Implementing WHO’s Intersectoral Global Action Plan for epilepsy and other neurological disorders in Southeast Asia: a proposal

Gagandeep Singh,a,b Mamta B. Singh,a Ding Ding,c Pallab Maulik,c and Josemir W. Sandeb

aDepartment of Neurology, Dayanand Medical College & Hospital, Ludhiana, India
bDepartment of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
cDepartment of Neurology, All India Institute of Medical Sciences, New Delhi, India
dInstitute of Neurology, Fudan University Hospital, Shanghai, China
eGeorge Institute for Global Health, New Delhi, India
fStichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, the Netherlands
gNeurology Department, West of China Hospital, Sichuan University, Chengdu 61004, China

Summary
The World Health Assembly approved the Intersectoral Global Action Plan for epilepsy and neurological disorders. Member states, including those in Southeast Asia, must now prepare to achieve IGAP’s strategic targets by embracing novel approaches and strengthening existing policies and practices. We propose and present evidence to support four such processes. The opening course should engage all stakeholders to develop people-centric instead of outcome-centric approaches. Rather than caring for convulsive epilepsy alone, as currently done, primary care providers should also be skilled in diagnosing and treating focal and non-motor seizures. This could reduce the diagnostic gap as over half of epilepsies present with focal seizures. Currently, primary care providers lack knowledge and skills to manage focal seizures. Technology-enabled aids can help overcome this limitation. Lastly, there is need to add newer “easy to use” epilepsy medicines to Essential Medicines lists in light of emerging evidence for better tolerability, safety and user-friendliness.

Introduction
The World Health Assembly approved the Intersectoral Global Action Plan (IGAP) for Epilepsy and other Neurological Disorders. This represents the culmination of a long journey, started in 2002, when World Health Organization (WHO), International League Against Epilepsy (ILAE) and International Bureau for Epilepsy (IBE) partnered for a Global Campaign Against Epilepsy known as “Out of the Shadows.” The global campaign aimed to reduce the treatment gap, economic burden, and stigma associated with epilepsy through several regionally focused initiatives. An assessment of epilepsy care worldwide, the “Atlas of Epilepsy Care” was a historical by-product. In 2015, the World Health Assembly approved a resolution on the global epilepsy burden recognising the need for coordinated action at country level. The resolution prescribed the involvement of primary care health providers in regions where specialists were lacking, developing community approaches and emphasising preventative strategies when possible. More demonstration projects followed in Ghana, Myanmar, Vietnam and Mozambique with reasonable successes. Epilepsy was declared as a public health imperative, and WHO, ILAE and IBE jointly produced the first-ever global report on epilepsy. In parallel, regional declarations, e.g., from the Pan-American Health and Southeast Asian Regional Organizations, were made to expand the reach of the global epilepsy campaign. Subsequently, the World Health Assembly approved a resolution to develop a draft of a ten-year global epilepsy action plan and other neurological disorders. It was envisaged to identify and bridge gaps in care, prevention and research through a series of ambitious accomplishments. It was produced and refined through a series of steps and eventually passed by the World Health Assembly. The IGAP adopted epilepsy as an indicator condition to pursue its...
objectives based on critical premises, assumptions and facts (Box 1). It seeks commitment from member states to implement the goals, gather data on epilepsy services, and include epilepsy service provision in national health plans and budgets. Furthermore, it construes epilepsy as an entry point to a concerted effort to diminish the disease burden associated with many other neurological disorders, if only because of synergies involved in prevention and management. Consistent with the IGAP objectives, the ILAE proposes a 90%–80%–70% target-oriented strategy, which entails that at least 90% of people with epilepsy worldwide are appropriately diagnosed, at least 80% are on appropriate and affordable treatment/s, and at least 70% of those treated attain complete seizure remission without experiencing side effects. The targets, though desirable, are challenging. Hence, realistic plans for implementing the strategy require strengthening existing policies, provisions and practices and adopting novel approaches.

