Fields, KG;
Ma, J;
Petrinic, T;
Alhassan, H;
Eze, A;
Reddy, A;
Hedayat, M;
... Muehlschlegel, JD; + view all
(2023)
Multivariable prediction models for atrial fibrillation after cardiac surgery: A systematic review protocol.
BMJ Open
, 13
(3)
, Article e067260. 10.1136/bmjopen-2022-067260.
Preview |
Text
Multivariable prediction models for atrial fibrillation after cardiac surgery a systematic review protocol.pdf - Published Version Download (721kB) | Preview |
Abstract
INTRODUCTION: Dozens of multivariable prediction models for atrial fibrillation after cardiac surgery (AFACS) have been published, but none have been incorporated into regular clinical practice. One of the reasons for this lack of adoption is poor model performance due to methodological weaknesses in model development. In addition, there has been little external validation of these existing models to evaluate their reproducibility and transportability. The aim of this systematic review is to critically appraise the methodology and risk of bias of papers presenting the development and/or validation of models for AFACS. METHODS: We will identify studies that present the development and/or validation of a multivariable prediction model for AFACS through searches of PubMed, Embase and Web of Science from inception to 31 December 2021. Pairs of reviewers will independently extract model performance measures, assess methodological quality and assess risk of bias of included studies using extraction forms adapted from a combination of the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies checklist and the Prediction Model Risk of Bias Assessment Tool. Extracted information will be reported by narrative synthesis and descriptive statistics. ETHICS AND DISSEMINATION: This systemic review will only include published aggregate data, so no protected health information will be used. Study findings will be disseminated through peer-reviewed publications and scientific conference presentations. Further, this review will identify weaknesses in past AFACS prediction model development and validation methodology so that subsequent studies can improve upon prior practices and produce a clinically useful risk estimation tool. PROSPERO REGISTRATION NUMBER: CRD42019127329.
Type: | Article |
---|---|
Title: | Multivariable prediction models for atrial fibrillation after cardiac surgery: A systematic review protocol |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1136/bmjopen-2022-067260 |
Publisher version: | http://dx.doi.org/10.1136/bmjopen-2022-067260 |
Language: | English |
Additional information: | This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics |
URI: | https://discovery.ucl.ac.uk/id/eprint/10168281 |
Archive Staff Only
View Item |