequences
per sample analysed and distributed over 8 cores of an Intel Xeon

Gold 6126 2.60GHz processor, each repertoire computation took
under 6 h. To support further investigation and interpretation of
TCRDivER results a jupyter notebook is provided. Diversity profiles
can be visualised, as well combined for multiple repertoire analysis
such as stratification and feature tracking analysis. The whole
algorithm is outlined in Fig. 2. Full TCRDivER code is available for
download at: https://github.com/sciencisto/TCRDivER.

To assess the capabilities of TCRDivER we analysed the
frequency distribution and similarity of CDRβ3 sequences in TCR
repertoires previously published in21. Briefly, the dataset consists
of CD4+ T cell repertoires harvested from murine spleens
following immunisation with Complete Freund’s Adjuvant (CFA)
with or without the addition of Ovalbumin (OVA) antigen. The
T cells were harvested post immunisation at three timepoints:
early (days 5 and 14) and late (day 60). Additionally, we have
analysed untreated mouse repertoires from the same study. We
used TCRDivER to calculate diversities D(q, λ), with varying
orders of q and λ. From these we constructed diversity profiles
(divPs), which we present as graphs of the natural logarithm of
diversity versus the varying order of q for each lambda
(Supplementary Note 2.2). Each sample was sampled for
50,000 sequences reduce computational cost and mitigate the
effects of sequencing depth. The constructed diversity profiles
provide a graphically intuitive way to capture the shape of a
repertoire. We highlight some of the features of diversity profiles
bellow in order to develop an understanding of how they
connect to structural and immunological characteristics of TCR
repertoires.

TCRDivER reveals unique TCR repertoire features. In our
framework the naive diversity profile corresponds to the case in
which the receptor of each T cell clone is considered totally
distinct, with no consideration of similarity to other clones i.e. the
highest effective diversity. In reality there will be some degree of
functional overlap between clones i.e., similarity, which will
reduce the functional diversity below the naive value. The naive
diversity (λ=∞) is therefore a base case of maximal diversity. At
the opposite extreme, λ= 0, all clones are considered functionally
identical. Biologically, this would correspond to a fictional sce-
nario where all the TCRs have no antigen-specific binding pre-
ference and would bind promiscuously to all peptide-MHC
complexes, because all T cells would behave exactly the same in
this scenario. In this case the functional diversity of a repertoire is
therefore minimal and equals one. The parameter λ interpolates
between these two extreme cases and as the intermediate profiles
in each sample correspond to intermediate values of λ. An ana-
logy could be made with a microscope focus where the λ para-
meter is able to pass through different depths of similarity within
the repertoire.

We begin our account by highlighting features of the naive
diversity, i.e., the upper bounding curves, in each sample. We
plotted naive diversity profiles from all samples together showing
that crossings in the range 0⩽ q⩽ 2 are common events
(Supplementary Fig. 3). This confirmed in our dataset that the
ranking of repertoires based on a single value of q would indeed
depend strongly on the chosen index (similar to what is shown in
example Fig. 1a). We concluded that the previously mentioned
justification for analysing profiles across a range of orders q is not
merely theoretical.

The highest value of the naive diversity at q= 0 gives the
number of unique TCR sequences observed in the sample of
50,000 sequences. At q=∞ we read off the effective number of
clones in the repertoire if it consisted only of the largest clones.
The rate of fall of naive diversity as q rises therefore encodes
information about the balance between larger and smaller clones.
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Fig. 2 An overview of the TCRDivER algorithm. a Input. The algorithm takes as input of CDRβ3 clone sequences with their clone sizes expressed as count
or frequency. b Filtering. The input sample is filtered to contain only “In" frame CDRβ3 regions. Then the repertoire is sampled for CDRβ3s randomly, based
on the frequency (count) distribution in the original repertoire. The default subsampling size is 50,000 CDRβ3 sequences. Meaning that 50000 non unique
CDRβ3s are subsampled and counted to form the filtered and subsampled repertoire with ≤ 50,000 unique CDRβ3s with their corresponding counts within
the 50,000 subsample. The CDRβ3 sequence counts in the subsampled repertoire are transformed into frequencies, so that the final output is a list of
unique CDRβ3s with their respective frequencies summing up to 1 within the repertoire. c Calculating distance matrix The filtered and downsampled
repertoire is provided as input for calculating the distance matrix. This step is split up so the original list of unique CDRβ3 sequences is divided to sublists of
equal length which are in turn pairwise compared against the whole list of CDRβ3s using the BLOSUM45 alignment score (see Supplementary Fig. 1). The
output is a set of files which contain portions of the distance matrix. When concatenated they form the complete distance matrix. In the graphical
representation of the distance matrix d denotes the calculated distance between two pairs of CDRβs. d Calculating naive diversity The script takes in only the
filtered and subsampled list of CDRβ3s and their respective frequencies, since D(q) is not dependent on CDRβ3 sequence distances. The output of this
calculation is a .tsv file containing values of diversity at different values of q (Calculating naive diversity). e Calculating similarity scaled diversity The script
takes in both the list of CDRβ3s with their frequencies and the distance matrix “chunk" files. The calculation is done in a parallel fashion to reduce
computational time. As output a .tsv file is given containing the values of calculated diversity at different values of q and λ (Calculating similarity-scaled
diversity). f Combining diversity calculations The final step is joining the two diversity calculations in a complete overview of the diversity. Two previously
obtained .tsv files with calculated diversity values are combined into one file containing all calculated values of diversity. Downstream this file is used for
constructing the diversity profiles and further statistical analysis.
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To keep in line with the microscope analogy, scaling through
parameter q allows us to zoom in on different resolutions of clone
sizes within the repertoire. To characterise this we derived an
expression for the gradient of the naive diversity at q= 1 and
found that it is proportional to the variance of the clone size
distribution i.e., the ratio of rare to common T cell clones in a
repertoire (Supplementary Note 1.2).

