First-line immunosuppression in neuromuscular diseases

MA Foster¹,³, MP Lunn²,³, AS Carr²,³

1. Division of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London

2. Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London

3. UCL Queen Square Institute of Neurology, University College London, Queen Square, London

Word count: 4603

References: 75

Tables: 14

Figures: 4

Supplementary material: i) Patient information booklets

ii) Physicians’ Quick Guide

iii) Initiation checklist
ABSTRACT

Autoimmune neuromuscular diseases are a common and often treatable cause for peripheral nervous system dysfunction. If not optimally managed they result in meaningful impairments and disability. The aim of the treating neurologist is to maximise clinical recovery with minimal iatrogenic risk. This requires careful patient and medication selection, appropriate counselling and close monitoring of clinical efficacy and safety.

Here we summarise our consensus departmental approach to first-line immunosuppression in neuromuscular diseases. We combine multi-specialty evidence and expertise with a focus on autoimmune neuromuscular diseases to create guidance on initiation, dosage and monitoring for toxic effects of the commonly used drugs. These include corticosteroids, steroid sparing agents and cyclophosphamide. Efficacy monitoring advice is also provided, as clinical response informs dosage and drug choice. The principles of this approach could be applied across much of the spectrum of immune-mediated neurological disorders where there is significant therapeutic cross-over.
INTRODUCTION

Autoimmune myopathies, neuropathies and myasthenic syndromes have differing pathogenesis and diverse clinical presentations.\(^1\)\(^-\)\(^3\) Immunosuppressive (generalised suppression of the immune system) and immunomodulatory (supplementation or alteration of the immune response without suppression) treatment is based on the sole or combined use of corticosteroids, intravenous immunoglobulin (IVIg), plasma exchange, cyclophosphamide or rituximab in the acute phase. Oral immunosuppressant steroid-sparing agents (SSAs) are used completely alone, or more commonly in combination with – and then after – corticosteroids, enabling steroid reduction and remission maintenance. Randomised controlled trials of immunosuppression have been completed in Guillain–Barre syndrome,\(^4\) chronic inflammatory demyelinating polyneuropathy,\(^5\) myasthenia gravis,\(^6\) inflammatory myopathies\(^3\) and others. However, there is no consensus on an approach to immunomodulatory treatment. The choice of a therapy in individual cases should be based on the likely treatment efficacy in relation to the disease mechanisms, individual clinical features of the patient and their disease, and the risk of complications.

The current advice on prescription and monitoring of these drugs is derived and modified from rheumatology, dermatology, oncology and haematology guidelines. However, there are patient and disease characteristics specific to neuromuscular disorders with respect to toxicity and efficacy monitoring that require some tailoring. Previous publications in this journal have discussed rituximab, azathioprine and the use of plasma exchange in neurological disorders in detail.\(^7\)\(^-\)\(^9\) Here we describe an approach to safe, sensible and responsive use of first-line immunosuppression.
agents in neuromuscular diseases based on best available evidence, multi-specialty input and consensus expert neuromuscular clinical opinion. Supplementary documents linked to this article can be used to support informed consent of patients, and guide pre-treatment screening and safety monitoring thresholds for action. We recommend a range of disease-specific validated clinical outcome measurement tools, most of which are freely available online.

The aim of this approach is to optimise clinical outcomes and minimise complications as any degree of immunosuppression, albeit with medications in common use, represents a relatively high-risk intervention for the practicing clinical neurologist.

Mechanism of action

Knowledge of drug-specific mechanisms of action informs appropriate selection, usage and the expectations of response, as well as understanding of side-effects, their timely monitoring and when to action a change in treatment (Table 1).

Table 1: Mechanism of action of common immunomodulatory agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of action</th>
<th>Immune consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td>Inhibition of gene transcription for secretion of inflammatory cytokines</td>
<td>Reduction of leukocyte migration, phagocytic function of neutrophils and monocytes, and T-cell function</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>Purine antimetabolite: inhibits resting (G1) and DNA synthesis (S) phases of the cell cycle</td>
<td>Apoptosis of T lymphocytes</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Folic acid antagonist; inhibition of purine synthesis</td>
<td>Specific immune cell targets unknown</td>
</tr>
<tr>
<td>Drug</td>
<td>Effect</td>
<td>Mechanism</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Mycophenolate</td>
<td>Blocks de novo purine synthesis</td>
<td>Anti-lymphocyte (T- and B-cell) action. Less toxicity than azathioprine</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>DNA-alkylation: blocks all phases of cell cycle</td>
<td>Anti T-cell and B-cell activity</td>
</tr>
<tr>
<td>Rituximab</td>
<td>Monoclonal anti-CD20 antibody</td>
<td>Reduces pathogenic antibody production by reducing CD20 positive B-cells and the number of new plasma cells (CD20 negative but develop from B-lineage). Pathogenic antibodies reduced and disruption of other roles of B-cells (e.g. as antigen-presenting cells) in the immune system.</td>
</tr>
</tbody>
</table>

APPROACH TO IMMUNOSUPPRESSION IN NEUROMUSCULAR DISEASES

We use a clinical, patient-centred approach to the selection and use of immunosuppressant medications. Within broad boundaries, the dose and duration of treatment is largely dependent on clinical response, and there should always be stopping criteria set before starting. A systematic approach to patient assessment for each medication is recommended because of the potential for adverse events, to protect both the patient from harm and the prescriber from potential litigation. The main elements of the approach include the establishment of eligibility, practising fully-informed consent procedures, appropriate treatment induction, maintenance monitoring for safety and efficacy, and regular review to consider if ongoing treatment is still required (Figure 1).

Eligibility

The diagnosis of an autoimmune neuromuscular disease should always be made as thoroughly as possible, with appropriate and ample laboratory support before
treatment is considered. This includes a tissue diagnosis where it is possible and relevant, especially in vasculitis or where first-line response has not been as expected. Once treatment is initiated, retrospectively collecting pathological data with diagnostic relevance is virtually impossible. The diagnosis and supporting investigations should be clearly documented, preferably alongside diagnostic criteria where available. The diagnostic approaches to the conditions mentioned in this article have been discussed in previous publications in this journal.10–14

Treatment choice is dependent on the disease; Table 2 provides a simplified summary of preferential drug choice, developed by neuromuscular consultants in our department. Careful consideration of patient comorbidities and disease severity is essential.

