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A B S T R A C T

Agent-based modellers frequently make use of techniques to render simulated populations more computation-
ally tractable on actionable timescales. Many generate a relatively small number of ‘‘representative’’ agents,
each of which is ‘‘scaled up’’ to represent some larger number of individuals involved in the system being
studied. The degree to which this ‘‘scaling’’ has implications for model forecasts is an underdeveloped field
of study; in particular, there has been little known research on the spatial implications of such techniques.
This work presents a case study of the impact of the simulated population size, using a model of the spread
of COVID-19 among districts in Zimbabwe for the underlying system being studied. The impact of the relative
scale of the population is explored in conjunction with the spatial setup, and crucial model parameters are
varied to highlight where scaled down populations can be safely used and where modellers should be cautious.
The results imply that in particular, different geographical dynamics of the spread of disease are associated
with varying population sizes, with implications for researchers seeking to use scaled populations in their
research. This article is an extension on work previously presented as part of the International Conference on
Computational Science 2022 (Wise et al., 2022)[1].
1. Introduction

Agent Based Models (ABMs) are often designed and built to model
complex behaviours among large populations. However, the combi-
nation of complex behaviours and large populations can require ex-
tensive memory or CPU usage, and simulations can quickly become
too computationally intensive to run efficiently outside of specialised
environments. As the use of such models flourished during the global
COVID-19 pandemic, the desirability of models which could be ex-
plored quickly and frequently became especially pressing. Researchers
have long known that ‘‘more is different’’ - the scale of the simulated
population matters in complex systems (see, for example, [2]). The
solution has traditionally been to push technological and methodologi-
cal boundaries to ensure models can be run at scale. While different
methodologies have arisen to deal with the challenge of large-scale
agent-based simulations (see Bithell and Parry [3] for a few of the most
common), during the COVID-19 pandemic, the tremendous pressure
in terms of both time and resources challenged the trade-off between
model fidelity and run-time. The importance of this work has been
highlighted as researchers have sought to help with the time-sensitive
problem of disease forecasting (see for example [4,5], or [6]).
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Briefly, some modellers approach this problem by reducing the level
of complexity of the model or the scope of the simulated population in
order to enable their model to run [7]. Others revert to equation-based
modelling or hybrid approaches to reduce some of the burden in terms
of computational intensity [6]. Still others have the option to simply
increase computational power through either computer hardware or
parallelisation (see, for example, [8]). Some researchers restructure
their model to enable ‘‘super individuals’’ to represent multiple agents,
which risks the dynamics of a larger population not being reflected
beyond a certain point — both spatially and temporally.[9]

None of these approaches are without drawbacks, and it is im-
portant to understand the trade-off decisions researchers are making.
Modellers who lack access to distributed computing, the platform-
specific expertise to take advantage of it, or the funding to support such
technical capacity must make do with more mass-market resources.
Local government officials or humanitarian teams are increasingly
interested in this kind of simulation; at the same time, they rarely
have access to flexible budgets, highly specialised staff, or the longer
timescales academic researchers enjoy. Further, those working with
sensitive data may have concerns about making use of commercial
platforms like Amazon Web Services; this is an especially alarming
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prospect for teams working with health data. As such, many new
agent-based modellers have turned to the use of ‘‘super individuals’’,
an idea originally developed by Scheffer in 1995 [10]. In such mod-
els, researchers simulate only a fraction of the target population and
scale up their output with the assumption that the trends are broadly
representative.

In light of the renewed importance of this technique, we question
how the assumptions researchers make about super individuals trans-
late into different model outcomes. In particular, we study how using
a smaller set of agents to represent the dynamics of the full population
affects the trajectory of the model. This work provides an illustrative
example of the impact of using different sizes of population samples
in an ABM simulating the spread of SARS-CoV-2, an extension upon
previous work (see Wise et al., 2022)[1]. The model explores the spread
of disease through a representative sampled population in Zimbabwe
during the first wave of the pandemic, which began in March 2020.

