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Requirements on quantum superpositions of macro-objects for sensing neutrinos
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We examine a macroscopic system in a quantum superposition of two spatially separated localized states as a
detector for a stream of weakly interacting relativistic particles. We do this using the explicit example of neutrinos
with MeV-scale energy scattering from a solid object via neutral-current neutrino-nucleus scattering. Presuming
the (anti)neutrino source to be a nuclear fission reactor, we utilize the estimated flux and coherent elastic
neutrino-nucleus cross section to constrain the spatial separation �x and describe the temporal evolution of the
sensing system. Particularly, we find that a potentially measurable relative phase between quantum superposed
components is obtained for a single gram scale mass placed in a superposition of spatial components separated
by 10−14 m under sufficient cooling and background suppression.
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I. INTRODUCTION

Despite extensive scientific efforts, neutrinos still pose a
puzzling enigma, decades after they were first observed exper-
imentally [1]. While it may be known that neutrinos interact
only through the weak and the gravitational forces, many of
the questions on the very nature of these particles remain
unanswered to this day. As all other fermions in the standard
model, neutrinos were formerly assumed to be representable
by Dirac spinors and additionally thought to be massless.
However, oscillation experiments have shown that particles
produced in a particular, well-defined flavor eigenstate can,
after having traveled a sufficiently long distance, with a cer-
tain probability be detected in a different flavor state [2]. A
consequence of these findings is that neutrinos do have mass
and that their flavor eigenstates are different from their mass
eigenstates. As a result of being massive, neutrinos could be
either Dirac or Majorana particles and it is currently unknown
which of the two they are. Present-day oscillation experiments
enable measurements of mass-squared differences of the three
neutrino mass eigenstates, but they are not capable of mea-
suring absolute neutrino masses, on which limits however
exist [3]. In addition, oscillation experiments have also seen
hints for the existence of so-called sterile neutrinos. These
are hypothetical additional species of neutrinos that do not
experience any of the standard model forces but would mix
with the three standard neutrinos. The vast multitude of un-
knowns provides a motivation to seek novel methods to detect
neutrinos, especially to examine if the detector size can be
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reduced. In this work, we will introduce one such approach
aiming to study reactor antineutrinos with energies of a few
MeV through their momentum transfer in scattering from a
macroscopic system placed in a quantum superposition of dis-
tinct center of mass positions—with the momentum transfer
appearing as a relative phase between the components of the
superposition.

The field of matter-wave interferometry in which a large
mass, such as a solid object or crystal of several atoms, goes
to a quantum superposition of being “here” and “there” is
an emerging area still in development, with several nascent
ideas. For an inexhaustive list see Refs. [4–16]. These de-
velopments have so far been primarily steered by the aim
to extend the boundaries of quantum mechanics empirically
to larger objects, as the quantum behavior of the center of
mass (COM) of a sufficiently macroscopic masses remains
untested. Unlike in the case of interference experiments with
several atoms from a cold source, for example a Bose-Einstein
condensate, where each atom goes one way or another, here
all atoms of the crystal go one way together or all atoms of
the crystal go the other way together. On the experimental
side these developments are stimulated, on the one hand, by
the demonstration of quantum superpositions of the COM of
large molecules consisting of up to ∼2000 atoms [17] and, on
the other hand, by the achievement of cooling of the COM of
much larger masses such as 10−17 kg nanocrystals [18–21]
and 10 kg masses [22] close to their quantum mechanical
ground states. While this may still indicate a significant gap
between what has been demonstrated, and what needs to
be achieved to realize experiments with the COM of large
masses in a superposition, there are the above well formulated
schemes and conditions which could be adapted.

Quantum superpositions of the COM of large masses can
have a great potential as a sensor [23]. It has already been
theoretically demonstrated that they can measure tiny grav-
itational effects including the detection of low frequency
gravitational waves [24], and, ultimately, even evidence the

2643-1564/2023/5(2)/023012(13) 023012-1 Published by the American Physical Society

https://orcid.org/0000-0002-4836-0000
https://orcid.org/0000-0001-8089-8997
https://orcid.org/0000-0002-5938-2627
https://orcid.org/0000-0001-7012-789X
https://orcid.org/0000-0001-8726-0566
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023012&domain=pdf&date_stamp=2023-04-07
https://doi.org/10.1103/PhysRevResearch.5.023012
https://creativecommons.org/licenses/by/4.0/


EVA KILIAN et al. PHYSICAL REVIEW RESEARCH 5, 023012 (2023)

quantum nature of gravity [25–28] or be able to test new forces
[29] and the weak Equivalence principle in a quantum regime
[30]. The decoherence of quantum superpositions may also be
a sensitive detector for dark matter [31–33]. Once a quantum
superposition of a large mass being in two positions is pro-
duced, external forces cause a relative phase shift between the
two components of this superposition. Hence, we propose that
it might also be possible to detect tiny momentum transfers
due to the scattering of weakly interacting particles from such
superpositions. In particlular, recently the approach of detect-
ing particles beyond the standard model via the momentum
recoil of several levitated nano-objects in localized (classical)
states has become topical [34,35]. It is natural thus to ask
whether quantum superpositions can aid further. We study
this herewith using neutrinos as an example, importantly in
a regime in which they scatter coherently from entire nuclei
as that significantly enhances the cross section.

Predicted more than 40 years ago in 1974 [36] and recently
observed experimentally [37], coherent elastic scattering of
neutrinos from nuclei (CEνNS) is the dominant scattering
channel for incoming neutrino energies Eν � 100 MeV. The
scattering coherence manifests in an enhancement of the
cross-section, which scales with N2, with N being the number
of neutrons in the nucleus. Up until recently, it has however
been of great difficulty to detect such neutral current events,
in part due to the large detector volumes (enough nuclei) and
low energy thresholds required to detect the keV to sub-keV
recoils of the nuclei.

In light of the advent of proposals for small-scale neutrino
detectors [38,39] that aim to exploit the small recoil ener-
gies and relatively large CEνNS cross section associated with
scattering events in the (sub-)MeV neutrino energy regime,
we consider the suitability of matter-wave interferometric
schemes for detecting such processes. We emphasize that in
contrast to classical methods, our approach is based on the
detection of neutrinos via massive quantum devices and hence
exploits features which are inherently quantum.

