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A STRONG CANCELLATION THEOREM FOR MODULES OVER C∞ × Cq

F. E. A. JOHNSON

The module cancellation problem asks whether, given modules X , X ′ and Y over a ring 3, the existence
of an isomorphism X ⊕Y ∼= X ′⊕Y implies that X ∼= X ′. When q is prime we prove a strong cancellation
property for certain modules over Z[C∞×Cq ], generalizing, in part, the strong cancellation property for
modules over Z[Cq ] established by R. Wiegand (1984).

1. Introduction

Given modules X , X ′ and Y over a ring3, we ask whether the existence of an isomorphism X⊕Y ∼= X ′⊕Y
implies that X ∼= X ′. When 3= Z[G] is an integral group ring this question is central to the homotopy
theory of spaces with fundamental group G (see [6; 7]). When Cq = ⟨x : xq

= 1⟩ is the finite cyclic group
of prime order q there is a very strong cancellation property [18] for modules over Z[Cq ] which are free
of finite rank over Z. Writing C∞ for the infinite cyclic group, we extend these results, in part, to modules
over Z[C∞×Cq ].

Let 3 be a ring and C be a class of 3-modules, closed with respect to isomorphism; we say that C is a
cancellation semigroup when, for 3-modules C,C ′,C ′′,

(i) C,C ′ ∈ CH⇒ C ⊕C ′ ∈ C;

(ii) if C,C ′,C ′′ ∈ C and C ⊕C ′ ∼= C ⊕C ′′ then C ′ ∼= C ′′.

C is a strong cancellation semigroup when in addition, given a nonzero 3-module S,

(iii) if C ⊕ S ∈ C then C ∈ CH⇒ S ∈ C.

Let 3 = R[Cq ] be the group algebra of Cq over the commutative ring R. Let ϵ : 3→ R be the
canonical augmentation homomorphism, put I = Ker(ϵ) and denote by Q(R, q) the following class of
3-modules:

Q(R, q)= {3a
⊕ I b
| a ≥ 0, b ≥ 0, a+ b > 0}.

Taking R = Z[t, t−1
] to be the ring of Laurent polynomials we identify R with integral group ring Z[C∞]

and 3 with Z[C∞×Cq ] so that the elements of Q(R, q) are modules over C∞×Cq . We will prove:

Main Theorem. Q(Z[C∞], q) is a strong cancellation semigroup for any prime q.

We proceed via a number of subsidiary results. When S is a 3-module we will show:

(I) S⊕ I ∼=3 I (d+1)
H⇒ S ∼=3 I (d).
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(II) 3⊕ S ∼=3 3(b+1)
⊕ I (d) H⇒ S ∼=3 3(b)⊕ I (d).

(III) I ⊕ S ∼=3 3(c)⊕ I (d+1)
H⇒ S ∼=3 3(c)⊕ I (d).

The paper is organized as follows: Sections 2–5 are preliminary; (I) is proved in Section 6 ; (II) and
(III) are proved in Section 7 and the main theorem is proved in Section 8. We conclude in Section 9 with
a brief account of the cancellation problem in general.

2. A recognition criterion for projective modules

Without further mention,3will denote a commutative algebra which is free of finite rank over a Noetherian
ring R. In particular, 3 is itself Noetherian. We first note that:

Proposition 2.1. Let P be a finitely generated 3-module such that Ext1(P, N ) = 0 for all finitely
generated 3-modules N ; then P is projective.

Proof. Let π :3a ↠ P be a surjective3 homomorphism, put K =Ker(π) and consider the exact sequence
P = (0→ K ↪→3a π

−→ P→ 0). As 3 is Noetherian, K is finitely generated so that Ext1(P, K )= 0.
Hence P splits so that P ⊕ K ∼=3a and P is projective. □

The following are easy consequences of the Noetherian condition on 3 and R.

Proposition 2.2. If M , N are finitely generated 3-modules then Extk3(M, N ) is a finitely generated
R-module for each k ≥ 1.

Proposition 2.3. Let A, B be finitely generated R-modules; if A⊕ B ∼= A then B = 0.

Proposition 2.4. Let M , P , Q be finitely generated 3-modules such that M ⊕ P ∼= M ⊕ Q. Then

P is projective ⇐⇒ Q is projective.