In Section 2, we present an overview of the background of this
problem and how researchers have approached it in the past. We
also highlight instances of practice whereby researchers have applied
these techniques to highlight the need for the research being presented
here. In Section 3 we introduce the model being used in the case
study, and in Section 4 the data that underpins it. Section 5 breaks
down our experiments regarding the variation in results produced by
the differing proportion of population being simulated, exploring in
particular how this changes as space is added to the simulation and
as the infection rate changes. Section 6 further explains the results and
their implications, while 7 concludes the article with our suggestions
to other researchers regarding the trade offs of higher model fidelity
versus quicker runtimes.

2. Literature review

The COVID-19 pandemic has prompted an explosion in the publica-
tion of disease models which use agent-based approaches. It has simul-
taneously highlighted the fact that computationally intensive models,
including ABMs, may struggle to provide outputs on a timeframe useful
for policymakers making time-sensitive decisions. During this period,
when modellers were put under unprecedented pressure to produce
outputs at short notice, simpler equation-based approaches often held a
comparative advantage, despite not being able to provide equally fine
grained answers. Given the importance of variation in susceptibility,
access to vaccines, contact rates, and many other factors, many re-
searchers instead turned to model simplification to render the problems
computationally tractable. When models are simplified, an important
aspect to consider and account for is how the population is scaled and
the impacts this scaling could have on results and policy implications.
This paper will focus on these implications.

First, we provide a review of how the question of scaling more
broadly is approached in the literature. The remainder of this section
will review a subset of ABMs, both relating to the pandemic and more
broadly, that have used some of the approaches to scaling outlined by
Bithell and Parry [3]. The first set of approaches opts to address com-
putational needs by simply increasing computational power. However,
due to both expense and technical expertise needed, such approaches
can be out of the reach of all but the most high capacity, well funded
stakeholders. The context of a global pandemic revealed the demand
for modelling approaches optimised for lower capacity contexts also.
We will address both approaches in this literature review, and explore
points of caution when applying scaling.

2.1. Computing power solutions

One way of speeding up computationally intensive ABMs is to sim-
ply increase the computational power available to the simulation. Typ-
ically, this is achieved either through specialised hardware or through
carefully fine-tuned parallelisation approaches. For example, Hoertel
2

et al. [5] sought to model the potential impact of post-lockdown mea-
sures in France. Simulating a demographically data-rich population,
their model uses Intel TBB libraries for multi-threading (and thus
parallelisation) to improve performance. Another model developed by
Aleman et al. [11] consists of almost five million individuals in 1.8
million households in the Greater Toronto Area. They were able to run
1000 simulations in approximately 13 min when using their parallel
computing infrastructure. Parker & Epstein [12] built a platform of dis-
ease transmission called the Global-Scale Agent Based Model (GSAM),
which enables the simulation of a population of several billion agents in
Java and application to any disease; this platform makes use of multi-
threading and increasingly available multi-core machines to deliver
such speedups, although the code used to achieve this has not been
made open source.

In addition to parallelisation, other methods that are CPU oriented
(e.g. [13]) use General-Purpose Computing on Graphic Units [14,15],
or use dynamic load balancing across HPCs [16] where possible. In each
of these cases, either the code was not made available online for others
to use (a common problem; see [17]) or the modellers made use of
specialised hardware in order to make the models tractable. As such,
this puts these solutions outside the reach of many interested users.

2.2. Complexity reduction

A more cost effective, accessible and less computationally intensive
alternative to increased computational power is the simplification of
complexity in order to reduce the computational load. Some studies
dealing with particularly complex behaviour in space choose to work
with a small scale population. For example, in the case of a different
study by Perez & Dragicevic [7] the researchers were unable to simulate
the entire population of the city for computational reasons. The model
implementation instead used 1000 individuals involved in a measles
epidemic and interacting at a city scale. Arguably, this is not a realistic
representation of the dynamics that would transpire were the entire city
population taken into account.