Notably, when examining the diversity profiles shown in
Supplementary Note 2.2, a sharper slope can be seen in the curves
from repertoires that have been immunised compared to the
untreated ones, especially for later time points. This is quantified
in Fig. 3b (right side) by plotting the slope between q= 0 and
q= 1 for each treatment group. The increasing value of the slope
is indicative of an increased clonal expansion at later timepoints.
The impact of clonal expansion in reducing diversity is seen to be
mild at earlier time points after vaccination (5 and 14 days) and
more marked at the day 60 time point.

In order to explore the effects of similarity scaling on measures
of diversity, we investigate in depth the features of similarity
sensitive profiles with values of λ <∞. The first feature of the
similarity sensitive profiles occurs near the flat curve for λ= 0 at
the bottom of the profile. We observed that for small values of λ
the curves are approximately flat and are evenly spaced on a log
scale in all diversity profiles, as shown in Supplementary Fig. 2

and Supplementary Note 1.8. To further investigate the biological
importance of this we derived an expression for the diversity
around small λ using perturbation theory (Supplementary
Note 1.6). Interestingly, the spacing showed to be proportional
to the mean distance between sequences in the repertoire. In
particular, the spacing of profiles, which we denote Δln(D(q, λ)) at
small λ, is dependent solely on the distance and frequency of
CDRβ3s, and not on the weight q. We generated a simplified
example of three mock repertoires (denoted I, II and III) which
contain the same number of unique CDRβ3 sequences but their
relative distance within the repertoire changes. By increasing the
distance between individual CDRβ3s i.e., by reducing similarity
from repertoire I to III the Δln(D(q, λ)) at small λ increases
showing the linear relationship of distance on this feature when
the repertoire contains a uniform distribution of frequencies
(Fig. 3a). It is important to keep in mind that this measure
naturally integrates increases in similarity from both expansion of
particular clones and selection of clones with similar sequence.
We are therefore able to use these spacings to gain biological
insight in to repertoire structure following immunisation as a
measure of overall repertoire similarity. The spacing of profiles,
Δln(D(q, λ)) at small λ, is presented for different treatment groups
in Fig. 3b. We concluded that while there may be a small rise in
spacing at early time points after vaccination (5 and 14 days),

Fig. 3 T cell receptor repertoire features derived from diversity profiles. a Effect of changing CDRβ3 distance in three mock repertoires on two repertoire
features (average Δ lnðDðq; λÞÞ for small λs and calculated area between λ identity and 16). The repertoires have been generated to contain a uniform
distribution of 100 CDRβ3 clones with the CDRβ3 distance increasing from repertoire I to III. The relationship between these two features in this simplified
example is inverse. The average Δ lnðDðq; λÞÞ for small λs is approximately linearly depended on the CDRβ3 distance in the repertoire (Supplementary
Note 1.6). b Trends of three features extracted from divPs are shown versus the treatment regime and timepoints ending with the latest timepoint. The
features are, from left to right: average Δ lnðDðq; λÞÞ for small λs, between curves of λ= identity and 16.0 and slope of q= 0→ 1 for value of λ identity. The
line connects the mean values of the features for all samples within a group and the shaded area represents the confidence interval. c Graphs showing
relationships between some of the divP features. From left to right: average Δ lnðDðq; λÞÞ for small λs is shown versus the area between curves of
λ= identity and 16.0; average Δ lnðDðq; λÞÞ for small λs is shown versus the slope of q= 0→ 1 for value of λ 64.0; slope of q= 1→ 2 for value of λ identity
(i.e. naive diversity) is shown versus the area between curves of λ= identity and 64.0; slope of q= 1→ 2 for value of λ identity (i.e. naive diversity) is
shown versus the slope of q= 0→ 1 for value of λ 64.0.
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there is a distinct decline of around 15% at day 60 indicating an
increase of CDRβ3 similarity at later time points.