II. DETECTING PARTICULATE MATTER
BY MEASURING A PHASE

The essence of the type of detector that we are considering
here is given in Fig. 1. A mass is prepared in a quantum super-
position of spatially distinct states. An ideal way to generate
such a spatial superposition is by employing a Stern-Gerlach-
type interferometric scheme with a single spin embedded in
a mass. An archetypal example is the nitrogen-vacancy (NV)
point defect in a diamond crystal, which carries a spin-1 (made
of two electrons) [40]. However, any other point defect with
an electronic spin in any other crystal [41] or a single dopant
atom with an unpaired electronic spin implanted in a solid,
as for example, used in certain designs of solid state quantum
computers [42] will serve our purpose. It is understood that
the atom carrying this spin is tightly bound to the rest of the
crystal. Also we have to ensure that there is this single spin
which can couple to external magnetic fields strongly (i.e.,
with the strength of a Bohr magneton) while there may be
unpaired nuclear spins on various atoms in the crystal which
couple with the much lower strength of nuclear magnton.
While detailed studies can be found in Refs. [10–16,43], here

FIG. 1. The working mechanism of a system detecting the mo-
mentum recoil of a crystal due to the scattering of a particle from
it through a phase between two components of a superposition. In a
general Stern-Gerlach interferometer, the phase difference between
two spatially separated components ends up as a phase difference
between two spin states and can be measured as a phase difference
between spin components.

we present only a schematic description. The spin is initially
prepared in a quantum superposition 1√

2
(|↑〉s + |↓〉s) and

the mass bearing the spin is subjected to an inhomogeneous
magnetic field. This couples its spin and motional degrees of
freedom: for |↑〉s spin state, the mass accelerates to the left,
and for the |↓〉s spin state, the mass accelerates to the right.
They can be brought to a halt at a given superposition size
�x by flipping the spins at appropriate times. The resulting
entangled state between spin and center of mass degree of
freedom of the mass thus generated is

|�0〉S = 1√
2

(|↑〉s|x̄0〉C + |↓〉s|x̄1〉C ), (1)

where |x̄0〉C and |x̄1〉C , respectively, refer to both parts of the
superposition, each one describing the center-of-mass motion
of our test mass (crystal), while the subscript S denotes the
combined system of spin and crystal. The states |x̄ j〉 are to
be understood as Gaussian wave packets localized around the
position (x̄ j, 0, 0), and momentum p ≈ 0. The superposition
size is �x = x̄1 − x̄0. For simple notation, we treat the macro-
scopic mass as a single particle and write the COM state of
the macroscopic mass as

|x̄ j〉C =
(

1

σc

√
2π

) 1
2
∫ ∞

−∞
dx e

− (x−x̄ j )2

2σ2
c �

†
C (x)|0〉, (2)

where �
†
C (x) creates the whole crystal at position (x, 0, 0) and

|0〉 is the vacuum state. Fundamentally, |x̄ j〉 is a many-particle
state. Hence, �†(x)C is equal to a product of proton, neutron
and electron creation operators at positions locked to, and
distributed around, the COM position (x, 0, 0).

Let us now find out what happens to the above Gaussian
state |x̄ j〉 when a momentum q is transferred to it. To model
this, we assume momentum creation and annihilation opera-
tors of the mass to be b†

k and bk, respectively, and study the
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action on the state,

(∫
d3k b†

k+qbk

)∫ ∞

−∞
dx e

− (x−x̄ j )2

2σ2
c �†(x)|0〉

∝
∫ ∞

−∞
dx e

− (x−x̄ j )2

2σ2
c

∫
d3k b†

k+qbk

∫
d3k′eik′

xxb†
k′ |0〉

=
∫ ∞

−∞
dx e

− (x−x̄ j )2

2σ2
c e−iqxx

∫
d3(k + q) ei(kx+qx )xb†

k+q|0〉

=
∫ ∞

−∞
dx e

− (x−x̄ j )2

2σ2
c e−iqxx�†(x)|0〉

= e−iqx x̄ j e− qx 2σ2
c

2

∫ ∞

−∞
dx e

− (x−x̄ j +iqxσ2
c )2

2σ2
c �†(x)|0〉. (3)

Considering the special case when the width of the Gaussian
wave packet is much smaller than the length scale of the
transferred momentum σc � 1/qx, the state of the Gaussian
after the momentum transfer is

e−iqx x̄ j

∫ ∞

−∞
dx e

− (x−x̄ j )2

2σ2
c �†(x)|0〉 = e−iqx x̄ j |x̄ j〉, (4)

implying that the initial state of a superposed mass and a
scattering particle evolves as

|�0〉S|p〉B → ∣∣�qx

〉
S|p − q〉B, (5)

where we have introduced the label B to denote the bath
environment composed of the scattering particle(s) and the
subscript S to refer to the superposed target mass. The state
|�qx 〉S is given by

∣∣�qx

〉
S

= 1√
2

(|↑〉|x̄0〉 + e−iqx�x|↓〉|x̄1〉), (6)

where the difference in center-of-mass position is �x = x̄1 −
x̄0. A particle scattering from the above state and transferring
a momentum q to it, could be detected as a phase difference
of qx�x

h̄ (restoring the h̄) between the components of the
superposition, where qx is the x-component of the momen-
tum transfer. While a transfer of momentum with negligible
transverse contributions represents an idealized scenario, it
should be implicitly clear that in a more general scenario,
we would have to consider the three-dimensional nature of
the problem. In a typical Stern-Gerlach interferometry exper-
iment, the two components |x̄0〉 and |x̄1〉 are brought back to
completely overlap with each other by reversing the process
which created them, as shown in Fig. 1 so that the spin
state becomes |ψqx 〉s = 1√

2
(|↑〉s + e−iqx�x|↓〉s). Thus, the

phase is measurable purely from the off-diagonal component
〈↑|ρs|↓〉 of the density matrix ρs = |ψqx 〉〈ψqx |s of the spin. In
general, the scattering neutrinos will scatter with a distribution
of momenta, so that there will be a mixed state density matrix,
while the process itself will lead to a decoherence as well. We
will therefore treat the evolution in terms of open quantum
systems techniques, deriving a master equation to be followed
by the density matrix.