Table 2: Immunotherapy choices in inflammatory neuromuscular diseases

<table>
<thead>
<tr>
<th></th>
<th>Steroids</th>
<th>IVIg/SCIg</th>
<th>AZA</th>
<th>MTX</th>
<th>MMF</th>
<th>CYC</th>
<th>PLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS</td>
<td>no</td>
<td>1</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>CIDP</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>no</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MMN</td>
<td>no</td>
<td>1</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>Vasculitic neuropathy</td>
<td>1</td>
<td>no</td>
<td>2</td>
<td>3</td>
<td>*</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>PM</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DM</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>MG</td>
<td>1</td>
<td>cr > m</td>
<td>2 (m)</td>
<td>3 (m)</td>
<td>2 (m)</td>
<td>*</td>
<td>1</td>
</tr>
</tbody>
</table>

AZA: azathioprine; CIDP: chronic inflammatory demyelinating polyneuropathy; CYC: cyclophosphamide; DM: dermatomyositis; GBS: Guillain–Barré syndrome; MG: myasthenia gravis; MMF: mycophenolate mofetil; MMN: multifocal motor neuropathy; MTX: methotrexate; PLEX: plasma exchange; PM: polymyositis; SCIg: subcutaneous immunoglobulin; 1: first-line; 2: second-line; 3: third-line; * may consider in individual cases; cr: treatment of myasthenic crisis; m: maintenance treatment; no - not recommended.
Informed consent

Prior to 2020, General Medical Council ethical guidance regarding informed consent was based on the Bolan criteria,15 the main principles of which stated that one should inform patients of all potential minor adverse events if they occur frequently (1/10 – 1/100) and of any serious adverse event, even if likelihood is very small (<1/10,000) with the test being that a reasonable body of clinicians would do the same. A serious adverse event as defined by the World Health Organisation is any outcome potentially resulting in death, permanent or long-term physical disability or disfigurement, medium or long-term pain, or admission to hospital; or other outcomes with a long-term or permanent effect on a patient’s employment, social or personal life.16

Based on these criteria we prepared a set of patient information booklets for each of the medications discussed in this paper which should provide adequate, generalised information on potential risk (Supplement i). Each booklet outlines, in clear and simple language, basic information about the drug, why it is used, how it is taken, what the possible side effects might be and the approximate frequency of their occurrence. We also highlight the safety measures in place to minimize risk, including monitoring and prophylaxis in certain situations. We discuss alternative options and expected outcome or prognosis if the individual chooses not to take this particular medication. Some basic references are given with advice on where further patient-appropriate information can be found.

However, the Montgomery judgment of March 2015 requires doctors to provide information about all ‘material risks’, as well as any to which it would be reasonable for them to think the individual would attach significance.15 This allows for a more
personalised discussion depending on the individual. This goes far beyond the scope of a generic patient information booklet, and must be informed by the patient–physician relationship on an individualised basis.

Magnitude of risk in the individual

As far as possible, risk factors for any individual should be considered in the context of the presenting disease, its severity and threat, and the potential risks of the considered treatment.

Pre-treatment recognition of renal, liver and respiratory disease allows for appropriate drug selection and risk minimisation in chronic renal impairment (Table 4) and identification of those at high risk at risk for tuberculosis (TB) (Figure 2) or *Pneumocystis jirovecii* reactivation (Figure 3). Cardiovascular risks should be assessed and addressed with routine primary prevention prior to treatment initiation in accordance to Q-RISK2 or other population-specific, validated risk calculator.\(^\text{17}\)

The need to consider current and future fertility and conception, breast-feeding (Table 6) and other physiological states, such as bone health (Figure 4), is also important. The rheumatology literature strongly recommends the following as minimum pre-treatment screening,\(^\text{18}\) with actionable events outlined in Table 3:

- Height, weight, blood pressure and vascular risk assessment
- Full blood count, creatinine/calculated glomerular filtration rate, alanine aminotransaminase and/or aspartate aminotransferase, albumin, vitamin D and calcium
- History and examination for respiratory disease.
Table 3: Actionable events in pre-immunosuppression co-morbidity screening

<table>
<thead>
<tr>
<th>Situation</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspicion of parenchymal lung disease</td>
<td>Smoking-cessation advice
Lung function tests
CXR +/- high resolution CT chest
Consider referral to a respiratory physician</td>
</tr>
<tr>
<td>HIV, HBV and HCV</td>
<td>Consider anti-viral treatment prior to immunosuppression (discuss with specialist)</td>
</tr>
<tr>
<td>Abnormal liver biochemistry (AST or ALT > 100 IU/L)</td>
<td>Not an absolute contraindication
Select less hepatotoxic drug: MMF instead of AZA</td>
</tr>
<tr>
<td>Abnormal synthetic liver function</td>
<td>Not an absolute contraindication
Increased risk of toxicity, except MMF</td>
</tr>
<tr>
<td>Chronic renal impairment (CRI)</td>
<td>Investigate cause for newly identified CRI
Alter dose/frequency and monitoring (Table 4)</td>
</tr>
<tr>
<td>Cardiovascular risk</td>
<td>Primary prevention pre-treatment</td>
</tr>
<tr>
<td>Previous malignancy</td>
<td>Not an absolute contraindication
Routine population screening recommended</td>
</tr>
</tbody>
</table>

ALT: alanine transaminase; AST: aspartate aminotransferase; AZA: azathioprine; CXR: chest X-ray; HBV: hepatitis B virus; HCV: hepatitis C virus; HIV: human immunodeficiency virus; MMF: mycophenolate mofetil; MTX: methotrexate