The second feature is the rate at which diversity falls as λ falls
from λ=∞ to lower values, where λ=∞ characterises the naive
profile. Unlike the case at small λ, the value of Δln(D(q, λ)) at
large λ is no longer independent of q. It is still a measure of
repertoire similarity, but heavily influenced by the clone size
distribution weight q. Keep in mind that λ=∞ corresponds to no
effective clustering of similar sequences, that is all sequences are
regarded as unique and dissimilar. Then large values of λ
correspond to just a small amount of effective clustering and
counting together only the most similar clones. If at these large
values of λ, introducing just a small effect of similarity produces a
large fall in effective diversity from the maximal naive diversity,
then the repertoire must contain many similar clones. Conversely,
if such clustering produces only a small fall in diversity then the
clones must be spaced further apart in the metric space. This
measure is therefore a hybrid of monitoring the effect of clonal
expansions and similarity simultaneously, scanning through the
complexity of these two intertwined repertoire facets. Our
measure is highlighted by the pink area in generated diversity
profiles (Supplementary Note 2.2), defined as lying between the
naive profile λ=∞ and the profile for λ= 16. We have shown
that, in the case of a uniformly distributed CDRβ3s in a repertoire,
with the increase of similarity between CDRβ3s the area between
the λ curves increases (Fig. 3a. right panel and Supplementary
Note 1.7).

In the case of natural repertoires the effect of clonal expansion
will interplay with the similarity. The area between profiles for
λ=∞ and λ= 16, is presented for different treatment groups in
Fig. 3b (middle panel). We concluded that there is a tendency to
fall at the early time points after vaccination (5 and 14 days), with
a further fall of comparable magnitude by day 60. As the area is
influenced by q it is also closely connected to the slope of diversity
curves and therefore clonal expansion. Thus, the fall of value of
area cannot be attributed to a decrease in similarity at later time
points. When other repertoire features are taken into account,
such as the slope and the trend of Δln(D(q, λ)) at small λ, the
decrease in area can be explained by the driving effect of clonal
expansions at later time points. In conclusion, comparing the
Δln(D(q, λ)) at small and large values of λ has enabled us to make
some biological conclusions about the structure of the repertoires.

Non-linear relationships between TCRDivER features are dri-
ven by repertoire structure. As individual repertoire features
clearly correlate to biological properties of TCR repertoires, we
investigated relationships between individual features. There are
many combinations of features extracted from diversity profiles
that can be derived from similarity scaled diversity profiles, but
for brevity we highlight in our opinion the most important ones
(Fig. 3c). Firstly, while many of the feature correlation plots are
clearly non-linear, they lie in a surprisingly tight area. This
indicates that there is some constraint at work in the structure of
the repertoires meaning that the value of one feature tightly
constrains the value of other features. However, the second
interesting characteristic is that these constraints are not unique.

An example is the relationship between Δln(D(q, λ)) at small λ
and the area between profiles for λ=∞ and λ= 16, as shown in
the first panel of Fig. 3c. As noted above, these both depend on
the distances between sequences in the repertoire. Rising
Δln(D(q, λ)) at small λ indicates mean distances between
sequences in the repertoire increasing. Smaller area between
diversity profile curves at higher λs indicates a decreased weighted
CDRβ3 sequence similarity within the repertoire. In a simple ideal
case where the clone size and distance distributions are uniform

these two effects perfectly coincide. We illustrate this using model
data in Supplementary Fig. 2. In real data with non-uniform clone
size and distance distributions D(q, λ) provides a measure where
the differential effect of changes in the most similar sequences
and changes in comparisons across the repertoire as a whole can
be characterised. Upon closer examination, we can notice that
there is a multidimensional separation to three groups in the
feature correlation plot going from late timepoints with both
features at low values, increasing through intermediate timepoints
with both CFA and CFA+OVA treatments, finally stabilising at
untreated values with both feature values relatively high
indicating low similarity and clonality.

Another example is the relationship between the slope between
q= 1, 2 for λ= identity and the area between the curves at large λ
values for naive diveristy. Low values of slope, as discussed
previously, indicate low clonal expansions. And since here
λ= identity there is no similarity taken into account. The other
feature is dependent also on similarity as well as the clonal
expansion. These two features combined give a clean separation of
untreated vs treated samples. But interestingly, show also that many
of the CFA+OVA treated repertoires also share lower clonal
expansions with untreated samples as indicated by the slope (along
the y-axis). Traditionally, additional antigenic exposure is correlated
with higher diversity and stronger repertoire response. However, we
might hypothesise that these repertoires might not show high clonal
expansions as they are responding with a multitude of smaller and
not so similar clones. And indeed, when looking at the placement of
these repertoires along the correlation curve between Δln(D(q, λ)) at
small λ and the area between profiles for λ=∞ and λ= 16, as
shown in the first panel of Fig. 3c.

This again emphasises the importance of taking multiple
features of the diversity profile to more fully characterise
repertoire structure. Similar non-unique constraints can be seen
in the other panels of Fig. 3c.

The mathematical form of the diversity we have adopted does
impose some restrictions on possible diversity profiles. For
example, the effective diversity must always fall (or stay constant)
as q rises, reflecting the down weighting of small clones. To test if
these relationships might be an artefact imposed by the
mathematical form of the diversity we replaced the clone size
distribution with pseudo-random numbers while keeping the
distance matrix fixed (Supplementary Fig. 19). This eliminated
previously observed correlations, showing that the correlations
are not mathematically necessary. To confirm that the correla-
tions are not a product of the particular distance definition
adopted we repeated the analysis using an alternative metric
based on amino acid properties using the biochemical scoring
based on the Atchley factors44. This shows qualitatively similar
correlations (See Supplementary Fig. 16).