The Southeast Asian region is home to 15 million people with epilepsy, representing nearly a third of the world’s burden (Fig. 1). The majority of those with epilepsy cannot access the treatments they require. Furthermore, WHO estimates that there are only three neurologists for one million people in Southeast Asia compared to 90 in Europe. Ostensibly, while epilepsy medicines on Essential Medicines Lists are generally available in urban and tertiary care settings in many countries, the availability in rural and remote regions is restricted to urban and tertiary care settings.

We propose four crucial approaches to epilepsy care, particularly in resource-limited settings in the Southeast Asian region, and present evidence supporting them (Fig. 2). The first relates to recognising fully that communities in general and people with epilepsy, their families and care providers are crucial stakeholders in reducing the epilepsy burden. Without co-opting and working with them, efforts may not produce the desired results. The second pertains to scaling up the capacity of primary health care providers to diagnose and treat all epilepsies, particularly in recognising focal non-motor seizures. We propose accomplishing this through developing and integrating technology-enabled service delivery models in primary health care. Lastly, we suggest expanding the WHO Model and National Essential Medicines Lists (NMEls) for epilepsy. Notably, these apply mainly to low- and middle-income countries (LMICs) in the Southeast Asian region, where nearly 70% of the people with epilepsy remain untreated.

1. Make communities epilepsy-literate

Epilepsy is not just a medical condition but a complex social construct fuelled by ignorance, discrimination, poverty, patriarchy, stigma and much more. Efforts to improve epilepsy care and the quality of life of people with epilepsy are traditionally led by governments, health care organisations, non-governmental organisations and media, which indisputably are vital to making people epilepsy-literate. The objectives, however, can be better advanced through engaging with communities and their grassroots representatives. These may include health workers, local leaders, administrators, religious leaders, and school teachers. Understanding epilepsy as a medical condition and not an evil, contagious scourge by entire communities rather than select individuals is required for people with epilepsy to live dignified lives, be accepted in communities and be treated with empathy. To be acceptable, resilient and sustainable, epilepsy intervention programs should be accompanied by active engagement with communities at every possible level. Evidence to support the participation of community-based stakeholders in epilepsy care is building up.

Initiatives that inform communities, consult, partner and collaborate with them and,
in due course, are delegated to and owned by communities form the backbone of a people-centric approach to epilepsy care. It is not by coincidence, therefore, that the IBE, which represents people with epilepsy, is a signatory to the global epilepsy report and a key stakeholder in IGAP.

Fig. 1: World map depicting DALYs due to epilepsy across countries in the world and the Southeast Asian region in particular. Adapted from Ref. 8

Fig. 2: Cartoon depicting the four approaches proposed in this Review.
lepsies are focal (Fig. 3). Addressing convulsive epi-
and untreated for long periods. Nearly one-half of all epilepsies will remain undiagnosed
awareness and other non-motor seizures. As a result,
but exclude focal seizures with or without impaired
epilepsies will include focal to bilateral tonic-clonic seizures
characterise active epilepsy. This represents a departure
from the ILAE Epidemiology Commission recommen-
dations, which proposed 5 years as the time criteria for
standing as convulsions (now termed motor seizures)
including focal non-motor seizures
2. Primary health care providers should be
enabled to diagnose and treat all seizures,
including focal non-motor seizures
Most population-based assessments of epilepsy and field
interventions have been limited to active convulsive
epilepsies denoting convulsions (bilateral tonic-clonic
seizures, as part of focal or generalised epi-
lesies). These studies often use a 1 year period to
categorise active epilepsy. This represents a departure
from the ILAE Epidemiology Commission recommen-
dations, which proposed 5 years as the time criteria for
active epilepsy. These pragmatic operational criteria
stand well as convulsions (now termed motor seizures)
are unmissable and usually unmistakable, especially in
settings with modest expertise and busy primary care
practices. Moreover, they impact the quality of life more
than focal and non-motor seizures. In line with this, the
WHO mental health Gap action program (WHO
mHGap) has formulated diagnostic and treatment al-
gorithms for active convulsive epilepsy.