Table 4: Immunosuppressant dose adjustment in chronic renal impairment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Accumulates in CRI</th>
<th>Potential for nephrotoxicity</th>
<th>Chronic renal impairment (GFR, mL/min/1.73m²)</th>
<th>Adjustment (% of standard dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stage III (30-59)</td>
<td>Stage IV (15-29)</td>
</tr>
<tr>
<td>AZA</td>
<td>no</td>
<td>no</td>
<td>normal</td>
<td>75-100%</td>
</tr>
<tr>
<td>MTX</td>
<td>yes</td>
<td>yes</td>
<td>50%</td>
<td>CI</td>
</tr>
<tr>
<td>MMF</td>
<td>yes</td>
<td>no</td>
<td>normal</td>
<td>1 mg BD max</td>
</tr>
</tbody>
</table>
Tuberculosis risk

The risk of re-activation of latent TB should be considered in those receiving prednisolone at a dose greater than 15 mg/day (or equivalent) for more than six weeks, those on tumour necrosis factor-α (TNF-α) inhibitors, and those on vasculitis treatment (combination therapy with pulsed cyclophosphamide and high dose steroids).19 An algorithm for assessing TB risk is shown in Figure 2. TB treatment should always be given under the care of an experienced respiratory physician.

\textit{Pneumocystis jirovecii} pneumonia (PJP) prophylaxis

\textit{Pneumocystis jirovecii} (previously known as \textit{Pneumocystis carinii}) is an obligate extracellular fungus which infects the majority of children during childhood and is latent in up to 70% of non-HIV infected adults. Reactivation causing PJP has a mortality rate of 17%, rising to more than 50% in the critically ill.20 Data to support PJP prophylaxis in all patients on high-dose corticosteroids (20mg or more of prednisolone for four or more weeks) are weak and based on a historical, retrospective case series of 116 non-HIV infected patients over a seven-year period in one institution with multiple and variable comorbidities alongside corticosteroid treatment.21 The potential adverse event rate of prophylactic treatment itself must be considered in comparison.
In rheumatoid arthritis, the risk of PJP is 1.9%, and routine PJP prophylaxis is not advised in any current UK rheumatology guidelines. In acute leukaemia, solid organ transplant and stem-cell transplantation PJP occurs in 6.2% of patients without prophylaxis and there is an 85% reduction in infection rates with prophylaxis; this is the basis for PJP prophylaxis in national haematology-oncology guidelines. Other specific risk factors beyond corticosteroid use that increase risk of PJP include a CD4 count below 200 cells/mm³, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, older age, lung disorders and TNF-α inhibition; cumulative immunosuppressants also confer higher risks. In lower-risk autoimmune conditions (such as the neuromuscular conditions in context here) it is sensible to consider PJP prophylaxis only when prolonged corticosteroid treatment coincides with another significant PJP risk factor.

We recommend prophylaxis with co-trimoxazole 960 mg three times a week for any patient on greater than 20 mg prednisolone for more than four weeks in combination with any of: concomitant HIV infection; age above 80 years; underlying lung disease; previous PJP; history of ANCA-associated vasculitis; previous solid-organ or peripheral blood stem-cell transplant; or more than two other immunosuppressant medications (this includes vasculitis treatment, where steroids and cyclophosphamide are followed by an SSA). In addition, if a patient has a total lymphocyte count of less than 600 cells/mm³ at baseline, and a course of prednisolone of greater than 15 mg daily is planned for at least three months, their CD4 count should be measured one month into treatment and prophylaxis recommended if the CD4 count is below 200 cells/mm³. The advice is summarised in Figure 3.
Practical Neurology: How to do it

Prophylaxis should be continued for as long as steroids are taken. Reactivation of infection must be balanced against the side-effect profile of prophylaxis; for co-trimoxazole, this includes non-fatal adverse reactions such as rash, gastrointestinal symptoms, *Clostridium difficile* colitis, Stevens–Johnson syndrome and toxic epidermal necrolysis. Fatal anaphylactic reactions can occur at a rate of 15–25 reactions per million treated. This does not include drug interactions: methotrexate and co-trimoxazole in combination increase the risk of bone-marrow failure. Inappropriate antibiotic use adds to the burden of antimicrobial resistance in PJP.29

The alternatives to co-trimoxazole, such as dapsone, atovaquone and nebulised pentamidine, are significantly less effective and, in the case of pentamidine, not straightforward to deliver. They should only be considered when absolutely necessary.

Bone health

Bone health requires careful consideration in neuromuscular patients for two reasons. Firstly, the typical steroid dose used in neuromuscular disease markedly exceeds the 7.5 mg prednisolone (or equivalent) per day for three months or longer recognised to impart high risk of fragility fracture, independent of age or sex.30

Secondly, immobility related to the neuromuscular disability is a further risk factor for osteoporosis. We recommend documentation of the absolute risk of major osteoporotic or hip fracture over 10 years using the validated online FRAX Fracture Risk Assessment Tool.31 This 10-year fracture risk should be considered alongside the patient’s age to determine the need for treatment – lower and upper risk thresholds for each age bracket are provided (of note, the FRAX tool is only
Practical Neurology: How to do it

validated for people aged between 40 and 90 years; cases of concern outside the validated age range can be discussed with an osteoporosis specialist).32,33

If fracture risk lies above the upper threshold, treatment is advised. Routine measurement of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) scanning is not always required, but should be performed in people whose fracture risk lies between the lower and upper thresholds for their age; it can also be used as a baseline marker to assess treatment response. The FRAX score can then be recalculated with the BMD: if the new risk score lies above the given intervention threshold for their age, treatment is recommended. If a patient's 10-year risk of fracture falls above the 'very high risk' threshold, referral to an osteoporosis specialist is advised.32

Because of the potential for underestimation of risk in this cohort (as immobility secondary to the neuromuscular disease is often not considered), it is important to look for evidence of vertebral fractures (spinal X-ray or preferably axial MRI) if there is a history suggestive of fracture, such as unexplained back pain, loss of height or known spinal osteoporosis (Figure 4). The finding of a fracture considered to be osteoporotic would trigger consideration of bisphosphonate therapy.