To validate some of our findings we analysed a human TCR
repertoire dataset previously published in43. In short, T cells were
isolated from blood samples taken from non-small-cell lung
cancer patients prior and post-treatment with CTLA-4 blockade
(ipilimumab) in combination with radiation therapy (RT). The
obtained T cells were sequenced in bulk. We analysed these
repertoires as with the murine data, using TCRDivER to
construct diversity profiles for analysis.

We found that pairwise relationships between features were
quantitatively quite different that the murine data, but displayed
the same characteristics of lying on curves and giving rise to non-
unique constraints (Supplementary Fig. 29) Given differences in
species, tissue and treatment, it is unsurprising that the range of
repertoire structures observed differs considerably. At least some
of these differences are captured in features of the similarity
scaled diversity profiles. Despite these differences, the human data
corroborates the notion that regardless of the immunisation
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strategy and dataset (human or murine), the natural TCR
repertoires reside in a subspace governed by a complex interplay
of TCR clonality and similarity.

TCRDivER features improve separation of biologically distinct
repertoires. In order to test if the similarity-scaled diversity
profiles can be used to classify repertoires we used principal
component analysis (PCA) and hierarchical clustering. We car-
ried out this analysis first on the values for the naive diversity
profiles alone and then for the all values in the complete
similarity-scaled diversity profile (Fig. 4a and Supplementary
Fig. 10).

Both the naive and similarity scaled profiles show a strong PC1
which is driven by the expansion of large clones at the late day 60
time point. However, relative to the naive profile, PCA on the
similarity scaled profiles shows more than twice the variance in
PC2 i.e. more information along the second dimension of
separation. It can be seen that this allows for substantial
separation of immunised vs. untreated controls in the second
dimension (Fig. 4c). If we imagine that TCR repertoires reside in
a multidimentional space characterised by clone size distributions
and similarity, then naive profiles allow for separation in the

clonality dimension, while similarity scaled diversity profiles
allow for separation along both dimensions.

To test if the features we have identified are useful in capturing
key dimensions of variation in the similarity scaled diversity
profiles we then extracted these features and carried out PCA on
the features rather the raw values. These include all the areas
between different λ curves, average values of Δ lnðDðq; λÞÞ for
small λs and slopes for q= 0→ 1, q= 1→ 2 and q= 0→ 2. To
further mitigate the effect of repertoire size on the analysis we
have log-transformed the values of D(q, λ) prior to feature
extraction. The analysed features are therefore ratios and
relationships of the natural logarithm of D(q, λ). In both the
mouse and human datasets we found that the PCA on features
was qualitatively similar to that on the full diversity profile
(Fig. 4b and Supplementary Fig. 28). However, the variance
explained by PC1 was reduced while that explained by PC2 was
increased, leading to improved 2 dimensional separations. In the
case of the mouse data the effect was modest, while in the human
data it was more substantial, leading to an increase in variance
explained by PC2 from 11% to 20%. The increase of variance
explained in PC2 indicates that these features are indeed acting as
useful summaries of redundant (linearly correlated) information
in the full profile. Therefore making use of such features, rather

Fig. 4 Clustering based on diversity estimates of samples from the murine dataset. a PCA on naive diversity values D(q), i.e., λ= identity. The PCA plot
aspect ratio has been adjusted and corresponds to variation explained by the first two principal components. b PCA on features extracted from the diversity
profiles constructed on the diversity values D(q, λ). These include areas between all lambda curves, average Δ lnDðq; λÞ for small λs and slopes q= 0→ 1,
q= 0→ 2 and q= 1→ 2. As in a, the aspect ratio corresponds to variation found by PCA. The legend is shared between figures a and b. c Complete linkage
hierarchical clustering of diversity profile features using Euclidean distances between the features. Clusters of interest are highlighted in dark red on the
right side. A subset of features that have been used for the clustering are shown at the bottom.
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than the raw profile values may help reduce experimental noise
and improve robustness.

Similarly, hierarchical clustering of diversity features shows
strong separation between untreated samples, as well as early and
late time point repertoires of the murine dataset (Fig. 4c). This
showcases the robustness of using diversity features within
different stratification techniques. Furthermore, it strengthens the
idea that these features can be subjected to more sophisticated
analysis such as machine learning approaches.

In both the datasets analysed (human and murine) the number
of samples per category was low. Nonetheless, we have employed
a leave one out machine learning approach to assess the accuracy
of predicting immune status using similarity scaled diversity
profiles. Previously, Greiff et al.39 show that by inputing naive
diversity profiles into a linear Support Vector Machine (SVM)
classifier they were able to achieve a predicted accuracy in the
range of 80–90%. However, we would like to note that the dataset
in the article by Greiff et al.39 contained repertoires from 24
patients samples at 3 timepoints, thus enabling for a proper split
into train and testing sets and enabling the model to correctly
learn the signal. The authors of this article find that the data from
Greiff et al.39 is no longer publicly available. We have therefore
employed an SVM classifier and a Random forest classifier on the
previously analysed murine samples, as this dataset is the main
focus of this article.