FIG. 2. Elastic scattering illustration with the scattering angle
denoted as θ , the initial momenta pi, ki and the final momenta
pf , k f .

III. COHERENT ELASTIC NEUTRINO-NUCLEUS
SCATTERING CROSS SECTION

In this section, we discuss the CEνNS cross section in
the regime of reactor antineutrinos, since the calculation
of the matrix element is directly related to the interaction
Hamiltonian. For this purpose, we outline the description of
coherent elastic scattering of a neutrino with incident four-
momentum pi = (Eν, pi ) by a nucleus of mass mnucl and
incident four-momentum ki = (mnucl, 0), restricting ourselves
to neutral current processes for the reason of simplicity. An
illustration of the process is depicted in Fig. 2, where we
have assumed the comparably heavy nucleus to be at rest
and the final momenta to be of the form p f = (Eν, f , p f ) and
k f = (En, f , k f ).

The incoming and outgoing four momenta can be refor-
mulated in terms of the incoming neutrino energy Eν , the
kinetic energy transferred due to scattering T and the nucleus
mass mnucl,

pi = (Eν, pi ), (7)

ki = (mnucl, 0), (8)

p f = (Eν − T, p f ), (9)

k f = (mnucl + T, k f ). (10)

The tree-level Feynman diagram representing such a pro-
cess is shown in Fig. 3.

To recover the cross section, the standard approach is to
determine the scattering amplitude Mss′ using the neutral
current interaction Lagrangian

L = GF√
2

Jμ
ν Jμ,nucl (11)

and the relevant Feynman rules [44]. The quantities described
by Jμ

ν and Jμ,nucl denote the neutral currents of neutrino and

ν X

ν X

Z0

FIG. 3. Feynman diagram for neutral current coherent elastic
ν-nucleus scattering, where time runs vertically. The label ν refers
to the neutrino whereas the symbol X represents the nucleus.
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nucleus. Neutral fermionic currents are given by

Jμ

f =
∑

i

ψ fi
γ μ

(
gfi

V − gfi
Aγ 5

)
ψ fi , (12)

where ψ f denote the respective fermionic fields. Omitting the
sum and inserting its couplings gν

V = 1/2 and gν
A = 1/2, the

neutrino neutral current is

Jμ
ν = ψνγ

μ 1
2 (1 − γ 5)ψν. (13)

It is a general feature of the weak interaction that its
exchange bosons couple only to left-handed neutrinos or
right-handed antineutrinos. For the nucleus neutral current, we
choose a description in terms of its weak coupling constant
and the four-momenta ki, k f ,

Jμ,nucl = QW

2
F (q2)(ki + k f )μ, (14)

where QW refers to the weak charge and F (q) to the
form factor dependent on the exchanged momentum q.
Equation (11) can now be used to recover the Feynman am-
plitude M, which is then formulated as follows

iMss′ = i
GF QW F (q2)gν

L√
2

× us′
(p f )γ μ(1 − γ 5)

× us(pi )(ki + k f )μ. (15)

In the laboratory frame, the differential cross section with
respect to the transferred kinetic energy is related to the ab-

solute square of the matrix element as dσ
dT =

∑
ss′ |iMss′ |2

32πmnuclEν
and

hence given by [45]

dσ

dT
= G2

F Q2
W |F (q2)|2mnucl

4π

(
1 − T

Eν

− mnuclT

2E2
ν

)
. (16)

The differential cross section for the scattering of antineu-
trinos is derived analogously. Assuming a scattering angle
θ between the initial neutrino and final nucleus momenta, the
kinetic energy T can be expressed as follows:

T = 2mnuclE2
ν cos2 θ

(mnucl + Eν )2 − E2
ν cos2 θ

. (17)

The maximum kinetic energy transfer is then obtained for
θ = 0. The coherent elastic neutrino-nucleus cross section can
be recovered from Eq. (16), following integration over kinetic
energy. In all further calculations, we have approximated the
form factor as F (q) ∼ 1. This is appropriate solely for the
energy range considered, since interactions involving higher
neutrino-energies and therefore higher momentum transfers
may be able to resolve the nucleus and eventually result in
a suppression and flattening of the coherent cross-section. It
should be noted that the cross section increases not only with
neutrino energy, but also with increasing number of neutrons
N in the target nucleus. The latter dependency becomes evi-
dent through a closer inspection of the weak charge

QW = [(1 − 4 sin2 θW )Z + N]. (18)

For the purpose of a real-world experiment, this means
that the target material does play an important role in the

detectability of any scattering phase effect from neutrino scat-
tering on nuclei.

IV. QUANTUM OPEN SYSTEMS AND THE
BORN-MARKOV APPROXIMATION

We consider the scenario of a heavy nucleus in the presence
of a (fermionic) bath of neutrinos scattering from it. As we
have no control over a specific scattered neutrino, but nonethe-
less wish to describe the evolution of a comparably heavy
nucleus, we resort to an open quantum systems approach.
Following the description in Ref. [46], the total Hamiltonian
of a weakly interacting system and bath is

H = HS + HB + HSB, (19)

where HSB refers to the interaction between S and B. To derive
the master equation of the system, it is of convenience to write
the interaction Hamiltonian as

HSB =
∑

α

SαBα, (20)

with Sα and Bα denoting the system and bath operators.
We will hence have to map the respective parts of our
nonstandard interaction Hamiltonian for coherent elastic
neutrino-nucleus scattering onto system and bath operators.
The summation will become an integral over all relevant
external three momenta. It shall also be noted that we im-
pose hermiticity on HSB. Taking the bath correlation time
to be much shorter than the timescale over which our sys-
tem evolves, we resort to a description in the Born-Markov
approximation. The master equation for the system is then
governed by

dρS

dt
= − i

h̄
[HS, ρS] −

{∫ ∞

0
dτ

∑
αβ

Cαβ (−τ )

× [
SαSβ (−τ )ρS − Sβ (−τ )ρSSα

] + H.c.