When considering a bisphosphonate for osteoporosis, the subsequent risk of osteonecrosis of the jaw should trigger advice to patients to have a comprehensive and timely dental examination and undergo any required treatment before initiation of therapy if possible. Dentists may refuse to provide treatment to patients with previous exposure to bisphosphonates, especially if given intravenously or alongside immunosuppression.34
Oral bisphosphonates (alendronic acid, ibandronic acid and risedronate sodium) are recommended in adults if the 10-year probability of osteoporotic fragility fracture is at least 1%, or 'high risk' according to FRAX. Vitamin D and calcium should be supplemented if sub-normal on baseline testing.

Intravenous bisphosphonates (ibandronic acid and zoledronic acid) are recommended if the 10-year probability of osteoporotic fragility fracture is at least 10% (for example in immobile individuals), if the 10-year probability of osteoporotic fragility fracture is at least 1% and the person has difficulty taking oral bisphosphonates (alendronic acid, ibandronic acid or risedronate sodium), or if oral bisphosphonates are otherwise contraindicated or not tolerated. Discussion with rheumatology is advised when fracture risk is greater than 10%, if a fracture occurs whilst on treatment, or if there are any other concerns.

Bone protection should be continued for at least three years for zolendronic acid, or five years for oral bisphosphonates. Fracture risk should then be reassessed with FRAX, with or without DXA as indicated at that point. Longer treatment is recommended if patients are above 75 years old, there is a history of hip or vertebral fracture, there has been a fracture while on bisphosphonate treatment, or if treatment with oral glucocorticoids will be prolonged.

Once bone protection is discontinued it is important to reassess risk after any new fracture, regardless of when this occurs. If no new fracture occurs, the risk should be reassessed at 18 months to 3 years. Care must be taken not to forget reassessment in young women with significant steroid exposure or other risks. As data are insufficient to recommend bisphosphonate use in pregnancy, current guidelines
suggest cessation of bisphosphonate treatment three months in advance of conception.35

Conception, pregnancy and breast feeding

Women of childbearing age require particular consideration when choosing appropriate immunotherapy because of the potential teratogenicity of most drugs and relative immuno-compromise when pregnant. Long-term accumulation of observational data on the use of first-line immunosuppression has allowed for the following recommendations to be made: oral corticosteroids, IVIg and azathioprine are safe pre-conception, throughout pregnancy and whilst breast-feeding.36–38 Concomitant use of highly-effective contraception during treatment and for at least 90 days after treatment cessation is recommended for methotrexate, mycophenolate and cyclophosphamide (Table 5).

Table 5: Immunosuppression safety in pregnancy and breast feeding

<table>
<thead>
<tr>
<th></th>
<th>Peri-conception</th>
<th>T1</th>
<th>T2/T3</th>
<th>Breast-feeding</th>
<th>Paternal exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisolone36</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>IVMP36</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>AZA38</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MTX ≤25 mg/week38,39</td>
<td>stop 1 month in advance</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>MMF38</td>
<td>stop 6 weeks in advance</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>see text</td>
</tr>
<tr>
<td>CYC38</td>
<td>no</td>
<td>noa</td>
<td>noa</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>IVIg37,38</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yesb</td>
</tr>
</tbody>
</table>
Methotrexate should be ceased at least one month pre-conception, with mycophenolate held six weeks in advance. Cyclophosphamide at doses used in treatment of vasculitis results in infertility in women, especially over the age of 25, and reduced fertility in men. Pre-treatment counselling and egg or sperm donation should be considered if possible, and if the clinical situation allows.38

The MHRA advised in 2018 that men taking mycophenolate mofetil should use contraception, as the potential risk of genotoxicity on sperm could not be excluded.39

In 2022, the British Society for Rheumatology released updated guidance38 regarding use of immunomodulatory drugs in pregnancy, advising that paternal exposure to MMF was safe; however, they classed the available evidence as poor-quality, and described the recommendation as weak. Clinicians should discuss both sets of guidance, to facilitate an informed decision by the patient.

Vaccinations and infection avoidance

All individuals on greater than 20 mg prednisolone per day for more than four weeks or any of the other medications included in this review should be advised to have a single pneumococcal vaccination and an annual flu vaccination, and not to receive any live vaccinations.40–42 Patients who are naïve to varicella zoster virus (VZV)
should receive aciclovir or zoster-specific immune globulin in the event of VZV exposure; patients should therefore be advised to inform their treating physician if they are exposed.43

Oral immunosuppression (other than corticosteroids) should be discontinued during inter-current infections, taking into account the risk of cessation and disease recurrence, until the patient recovers from the serious infection. The steroid dose should be maintained. It is not recommended that immunosuppression should be routinely stopped pre-operatively; steroid dose should be minimised, if possible. Steroid dose should not be increased peri-operatively to pre-emptively avoid adrenal insufficiency.44 However, if there is concern that there is a particularly high risk of peri-operative or post-operative infection the individual case should be discussed with the local microbiologists. This also applies to dental procedures.

Treatment: induction and monitoring

The two important elements of treatment induction and maintenance are:

- drug efficacy monitoring, which should be disease- and patient-centred.

- drug safety screening and monitoring, which should be drug- and patient-centred

Efficacy monitoring

Treatment efficacy or failure is primarily a clinical decision in neuromuscular disease. There are no reliable serological biomarkers of disease activity (other than creatine kinase, which has some relative responsiveness in myositis, and the ESR/CRP in
Practical Neurology: How to do it

some cases of systemic vasculitis).45 To establish objective evidence of clinical change, the use of disease- and symptom-specific outcome measurements is recommended at pre- and post-treatment assessments. The concomitant assessment of at least three different measures is advised because sensitivity can vary. Table 6 lists some of the tools available.