Due to low sample size per group we have attempted
classification on two parameters: timepoint (day 0, 5, 14, and 60)
and treatment (Untreated, CFA, CFA + OVA). We have input
similarity scaled diversity and naive diversity profiles retaining the
same dataset partitioning (see section Classification using SVM and
random forest. Using the SVM classifier we were able to obtain 0.81
average predicted accuracy on similarity scaled compared to 0.85
on naive diversity profiles. We believe that this is due to the number
of large clones present at later timepoints. When using similarity
scaled diversity the algorithm performs worse, possibly due to
diversities calculated at smaller values of lambda. When the same
classifier is employed on treatment, the predicted accuracy is higher
for the similarity scaled (0.73) versus naive (0.65) diversity profiles.
We believe that this flip in performance is due to the algorithm
capturing signal on similarity which is necessary for prediction
solely on treatment, as each treatment category now contains all
timepoints. When employing Random Forest, the predicted
accuracy is higher in similarity scaled (0.77 for both timepoint
and treatment classification) versus naive diversity profiles (0.69 for
timepoint and 0.54 for treatment).

We attribute the overall lower accuracy of prediction compared
to what Greiff et al.39 report to two aspects: one is the previously
discussed sample size, and the other that there was no feature
selection step prior to employing classifiers. Therefore non-
informative diversity indices were also input into the classifiers
which can reduce performance. We overall, find the performance
of both classifiers for treatment prediction to be promising. We
do not encourage the use of classifying algorithms on such small
dataset as the ones analysed in this article. However, we do show
that even with obstacles, similarity-scaled diversity profiles give
an additional level of information that allowed a higher
classifying performance compared to naive diversity in both
algorithms employed.

Discussion
The complex structure of immune repertoires makes them chal-
lenging to compare and classify. Previous work making use of
sequence information to understand TCR repertoires has focused
on determining the antigen specificity of particular sequences. In
contrast, TCRDivER is able to make use of sequence information

to reveal structural similarity between repertoires that have little
or no sequence overlap. With two tunable parameters TCRDivER
becomes an effective computational microscope, able to focus
on different scales of structure in the immune repertoire. The
resulting diversity profiles then provide highly interpretable
summaries of global multiscale structure.

Here we provided a proof-of-concept study in application of
similarity scaled diversity estimates to TCR repertoire analysis.
We have applied principal components analysis and hierarchical
clustering as a means of qualitative repertoire stratification and
shown it is able to capture variation in the diversity profiles which
characterise immunisation history. The similarity scaled diversity
profiles are themselves quite rich summaries and in the future we
anticipate that they may be subject to more sophisticated
machine-learning techniques. At present this possibility is limited
by the number of available samples for which comparable data is
available.

As has previously been shown by Grieff et al.39 the use of a
single diversity index to rank or classify repertoires is not robust,
since the ranking will depend on the index selected. The use of
naive diversity profiles is a step forward in so far as they reflect
the contribution of both large and small clones. However, when
applied to real TCR data naive diversity profiles typically give a
single effective dimension of separation. This is reflected in our
results that show 93% of variance explained by PC1 carried out
on the naive diversity profile. By taking into account sequence
similarity simultaneously with clone size distribution our
similarity-scaled diversity profiles provide a genuine second
dimension of variation in the structure of the repertoires. As
shown in our PCA analysis this opens the practical possibility of
2D separations of repertoires which are inherently more power-
ful. Again, this approach can make use of sequence data to
classify repertoires together even when they share no similar
sequences. This attribute of the algorithm can allow to investigate
“public" TCR responses to disease-related antigens not in terms of
individual shared TCRs, but in terms of aforementioned “public
repertoire structures".

The striking relationships between similarity profile features
appear to reflect biological structure in the TCR repertoires. We
hypothesise that the non-linear relationships we observe reflect
the range of possible biological variation and are thus analogous
to the way in which clone size distributions are well approximated
by power laws. Our observation motivates investigations of
extending power law distributions to include description of
sequence similarity.

Since the algorithm still relies on an all-against-all comparison,
there is scope for several-fold speed up, including optimisation of
the distance function. A possible gain would come from repla-
cement of the exact all-against-all comparison at high lambda
with comparison against approximate k-nearest neighbours using
a ball tree algorithm. However, at low lambda values the all-
against-all comparison cannot be avoided reflecting the way in
which the similarity-scaled diversity incorporates genuinely glo-
bal information about the repertoire.