Proof. It suffices to prove (⇐H). Let N be a finitely generated 3-module; as M ⊕ P ∼= M ⊕ Q,
Ext1(M, N )⊕ Ext1(P, N ) ∼= Ext1(M, N )⊕ Ext1(Q, N ). As Q is projective, Ext1(Q, N ) = 0; hence,
Ext1(M, N )⊕Ext1(P, N )∼= Ext1(M, N ). By Proposition 2.2, Ext1(M, N ) and Ext1(P, N ) are finitely
generated R-modules It follows from Proposition 2.3 that Ext1(P, N ) = 0 so that P is projective by
Proposition 2.1. □

3. A cancellation theorem

We now assume we are given an algebra � which is again free of finite rank over R together with a
surjective homomorphism of R-algebras η : 3→ �. We regard � as module over 3 via coinduction
by η. As 3 is Noetherian, in the exact sequence

0→ J j
−→3

η
−→�→ 0

J = Ker(η) is finitely generated over 3. We assume also that

(3.1) Hom3(J, �)= 0;

(3.2) X ⊕�(n) ∼=3 �(m+n)
H⇒ X ∼=3 �(m);

(3.3) X ⊕ J (n) ∼=3 J (m+n)
H⇒ X ∼=3 J (m).
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With these assumptions we have:

Proposition 3.4. Let S be a3-module for which there exists an isomorphism f :3(b+c)
⊕J (d) ≃−→ S⊕3(c)

for some c, d ≥ 0. Then for any homomorphism α : S→ �(b) where b ≥ 1 there exists a commutative
diagram of 3-modules as follows in which the rows are exact, f− is injective and f+ is surjective:

(3-5)
0 J (b+c+d) 3(b+c)

⊕ J (d) �(b+c) 0

0 S0⊕ J (c) S⊕3(c) Im(α)⊕�(c) 0

ĵ

f−

η̂

f f+

î α̂

Moreover, f− and f+ are uniquely determined by f .

Proof. For any integer n ≥ 1 we write

j (n) =


j

j
. . .

j


︸ ︷︷ ︸

n

; η(n) =


η

η

. . .

η


︸ ︷︷ ︸

n

.

The homomorphisms in the rows are defined by the matrices

ĵ =
(

j (b+c) 0
0 IdJ (d)

)
; η̂ =

(
η(b+c) 0

0 0

)
; î =

(
i 0
0 j (c)

)
; α̂ =

(
α 0
0 η(c)

)
.

As Hom3(J, �)= 0 and Im(α)⊂�(b) then α̂ ◦ f ◦ ĵ = 0. Hence

f (Im( ĵ))⊂ Ker(̂α)= Im(î)

and f restricts to an injective homomorphism f− : J (b+c+d)
→ S0⊕ J (c) as indicated. As Im( ĵ)=Ker(̂η)

then f (Ker(̂η)) ⊂ Ker(̂α). After making the Noether identifications �(b+c) ∼= (3(b+c)
⊕ J (d))/Ker(̂η)

and Im(α)⊕�(c) ∼= (S⊕3(c))/Ker(̂α) then f induces a homomorphism f+ :�(b+c)
→ Im(α)⊕�(c) as

indicated. As f+◦ η̂= α̂◦ f and α̂◦ f is surjective then f+ is surjective and uniquely determined by f . □

Continuing the above discussion we now have:

Proposition 3.6. The following statements are equivalent:

i) f+ is injective.

ii) f+ is an isomorphism.

iii) f− is an isomorphism.

iv) S0⊕ J (c) ∼= J (b+c+d).

v) S0 ∼= J (b+d).

vi) Hom3(S0, �)= 0.

vii) Im(α)∼=�(b).

Proof. As f+ is surjective then i)⇐⇒ ii).
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ii)H⇒vii) : If f+ is an isomorphism then Im(α)⊕�(c)∼=�(b+c) so that, by assumption (3.2), Im(α)∼=�(b).

vii)H⇒ i) : Suppose that ψ : Im(α) ≃−→�(b) is an isomorphism. As f+ is surjective then (ψ⊕Id�(c))◦ f+ :
�(b+c)

→�(b+c) is surjective. As � is Noetherian then (ψ ⊕ Id�(c)) ◦ f+ is an isomorphism and hence
f+ is injective.

ii)H⇒ iii) : As f is an isomorphism, if f+ is also an isomorphism then, by extending the diagram (3-5)
one place to the left by zeroes, it follows from the five lemma that f− is an isomorphism.

iii)H⇒ iv): This is obvious.

iv)H⇒ v): This follows from the underlying hypothesis (3.3).

v)H⇒ vi): This is clear as Hom3(J, �)= 0.
It remains only to show that vi) H⇒ i). Put g = f −1

: S ⊕3(c) ≃−→ 3(b+c)
⊕ J (d) and extend the

diagram (3-5) as follows:

(3-7)