Tackling only active convulsive epilepsies is an
appealing approach which has provided rewards but has
a downside. A review of population-based studies of
new-onset epilepsy suggests that 55% (95% Cis,
48–61%; range 20–92%) of seizures in new-onset epi-
lepsies are focal (Fig. 3). Addressing convulsive epi-
lepsies will include focal to bilateral tonic-clonic seizures
but exclude focal seizures with or without impaired
awareness and other non-motor seizures. As a result,
neither one-half of all epilepsies will remain undiagnosed
and untreated for long periods.

Recent evidence, albeit in resource-rich settings,
have emphasised delays in diagnosing epilepsy among
frontline health care services. The delays could vary
from 1 month to several years. Most of these delays have
been on account of focal and/or non-motor seizures. One
study reported a substantially high rate of motor
vehicle accidents among those experiencing diagnostic
delays because of focal and/or non-motor seizures. Some
of these diagnostic delays could undoubtedly be
due to an inability of people with epilepsy to recognise
focal and/or non-motor events as seizures. Additional
diagnostic delays at levels of frontline health care pro-
viders have also been documented. Reducing this diag-
nostic delay and gap is a public health challenge, all the
more relevant to the realisation of ILAE target 1, which
is to reduce the diagnostic gap to 10% by 2031.

Primary care providers’ perspective
Relevant to the engagement of primary health care
providers in managing focal seizures is determining if
they have the requisite capacity to diagnose focal sei-
zures. Only limited evidence is available in this regard,
and when existing, it is in the form of epilepsy knowl-
edge, attitudes, and practice surveys among healthcare
workers in LMICs. Whilst these do not substitute for
knowledge and skills assessments, they provide some
insights. A Zambian survey presented different clinical
scenarios spanning 2–3 sentences to assess knowledge
about epilepsy among trained non-physician healthcare
workers. Nearly 80% correctly identified focal seizures
with impaired awareness from the clinical descriptions.
Surveys from other settings and parts of the world,
however, suggest that knowledge and understanding of
the manifestations of focal epilepsies are generally poor
among medical students, physicians and nurses in
LMICs.

Systematic baseline assessments of the knowledge
and skills at the primary care level and the feasibility,
acceptability and adaptability of primary care participa-
tion in recognising and treating focal and non-motor
seizures, alongside convulsive epilepsies are urgently
required. Plausibly, these might guide the development
and refinement of primary healthcare epilepsy educa-
tional packages. There are existing packages to consider,
e.g., the Paediatric Epilepsy Training (PET) courses
initiated by the British Paediatric Neurology Associa-
tion, the Practical Approach to Care Kit (PACK) epilepsy
folio, and the Latin American epilepsy e-learning
initiative. Of note, PET courses have been held in
India, Singapore and New Zealand but not in any other
Southeast Asian country. Further development of
packages should ideally be technology-enabled, self-
paced or blended and incorporate assessment tools. The
ILAE Epilepsy Primary Care Curriculum could form the
starting point for such initiatives.
Once suitably competent, primary health care providers would be able to educate a range of community stakeholders, including community health workers, school teachers, parents and lay persons on the recognition of focal and non-motor seizures. For instance, it might be really helpful if school teachers know that deteriorating cognitive performance in children could be on account of absence seizures.

3. Integrate innovative technology in primary health care to drive epilepsy management

Primary health care providers in LMICs are usually overstretched in terms of clinical load and different health conditions they have to handle. They often lack the initiative, resources and time to locate and absorb information on such broad-ranging clinical topics. Required for them are actionable knowledge and skill points, which can be readily integrated into their workflow. In this context, app-based decision-making systems, either web-based, native or hybrid, have been developed and started to impact care. Some of them solely cover epilepsy.40,41 Their methodological features have been reported and validated in limited settings.42-44 Testing their efficacy and safety in clinical trials and real-world settings may be desirable. Key issues that need addressing include their acceptability among different healthcare provider groups, ability to function with limited connectivity in rural locations or hilly terrains, and safety and privacy of individual data. Specialist teleconsultations may complement the use of Apps, and there is Class I evidence that even telephonic clinical reviews are feasible and acceptable to most users and save time and decrease costs.45 Remote electroencephalographic recordings, telemedicine and electronic data capture technologies are other examples of

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{forest_plot.png}
\caption{Forest plot of the proportion of focal seizures among population-based samples of new-onset epilepsies.}
\end{figure}
technology-enabled aids which may be suitable in remote and rural settings, where specialist availability is unlikely to improve in the short term.