The form of equation in Fig. 1b. is motivated by rather general
mathematical considerations, but these still leave the metric used
to compare sequences undetermined. There is no ’true’ metric, in
the sense that a assigning a single number to the distance
between two sequences cannot fully capture all the ways in which
binding affinities vary. In our work we used two metrics which
plausibly reflect biological functional similarity (through use of
evolutionary data in BLOSUM45 matrix) and biochemical
similarity (through the Atchley factors). While these gave qua-
litatively similar results, the best metric to use for a given
question is an open question in the field of TCR analysis as
a whole.
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Here, we would also like to emphasise that sequencing depth
also influences conventional diversity estimates as absolute, not
relative, clone frequencies are needed for diversity estimations3.
Increasing sequencing depth maximises the number of reads per
T cell clone and therefore allows for capturing of a more complete
TCR repertoire3,45,46. Experimentally, repertoires from different
laboratories or experiments will often be sequenced at a different
sequencing depth which makes them difficult to compare using
conventional diversity estimates. TCRDivER subsumes most
conventional diversity estimates and instead of comparing abso-
lute diversity numbers between repertoires, it focuses on the
relationships between these estimates within the repertoire.
Therefore, it in some ways bypasses the need for absolute quan-
titation of TCR frequencines in the repertoire. We are aware that
influence of the sequencing depth and experimental sampling still
persists in the raw repertoires as the number of unique clones
varies between repertoires in both datasets (Supplementary
Tables 1 and 2). Thus we have chosen to subsample the CDRβ3s of
the repertoires based on the original frequency distribution and
mitigate the influence on the absolute numbers of unique clones
(richness) on the diversity estimates. This also normalises the
computational cost of each repertoire calculation to under 6 hours,
which we find important for practical applications of TCRDivER.

While in this study we have applied similarity-scaled diversity
profiles to TCR repertoires, we believe that the same concept
should also be applicable for understanding antibody repertoires.
The features of similarity-scaled diversity profiles can easily be
translated in to properties of the repertoire. The functional bio-
logical importance of the similarity scaled diversity (as indeed the
naive diversity) is likely to be more variable and subject to
experimental investigation. TCRDivER provides an important
tool to enable those investigations.

Methods
Data acquisition and description. The murine dataset consits of previously
published data that has been analysed as part of a larger dataset in the work by21.
Briefly, CD4+ T cells were isolated from spleens of 18 C57BL/6 mice immunised
with Complete Freund’s adjuvant (CFA) with or without an addition of Ovalbumin
antigen (OVA). The samples were collected at different times post-immunisation:
at day 5 and 14 (early timepoints) and day 60 (late timepoint). In addition, CD4+

T cells were collected from 8 healthy unimmunised mice prior to study start. An
overview of the dataset is given in Table 1. We have received the dataset already
analysed with Decombinator, which described in depth in47,48. The data we have
analysed consisted of a list of CDRβ3 sequences present in each sample. The raw
fastq files are available at http://www.ncbi.nlm.nih.gov/sra/?term=SRP075893. A
full data overview as well as any supporting results concerning the murine dataset
are provided in Supplementary Note 2.

To validate the observation of improved PCA separation, we analysed an
additional dataset of human TCR repertoires. Additionally, we have analysed a
human TCR dataset previously analysed by43. The participants of the study were
39 patients diagnosed with metastatic non-small-cell lung cancer (NSCLC).
They were treated with daily radiation therapy regimen in two phases of the trial

(phase I - 6Gy × 5 and phase II 9.5 Gy × ) and intravenous ipilimumab (CTLA-4
blockade) following the first radiation treatment and subsequently repeated
every 3 weeks for four cycles. The assessment of patient treatment response was
performed with PET/CT scans at day 88 and evaluated using Response Criteria
In Solid Tumors (RECIST). The patients were then classified, according to
RECIST, as complete responders (CR), partial responders (PR) with tumour
decrease in size ⩽ 30%, stable disease (SD) with insufficient shrinkage to qualify
for any of the other criteria, and progressive disease (PD) with increase in
size > 20% or appearance of new lesions. Out of 39 patients 20 were evaluable at
day 88. Serial blood samples for peripheral blood mononuclear cells (PBMCs)
were collected at baseline (day 0), and on days 22, 43, 64, and 88. The isolated
PBMC were subjected to amplification and sequencing of bulk TCRβ CDRβ3
regions by Adaptive Biotechnologies. We have obtained the data from the
Adaptive Bioctechnologies ImmunoSEQ database49. Since the samples collected
at later timepoints (day 43 and onward) were not available for all of the 20
evaluable patients, we have restricted our analysis to samples collected at
baseline and day 22 of treatment. An overview of samples included in our
analysis is given in Table 2. We analysed the data as before by calculating the
diversity D(q, λ) and constructing diversity profiles (Supplementary Note 3.1).
All of the data overview and supporting results of the analysis of the human
dataset are given in Supplementary Note 3.