0 J (b+c+d) 3(b+c)
⊕ J (d) �(b+c) 0

0 S0⊕ J (c) S⊕3(c) Im(α)⊕�(c) 0

0 J (b+c+d) 3(b+c)
⊕ J (d) �(b+c) 0

ĵ

f−

η̂

f f+

î α̂

g

ĵ η̂

By our assumption (3.1), Hom3(J, �)= 0. By hypothesis, Hom3(S0, �)= 0. It follows that η̂◦g◦ î = 0.
As in the proof of Proposition 3.4, we may construct homomorphisms g− and g+ which extend (3.7) to
the commutative diagram

0 J (b+c+d) 3(b+c)
⊕ J (d) �(b+c) 0

0 S0⊕ J (c) S⊕3(c) Im(α)⊕�(c) 0

0 J (b+c+d) 3(b+c)
⊕ J (d) �(b+c) 0

ĵ

f−

η̂

f f+

g−

î α̂

g g+

ĵ η̂

On eliminating the middle row by composition we obtain the commutative diagram

0 J (b+c+d) 3(b+c)
⊕ J (d) �(b+c) 0

0 J (b+c+d) 3(b+c)
⊕ J (d) �(b+c) 0

ĵ

g−◦ f−

η̂

g◦ f g+◦ f+

ĵ η̂

As g ◦ f = Id then η̂= (g+ ◦ f+)◦ η̂. As η̂ is surjective it follows that g+ ◦ f+ = Id. Hence f+ is injective.
This completes the proof. □

Maintaining the above notation we now prove:
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Theorem 3.8. If S⊕3(c) ∼=3(b+c)
⊕ J (d) then S is a module extension

0→ J (b+d) i
−→ S α

−→�(b)→ 0.

Proof. As Hom3(J, �)= 0 then in what follows we may make the identifications

Hom3(S⊕3(c), �)= Hom3(S, �)⊕Hom3(3
(c), �);

Hom3(3
(b+c)
⊕ J (d), �)= Hom3(3

(b+c), �).

Moreover
Hom3(S, �)⊕Hom3(3

(c), �)∼= Hom3(3
b+c, �)∼= Hom3(3,�)

(b+c).

As Hom3(3,�) ∼= � then Hom3(S, �)⊕�(c) ∼= �(b+c). By assumption (3.2), Hom3(S, �) ∼= �(b).
Let {α1, . . . , αb} be an �-basis for Hom3(S, �) and define

α =

α1
...

αb

 S −→�(b); S0 = Ker(α).

In particular, we have an exact sequence 0→ S0→ S→ Im(α)→ 0. Suppose given an isomorphism
f :3(b+c)

⊕ J (d) ≃−→ S⊕3(c)⊕ J (d). As in Proposition 3.4, we may construct the following diagram
with exact rows:

0 J (b+c+d) 3(b+c)
⊕ J (d) �(b+c) 0

0 S0⊕ J (c) S⊕3(c) Im(α)⊕�(c) 0

ĵ

f−

η̂

f f+

î α̂

in which f+ is surjective. We claim that f+ is injective. Thus let {ηb+1, . . . ηb+c} be the canonical basis for
Hom3(3

(c), �) so that {α1, . . . , αb, ηb+1, . . . , ηb+c} is an �-basis for Hom3(S, �)⊕Hom3(3
(c), �)=

Hom3(S⊕3(c), �). From the induced isomorphism f ∗ :Hom3(S⊕3(c), �) ≃−→Hom3(3
(b+c)
⊕J (d), �)

we see that

{ f ∗(α1), . . . , f ∗(αb), f ∗(ηb+1), . . . , f ∗(ηb+c)} is an �-basis for Hom3(3
(b+c)
⊕ J (d), �).

If {η1, . . . ηb+c} is the canonical basis of Hom3(3
(b+c)
⊕ J (d), �) ∼= �(b+c) there exists an invertible

�-linear map T : Hom3(3
(b+c)
⊕ J (d), �)→ Hom3(3

(b+c)
⊕ J (d), �) such that

T (ηi )=

{
f ∗(αi )= αi ◦ f, 1≤ i ≤ b,
f ∗(ηi )= ηi−b ◦ f, b+ 1≤ i ≤ b+ c.

On identifying Hom3(3
(b+c)
⊕ J (d), �)=Hom3(S⊕3(c)⊕ J (d), �)=�(b+c) it is evident that Im(T )=

Im(̂α)⊕�(c) and that the following diagram commutes:

3(b+c)
⊕ J (d) �(b+c)

S⊕3(c) Im(α)⊕�(c)

f

η̂

T

α̂
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As f+ is uniquely determined by f it follows that f+ = T . As T is invertible then f+ is injective as
claimed. As f+ is injective, then regarding S as a module extension 0→ S0→ S α

−→�(b)→ 0 it follows
from v) of Proposition 3.6 that S0 ∼= J (b+d). □

4. Matrices with a Smith normal form

Let3 be a commutative ring. We denote by m Mn(3) the set of m×n matrices with coefficients in3; when
m=n we write n Mn(3)=Mn(3), in which case Mn(3) is a ring with the canonical3-basis ϵ(i, j)1≤i, j≤n

given by ϵ(i, j)r,s = δirδ js . We denote by E(i, j; λ), D(i,−1) the elementary invertible matrices

E(i, j; λ)= In + λϵ(i, j) (λ ∈3; i ̸= j),

D(i,−1)= In − 2ϵ(i, i).