Table 6: Disease-specific outcome measures in autoimmune neuromuscular diseases

<table>
<thead>
<tr>
<th>Condition</th>
<th>Established disability measure</th>
<th>MCID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic inflammatory demyelinating polyneuropathy</td>
<td>MRC sum scoret46</td>
<td>+/- 2 points</td>
</tr>
<tr>
<td></td>
<td>CIDP-RODSt47,48</td>
<td>+/- 4 points (logit scale)</td>
</tr>
<tr>
<td></td>
<td>Vigorimeter (kPa)t49</td>
<td>+/- 8 kPa</td>
</tr>
<tr>
<td></td>
<td>10m timed walk (seconds)t50</td>
<td>+/- 28% change</td>
</tr>
<tr>
<td></td>
<td>ONLSt48,51</td>
<td></td>
</tr>
<tr>
<td>Other neuropathy/ neuromyotonia</td>
<td>INCAT t52</td>
<td>+/- 1 point</td>
</tr>
<tr>
<td></td>
<td>Berg balance scalet50</td>
<td>+/- 8 points</td>
</tr>
<tr>
<td></td>
<td>ABC balance scoret53</td>
<td><50%: low function</td>
</tr>
<tr>
<td></td>
<td>Tremor scalet54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myotonia behaviour scalet55</td>
<td></td>
</tr>
<tr>
<td>Multifocal motor neuropathy</td>
<td>MRC sum scoret46</td>
<td>+/- 2 points</td>
</tr>
<tr>
<td></td>
<td>Vigorimeter (kPa)t49</td>
<td>+/- 8 kPa</td>
</tr>
<tr>
<td></td>
<td>MMN-RODSt56</td>
<td>+/- 4 points (logit scale)</td>
</tr>
<tr>
<td></td>
<td>ONLSt48,51</td>
<td></td>
</tr>
<tr>
<td>Inflammatory myopathy</td>
<td>MRC sum scoret46</td>
<td>+/- 2 points</td>
</tr>
</tbody>
</table>
Practical Neurology: How to do it

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timed up and go 3 m walk (seconds)</td>
<td>57 seconds</td>
<td>+/- 30% change</td>
</tr>
<tr>
<td>CK</td>
<td></td>
<td>+/- 30% change</td>
</tr>
<tr>
<td>HAQ score</td>
<td></td>
<td>+/- 15% change</td>
</tr>
<tr>
<td>Physician global activity assessment</td>
<td></td>
<td>+/- 20% change</td>
</tr>
<tr>
<td>Patient/parent global activity assessment</td>
<td></td>
<td>+/- 20% change</td>
</tr>
<tr>
<td>Manual muscle testing (MMT)</td>
<td></td>
<td>+/- 15% change</td>
</tr>
<tr>
<td>MDAAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myasthenia gravis</td>
<td>MG composite</td>
<td></td>
</tr>
<tr>
<td>MG-ADL score</td>
<td></td>
<td>+/- 3 points</td>
</tr>
<tr>
<td>Respiratory function, e.g. forced vital capacity</td>
<td></td>
<td>+/- 10% change</td>
</tr>
</tbody>
</table>

* Validated; ** Responsive; † At our centre, measurement of first dorsal interosseous is added to the standard six pairs of muscle groups, to better reflect pattern of weakness in neuropathy

The Minimal Clinical Indication of Change (MCID) is ‘a change that is considered meaningful and worthwhile by the patient such that they would consider repeating the intervention’ and is becoming more popular than a statistically significant difference in chosen outcomes in the clinical trial setting. This principle can be applied to clinimetrically sound, interval, metric-based scales. Taking the MCID into consideration can help interpret the real-life value of the treatment, but overall clinical judgement should also be applied.

Safety screening and monitoring
We have already discussed some of the general immunotherapy-related risks with regard to infection, bone health and woman of child-bearing age, but each individual agent has drug-specific risks and particular requirements for screening and monitoring depending on mechanism of action, pharmacodynamics and pharmacokinetics. We will discuss corticosteroid-associated safety screening and monitoring, then the SSAs as a group highlighting some agent-specific issues, followed by cyclophosphamide. Basic common guidance on dosing and monitoring are provided in the Physicians’ Quick Guide but adjustment according to individual disease severity, comorbidity and potential risk should always be considered (see supplementary material).

Corticosteroids

The therapeutic effects of an oral corticosteroid depend on its properties. Mineralocorticoids are prescribed to replace deficiencies in hormone levels resulting from reduced aldosterone production (for example in Addison's disease). Glucocorticoids have four main effects:

- Anti-inflammatory – inhibiting inflammation by blocking the action of inflammatory mediators (such as prostaglandins);
- Immunosuppressive – suppressing delayed hypersensitivity reactions (by directly affecting T-lymphocytes);
- Anti-proliferative (anti-mitotic) – inhibiting DNA synthesis and epidermal cell turnover;
- Vasoconstrictive – inhibiting the action of histamine and other vasoactive mediators, and also directly affecting vascular endothelial cells.
Table 7: Properties and therapeutic indications of oral corticosteroids, relative to hydrocortisone

<table>
<thead>
<tr>
<th>Drug</th>
<th>GC: MC ratio</th>
<th>General therapeutic indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocortisone (S)</td>
<td>1:1</td>
<td>Relatively high mineralocorticoid activity makes it unsuitable for long-term use</td>
</tr>
<tr>
<td>Cortisone (S)</td>
<td>0.8:0.8</td>
<td>Similar to hydrocortisone</td>
</tr>
<tr>
<td>Prednisolone (I)</td>
<td>4:0.8</td>
<td>High glucocorticoid activity makes it useful for long-term treatment, and as an anti-inflammatory and immunosuppressant</td>
</tr>
<tr>
<td>Methylprednisolone (I)</td>
<td>5:Minimal</td>
<td>Anti-inflammatory and immunosuppressive</td>
</tr>
<tr>
<td>Dexamethasone (L)</td>
<td>30:Minimal</td>
<td>Anti-inflammatory and immunosuppressive, used especially when water retention is undesirable as it has insignificant mineralocorticoid activity. Long duration of action makes it useful in conditions such as congenital adrenal hyperplasia.</td>
</tr>
<tr>
<td>Betamethasone (L)</td>
<td>30:Negligible</td>
<td>Anti-inflammatory and immunosuppressive, used especially when water retention is undesirable as it has insignificant mineralocorticoid activity. Long duration of action makes it useful in conditions such as congenital adrenal hyperplasia.</td>
</tr>
</tbody>
</table>

GC: glucocorticoid; MC: mineralocorticoid; S: short acting, biological half-life 8-12 hours; I: intermediate acting, biological half-life 18-36 hours; L: long acting, biological half-life 36-54 hours