Subsampling to reduce computational load. We have only considered “In"
frame reads of CDRβ3s in our analysis. In order to reduce the computational load
of calculating pairwise similarity between a large number of CDRβ3 regions
(order of magnitude ≈ 105), we have performed subsampling prior to analysis. We
will refer to individual CDRβ3 sequences as sequences, and a collection of
identical CDRβ3 sequences as a clone. Each repertoire was down sampled to
contain 50000 CDRβ3 sequences. The sampling was random, based on the ori-
ginal CDRβ3 frequency distribution. After sampling the number of CDRβ3 clones
was ⩽ 50,000. An overview of number of unique clones for the murine and
human dataset is given in Supplementary Tables 1 and 2, respectively. For each
sample, the CDRβ3 clone count (number of identical CDRβ3s within a clone) was
transformed into frequencies, so that the all the CDRβ3 clone frequencies within a
repertoire sum up to 1:

∑
S

i¼1
pi ¼ 1; ð1Þ

where pi is the frequency of the i-eth CDRβ3 clone in the repertoire. The clone
CDRβ3 amino acid sequences with their respective frequencies were used as input
further downstream.

Calculating the distance matrix. In order to reduce computational time and
memory usage of calculating pairwise comparison, we have divided the distance
matrix into smaller portions ("chunks") which are separately calculated. The
algorithm takes in the list of S CDRβ3 clones, and splits it up in to n sub lists of
predefined length, default value is 100. For each sublist pairwise comparisons are
made between the CDRβ3s in the sublist versus all the CDRβ3s in the original list
(Supplementary Fig. 1). Global alignment between two CDRβ3 clone sequences
was performed with a gap penalty of 10 and scored using the BLOSUM4550

substitution matrix. The alignments were created using the PairwiseAligner
function in the Bio.Align package within Python351. The distance between two
CDRβ3s, d(CDRβ3i, CDRβ3j), was calculated based on the alignment scores:

dðCDRβ3i;CDRβ3jÞ ¼

1� BLOSUM45scoreðCDRβ3i;CDRβ3jÞ
maxðBLOSUM45scoreðCDRβ3i;CDRβ3iÞ;BLOSUM45scoreðCDRβ3j;CDRβ3jÞÞ

ð2Þ

Alternatively, we have also employed a biochemical scoring based on the
Atchley factors44. The factors are based on biochemical properties of amino acid

Table 1 Murine Dataset overview: Overview of samples
available in the analysed dataset, a part of a previously
published dataset by21.

Treatment Sample collection time (days) Number of mice

CFA 5 3
CFA 14 3
CFA 60 3
CFA+OVA 5 3
CFA+OVA 14 3
CFA+OVA 60 3
Non-immunised 0 8

In total 26 CD4+ murine spleen samples were analysed. Sample collection time is given as the
number of days post immunisation. Note that mice culled at day 60 received an additional
booster shot of immunising agent (CFA or CFA+OVA).

Table 2 Human Dataset overview: Overview of samples
used from the dataset previously published by43.

RECIST criteria Sample collection time (days) Number of patients

PD 0 8
PD 22 8
SD 0 5
SD 22 5
PR 0 5
PR 22 5
CR 0 2
CR 22 2

In total 40 human PMBC samples were sequenced for TCRβ CDR3s. Sample collection time has
been given as the number of days after start of therapy, with 0 being baseline prior to first
treatment.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04702-8

10 COMMUNICATIONS BIOLOGY |           (2023) 6:357 | https://doi.org/10.1038/s42003-023-04702-8 | www.nature.com/commsbio

http://www.ncbi.nlm.nih.gov/sra/?term=SRP075893
www.nature.com/commsbio


residues that are grouped and transformed into five Atchley factors. For each
CDRβ3 an average value for individual Atchley factors was computed. The distance
between two CDRβ3 sequences is then calculated as an Euclidean distance between
the averaged five Atchley factors.

The obtained distance matrix is mathematically connected to the similarity
kernel Z as shown in equation (3)

Zij ¼ e�λdij ; ð3Þ

where the λ provides scaling, and dij the distance between two CDRβ3 clones.

Calculating naive diversity. Naive diversity does not take similarity into account
and is calculated based on the frequencies of CDRβ3 clones within the
repertoire34,38:

DðqÞ � ∑
S

i¼1
pqi

� � 1
ð1�qÞ

; ð4Þ

where pi is the frequency of the i-eth CDRβ3 clone and q is the diversity order, as
diversity indices are a functions of ∑S

i¼1 p
q
i . We have chosen a list of qs which

subsume the use of some common diversity indices such as 0, 1, 2, and ∞, which
correspond to the richness, exponent of the Shannon diversity32, Simpson33,34 and
Berger-Parker35 index, respectively. To extend our surveying the clone size dis-
tribution space we have also added 3, 4, 5, and 6th order of diversity. For values of
q= {1,∞} the diversity was calculated as the limit of q approaching the values of 0
and ∞.

1D ¼ 1
pmax

ð5Þ

1D ¼ eðln
1DÞ ¼ eð�∑S

i¼1 pi ln piÞ ð6Þ

A detailed derivation of the equations is provided in Supplementary Notes 1.1, 1.2,
1.3, 1.4, and 1.5.