2.3. Hybrid approaches

One way to simplify complexity and thus speed up individual based
models is to adopt a hybrid approach. Hunter and MacNamee [6]
adopt such an approach by combining equation based and agent based
modelling. After modelling a disease outbreak in both a small town
and a county in Ireland, they allow the model to switch between the
ABM and the equation based model (EBM) depending on the number of
agents infected in an area. Once the threshold of the number infected
is passed, the model will automatically switch from agent-based to
equation-based. They argue that the advantage of the hybrid approach
is to allow for further scaling and modelling of a larger population
while still keeping a heterogeneous population. They point out that
it is important to decide in which parts of the model the fidelity can
be reduced and made equation-based, lest the model lose performance.
While an equation-based disease model can save time and computing
power, it misses capturing individual agents’ actions and the impor-
tance of contacts and different contact patterns between agents in the
spread of a disease. Further, it makes it impossible to explore how
adoption of non-pharmaceutical interventions might vary by group or
place, robbing the ABM of one of its great advantages.

2.4. ‘‘Super agents’’

A compromise approach that tries to balance the twin demands of
model fidelity and tractability is to make use of the aforementioned
‘‘super agents’’. This allows modellers to both preserve a degree of
low-level heterogeneity and to avoid troubleshooting the challenges of
tailoring a simulation for multi-threading or specialised hardware. The
Covasim model by Kerr et al. [4] uses the idea of dynamic scaling in
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conjunction with the super agents. When the epidemic is small, one
agent corresponds to one person. Then, when a certain threshold is
reached, the non-susceptible agents are down-sampled and a corre-
sponding scaling factor is introduced. As the epidemic expands, the
process is repeated iteratively until the scale factor reaches its upper
limit. They state that ‘‘this enables arbitrarily large populations to be
modelled, starting from a single infection and maintaining a constant
level of precision and computational time throughout’’[4]. The scaling
factors themselves can be set by the user. This technique can also be
used outside of epidemic contexts — see for example [18], where super
agents stand in as the ‘‘leaders’’ and decision-makers for larger groups
of individuals.

This ‘‘super agent’’ approach has proved popular, and may be a
good solution to the challenges outlined, especially in a context where
the data, software, hardware or team capacity may not be available.
However, it assumes that the scale of the input population each ‘‘super
agent’’ represents does not matter. Ben-Dor et al. [9] used a traffic
model to illustrate that scaling could in fact make a substantial dif-
ference to results from the full-scale model. When testing simulations
of the Sioux falls test case road network with MATSim, they note that
within the 10%–25% interval, downscaling could become unstable for
some statistics. For samples below 10%, they illustrate that statistics
can vary substantially from the full scale model. This paper is one
of a limited selection that explores the importance of scale in the
super-agent approach, and this is precisely the motivation behind the
contribution of this paper.

2.5. The unspecified route

Although a few approaches to scaling have been described in this
section, many models fail to document the population sizes or scaling
approaches used in the model at all. Systematic reviews of the literature
by Hazelbag and Willem have documented this [19,20]. In a full text
review of 265 articles, Hazelbag notes that the size of the simulated
population was explicitly mentioned in only 54 (64%) of the 84 in-
cluded articles; for another 9 (11%) articles it was possible to deduce
this number from either text or figures. The remaining 21 (25%) articles
either provided incomplete information (3/21) or no information at all
(18/21). For the 63 (75%) articles for which they obtained a number,
the median population size was 78,000 (range: 250–47,000,000). This
goes to show how some models attempt to avoid the challenges around
scaling up altogether [19].

In this paper, we aim to illustrate the potential bias that can arise
when scaling is not explicitly addressed, showing how this bias may
also vary with the complexity of the model. It is known that nonlinear-
ities in complex network interactions can lead smaller populations to
produce qualitatively different outputs than those of larger populations;
we quantify this in the context of a spatial network.

3. Methodology

In this paper we use the example of an ABM simulating the spread of
the COVID-19 pandemic in Zimbabwe to illustrate the role of super in-
dividuals and the relative sample scale on the model’s outputs. We will
refer to the number of individuals modelled out of the full population
as the sample size, where the number of people being represented by
ach super individual is determined by this sample size. For example,
n a sample of 5% of the population, each super individual represents
0 people; in the 50% sample, each super individual represents only
wo people.

We will present a very brief overview of the model and its function-
ng using the ODD Protocol [21]. A full description of the model will
3

e documented in a forthcoming separate paper.
3.1. Overview

The purpose of the model is to forecast the spread of an infectious
disease throughout a population of spatially distributed humans.