}
, (21)

where

Cαβ = 1

h̄2 Tr[ρBBαBβ (−τ )] (22)

is the bath correlation function and the time dependence of the
operators Sβ and Bβ is determined by

Sβ (−τ ) = e− iHS τ

h̄ Sβe
iHS τ

h̄ , (23)

Bβ (−τ ) = e− iHBτ

h̄ Bβe
iHBτ

h̄ . (24)

As we work in natural units, we set h̄ = c = 1 for now.

A. Quantum master equation for neutrino-nucleus scattering

The Lagrangian density [47] for the interaction of neutrino
ν and nucleus n is is given by Eq. (11). Hence, the interaction
Hamiltonian Hn,ν corresponds to

Hn,ν = −
∫

d3xL(x)

= − GF√
2

∫
d3xJμ

ν (x)Jμ,nucl(x) = HSB. (25)
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Choosing to rewrite the neutrino current in second quantized form, we observe that

Jμ
ν (x) = ψν (x)

1

2
γ μ(1 − γ 5)ψν (x)

=
∫

d3 pid3 p f

(2π )6
√

4Epi Ep f

a†
p f

api e
−i(pi−p f )xu2(p f )

1

2
γ μ(1 − γ 5)u2(pi ), (26)

so that our Hamiltonian is

Hn,ν = − GF QW F (q)

2
√

2

∫
d3x

d3 pid3 p f d3kid3k f

(2π )12
√

16Epi Ep f Eki Ek f

e−i(ki+pi−k f −p f )xa†
p f

api u
s′

(p f )γ μ(1 − γ 5)us(pi )c
†
k f

cki (k f + ki )μ. (27)

Note that although here we have generically used ki, k f to label 3-momenta, (k f + ki )μ stand for 4-momenta. Noting that the
only x-dependence is now in the exponential, we can perform the spatial integration. Further to this, the factor F (q) ∼ 1 in our
scenario and can therefore be neglected,

Hn,ν = − (2π )3GF QW

2
√

2

∫
d3 pid3 p f d3kid3k f

(2π )12
√

16Epi Ep f Eki Ek f

δ3(ki + pi − k f − p f )a†
p f

api u
s′

(p f )γ μ(1 − γ 5)us(pi )c
†
k f

cki (k f + ki )μ

= (2π )3GF QW

2
√

2

∫
d3 pid3 p f d3kid3k f

(2π )1216Epi Ep f Eki Ek f

us′
(p f )γ μ(1 − γ 5)us(pi )(k f + ki )μδ3(ki + pi − k f − p f )|p f 〉〈pi| ⊗ |k f 〉〈ki|,

(28)

with one-particle states |p, s〉 = √
2Epas†

p |0〉. In Eq. (28), we have treated the nucleus and neutrino as single particles and
applied a mapping to suitable momentum-basis states. Using the matrix element for the neutrino-nucleus scattering Mpi,ki,p f ,k f =
GF QW

2
√

2
us′

(p f )γ μ(1 − γ 5)us(pi )(k f + ki )μ and by computing the integral over the final nucleus momentum k f we get

Ĥn,ν =
∫

d3 pid3 p f d3kid3k f

(2π )92Epi 2Ep f 2Eki 2Ek f

Mpi,ki,p f ,k f δ
3(ki + pi − k f − p f )|p f 〉〈pi| ⊗ |k f 〉〈ki|

=
∫

d3 pid3 p f d3kiMpi,ki,p f ,ki+pi−p f

(2π )92Epi 2Ep f 2Eki 2Eki+pi−p f

|p f 〉〈pi| ⊗ |ki + pi − p f 〉〈ki|

=
∫

d3 pid3 p f d3kiMpi,ki,p f ,ki+pi−p f

(2π )92Epi 2Ep f 2Eki 2Eki+pi−p f

|p f 〉〈pi| ⊗ ei(pi−p f )x̂|ki〉〈ki|, (29)

where we have used the fact that the momentum state |ki +
pi − p f 〉 can be rewritten in a suitable manner. Now we make
a crucial simplifying approximation: we assume the nucleus
mass to be sufficiently large compared to its momenta mnucl �
|k|. Being inside the crystal which is stationary, we treat the
nucleus as being effectively at rest so that the expression of
the matrix element implies Mpi,ki,p f ,k f ∼ Mpi,0,p f ,0. Let us
write the nucleus integrals explicitly, so that dμν now only
comprises the neutrino momentum integrals,

Ĥn,ν =
∫

dμν

∫
d3ki

Mpi,0,p f ,0

(2π )3
(
2Eki 2Eki+pi−p f

)
× |p f 〉〈pi| ⊗ ei(pi−p f )x̂|ki〉〈ki|. (30)

For a very heavy nucleus, let us further assume that we can ap-
proximate the quantity 2Eki 2Eki+pi−p f ∼ 4mnuclEki . Seeing as
the difference in the neutrino momenta is small and the energy
of the nucleus is predominantly dependent on its heavy mass,
we take this to be a reasonable justification for the model
at hand. As a consequence, we observe that the Hamiltonian
reduces further, for we are now able to use the definition for
the one-particle state identity resolution,

Ĥn,ν =
∫

dμν

Mpi,p f

2mnucl
|p f 〉〈pi| ⊗ ei(pi−p f )x̂I. (31)

Next, we associate the operators of the bath with the in-
tegrals over the amplitudes, whereas the rest of the above
Hamiltonian is kept in the system operators. In our case, we
identify

Sα = 1

2mnucl
ei(pi−p f )x̂I, Bα = Mpi,p f |p f 〉〈pi|, (32)

and we pack all dependencies on the Feynman amplitudes
into the bath operators. Further, we argue that the COM of
the crystal (to which the nucleus belongs) is trapped in a very
low frequency trap, so that the time evolution of the operator
Sβ can be neglected. To time evolve the neutrino state, we
assume the neutrino rest mass to be negligible with respect to
its total energy. We further neglect flavor oscillations, which is
a reasonable assumption over the short distances of d ∼ 20 m
we consider, so that the neutrino bath has the free Hamiltonian