Digital technology, when applied to end-users, has its advantages and disadvantages. Electronic decision support systems have the potential to advance evidence-based and affordable healthcare delivery in primary care. They can provide standardised care across multiple health conditions and are suitable for training and monitoring. In addition, they allow task-sharing whilst also providing appropriate specialist support without imposing undue demands on healthcare systems.46,47 In resource-limited settings, technology-enabled solutions may be constrained by poor reach, adoptability and understanding.48 Technological innovations tend to get institutionalised slowly and should be tested or adapted to local contexts.

4. The WHO model NLEM antiseizure medications’ range should be extended

The WHO model list of essential medicines includes six oral epilepsy medicines, i.e., phenobarbital, phenytoin, carbamazepine, valproate, lamotrigine and ethosuximide, four parenteral preparations, i.e., phenobarbital, phenytoin, valproate-sodium and lorazepam, one rectal preparation, i.e., diazepam and one oro-buccal formulation, i.e., midazolam (Table 1).49 Apart from ethosuximide, these medicines are widely available and relatively inexpensive. A cost analysis from 2001 estimated the annual cost of phenobarbital as low as US$ 11.20

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Antiseizure medication</th>
<th>Oral tablets</th>
<th>Syrup</th>
<th>Intravenous injection</th>
<th>Rectal gel or solution</th>
<th>Oro-mucosal/buccal solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Phenobarbital</td>
<td>15 mg, 30 mg, 60 mg, 100 mg</td>
<td>15 mg/5 mL</td>
<td>200 mg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Phenytoin</td>
<td>Solid form: 25 mg, 50 mg, 100 mg (sodium), 30 mg/mL</td>
<td>25 mg/5 mL, 30 mg/mL</td>
<td>50 mg/ml (sodium) in 5 mL vial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Carbamazepine</td>
<td>Chewable form: 50 mg</td>
<td></td>
<td>100 mg/5 mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Valproic acid</td>
<td>Crushable tablet: 100 mg, Enteric-coated tablet: 200 mg, 500 mg</td>
<td>200 mg/5 mL</td>
<td>Injection: 100 mg/ml in 4 mL ampoule; 100 mg/ml in 10 mL ampoule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Lamotrigine</td>
<td>Solid form: 25 mg, 50 mg, 100 mg, 200 mg, Chewable, dispersible tablets: 2 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Ethosuximide</td>
<td>Capsule: 250 mg</td>
<td>250 mg/5 mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Diazepam</td>
<td></td>
<td></td>
<td>5 mg/ml in 0.5 mL, 2 mL, 4 mL tubes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Lorazepam</td>
<td></td>
<td></td>
<td>2 mg/ml in 1 mL ampoule; 4 mg/ml in 1 mL ampoule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Midazolam</td>
<td></td>
<td></td>
<td>5 mg/ml; 10 mg/ml (or 1 mg/ml; 10 mg/ml ampoule)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Antiseizure medications on the WHO model list of essential medicines – 22nd list, 2021.
Despite long-term use, data on the enduring safety of some ASMs in the WHO model list is limited. In a recent report, the hazards of incident cardiovascular disease were significantly elevated among users of enzyme-inducing ASMs compared to those who did not use them. Cumulative risks were marginally elevated for the first ten years of use but increased considerably beyond that period. Risk also increased with increasing doses. These findings have not fully been replicated in other studies with either different study designs or shorter follow-up periods. One follow-up study on post-stroke epilepsy found lower cardiovascular mortality rates with lamotrigine and levetiracetam compared to carbamazepine. Many of these data need to be assimilated and absorbed carefully over time but provide a cautionary preamble to use of enzyme-inducing ASMs over the long term.