The entities in the model are either individual humans or infec-
ions. The human agents, called Persons, are characterised by their age
nd sex. Persons are assigned to households — physical locations where
consistent, designated group of Persons gather in the evenings. They
ove around their communities, sometimes travelling to other nearby
istricts, interacting with other people and potentially transmitting
nfections to one another. Infections represent a case of the given
isease. An Infection must be assigned with a host Person, and may
rogress over time based on the age of the host.

The model environment represents space. Persons can be located
ithin either household or community locations, both of which are

ituated within districts (larger spatial units which together make up
he country of Zimbabwe). A Person who is visiting a district outside
f their own home district must be out in the ‘‘community’’ - in their
wn home district, they may either be out in the community or else
n their own household. Persons make decisions every 4 h and interact
ith others based on their location.

The processes represented in this model include movement and
nfectious behaviours. Individual Persons choose whether to go out into
he community every day; they may visit the community of their own
istrict or may travel to another district and visit the community there.
f they have an Infection, they will potentially prompt the Persons with
hich they interact to contract their own Infections. Infections develop
ver time, developing from the initial exposure all the way to either
he recovery or death of the host. In advanced stages, the Infection may
ender the host immobile, preventing them from moving.

.2. Design

The design of the model allows for the emergence of local outbreaks
nd hotspots within target districts. Interactions between agents give
ise to the spread of disease, and the movement of Persons among
istricts allows for the disease to spread between otherwise relatively
losed communities.

.3. Details

The initialisation of the model is significant because after the pop-
lations have been generated in their target households and districts, a
et number of Infections are generated in hosts in the target districts.
he hosts are randomly chosen for each instantiation of the simulation.

The input data, being of particular interest in this paper, has been
pecified in its own section, Section 4. The submodels are simply the
ovement module and the infection module. In the former, Persons

hoose whether to leave the house with a pre-determined probability;
f they choose to leave, they will select a target destination based on
he movement matrix described in Section 4. Their movement pattern
ill also depend on the model, to be described in Model Versions and
opulation Scales. If they move to a community, they will interact
ith some set number of individuals present in the same community,
otentially prompting an Infection in them. At the end of 8 h in the
ommunity, they will return home and interact with those in their
ousehold.

The infection behaviour sees the Infection transitioning from the
tate of initial exposure to being, potentially, either symptomatic or
symptomatic. In the asymptomatic case, the Infection will resolve into
ecovery after a stochastic period of time; in the symptomatic case,
he Infection may either resolve into recovery or transition to a mild
ase. It may continue along this path, at each stage either recovering
r worsening into a severe case, a critical case, and ultimately death.
n individual Person who has recovered becomes susceptible to new

nfections. If the Infection progresses beyond the stage of being mild,
he Person is set to be immobile and restricted to their household.
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Fig. 1. Each model’s predicted number of cases and deaths at different population scales. This figure shows the predicted number of cases, deaths and corresponding 95% confidence
intervals for the non-spatial and spatial models. The first row illustrates the number of cases and the second the number of deaths. Here we see that as the model population size
increases, the variability in the estimated number of cases and deaths decreases.
Fig. 2. The mean peak epidemic size and the mean time at which the peak occurred for the various sample sizes, along with their respective 95% confidence intervals. The
non-spatial form of the model shows no significant difference among the peak number of cases, whereas the spatial form of the model predicts a significantly smaller maximum
case number in the 50% compared to the 10% and 5% samples, but not the 25% sample. In both the spatial and non-spatial forms of the model, the time at which the peak
epidemic size occurred did not differ at a statistically significant level.
3.4. Model versions and population scales

In order to assess how the complexity of the model interacts with
the size of the sample, we generate two versions of the model de-
scribed above, then test each one with 4 sample sizes, i.e. 8 combined
variations in total.

• A Non-Spatial Model - individuals have representative ages and
live in households of an appropriate size. Everyone exists in
the same geographic location, so when in the community, every
Person has an equal probability of interacting with every other
Person.
4

• A Spatial Model - in the same way as the Non-Spatial Model,
individuals have ages and household sizes drawn from real data.
However, in the Spatial Model, households are assigned to sixty
individual districts (with population sizes equivalent to the 60
districts of Zimbabwe) to create a spatially reasonable distribution
of population across the country.