The adverse effects of oral corticosteroids are largely dose-related and commonly seen in those on doses of prednisolone 20 mg/day or equivalent. Familiarity with the range of steroid associated adverse effects is very helpful in counselling, reassurance and symptom management in this patient group. They can often be predicted according to the mineralocorticoid properties (which may cause water retention and hypertension) or glucocorticoid properties (which may cause diabetes mellitus and osteoporosis). People receiving long-term oral corticosteroids (more
than three weeks’ duration) and those needing frequent courses (three or four per year) are at risk of systemic adverse effects, which are:

- **Endocrine** – adrenal insufficiency (fatigue, anorexia and weight loss, abdominal pain, nausea and vomiting, headache, joint pains, dizziness and fever), weight gain, and diabetes mellitus (new-onset, or worsening of blood glucose control in existing diabetes mellitus);

- **Gastrointestinal** – peptic ulceration with perforation and haemorrhage, especially with a history of gastro-oesophageal reflux disease, increasing age, concomitant non-steroidal anti-inflammatory drugs and anticoagulants, and serious comorbidity (such as advanced cancer);

- **Psychiatric** – confusion, irritability, delusions and suicidal thoughts early in treatment and especially with high doses;

- **Musculoskeletal** – osteoporosis, proximal myopathy and rarely avascular necrosis of the long bones;

- **Ophthalmic** – glaucoma and cataracts;

- **Cardiovascular** – hypertension;

- **Skin** – thinning of the skin, easy bruising, and delayed wound healing;

- **Other** – immunosuppression, Cushing's syndrome (usually reversible on withdrawal of treatment), and irreversible growth suppression in children and adolescents.
Practical Neurology: How to do it

Corticosteroids may also mask the clinical signs (such as pain) of serious systemic disorders and infections. All patients should carry a steroid card in case of sickness. Free printing is available from http://www.nhsforms.co.uk/. Careful steroid sick day management should be taught to all patients (Table 8), alongside the importance of having adequate supply and not stopping corticosteroid treatment abruptly in order to avoid an adrenal crisis. Advice of regimens for gradual dose reduction are provided in the Physicians’ Quick Guide (supplementary material).

Table 8: Sick-day rules steroid adjustment

<table>
<thead>
<tr>
<th>Steroid medication</th>
<th>Normal dose</th>
<th>Unwell with fever</th>
<th>COVID-19 (suspected or confirmed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisolone</td>
<td>3-10 mg/day</td>
<td>5 mg BD</td>
<td>10 mg BD</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>10 mg or more per day</td>
<td>Split dose to BD</td>
<td>Split daily dose to BD</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>>10 mg daily</td>
<td>20 mg immediately, then 10 mg 6-hourly</td>
<td>20 mg 6-hourly</td>
</tr>
<tr>
<td>Other steroid preparation</td>
<td>N/A</td>
<td>20 mg hydrocortisone immediately, then 10 mg 6-hourly</td>
<td>Hydrocortisone 20 mg 6-hourly</td>
</tr>
</tbody>
</table>

Steroid-sparing agents

Table 9 provides guidance on safety monitoring for commonly-used SSAs in neuromuscular diseases: azathioprine, methotrexate and mycophenolate. In our department, this is overseen by a clinical nurse specialist via telephone clinics facilitated by the consensus departmental guidance on actionable events and monitoring requirements. This process is supported by the lead clinician – in our experience, it is manageable in brief weekly meetings or via email or telephone communication when required. In some situations, the patient’s primary care
provider will accept some shared care responsibility and monitoring blood tests can
be performed locally and fed back to the hospital for action if required. However, not
all primary care providers can support this approach; some are able to do so during
the maintenance phase once treatment induction and dosing is established. The aim
of monitoring is to avoid serious adverse events through the identification of a
worrying trend or on reaching a threshold as listed in the actionable events box
(Table 10), which should result in either dose reduction or omission for a period of
time, or a switch to an alternative SSA. Clinical reasoning should be applied to each
case on an individual basis. Dosing and drug-specific information is provided in the
Physicians’ Quick Guide (supplementary material).

Table 9: Monitoring in all SSAs

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment</td>
<td>FBC, U&E, eGFR, LFT, albumin, beta-HCG</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Every two weeks until dose stable for at least six weeks: FBC, U&E, eGFR, LFT, albumin</td>
</tr>
<tr>
<td></td>
<td>Monthly for first three months on stable dose: FBC, U&E, LFT, albumin</td>
</tr>
<tr>
<td></td>
<td>Then every three months: FBC, U&E, LFT, albumin</td>
</tr>
<tr>
<td>Following dose change</td>
<td>Every two weeks until dose stable for at least six weeks: FBC, U&E, eGFR, LFT, albumin</td>
</tr>
</tbody>
</table>

beta-HCG: beta human chorionic gonadotrophin; eGFR: estimated glomerular filtration rate; FBC: full blood count; LFT: liver function tests; U&E: urea and electrolytes

Table 10: Actionable events in all SSAs

<table>
<thead>
<tr>
<th>Event</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC count < 3.5 x10⁹/L</td>
<td>Withhold until discussion with lead clinician</td>
</tr>
<tr>
<td>Neutrophils < 1.6 x10⁹/L</td>
<td></td>
</tr>
</tbody>
</table>
Unexplained eosinophilia > 0.5 x10^9/L
Platelets < 140 x10^9/L
Creatinine > 30% above baseline or eGFR < 60 ml/min/1.73 m²
ALT, AST > 100 IU/L
Unexplained fall in serum albumin
Rash or oral ulceration
MCV > 105 fL

<table>
<thead>
<tr>
<th>Drug</th>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZA</td>
<td>Relatively rapid onset (3–6 months) Safe in pregnancy Can assess patient concordance with metabolites and neutrophil count</td>
<td>Greater tendency for nephrotoxicity and hepatotoxicity</td>
</tr>
<tr>
<td>MMF</td>
<td>Less hepatotoxic Can up-titrate more quickly Better gastrointestinal tolerance</td>
<td></td>
</tr>
<tr>
<td>MTX</td>
<td>Once-weekly dosing</td>
<td>Possible association with fibrosis</td>
</tr>
</tbody>
</table>

ALT: alanine transaminase; AST: aspartate aminotransferase; eGFR: estimated glomerular filtration rate; FBC: full blood count; MCV: mean cell volume; WBC: white blood cell

Selection of the most appropriate SSA should be patient- and disease-specific.