HB =
∫

d3 p

(2π )3
Epa†

pap. (33)

At first we will consider a single neutrino scattering from
the nucleus, thus we need to find the bath correlation function
for a single neutrino bath. To do that, we need to use an
incoming neutrino in a sufficiently momentum localized state
|ψ〉 normalized to 〈ψ |ψ〉 = 1. This is achieved by starting
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with a generic Gaussian initial momentum state,

|ψ〉 =
∫

d3 p

(2π )3
√

2Ep
ψ (p)|p〉

=
∫

d3 p

(2π )3
√

2Ep

(2π )3/2

(2πσ 2)3/4
e− (p−p0 )2

4σ2 |p〉. (34)

We substitute σ̃ = √
2σ , such that our state is properly nor-

malized to 〈ψ |ψ〉 = 1 and regard it in the limit of a very

narrow wave function,

lim
σ̃→0

|ψ〉 = lim
σ̃→0

∫
d3 p (4πσ̃ 2)3/4e− (p−p0 )2

2σ̃2

(2π )3/2
√

2Ep(2πσ̃ 2)3/2
|p〉

= ε

∫
d3 p√
2Ep

(σ̃ )3/2δ3(p − p0)|p〉

= εσ̃ 3/2√
2Ep0

|p0〉. (35)

Here, ε represents the collected numerical factors. We will
use this simplified form in the last step above for our subse-
quent computations. Thus,

Cα,β = Tr[ρνBαBβ (−τ )]

= Tr[|ψ〉〈ψ |Mpi,p f M∗
p′

f ,p′
i
e
−i(Ep′i

−Ep′f
)τ |p f 〉〈pi|p′

f 〉〈p′
i|]

= (2π )3Mpi,p f M∗
p′

f ,p′
i
2Epiδ

3(pi − p′
f )〈ψ |ψ〉〈ψ |e−i(Ep′i

−Ep′f
)τ |p f 〉〈p′

i|ψ〉

= (2π )3Mpi,p f M∗
p′

f ,p′
i
2Epiδ

3(pi − p′
f )〈ψ |e−i(Ep′i

−Ep′f
)τ |p f 〉〈p′

i|ψ〉

= (2π )9ε2σ̃ 3Mpi,p f M∗
p′

f ,p′
i
2Epiδ

3(pi − p′
f )e

−i(Ep′i
−Ep′f

)τ
2Ep′

i
δ3(p0 − p f )δ3(p′

i − p0). (36)

In tracing over the neutrino’s degrees of freedom, we have obtained the bath correlation function Cα,β as a function of the
relevant neutrino momenta, with α and β, respectively, labeling the dashed and undashed momenta. We then proceed to insert
the expression into the general formula for the master equation. For dρS/dt this results in the second term of Eq. (21) given by

dρS

dt
= − ε2σ̃ 3

4m2
nucl

∫
dτ

∫ d3 pid3 p f d3 p′
id

3 p′
f

(2π )316Epi Ep f Ep′
i
Ep′

f

4Epi Ep′
i
Mpi,p f M∗

p′
f ,p′

i
δ3(pi − p′

f )

× e
−i

(
Ep′i

−Ep′f

)
τ
δ3(p0 − p f )δ3(p′

i − p0){−ei(p′
i−p′

f )x̂ρSei(pi−p f )x̂ + ei(pi−p f )x̂ei(p′
i−p′

f )x̂ρS + H.c.}

= − ε2σ̃ 3

4m2
nucl

∫
dτ

∫ d3 p f d3 p′
id

3 p′
f

(2π )34Ep f Ep′
f

Mp′
f ,p f M∗

p′
f ,p′

i
e
−i(Ep′i

−Ep′f
)τ

δ3(p0 − p f )

× δ3(p′
i − p0){−ei(p′

i−p′
f )x̂ρSei(p′

f −p f )x̂ + ei(p′
f −p f )x̂ei(p′

i−p′
f )x̂ρS + H.c.}

= − ε2σ̃ 3

8m2
nuclEp0

∫
dτ

d3 p′
f

(2π )32Ep′
f

|Mp0,p′
f
|2e

−i(Ep0 −Ep′f
)τ {−ei(p0−p′

f )x̂ρSei(p′
f −p0 )x̂ + ei(p′

f −p0 )x̂ei(p0−p′
f )x̂ρS + H.c.}. (37)

Last, we have

dρS

dt
= − ε2σ̃ 3

64π2m2
nuclEp0

∫ d3 p′
f

Ep′
f

∣∣Mp0,p′
f

∣∣2

× δ
(
Ep0 − Ep′

f

){−ei(p0−p′
f )x̂ρSei(p′

f −p0 )x̂

+ ei(p′
f −p0 )x̂ei(p0−p′

f )x̂ρS + c.c.
}
. (38)

It is always possible to find a suitable parametrization of the
momenta p0 and p′

f in terms of an energy and appropriate
angles. Therefore, Mp0,p′

f
= M(Ep′

f
,�) ≡ M(�). Setting

α = ε2σ̃ 3

64π2m2
nucl

for brevity, we are able to write the factor before

the curly brackets as

� = −α

∫ E2
p′

f
dE ′

p f
d�

Ep0 Ep′
f

∣∣M(
Ep′

f
,�

)∣∣2
δ
(
Ep0 − Ep′

f

)

= − ε2σ̃ 3

64π2m2
nucl

∫
d�|M(�)|2. (39)

It shall be noted that the factor ε2σ̃ 3
p = 2− 3

2 (2πσ̃ 2
x )−

3
2 =

(2πσ 2
x )−

3
2 = V −1

x is essentially the volume of a Gaussian
times a factor. Seeing as σx = (

∫
x2|ψ (x)|2dx)1/2 for a con-

ventionally normalized ψ (x), our normalized Gaussian in
position space yields the recovered prefactor. The prefactor
can be interpreted as the expectation value of finding a particle
within the volume element Vx, which implies that number of
particles per unit volume n = 1/Vx. The neutrino’s velocity
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|pν |/Eν ∼ c = 1. Hence, its flux is given by