Calculating similarity-scaled diversity. Similarity scaled diversity of order q takes
CDRβ3 clone sequence distances d(CDRβ3i, CDRβ3j) along with their respective
frequencies. We have adapted the method of calculating similarity-sensitive
diversity measures, as proposed by41. We have again chosen a list of qs,
q= 0, 1, 2, 3, 4, 5, 6,∞, in the same manner as when calculating the naive diversity.
Furthering the method,41, propose the use of similarity-sensitive diversity measures
D(q, λ) (Equation (7)), dependent on relative abundances and species similarity
data as distance dij. We introduced an alteration of the original approach is
introducing the similarity scaling factor λ, which allows us to weight TCR distances
in much the same way as we do clone sizes (Fig. 1d). Here we choose a list of values
λ= {0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0}. The
value of λ= identity corresponds to the naive diversity calculation, D(q).

Dðq; λÞ ¼ ∑
S

i¼1
piðZpÞq�1

i

� � 1
ð1�qÞ

ðZpÞi ¼ ∑
S

j¼1
Zijpj Zij ¼ e�λdij ð7Þ

Downstream analysis of TCRDivER output. The final output of TCRDivER is a
table containing all the values of diversity calculated with a range of qs and λs. The
full downstream analysis is summarised in a Python3.6 jupyter notebook52 avail-
able alongside the main TCRDivER algorithm at https://github.com/sciencisto/
TCRDivER. The diversity profiles were constructed using the seaborn package53.
Areas between λ curves of lnðDðq; λÞÞ was calculated within the numpy
framework54 as an integration using the composite trapezoidal rule. Average
Δ lnðDðq; λÞÞ for small λs was calculated for λ= {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} as
the mean of the average difference between lnðDðq; λÞÞ at each calculated q. The
range of λs in this analysis is chosen for higher and lower values separately. For the
higher values, the first lambda is chosen as 1, which equals to no similarity scaling.
The value of λ is then doubled until λ= 64, as in a geometric sequence. For lower
values λ < 1 has been incremented by 0.1 for values of 0.1 to 0.5 and 0.25 and 0.75
values were added as well. The users of this algorithm are free to choose their
own values by augmenting the configuration file. Given the exploration of
mathematics of similarity scaled diversity estimates, we feel that the range captures
repertoire information sufficiently. Due to time constraints we have not yet devised
an algorithm for choosing the minimum number of lambda values needed.

Slopes of diversity when q= 0→ 1, q= 1→ 2 and q= 0→ 2 were calculated as
differences between the diversities when q= 0, 1, and 2. We are aware that this is
not the slope of diversity at the specific values of q, as we also provide the
mathematical evaluation of the slope at these timepoints (Supplementary Note 1.1
and 1.2). However, due to time and memory considerations we have opted for the
simplified calculation as we feel that it represents the slope sufficiently. For future
implementations, we will update the algorithm to include the analytical slope
evaluation. Principal components analysis was performed as implemented in the
scikit-learn package55.

Classification using SVM and random forest. Both Support Vector Machine
(SVM) and Random Forest classifiers were employed on the similarity scaled and
naive diversity of repertoires from the murine dataset. The classifiers were used as
implemented in the scikit-learn56 package available for python. The datasets con-
tains samples from CFA and CFA+OVA treated mice at day 5, 14, and 60, as well as
untreated samples from day 0. With the exeption of the untreated samples (n= 8)
there only 3 samples per each timepoint-treatment combination. Therefore to
increase the number of samples classification was attempted based on two cate-
gories: treatment (untreated, CFA, CFA + OVA) and timepoint (days 0, 5, 14, and
60). Due to the size of the dataset, there was no part of the data left as a validation
set. Instead the dataset was divided into three partitions to contain a sample from
each timepoint-treatment group, as shown in Table 3. The classifiers were employed
on the partitions in a leave one out manner, so that one partition was used as a test
set and the remaining two as training sets. All of three predictions were then
concatenated (each partition was used once as a test) and an average accuracy was
calculated. The code is available in the downstream analysis jupyter notebook along
with the main TCRDivER algorithm https://github.com/sciencisto/TCRDivER.

Statistics and reproducibility. In total, 26 CD4+ murine spleen samples were
analysed in the murine dataset21. The samples are separated by time of collection
and treatment. There are 3 samples per each combination of treatment and time,
with the exception of 8 samples for non-immunised mice. In the human dataset43 a
total of 40 samples have been analysed. The samples are separated by collection
time and RECIST criteria. An overview of samples is shown in 2. All analysis in this
article can be reproduced either from raw data supplied in the github repository or
original sources as stated in the Data availability section. Downstream analysis of
TCRDivER outputs needed to reproduce the figures and analysis in this article are
available via jupyter notebooks within the TCRDivER github repository https://
github.com/sciencisto/TCRDivER.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Both datasets analysed in this article come from previously published studies. The
murine dataset21 raw fastq files are available at http://www.ncbi.nlm.nih.gov/sra/?term=
SRP075893. The human dataset43 is available on the Adaptive Bioctechnologies
ImmunoSEQ database49. Furthermore, all data needed to reproduce the figures and
analyses in this article is available in the TCRDivER github repository https://github.
com/sciencisto/TCRDivER.

Code availability
The code is available at https://github.com/sciencisto/TCRDivER.
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