Relative benefits and drawbacks of the different medications are summarised in Table 1 and Table 11.

Table 11: Characteristics of SSAs

AZA: azathioprine; MMF: mycophenolate mofetil; MTX: methotrexate
Cyclophosphamide

The initial treatment of patients with primary systemic vasculitis with generalised or threatened neurological dysfunction should include cyclophosphamide where not contraindicated. Combination therapy with cyclophosphamide and prednisolone is effective in inducing remission,67,68 although rituximab is an effective alternative in remission induction and remission maintenance in ANCA-associated vasculitis.69 Formal written consent must be used to provide confirmation of informed consent prior to treatment. Table 12 lists potential serious adverse events which should be discussed with patients as part of the informed consent. Recommendations to minimise or prevent these complications are also provided.

Table 12: Potential serious adverse events with cyclophosphamide and prevention recommendations

<table>
<thead>
<tr>
<th>Adverse reactions</th>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder toxicity</td>
<td>1 L prehydration with sodium chloride 0.9% or orally over 1 hour prior to cyclophosphamide</td>
</tr>
<tr>
<td></td>
<td>3 L/day oral fluid intake for 3 days</td>
</tr>
<tr>
<td></td>
<td>Mesna 200 mg IV in 100ml sodium chloride 0.9% infusion over 30 minutes before cyclophosphamide</td>
</tr>
<tr>
<td></td>
<td>Mesna 400 mg PO at 2 hours post cyclophosphamide</td>
</tr>
<tr>
<td></td>
<td>Mesna 400 mg PO at 6 hours post cyclophosphamide</td>
</tr>
<tr>
<td>Pneumocystis jirovecii pneumonia</td>
<td>Co-trimoxazole 480 mg three times per week (care with allergy)</td>
</tr>
<tr>
<td>Gastrointestinal disturbance</td>
<td>Cyclizine 50 mg slow IV bolus or ondansetron 8 mg slow IV bolus 15 minutes before cyclophosphamide</td>
</tr>
<tr>
<td></td>
<td>Domperidone 10-20 mg PO TDS for 3-5 days</td>
</tr>
<tr>
<td>Cervical intraepithelial neoplasia</td>
<td>Annual smear for 3 years</td>
</tr>
<tr>
<td></td>
<td>Follow up as per national guidelines</td>
</tr>
</tbody>
</table>
Vaccination

- Influenza
- Pneumococcus
- Avoid live vaccination

Fungal infection

Consider prophylaxis

Staphylococcus aureus

Consider treatment in ANCA-associated vasculitis

Infertility

Counsel

Consider cryopreservation if clinically permitted

Osteoporosis

Bisphosphonate + calcium + vitamin D

Tuberculosis

Risk assessment

HBV, HCV, HIV, VZV

Screen pre-treatment

Treat if indication (specialist discussion)

| HBV: hepatitis B virus; HCV: hepatitis C virus; HIV: human immunodeficiency virus; VZV: varicella zoster virus

Table 13: Cyclophosphamide dose adjustment in chronic renal impairment

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Creatinine 150-300 μmol/L</th>
<th>Creatinine 300-500 μmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td><60</td>
<td>15 mg/kg/pulse</td>
<td>12.5 mg/kg/pulse</td>
</tr>
<tr>
<td>≥60 and <70</td>
<td>12.5 mg/kg/pulse</td>
<td>10 mg/kg/pulse</td>
</tr>
<tr>
<td>≥70</td>
<td>10 mg/kg/pulse</td>
<td>7.5 mg/kg/pulse</td>
</tr>
</tbody>
</table>

The dose of cyclophosphamide should be tailored to age, renal function and white blood cell count or neutrophil count (Table 13 and Physicians’ Quick Guide, supplementary material). The standard dose is 15 mg/kg, but a maximum of 1.5 g should not be exceeded for most inflammatory conditions regardless of weight, and we seldom exceed 1 g per dose. The induction regimen includes a combination of corticosteroids and cyclophosphamide delivered in pulses (up to 10) monitored for safety with the neutrophil response, renal function and other adverse effects, and
tolerance monitored in the individual. Pulses 1 to 3 should be given two weeks apart followed by three-weekly intervals for pulses 4–10. Depending on tolerance and patient preference the last four doses can be given orally in tablet form. Clinical follow-up to ensure efficacy is as important as safety monitoring in vasculitis and is recommended monthly for the first three months, every 3–6 months for a year and 6–12 monthly for 2–5 years. Clinical monitoring should include the use of disease- and symptom-specific objective outcome measurements as stated above. Clinical response is expected within 3–6 months of cyclophosphamide induction. Maintenance therapy should be commenced within three weeks of completion of cyclophosphamide treatment (alongside the gradual down-titration of corticosteroids). Azathioprine,70 methotrexate71 and mycophenolate72 can be used in the maintenance phase. Patients who do not tolerate cyclophosphamide can be converted to maintenance immunosuppression earlier. Maintenance immunosuppression for vasculitis should be continued for at least 18 months before considering withdrawal, but probably two years at a minimum and possibly five years of treatment is generally recommended by rheumatology and nephrology experience.73–75 Relapse rates are particularly high (approximately 20% at two years) in granulomatosis with polyangiitis.

In the event of a minor relapse, restart prednisolone 30 mg per day and either optimise current maintenance immunosuppression or consider a change to an alternative SSA. If a major or life-threatening relapse occurs, then restart cyclophosphamide or consider rituximab in ANCA-associated vasculitis at induction doses alongside oral prednisolone 30 mg daily or intravenous methylprednisolone 1 g per day for 3 days, as long as the maximum lifetime cumulative cyclophosphamide dose of 25 g69 has not been reached. Excessive cyclophosphamide dosing
significantly increases risk of cardiotoxicity in the short term and haematological malignancy in the longer term. In refractory disease, it is important to consider alternative diagnoses and discuss with a specialist with experience in the management of treatment-resistant or relapsing vasculitis.