F = nc = n, (40)

where n is the number of particles per unit volume. We have
normalized the single neutrino wave function to 1 particle per
unit volume. Thus, we have, in terms of the flux of 1 particle,
F1, the evolution of the reduced density matrix of the nucleus
as given by

dρS

dt
= − F1

64π2m2
nucl

∫
d�|M(�)|2

× {−ei(�(E0,�))x̂ρSe−i(�(E0,�))x̂ + ρS + c.c.
}
, (41)

and hence

〈x| ·
ρS|y〉 = − 2F1

64π2m2
nucl

∫
d�|M(�)|2

× {−ei(�(E0,�))(x−y) + 1
}〈x|ρS|y〉. (42)

In writing the above, we have implicitly assumed that the
system, i.e., the nucleus, has a negligible evolution due to its
own Hamiltonian HS during the timescale of the experiment.
In addition, we have labeled Ep0 ≡ E0.

We are now in a position to compute the change in the
density matrix of the center of mass of the whole crystal
which is composed of multiple nuclei subject to a large flux
of neutrinos from a reactor. It shall be noted that our approx-
imations yield a result which is qualitatively very close to
the form of Gallis-Fleming [48] for nonrelativistic particles
scattering from a mass. Moreover, Eq. (42) has a very intuitive
interpretation, with F1

64π2m2
nucl

d�|M(�)|2 being the incident

flux multiplied by the scattering cross section for a solid angle
d�. It is thus the rate of scattering in a given solid angle d�.
Each scattering direction d� imparts a different momentum
to the nucleus, which is given by the operator ei[�(E0,�)]x̂.

B. Calculation of the relative phase between superposed
components of a crystal and its detection

For our formalism to apply to a whole crystal in the form of
a bulk material consisting of multiple nuclei scaling as NAtoms

and a flux of incoming neutrinos with a spectral distribution
of energies S(E ), Eq. (42) will have to be modified to

dρS

dt
= − 2F1 × NAtoms

64π2m2
nucl

∫
dES(E )

∫
d�|M(�)|2

× {−ei[�(E ,�)]x̂ρSe−i[�(E ,�)]x̂ + ρS + c.c.
}
. (43)

Antineutrino production rates for nuclear reactor sources
are typically on the order of r ∼ 2 × 1020 s−1/GWth [50,51],
with antineutrino energies ranging from 1–10 MeV. Seeing
as we assume our detectors to be placed at a distance d =
20 m to a 4.5 GWth nuclear fission reactor source, we obtain
an estimated flux of

F1 = r4.5 GWth

4πd2
∼ 1.7 × 1013 cm−2s−1. (44)

As described earlier, the center of mass C of the crys-
tal will be initialized in a joint state with with its spin s,
in the motional superposition state |�0〉S = 1√

2
(| ↑〉s|x̄0〉C +

| ↓〉s|x̄1〉C ).

Labeling the orthormal states | ↑〉s|x̄0〉C and | ↓〉s|x̄1〉C with
|0〉 and |1〉, respectively, for simplicity, we get the initial
density matrix in the {|0〉, |1〉} basis as

ρ0 = 1

2

(
1 1
1 1

)
. (45)

As we have discussed, for low momentum transfer with
respect to the inverse of the width of the Gaussians x̄0 and x̄1,
they can be treated effectively as position eigenstates |x̄0〉 and
|x̄1〉 in the phase expression. Thus, the evolution of the density
matrix in a time �t , which we call the final density matrix ρ f

is given by

〈0|ρ f |1〉 = 〈0|ρS (�t )|1〉 = 〈0|ρS (0)|1〉

− 2F1 × NAtoms

64π2m2
nucl

∫
dES(E )

∫
d�|M(�)|2

× {−ei(�(E ,�))(x̄0−x̄1 ) + 1
}〈0|ρS (0)|1〉�t . (46)

We then split the solid angle integration into polar and az-
imuthal integrals over ϕ̃ and θ and choose the parametrization
of the problem such that �(E ,�) = E (1 − cos θ ). As a result
of the above evolution, we will obtain a final density matrix of
the general form

ρ f =
(

a Ae−iϕ

Aeiϕ b

)
, (47)

in terms of a phase ϕ and an amplitude A. Unlike in the case
of a simple phase acquisition, the amplitude accompanying
the off diagonal term of the density matrix, where the phase
is encoded, has also decayed because of the open systems
treatment. In other words, we are averaging over all angles of
scattering, which amounts to averaging over all momenta and
incident energies. To extract the effect of the scattering, the
center of mass C will be decoupled using the interferometry
methods described in Refs. [24,25]. The relative phase ac-
quired between | ↑〉s|x̄0〉C and | ↓〉s|x̄1〉C will appear between
spin states | ↑〉s and | ↓〉s and be measured after suitable
transformations between them. At the end of interferometry,
| ↑〉s|x̄0〉C and | ↓〉s|x̄1〉C are mapped to spin states | ↑〉s and
| ↓〉s, respectively, and we can continue to use |0〉 and |1〉 as
our basis with the understanding that these now refer to the
spin states | ↑〉s and | ↓〉s which are measured. Unitary op-
erations on spin states typically comprise sending microwave
pulses of appropriate frequencies to spin states [40] differing
in energies due to the Zeeman effect in an external magnetic
field, hyperfine interactions or crystal field anisotropies. The
entire toolbox of quantum computation is available and we
will use two quantum operations, the Hadamard gate H and
the phase gate S [52], on the spins before measuring the
populations of | ↑〉s and | ↓〉s.

After computing ρ f (x1, x2, t ), upon applying a Hadamard
transformation, we effectively rotate our bases from |0〉 →

1√
2
(|0〉 + |1〉) and |1〉 → 1√

2
(|0〉 − |1〉). The extraction of the

phase then becomes a matter of calculating the probabilities
of measuring |0〉〈0| or |1〉〈1|. For the final density matrix a
Hadamard transformation to the rotated basis yields

Hρ f H = 1

2

(
a + b + 2A cos ϕ a − b + 2iA sin ϕ

a − b − 2iA sin ϕ a + b − 2A cos ϕ

)
, (48)
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TABLE I. Constants and definitions. GF denotes the Fermi con-
stant, u the atomic mass unit, mnucl the mass of a nucleus. The flux
listed is the projected neutrino flux at a distance of 20 m from the
source and �x refers to the superposition size. The function S(E )
is a spectral distribution function over the energies E , with standard
deviation σE and mean energy E0.