Let En(3) (resp. 1n(±1)) denote the subgroup of GLn(3) generated by the matrices E(i, j; λ), (resp.
D(i,−1)). Then 1n(±1) normalizes En(3), and we define:

Proposition 4.1. Ẽn(3)=1n(±1) · En(3).

A ring homomorphism π : A→ B induces a homomorphism of groups

π∗ : En(A)→ En(B).

Proposition 4.2. If π : A→ B is surjective then π∗ : Ẽn(A)→ Ẽn(B) is surjective.

Suppose k ≥ 1 and m ≥ 0 are fixed; if α1, . . . , αk ∈3 we write

k+m1k(α1, . . . , αk)= (αiδi, j ) ∈ m+k Mk(3),

where δi, j is the Kronecker delta, 1≤ i ≤ k+m and 1≤ j ≤ k; that is:

k1k(α1, . . . , αk)=

α1 0
. . .

0 αk

 (m = 0);

k+m1k(α1, . . . , αk)=



α1 0
. . .

0 αk

. . . . . . . . .

0 0 0
...

...
...

0 0 0


(m > 0).

If X, Y ∈ k+m Mk(3) we write X ∼ Y when X = E+Y E− for some E+ ∈ Ẽk+m(3) and E− ∈ Ẽk(3).
Evidently ‘∼’ is an equivalence relation; then X ∈ k+m Mk(3) has a Smith normal form when, for some
α1, . . . , αk ∈3,

X ∼ k+m1k(α1, . . . , αk).
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We say the commutative ring � is generalized Euclidean when each X ∈ k+m Mk(�) has a Smith
normal form. The argument of H. J. S. Smith [5; 12] shows that:

Proposition 4.3. If 3 is a Euclidean domain then 3 is generalized Euclidean.

If S ⊂ 3− {0} is a multiplicative submonoid we denote by 3S the localization of 3 obtained by
inverting each s ∈ S. By clearing fractions we see that:

Proposition 4.4. If 3 is a generalized Euclidean domain then so is 3S .

If F is a field, it follows from the division algorithm that the polynomial ring F[t] is a Euclidean domain.
It now follows from Proposition 4.4 that:

Proposition 4.5. The Laurent polynomial ring F[t, t−1
] over the field F is generalized Euclidean.

5. Swan modules and their duals

For the remainder of this paper we fix a prime q and put3= R[Cq ]where R=Z[C∞]. If M is a3-module
we denote by M• its 3-dual M• = Hom3(M,3). There is a canonical homomorphism ♮ : M→ M••

given by ♮(x)( f )= f (x). If M is free of finite rank over R then ♮ : M→ M•• is an isomorphism.
Let ϵ :3→ R be the augmentation homomorphism and let I = Ker(ϵ) be the augmentation ideal. By

a Swan module of rank k we mean an extension module X of the form 0→ I (k)→ X→ R(k)→ 0. We
see from the augmentation sequence E = (0→ I i

−→3
ϵ
−→ R→ 0) that 3 is a Swan module of rank 1.

On dualizing the augmentation sequence we obtain an exact sequence

0→ Hom3(R,3)
ϵ•
−→ Hom3(3,3)

i•
−→ Hom3(I,3)

δ
−→ Ext13(R,3).

It is straightforward to see that R• ∼= R and 3• ∼=3 and that:

Proposition 5.1. Hom3(R, I •)= 0.

From the Eckmann–Shapiro lemma we see that Ext13(R,3)∼= Ext1R(R, R)= 0. Hence we have a dual
exact sequence E• = (0→ R ϵ•

−→ 3
i•
−→ I •→ 0). Observe that I • has a natural ring structure as ϵ•

imbeds R onto the two-sided ideal
(∑q−1

k=0 xk
)

in 3. In the case under consideration it is also true that, as
modules, I • ∼= I but this fact plays no part in what follows. By a dual Swan module of rank k we shall
mean an extension module X of the form

0→ R(k) −→ X→ (I •)(k)→ 0.

As 3 and R are self dual, then on dualizing the augmentation exact sequence we see that 3(k) is also a
dual Swan module of rank k. Taking ζq = exp(2π i/q) we may compare E• with the corresponding exact
sequence over Z[Cq ] (see [10, p. 29]):

E= (0→
( q−1∑

k=0

xk
)
↪→ Z[Cq ]↠Z(ζq)→ 0).