Treatment change and cessation

Any chosen immunosuppressive agent should be both effective and safe – if there is toxicity or lack of efficacy, the drug dosing or chosen agent should be reviewed. Clinicians also need to consider duration of treatment where there has been a good clinical response and the disease is in remission. An absence of any clinical deterioration over 2–3 years of follow-up whilst on maintenance therapy is reassuring. However, there are poor data on the natural history of many of these conditions, including the likelihood of long-term remission. If a patient and clinician decide together to stop immunosuppression, close clinical monitoring should still continue. In the experience of the authors, intermittent clinical assessment (every 6–12 months) over 2–3 years after cessation of immunosuppression is reassuring as evidence of clinical stability. If the decision is made to discharge from routine review, patients should be advised how to access clinical assessment in the event of a possible relapse.

GOVERNANCE AND AUDIT

The prescription of immunosuppression is a relatively high-risk area within neurology. These guidelines provide a framework for quality and safety evaluation. Within our practice we aim to record performance and safety metrics listed in Table 14 every two years as part of an audit cycle. The introduction of computerised
hospital administration and a categorical approach to immunosuppression monitoring can support the easy collection of these data if we input the information in an accessible format. The introduction of a pre-immunosuppression checklist document (supplement 3) is currently being trailed in our department.

Table 14: Audit metrics

<table>
<thead>
<tr>
<th>Performance (outcome measures)</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berg balance score</td>
<td>Checklist % complete</td>
</tr>
<tr>
<td>MRC sum score</td>
<td>Significant adverse event rate</td>
</tr>
<tr>
<td>10 m timed walk</td>
<td>Screening blood tests % complete</td>
</tr>
<tr>
<td>I-RODS</td>
<td>Monitoring documentation</td>
</tr>
<tr>
<td>Change from baseline</td>
<td>Pre-treatment bloods % complete</td>
</tr>
<tr>
<td>Creatine kinase</td>
<td>Maintenance bloods % compliant</td>
</tr>
<tr>
<td>HAQ score</td>
<td>Actionable events % actioned</td>
</tr>
<tr>
<td>Grip strength</td>
<td>Consent % documented</td>
</tr>
</tbody>
</table>

CONCLUSION

As neurologists we often use first-line immunosuppressants in the treatment of autoimmune neuromuscular diseases and beyond. We do not intend this as a prescriptive document and acknowledge that individual patient issues will dictate management which may lie outside of these guidelines. Clear documentation of risk associated with any medical decision is essential and doctors have a duty to take reasonable care to ensure that patients are aware of ‘material risks.’ We hope that this general, evidence-based, disease-focused approached to first-line immunosuppression will provide a helpful framework from which to make safe and
Practical Neurology: How to do it

sensible decisions in the clinical environment. The Physicians’ Quick Guide (supplementary material) provides a summary of the figures and tables from this document. It can be downloaded to be used in real-time in any patient-facing setting; we hope it is useful. Please note that advice may change, notwithstanding global pandemics, and we review and update our guidelines every two years, or on an ad-hoc basis if a particular issue arises.

CONTRIBUTORSHIP

MAF prepared the first draft of the manuscript. MPL and ASC developed the topic for the article. All authors contributed to manuscript revisions, and all authors read and approved the submitted version.

ACKNOWLEDGEMENTS

We acknowledge the multi-specialty input from our colleagues at University College London Hospitals NHS Foundation Trust, including in rheumatology (Dr Emon Khan), microbiology (Dr Carmel Curtis) and pharmacy (Sheetal Sumaria), as well as continued clinical feedback from the consultant body of the Centre for Neuromuscular Diseases at the National Hospital for Neurology & Neurosurgery.

MPL and ASC are supported by the UCLH NHS Foundation Trust Biomedical Research Centre.

COMPETING INTERESTS

The authors declare no competing interests relevant to this article.
FUNDING

MAF is supported by a grant from the MRC (MR/S026088/1). MPL and ASC are supported by the UCLH Biomedical Research Centre.

ETHICAL APPROVAL

Not applicable.

DATA SHARING

Not applicable.

REFERENCES

FIGURES

![Flowchart](image)

Figure 1: Approach to immunosuppression in neuromuscular diseases
Figure 2: Algorithm for the consideration of tuberculosis (TB) treatment
Practical Neurology: How to do it

Who should get PJP prophylaxis?

- Daily prednisolone dose greater than 20 mg/day (or equivalent) for more than four weeks with ANY of:
 - HIV infection
 - More than two immunosuppressive agents (e.g., vasculitis CYC protocol)
 - Post solid-organ or PBSC transplant
 - ANCA-associated vasculitis
 - Previous PJP
 - Lung disease
 - Age over 80 years

ALL of:
- 1) Steroid dose greater than 15 mg prednisolone daily (or equivalent)
- 2) More than three months of proposed steroid treatment
- 3) Total lymphocyte count less than 600 cells/mm³

Measure CD4 count after one month of treatment

CD4 less than 200 cells/mm³

Advise PJP prophylaxis

Figure 3: Algorithm for the consideration of *Pneumocystis jirovecii* pneumonia (PJP) prophylaxis; ANCA: anti-neutrophil cytoplasmic antibody; CYC: cyclophosphamide; HIV: human immunodeficiency virus; PBSC: peripheral blood stem cell

Figure 4: Assessment and treatment of bone health; GORD: gastro-oesophageal reflux disease

If history suggestive of vertebral fracture:
- 1) Unexplained back pain
- 2) Loss of height
- 3) Spinal osteoporosis

Spinal X-ray or (preferably) axial MRI

Assess fracture risk in all patients on ≥7.5 mg prednisolone daily (or equivalent) for three months with FRAX
https://frax.shef.ac.uk/FRAX/tool.aspx

Very high risk category

DXA scan if between lower and upper risk thresholds

High risk: oral bisphosphonate +/- calcium and vitamin D supplementation if deficient

If fracture on treatment or other concerns

Refer to rheumatology

Continue for five years, or as long as steroids continue