The impact of enzyme-inducing ASMs on bone health and fracture risk is also relevant to using these medications over long periods. A systematic review concluded that the fracture risk was elevated in users of enzyme-inducing ASMs but could not provide quantitative outcomes. The systematic review findings were influenced mainly by one large cohort of over 60,000 people with epilepsy. The adverse cardiovascular and musculoskeletal outcomes associated with some of the ASMs eventually translate to increased total health care costs in people with epilepsy, for instance, on account of vitamin D supplementation, the cost of remedying fractures and treating cardiovascular disease.

The use of some traditional ASMs can be complicated. The British National Formulary lists 153 clinically relevant drug interactions for phenytoin and 136 for carbamazepine, for which there is empirical evidence from human studies and several drug–disease interactions. Dosage adjustments can be complex due to the narrow therapeutic index of phenytoin and auto-induction in the case of carbamazepine. Several complicated nomograms and formulae have abounded to guide dosage adjustments. The use of many traditional ASMs has substantially declined in western clinical practice in the past two decades. In comparison, some of the newer ASMs, although equally efficacious, afford better tolerability and fewer drug–drug interactions. This “ease of use” of some, e.g., levetiracetam and lacosamide, makes them convenient and appealing for use in primary care.

“Primum non nocere” could be a fair argument against traditional enzyme-inducing ASMs. The argument may, however, be conveniently rescinded as traditional ASMs might be the only medications available for use in many resource-limited settings. It is imperative to ensure their rational use, including in efficacious and safe combinations. Many newer ASMs are beset with availability and cost issues, which need careful consideration, although there is emerging evidence that public financing of some of the newer medications may further reduce the disease burden and avert financial losses. It is, therefore, timely to introduce newer ASMs to the WHO model list so that once widely available and affordable, these could eventually replace some of the ASMs on current lists. Importantly, this could be integrated within wider efforts to provide universal health coverage as indeed relevant not just to IGAP but also the United Nations Sustainable Development Goals.

In conclusion, approval of the IGAP is a long-awaited and alluring development. The targets might appear daunting but need not be so if countries, states and institutions globally and Southeast Asia begin planning and preparing earnestly. Many approaches, e.g., community engagement and timely referral, are already recommended but re-emphasised here for broader implementation. For instance, a top-down approach with firm commitment on the part of governmental agencies might be the key to motivating primary health care providers to provide quality and efficacious epilepsy care. Such a series of reforms in current approaches might be the key to bridging the gap between the desired and current situations. As well as reducing epilepsy diagnostic and treatment gaps, the proposed measures could go a long way in diminishing the global burden of all neurological disorders on account of shared disease burdens and common diagnostic and therapeutic approaches.

Contributors

G.S. conceived the idea behind the manuscript and wrote the preliminary draft. M.B.S., D.D., P.M. and J.W.S. provided substantial intellectual inputs in the form of adding to the draft and revising the manuscript several times over. The graph was made by G.S.

Editor note

The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.

Declaration of interests

The authors are PIs/Co-PIs and Collaborators on a DBT-Wellcome Trust Project no. 1A/CRC/20/1/600002. In addition, G.S. has received grants from the Indian Council of Medical Research and P.M. has received grants from the Wellcome Trust, Indian Council of Medical Research and Medical Research Council, UK. J.W.S. or his department has received grants from Eisa, Angelina Pharma, UCB Pharma. His current position is endowed by the UK Epilepsy Society. He serves as Editorial Board member for Lancet Neurology. D.D. has received support from Shanghai Municipal Science and Technology Major Project (2018SHZDZX01).

Acknowledgement

We acknowledge Raj Setia for the map drawing in Fig. 1 and Roheina Chowdhury for assistance with the meta-analysis. We also acknowledge the support provided by DBT-Wellcome Trust India Alliance, vide project no. 1A/CRC/20/1/600002.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jlancer.2022.100135.