It is straightforward to see that E• = E⊗Z Z[t, t−1
], from which it follows that:

Proposition 5.2. I • ∼= Z(ζq)[t, t−1
].

Proposition 5.3. X ⊕ (I •)(n) ∼=3 (I •)(m+n)
H⇒ X ∼=3 (I •)(m).
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Proof. Evidently X⊕(I •)(n)∼=I• (I •)(m+n) so that, considered purely as a module over I •=Z(ζq)[t, t−1
],

X is stably free of rank m. As Z(ζq) is a Dedekind domain it follows from the solution to the Serre
conjecture (see [9, p. 189, Corollary 4.11]) that X is induced from a projective module P over Z(ζq).
As X is stably free and Z(ζq) is a retract of I • then P is also stably free. However as Z(ζq) satisfies
the Eichler condition then every stably free Z(ζq) module is free (see [15, p. 176–178]). Thus P is free
and X , being induced from a free module, is also free; that is X ∼=I • (I •)(m). However, the 3-module
structure on I • is coinduced from the epimorphism i• :3 i•

−→ I •. As X ⊕ (I •)(n) ∼=3 (I •)(m+n) then the
3-structure on X is also coinduced from I • and hence X ∼=3 (I •)(m). □

A similar but slightly easier argument (in this case we may appeal to the earlier theorem of Sheshadri
[11]) shows that:

Proposition 5.4. X ⊕ R(n) ∼=3 R(m+n)
H⇒ X ∼=3 R(m).

Propositions 5.1, 5.3 and 5.4 allow us to apply the arguments of Section 3 on taking

�= I •; J = R.

As Ext13(I
•, R)∼= Fq [t, t−1

] we identify:

Proposition 5.5. Ext13((I
•)(k+m), R(k))= k+m Mk(Fq [t, t−1

]).

In the simplest case, a dual Swan module of rank 1 is defined by an extension

X = (0→ R→ X→ I •→ 0)

and is classified up to congruence by an element eX ∈ Ext13(I
•, R) ∼= F[t, t−1

]. We write X = X (α)
where α ∈ F[t, t−1

] corresponding to eX under the isomorphism Ext13(I
•, R)∼= F[t, t−1

]. Furthermore,
we have the following instance of Swan’s projectivity criterion [6, (5.41), p. 115]:

Proposition 5.6. X (α) is projective ⇐⇒ α ∈ F[t, t−1
]
∗.

Observe that we have a Milnor fiber square

(S0)

Z[Cq ] Z(ζq)

Z Fq

ϵ

i•

ν

♮

Applying the functor −⊗Z Z[t, t−1
] we obtain another Milnor square

(S)

3 I •

Z[t, t−1
] Fq [t, t−1

]

i•

ϵ ν

♮
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We say that X is locally free of rank 1 with respect to (S) when X is a fiber product

X(α)=

X I •

Z[t, t−1
] Fq [t, t−1

]

ϕ

♮

obtained by glueing via an element α ∈ GL1(Fq [t, t−1
]) = Fq [t, t−1

]
∗. By Milnor’s classification [10,

pp. 20-24], any such module is projective over 3. With respect to the fiber square (S), a locally
free module X can equally be described as a projective dual Swan module; that is there is a bijective
correspondence of isomorphism classes:

(5-1)
{

locally free modules
of rank 1 with respect to S

}
←→

{
projective dual Swan

modules of rank 1

}
.

By the theorem of Higman [4; 6, Appendix C] , for any commutative integral domain A, the group
ring A[C∞] has only trivial units; that is GL1(A[C∞])∼= A∗×⟨t⟩. As I • = Z(ζq)[C∞] then GL1(I •)∼=
Z(ζq)

∗
× ⟨t⟩. Likewise, GL1(Fq [t, t−1

]) ∼= F∗q × ⟨t⟩. As is well known (see [2, p. 87]), the canonical
homomorphism ν : Z(ζq)

∗
→ F∗q is surjective. Hence we see that:

Proposition 5.8. ν∗ : GL1(I •)→ GL1(Fq [t, t−1
]) is surjective.

Milnor’s classification now implies:

Proposition 5.9. If X is a projective dual Swan module of rank 1 then X ∼=3.

Next consider extensions of the form X = (0→ R(k)→ X→ (I •)(k)→ 0).

Theorem 5.10. Let X be an extension X = (0→ R(k)→ X → (I •)(k)→ 0); then X decomposes as a
direct sum of dual Swan modules X ∼= X (α1)⊕ · · ·⊕ X (αk).