GF 1.1664 × 10−11 [MeV−2]
u 931.5 [MeV · c−2]
mnucl [49] (Z + N )u − 0.00054858Z · u+

(14.4381Z2.39 + 1.55468 · 10−6Z5.35)10−6

Flux 1.7 · 1013 [s · cm−2]
�x 10−14[m]

S(E ) 1
σE

√
2π

e−(E−E0 )2/(2σ 2
E )

σE 0.75 [MeV]
E0 2.6 [MeV]

and therefore subtraction of the probabilities p(0) − p(1) re-
sults in

p(0) − p(1) = 2A cos ϕ. (49)

As it is sometimes more practical to express the phase for
small arguments via the sine, a phase gate of the form

S =
(

1 0
0 eiπ/2

)
(50)

is used before the Hadamard transformation to recover

pS,H (1) − pS,H (0) = 2A sin ϕ. (51)

For a crystal consisting of NAtoms = 5 × 1021 of the ele-
ment 209Bi (crystal mass m ∼1 g) and the parameters as given
in Table I, we observe phase accumulation and its amplitude
decay in Fig. 4. From the figure it is clear that at time ∼105 s,
a very significant phase difference between the components
of the superposition with a significant amplitude is obtained
for a superposition of size �x = |x̄0 − x̄1| ∼ 10−14 m. Re-
ductions in the mass of the detector would linearly suppress

FIG. 4. Phase accumulation due to coherent neutrino-nucleus
scattering from Bismuth. The figure depicts the normalized matrix
elements of the nucleus density matrix after performing the oper-
ations of a phase gate and subsequent Hadamard on the sensing
system. Most notably, the blue line shows the change resulting from
the scattering in terms of the sine of the accumulated phase.

the associated phase and hence one would require a large
number of detectors (see section V for more details). The
separation was optimized and this order of magnitude was
found to give a detectable phase with minimal damping at
∼105 s. This timescale corresponds to a ∼π/3 ∼ 1 phase
shift. About thrice this time corresponds to a π phase shift
as the phase growth is linear in time. For a π phase shift, if we
can ensure that there has been no other momenta imparting
particle/effect, then this corresponds to the detection of one
neutrino by our detector with 100% certainty (a “click” in
our detctor) as such a phase is measured in a single shot by
measuring the spin state in the {|+〉s, |−〉s} basis with the
outcome |+〉s corresponding to no neutrinos, and the outcome
|−〉s corresponding to one neutrino. The chance of more than
one neutrino scattering in the given timescale is exceptionally
small. Smaller nonzero phases ascertained at earlier times
using Eq. (51) and multiple measurements to determine prob-
abilities (i.e., repeating the procedure with the same detector
or conducting measurements on an array of detectors) will
detect the neutrino stream coming from the reactor, but will
not be a single shot “click” detector.

V. CREATION OF QUANTUM SUPERPOSITIONS OF
MACROSCOPIC OBJECTS

We have three requirements for our setup. First, the crys-
tal should stay suspended against gravity for the duration of
∼105 s of our experiment, although we will outline methods of
reducing this time by resorting to a detector array rather than
a single detector. Using whatever means, we have to trap the
object in the vertical z direction. This could be achieved via
the well demonstrated mechanism of diamagnetic levitation
which will balance the crystal against gravity. Once created,
the quantum superposition of m ∼ 1 g, �x ∼ 10−14 m has to
be kept coherent for 105 s. This is a very long time, but the
principal mechanisms of decoherence are known [7], namely,
the collisions with background gas (controlled by decreasing
pressure) and black-body radiation emission from the crys-
tal (controlled by cooling the crystal internally). Figure 5
shows the requirements, with the unshaded region (outside
the red bounded box) an allowed domain for coherence. It
shows that pressures of P ∼ 10−16 Pa, already achieved in
penning traps, and temperatures of T ∼ 1 K should suffice to
retain the extremely long coherence for 105 s. The effect of
electromagnetic noise from the apparatus to create and probe
the superposition is also of importance (analysed to some
extent in Ref. [24]) and depends on the precise protocol, but
essentially the exceptional stability of these sources, along
with other proximal electromagnetic sensors will have to be
used. For inertial noise, again, other sensors will have to be
used to measure and take account of the noise. Alternatively,
the detection can be done with two different materials in
parallel, with the inertial noise being common. An in-depth
noise analysis including vibrational noise will be discussed
in future works. The explicit development of the above are
beyond the scope of the current work, where we just want to
highlight the possibility of neutrino detection.

Methods for creating superpositions of the form |�0〉 =
1√
2
(| ↑〉s|x̄0〉C + | ↓〉s|x̄1〉C ) are still in development. Of

course, our method will work for superpositions created by
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FIG. 5. The diagram of the allowable region of pressure P and
temperature T so that a m ∼ 1 g crystal in a superposition of two
positions separated by �x ∼ 10−14 m can remain coherent for a time
t ∼ 105 s. The allowable region is unshaded. We can see that P ∼
10−16 Pa and T ∼ 1 K (the black dot) is an optimal point for our
scheme.

any means, even for superpositions without an ancillary spin
system, such as 1√

2
(|x̄0〉C + |x̄1〉C ), as long as we have a mech-

anism to measure the relative phase between the components
by bringing them together to interfere. It is just simpler for a
superposition of the form |�0〉 = 1√

2
(| ↑〉s|x̄0〉C + | ↓〉s|x̄1〉C ),

as the spin can be measured after the completion of interfer-
ometry to measure the phase. Here we only outline schematics
rather than fully detailed schemes. One can use a mass with a
single quantum spin − 1/2 system embedded in it and subject
it to magnetic field gradients. The m ∼ 1 g crystal with an em-
bedded spin is subjected to a ∂B