For each model, we create a 5% sample, a 10% sample, a 25%
sample, and a 50% sample, where the percentage corresponds to the
share of the size of the total 2012 Census population of Zimbabwe.
For the 5% sample we simply use the 5% census sample we have for
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Fig. 3. The spread of the COVID-19 epidemic in time and space for different population sample sizes (𝛽 = 0.3). The shading of each district refers to the fraction of runs in which
districts had cases after 5, 10 and 20 days respectively, based on 30 runs of the simulation.
the population described in Data, using the characteristics provided.
This includes 654,688 agents in 160,728 households. To get the other
percentages, we expand the original 5% sample by generating identical
replicas of each household. For example, in the 10% sample, every
agent from the 5% sample is duplicated, so that there are two people
with the exact same characteristics, for a total of 1.3 million agents
over 321,456 households. The 25% sample includes 5 replicas of each
agent, and so on. Therefore, differences that arise between the sim-
ulation results can be more easily attributed to the increased size of
the sample. When increasing the sample size, there is no additional
information added into the model since the extra agents are clones of
those in the 5% sample. This is the same concept as that of ‘‘super-
agents’’ as described in the literature review, but since we are adding
these replicated individuals into the simulation, it allows the agents
that are otherwise exactly the same to end up in different situations.
Evidently, these are somewhat contrived populations but this should
be understood as a mechanism for testing rather than a realistic census
distribution, enabling us to run a cleaner experiment.
5

4. Data

The model makes use of a number of different forms of data to
motivate and contextualise the simulation, including:

• Census Data The 2012 Zimbabwe Census was taken from IPUMS
International. The data that is available is a 5% sample of the
original census of the 13 million individuals who lived in Zim-
babwe at that time. This data contains information on the age,
sex, economic status, household ID, and district of origin of every
person within this 5% sample (a total of 654,688 individuals).1

• Mobility Data Mobility data was calculated from approximately
8.1 billion Call Detail Records (CDRs) and reflect the levels of mo-
bility as monitored from and to each of Zimbabwe’s 60 districts.

1 The population has since grown to approximately 14.86 million, according
to most recent estimates. Therefore if we were to scale up to the full population
of 2022, the original sample would in fact have to be expanded 23 times.
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Fig. 4. The temporal spread of the simulated epidemic varies with respect to sample size. Subplot a) shows the average spatial distribution of the ratio in median daily cases
between the 5% and 50% population sizes for days 30–60 in the simulation. Subplot b) shows the cumulative number of districts with COVID-19 cases for each population size.
Larger model population sizes consistently resulted in a faster spread in the number of districts with COVID-19 cases (𝛽 = 0.3).
The detailed data were aggregated by a telecom operator into
daily origin and destination matrices using code developed by the
research team (see [22]). Only the aggregated, fully anonymised
output was shared by the telecom company with the research
team. The daily data was further aggregated into an Origin Des-
tination Matrix showing trips between two districts, relative to
day of the week by averaging values across dates falling on the
same day of the week. This was used to produce an average
probability that someone in a given district travels to each of the
other districts in the country on a given day of the week.

• Epidemiological Data A series of parameters to define the char-
acteristics of infection were input into the model to establish
the infection dynamics. These include age-specific susceptibility
to transmission, hospitalisation, critical cases, and death. The
characteristics of SARS-CoV-2 such as the incubation period, in-
fectious period, and recovery times were also included and taken
6

from the Covasim model which in turn were taken from Ferguson
et al. (2020) [23] and Verity et al. (2020) [4,24].

• Case data The aggregate district level case numbers from March
2020 provided by the Ministry of Health of Zimbabwe to the
World Bank representing the number of cases. These are used
to inform seeding of cases in the districts in the Spatial Model
presented here. In the 5% population sample, we seeded 12 cases
across four districts (districts Bulawayo, Harare, Marondera and
Masvingo). The number of cases in each district was then scaled
up to its corresponding input population size (for a total of 24
cases in the 10% sample, 60 in the 25% sample, and 120 in the
50% sample). The overall number of cases was equivalent for the
Non-Spatial Model.