Proof. The case k = 1 is covered by Proposition 5.6. Thus suppose k ≥ 2. Under the correspondence
Proposition 5.5 X is classified up to congruence by an extension class eX ∈ Ext13((I

•)(k), R(k)) =
Mk(F[t, t−1

]). As Fq [t, t−1
] is generalized Euclidean there exist E+∈ Ẽk(Fq [t, t−1

]), E−∈ Ẽk(Fq [t, t−1
])

and α1, . . . , αk ∈ Fq [t, t−1
] such that

E+eX E− =1(α1, . . . , αk).

Lifting E+ to Ê+ ∈ Ẽk(I •) and E− to Ê− ∈ Ẽk(R) we see that X decomposes as

X = X (α1)⊕ · · ·⊕ X (αk),

where, as in Proposition 5.6, X (αi ) is classified by αi ∈ Fq [t, t−1
] ∼= Ext13(I

•, R). □

Clearly eX is invertible if and only if each αi ∈ Fq [t, t−1
]
∗; hence by Proposition 5.6 we have:

Corollary 5.11. Given an extension X = (0→ R(k)→ X→ (I •)(k)→ 0), the following are equivalent:

i) X is projective.

ii) eX is invertible in Mk(F[t, t−1
]).

iii) X ∼=3(k).
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Finally we consider extensions of the form S = (0→ R(k)→ S→ (I •)(k+m)
→ 0) where m ≥ 1.

Theorem 5.12. Let X be a 3-module which occurs in an exact sequence of the form

X = (0→ R(k)→ X→ (I •)(k+m)
→ 0);

then X ∼= X1⊕ · · ·⊕ Xk ⊕ (I •)(m) where each X i is a dual Swan module of rank 1.

Proof. By 5.10 we may suppose that m ≥ 1; as above, X is classified up to congruence by eX ∈
Ext13((I

•)(k+m), R(k))= k+m Mk(Fq [t, t−1
]). As Fq [t, t−1

] is generalized Euclidean then

E+eX E− = k+m1k(α1, . . . , αk)=



α1 0
. . .

0 αk

. . . . . . . . .

0 0 0
...

...
...

0 0 0


for some E+ ∈ Ẽk+m(Fq [t, t−1

]), E− ∈ Ẽk(Fq [t, t−1
]) and α1 . . . , αk ∈ Fq [t, t−1

]. Lifting E+ to Ê+ ∈
Ẽk+m(I •) and E− to Ê− ∈ Ẽk(R) we see that X decomposes as

X = X (α1)⊕ · · ·⊕ X (αk)⊕ (I •)(m),

where, as above, X (αi ) is the dual Swan module classified by αi ∈ Ext13(I
•, R). □

6. Proof of (I)

Let D be a Dedekind domain. It follows from the theorem of Steinitz [13; 17] that:

Proposition 6.1. Every stably free D-module is free.

The correspondence t 7→ 1 induces an augmentation homomorphism D[t, t−1
] → D whereby D

becomes a module over D[t, t−1
]. We have ‘change of ring’ functors

i∗ :ModD→ModD[t,t−1], i∗(M)= M ⊗D D[t, t−1
];

r∗ :ModD[t,t−1]→ModD, r∗(N )= N ⊗D[t,t−1] D,

under which:

Proposition 6.2. r∗ ◦ i∗ = IdModD .

The following is proved in [9, (4.11), p. 189];

Proposition 6.3. If S is a finitely generated projective module over D[t, t−1
] then

S ∼= i∗(P)

for some finitely generated projective module P over D.

It follows from Propositions 6.1, 6.2 and 6.3 that:

Proposition 6.4. Every stably free D[t, t−1
]-module is free.
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Now put D=Z(ζ )where ζ =exp(2π i/q) so that I •= R(ζ )=D[t, t−1
]. It follows from Proposition 6.4

that:

Proposition 6.5. Let S be an I •-module; if S⊕ I • ∼=I • (I •)(d+1) then S ∼=I • (I •)(d).

Now let S be a 3-module such that S⊕ I ∼=3 I (d+1). Applying Hom(−.3) gives

S•⊕ I • ∼=3 (I •)(d+1).

However I • ·6 = 0 where 6 =
∑q−1

r=0 xr . Hence S• ·6 = 0. As 3/6 ∼= I • then

S•⊕ I • ∼=I • (I •)(d+1).

By Proposition 6.4, S• ∼=I • (I •)(d). Thus also S• ∼=3 (I •)(d). On taking 3-duals then S ∼=3 I (d) and we
obtain the following, which is statement (I) of the introduction.

Proposition 6.6. If S is a 3-module such that S⊕ I ∼=3 I (d+1) then S ∼=3 I (d).

7. Proofs of (II) and (III)

To prove (II), let S be a 3-module such that 3⊕ S ∼=3 3(b+1)
⊕ I (d). On taking �= R, J = I and c= 1

in Theorem 3.8 we see that S occurs as an extension

0→ I (b+d)
→ S β
−→ R(b)→ 0.

It follows from Theorem 5.12 that S decomposes as S ∼= X ⊕ I (d) where X is a Swan module of rank b.
As 3⊕ S ∼=3(b+1)

⊕ I (d) then 3⊕ X ⊕ I (d) ∼=3(b+1)
⊕ I (d). It follows from Proposition 2.4 that X is

projective. Hence X ∼=3(b) by Corollary 5.11. Thus S ∼=3(b)⊕ I (d). To summarize we have proved the
following which is statement (II) of the introduction:

Proposition 7.1. Let S be a 3-module such that 3⊕ S ∼=3 3(b+1)
⊕ I (d); then S ∼=3 3(b)⊕ I (d).

The proof of (III) is similar to that of (II). Suppose that f :3(c)⊕ I (d+1) ≃
−→ I ⊕ S is an isomorphism

with inverse g and put
ϵ̂ = (ϵ⊕ · · ·⊕ ϵ︸ ︷︷ ︸

c

⊕ 0) :3(c)⊕ I (d+1) ϵ̂
−→ R(c);

then ϵ̂ ◦ g : I ⊕ S→ Rc is surjective. As Hom3(I, R) = 0 then ϵ̂ ◦ g|I ≡ 0. Putting α = ϵ̂ ◦ g|S and
S0 = Ker(α) we have an exact sequence

0→ S0→ S→ R(c)→ 0.

Now consider the following diagram with exact rows:

0 I (c+d+1) 3(c)⊕ I (d+1) R(c) 0

0 I ⊕ S0 I ⊕ S R(c) 0

î

f−

ϵ̂

f f+

ĵ (0,α)

As Hom3(I, R)= 0 then (0, α) ◦ f ◦ i = 0. Hence there exist homomorphisms f+ : R(c)→ R(c) and
f− : I (c+d+1)

→ I ⊕ S0 as indicated. As (0, α) ◦ f is surjective then so is f+. As R is Noetherian then
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f+ is an isomorphism. Therefore f− is also an isomorphism. It follows from (I) that S0 ∼= I (c+d) and we
have an exact sequence

0→ I (c+d)
−→ S β

−→ R(c)→ 0

By Theorem 5.12, S decomposes as S ∼= X ⊕ I (d) where X is a Swan module of rank c. As I ⊕ S ∼=
3(c)⊕ I (d+1) then X ⊕ I (d+1) ∼=3(c)⊕ I (d+1). It follows from Proposition 2.4 that X is projective. By
Corollary 5.11 it follows that X ∼=3(c). Thus S ∼=3(c)⊕ I (d) and we have proved statement (III) of the
introduction, namely:

Proposition 7.2. Let S be a 3-module such that I ⊕ S ∼=3 3(c)⊕ I (d+1); then S ∼=3 3(c)⊕ I (d).

8. Proof of main theorem

For integers a , b ≥ 0 let Q(a, b) = 3(a)⊕ I (b) and define the set Q = {Q(a, b) | a + b > 0}. Clearly
Q(a, b)⊕Q(c, d)∼= Q(a+c, b+d) so that, up to isomorphism, Q forms an additive semigroup under ‘⊕’.
To show that Q is a cancellation semigroup it suffices to show that the following statement P(a, b) holds
when a, b ≥ and a+ b > 0:

P(a, b) : Q(a, b)⊕ S ∼= Q(a, b)⊕ Q(c, d)H⇒ S ∼= Q(c, d)

By (II) we see that P(1, 0) holds. Similarly P(0, 1) holds by (III).

Proposition 8.1. P(1, 0)∧P(a, b)H⇒ P(a+ 1, b).

Proof. Suppose that Q(a+1, b)⊕Q(c, d)∼= Q(a+1, b)⊕ S. We must show that Q(c, d)∼= S. Rewriting
we see that3⊕Q(c+a, b+d)∼=3⊕Q(a, b)⊕S. By P(1, 0) it follows that Q(c+a, b+d)∼=Q(a, b)⊕S
and hence

Q(a, b)⊕ Q(c, d)∼= Q(a, b)⊕ S.

By P(a, b) it now follows, as desired, that Q(c, d)∼= S. □

Proposition 8.2. P(0, 1)∧P(a, b)H⇒ P(a, b+ 1).