These data sources were combined and synthesised in order to
support our modelling efforts.
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5. Results

To understand how the size of the simulated population impacts
the output of the model, we began by exploring the epidemic curves
of a range of population sizes, in terms of both daily new cases and
daily new deaths. Each of the two models is run with each of the
synthetic populations 30 times. The outputs are scaled up directly to
the full population (e.g. for the 5% sample we use a factor of 20 and
for the 25% sample we use a factor of 4) to facilitate comparison. Unless
otherwise mentioned, the 𝛽 value used for the simulated infection is 0.3
- kept purposefully high for easier comparison.

Fig. 1 shows that, for both the Non-Spatial and Spatial models, the
model produces an epidemic curve as expected. Smaller populations
inflate the impact of stochasticity and therefore have slightly more
varied results, while the larger, higher fidelity models show greater
precision. Deaths, being more rare than cases, exaggerate this effect;
they also lag cases by an appropriate time period. The height and shape
of these curves, across population sizes, is very consistent. These are all
in keeping with our expectations and support the conclusion that the
model is correctly capturing the dynamics of an epidemic outbreak.

5.1. The epidemic peak

While both versions of the model recreate the appropriate epidemic
curve, the Spatial model has a noticeably lower peak than that of the
Non-Spatial model. Further, this peak appears to occur very slightly
later in the Spatial model than it does in the Non-Spatial model. To
more precisely investigate the impact of spatiality on the time to peak
case numbers, we calculated the mean and standard deviation of time
to the epidemic peak and the mean peak case number respectively for
each sample size, Fig. 2. We find that in the Non-Spatial model, the
maximum case number and time at which it occurs is not significantly
influenced by sample size. In contrast, the maximum case numbers of
the Spatial model are significantly different between the 50% and both
the 10% and 5% samples. The time at which the peak infections occurs
is not significantly different for different sample sizes.

5.2. Spatial distribution of cases

It is worthwhile to consider also the spatial distribution of cases.
Fig. 3 reflects how the finer-grained populations capture the spread of
disease to a wider range of districts. While the aggregate case counts
can seem quite similar, the spatial distribution of these cases may be
very different. Fig. 4 shows a comparison of these parameters, with
Fig. 4a highlighting the fact that in the more remote areas, the smaller
simulated populations consistently underpredict the presence of cases
in remote districts during the early period of a pandemic. Fig. 4b gives
a temporal sense of this delay.

5.3. Varying 𝛽

Another consideration was whether the importance of population
size varied relative to the 𝛽 of the infection. Fig. 5 shows the spread of
disease through each of the synthetic populations at different 𝛽 values.
Because smaller values of 𝛽 so often lead to epidemics apparently
dying out, the impact of population is most immediately obvious in
the 𝛽 = 0.3 case we have highlighted previously. Note the presence
of cases in unseeded districts for the lower values of 𝛽 with the 50%
population, in particular the extremely noticeable difference between
final results for 𝛽 = 0.03. Thus, the lower the 𝛽, the more population
fidelity matters.This point is further illustrated in Fig. 6, which shows
the average number of districts with COVID-19 cases after 20 days for
different values of 𝛽 and sample sizes. As sample size increases, the
average number of districts with COVID-19 cases also increases for the
same 𝛽 value. Note the relatively log-linear increase associated with
the 5% population, in comparison to the increasingly log-superlinear
trendlines of the larger samples.
7

Fig. 5. The average spatio-temporal spread of COVID-19 for varying values of 𝛽 and
differing population sizes. The shading of each district refers to the fraction of runs
where districts had cases after 5, 10 and 20 days respectively, based on 30 runs of the
simulation.