Proof. Suppose that Q(a, b+1)⊕Q(c, d)∼= Q(a, b+1)⊕S. Rewriting we see that I⊕Q(c+a, b+d)∼=
I ⊕ Q(a, b)⊕ S. By P(0, 1) it follows that Q(c+ a, b+ d)∼= Q(a, b)⊕ S and hence

Q(a, b)⊕ Q(c, d)∼= Q(a, b)⊕ S.

The desired conclusion that Q(c, d)∼= S now follows from P(a, b). □

It follows easily that:

Proposition 8.3. P(a, b) is true for all a, b ≥ 0 such that a+ b ̸= 0.

The statements P(a, b) suffice to show that Q is a strong cancellation semigroup. To see this, put
3E = 3⊗Z[t,t−1] E where E is the field of fractions of Z[t, t−1

]. Then 3E = E[Cq ] is a semisimple
E-algebra. Now suppose that Q ∈ Q and that S is a nonzero 3-module such that Q ⊕ S ∈ Q. Write
Q = Q(a, b) and Q ⊕ S = Q(e, f ). By considering the Wedderburn decompositions of Q ⊗Z[t,t−1] E

and S⊗Z[t,t−1] E, it follows easily that a ≤ e and b ≤ f . Writing c = e− a and d = f − b we see that
Q(a, b)⊕ S ∼= Q(a, b)⊕ Q(c, d). It follows from the statement P(a, b) proved in Proposition 8.3 that
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S ∼= Q(c, d) and hence S ∈ Q. Thus we have shown the following, which is the main theorem of the
introduction:

Theorem 8.4. Q(Z[C∞], q)= {3(a)⊕ I (b) | a ≥ 0, b ≥ 0, a+ b > 0} is a strong cancellation semigroup
for any prime q.

9. The module cancellation problem in general

There is a considerable literature on the cancellation problem for modules over group rings. However,
the problem considered in the present paper does not seem to have been studied previously. To relate
what is known in general, let q be a positive integer and let L(R, q) denote the class of modules over
R[Cq ] which are free of finite rank as modules over the commutative ring R. A theorem of Wiegand [18],
completed by Swan [16], shows that:

Proposition 9.1. L(Z, q) is a strong cancellation semigroup if and only if q is prime or q ∈ {4, 6, 8,
9, 10, 14}.

The rings Z[Cq ] have Krull dimension 1. In the present paper we replace the coefficient ring Z by the
ring Z[C∞] of Krull dimension 2. In view of Wiegand’s result we ask:

Question I. For which integers q ≥ 2 does L(Z[C∞], q) have strong cancellation?

The inclusion i : Cq → C∞ × Cq and projection π : C∞ × Cq → Cq induce homomorphisms
i∗ :L(Z, q)→L(Z[C∞],Cq) and π∗ :L(Z[C∞],Cq)→L(Z, q) such that π∗ ◦ i∗= Id. Thus L(Z, q) is a
retract of L(Z[C∞], q). Hence in partial answer to the above general question, Wiegand’s conditions are
certainly necessary. However to decide whether they are also sufficient would seem to require a complete
description of L(Z[C∞],Cq) analogous to the well known description of L(Z,Cq) ([3], p.508). To the
best of the author’s knowledge this has yet to be done.

In the present paper we have restricted attention to the subsemigroup Q(Z[C∞], q) of L(Z[C∞], q)
thereby raising the following:

Question II. For which integers q ≥ 2 does Q(Z[C∞], q) have strong cancellation?

The main theorem gives an positive answer to Question II when q is prime. Whether Q(Z[C∞], q)
has strong cancellation for any nonprime values of q remains an open question. In this connection there
are two further considerations; firstly, in contrast to Proposition 9.1 the author has shown:

Proposition 9.2. Q(Z, q) has strong cancellation for all positive integers q.

This is an immediate consequence of [7, p. 248, (77.6)]. It requires only the additional observations
that Z[Cq ] satisfies the Eichler condition and that every projective Swan module over Z[Cq ] is free (see
the remark on p. 279 of [14]). What is nevertheless clear is that the proof of the main theorem given above
breaks down when q fails to be prime. In particular, when q is not prime there are always projective
Swan modules of rank 1 which are not free. This can be shown directly, observing that when q is not
prime there are units in (Z/q)[C∞] which do not lift to Z(ζq)[C∞]. Alternatively one can appeal to a
theorem of Bass and Murthy [1, Theorem 8.10].

Finally, one can ask the corresponding questions for

Q(Z[C∞× · · ·×C∞︸ ︷︷ ︸
n

], q);
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in this case the group ring
Z[C∞× · · ·×C∞︸ ︷︷ ︸

n

×Cq ]

has Krull dimension n + 1. When q = 1, every projective module is free [9, p. 189]. More generally,
when q is prime the author has shown [8] that every projective Swan module is free. However again this
conclusion fails when q is not prime.
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