6. Discussion

The question of why the Spatial and Non-Spatial models differ
in terms of epidemic peak size is worth discussing in greater detail.
Intuitively, we know that the number of new infections depends on
the ability of infected persons to interact with uninfected persons. The
greater the number of uninfected persons an infected person can access,
the greater the potential increase will be and the higher the epidemic
peak. The spread of the disease is constrained only by time or by a lack
of new hosts.
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Fig. 6. The average number of districts with COVID-19 cases after 20 days for differing population sample sizes. As sample size increases, the average number of districts with
COVID-19 cases increases for the same value of 𝛽. Note that the only value of 𝛽 where we do not see a difference in outcome is 𝛽 = 0, where the infection cannot spread and
only the initial infections are present.
In the Spatial version of the model, individuals interact with a
proper subset of the overall population. Thus, every set of candidate
interactions the agent can possibly draw in the Spatial model is also
possible for the candidate to draw in the Non-Spatial model. There
are no ‘‘outbreak events’’ possible in the Spatial model that are im-
possible in the Non-Spatial model. There is no way for an agent in
the Spatial model to reach some number of new potential hosts that
are inaccessible to the same agent in the Non-Spatial model, while the
opposite is untrue. Thus, the spread of the disease is unconstrained in
the Non-Spatial model, and the epidemic continues unimpeded. In the
Spatial model, agents may eventually move to locations where they
are exposed to the disease, but barring the vanishingly unlikely case in
which every agent travels to the same district at once, the immediate
availability of new hosts will always be smaller in the Spatial case. This
limits the fastest increases in growth seen in the Non-Spatial version,
resulting in the relatively lower, flatter curve of the Spatial model.

Of particular interest, too, is the intersection between the spatial
spread of the disease and the 𝛽 value, relative to the actual implications
of the model results. Smaller sample populations might lead researchers
to conclude that certain areas are highly unlikely to have cases —
leading them to wrongly conclude that some other aspect of their model
is incorrectly calibrated, should the validation data report cases in the
areas. It would be easy for a researcher to assume that their estimate of
𝛽 was too low and to adjust it. More sophisticated statistical tests could
potentially be deployed to avoid this kind of error, but it is important
modellers recognise these risks.

7. Conclusion

Agent-based modellers have historically lacked firm references or
benchmarking showing how population size, the inclusion of space,
or the setting of parameters can combine to impact their modelled
outcomes. This work attempts to begin a conversation about the need
for this, especially as more and more simulators attempt to apply this
methodology to time-sensitive health questions.

We demonstrate that researchers must take care in selecting the
scale of the population sample in their models, particularly if there is
interest in understanding the initial phases of a pandemic when case
counts and death numbers are low. Importantly, when there is a spatial
component to the model, the ultimate size of the epidemic is smaller
8

— but more widely spread. Running the model more times or with a
bigger population will not correct for this difference; researchers should
be aware of this when they design their work or try to compare it with
the findings of others.

Small samples also obviously lead to higher uncertainty. This is not
only in the early stages, but for the entire curve. Given that there is
already a high level of uncertainty in these epidemiological models
due to the large number of assumptions that are made, the added
uncertainty from a small sample size may reduce the reliability of such
a model for policy planning. For low values of 𝛽, they may change the
nature of the dynamic altogether, missing out on situations which have
the potential to become low-level epidemics.

From a policy perspective, there is interest in understanding when
a disease might spread to a new geographic area. This geographic
analysis can be one of the important advantages of an agent based
model, which allows for the simulation of how different agents might
move between areas. Yet, we see that if the sample used is very small,
it may not accurately portray the timing of when a disease will spread
to a new area. This is especially true for diseases with lower 𝛽 values.
This is important from a policy perspective since identifying when a
disease might first enter an area is important for mitigation strategies
and planning. On the other hand, finer grained populations allow the
larger populations to spread more widely, meaning that a low-fidelity
model might fail to identify locations where cases might reach. The
presence of cases in the gold standard or verification dataset might
conflict with such simulated spreads, and the researchers conclude that
finding a case in one district means that we have wrongly set our 𝛽
lower than we should, when in fact it may instead be that our simulated
super individuals are being asked to represent too many of their peers.

We have laid out these variations in light of the simplest possible
epidemic model, which includes no non-pharmaceutical interventions
of any kind or specialised movement patterns for individuals (e.g. long-
range truckers or flight attendants). Future work should explore how
these vary in light of travel restrictions, variable adoption of hand-
washing or masking, targeted vaccination campaigns, and so forth.
Given that resources and cultural practices vary noticeably by location,
the ability of agent-based models to capture the heterogeneity of human
behaviour may prove crucial to understanding epidemics.

Overall, trade-offs between model speed and fidelity are increas-
ingly relevant to researchers and we hope this work can contribute to

both discussion and awareness of them.
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