∂x ∼ 106 Tm−1 (produced, for
example, at a ∼ cm distance from the surface of a ∼ cm radius
wire [24] carrying 1013 A m−2 current densities). When ex-
posed to this magnetic field gradient for a time tacc ∼ 10−5 s,
the center of mass of the crystal acquires opposite final ve-

locities of magnitude v ∼ μB
∂B
∂x

m τ ∼ 10−19 m s−1 for the | ↑〉
and | ↓〉 components, respectively. It is not worth exposing the
crystal to the high magnetic field gradient much longer as this
gradient, in addition to the Stern-Gerlach splitting, also cre-

ates a diamagnetic trap of a frequency ω ∼
√

χm

μ0

∂B
∂x ∼ 105 Hz

in the x direction, which reverses the directions of the opposite
accelerations after a quarter period. After this, the x gradient is
switched off, and the mass is allowed to freely evolve for the
exceptionally long time τ ∼ 105 s of our experiment in the
diamagnetic trap in the vertical z direction. Since there is no
trapping/potential in the x direction, the velocity difference
is translated to a position difference �x ∼ 2vτ ∼ 10−14 m.
Note that during the stages in which the Stern-Gerlach effect
is not used to actively accelerate the crystal, the electronic spin

states used in the Stern-Gerlach splitting can be mapped on to
nuclear spin states which maintain their quantum coherence
for exceptionally long times [53].

Another method to create a quantum superposition will be
through using an optomechanical interaction with a quantized
microwave field in a cavity, with the cavity field subsequently
mapped to spin qubits. In this case, the optomechanical force
is sufficient to create the required superposition of a single
m ∼ 1 g mass directly. An electromagnetic field in a number
state |n〉 in a cavity interacts with a crystal passing through
it with the coupling strength g ∼ 3V

4Vc

ε−1
ε+1ωL, where ωL is the

frequency of the electromagnetic field, V is the volume of the
crystal, and Vc is the cavity waist volume and ε the dielec-
tric constant [54]. The optomechanical coupling Hamiltonian
is h̄gkn̂x̂, where n̂ and x̂ are the number and the position
operators of the field and the center of mass of the crystal,
respectively, and k is the wave vector of the electromagnetic
field. If interacting for a time tkick, then a crystal can receive
a velocity kick vkick ∼ h̄gkntkick

m . Assuming a tkick ∼ 1 μs dur-
ing which the 1 g mass traverses through the cavity waist,
assuming both V ∼ Vc ∼ 1 cm3 and ωL ∼ 10 GHz, we get a
velocity kick of vkick ∼ 10−19 ms−1. Thus, one can prepare the
cavity in a quantum superposition 1√

2
(|0〉c + |1〉c) and apply a

kick to the crystal by letting it fall through the cavity for tkick.
After waiting for a time τ ∼ 105 s, one obtains a superposition

1√
2
(|0〉c|x̄0〉C + |1〉c|x̄1〉C ) [4]. The microwave cavity state can

also be mapped to a long-lived nuclear spin states of trapped
atoms after the state dependent velocity kicks are over.

Whatever the mechanism of trapping the masses and cre-
ating the spatial superpositions, randomness of the forces and
pulses will also result in a decoherence at a rate of

� ∼ SFF (�)(�x)2

h̄2 , (52)

where SFF (�) = ∫
δF (0)δF (t )ei�t dt is the force noise spec-

trum at the frequency � ∼ 1/τ of our experiment. Keeping
� < 10−5Hz gives us the constraint that random force noise
should be kept below

√
SFF ∼ 10−23 N/

√
Hz. Note that in

all the above discussions, it is implicit that the interferometry
has to be completed. So further spin or cavity field dependent
impulses will be required at certain points to stop the growth
of �x and reverse it, as it is accomplished in various interfer-
ometric schemes [24,25].

Note that the phase growth between the components of
the superposition when subject to a neutrino flux is linear
with time at a constant rate of ∼10−5 Hz, which reflects in
population differences as seen form Fig. 4. At ∼105 s, the
phase difference of the order π is obtained so that the final
state of the superposition is orthogonal and therefore fully
distinguishable from the initial state. If we can further ensure
that, by resorting to means such as those described in the con-
text of temperature and pressure, variations of the phase with
the location and direction relative to the neutrino source as
well as the use of different materials, only neutrinos have been
scattered during this duration, then an orthogonal spin state
detection at ∼105 s corresponds to a single neutrino detection
(a click), as we are ensuring that nothing else causes a change
in the phase and the chance of more than one neutrino having
interacted with the gram scale detector is vanishingly small.
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Using an array of 104 such gram scale detectors, we should be
able to ensure that one neutrino is detected every 10 s.

Note also that one can shorten both the duration of the
experiment to τ/n and the mass required to m/n while keeping
the detectability of the phase effect at the same level by using
n4 crystals. Each such crystal will get n times the velocity kick
of a single crystal of mass m for the same tacc or tkick (we
assume τ/n � tacc, tkick). Thus, the timescale of generation
of a superposition of given size �x will become shortened
to τ/n. Note that the phase accrued by each crystal in this
shorter time will decrease by a factor of n2, i.e., φ becomes
φ/n2 as both the time and the mass to which the phase is
directly proportional, decrease by n. Because of shot noise
scaling n4 interferometers can measure a phase of φ/n2 with
the same accuracy by measuring the spins of each interfer-
ometer. However, if one only reduced either the mass or the
time of the interferometer by a factor of n, then we would
need n2 detectors to achieve the same scaling. For example,
if we were to split the system to miligram detectors, each
with superposition size of 10−14m (note that this superposition
size is much smaller than that required for all other suggested
applications and much smaller than those achieved for atoms
and macromolecules), then we would need a million such
detectors. Also note that recently large masses have been pre-
pared in nearly the ground quantum state by feedback cooling
[22]—so, by similar technology, one should also be able to
prepare gram scale masses in pure quantum states, which can
be a starting point of creating superpositions.

VI. CHALLENGES

We have discussed the conditions needed to meet one of the
principal challenges, namely, environment-induced decoher-
ence, in the previous section while discussing the generation
of the superposition. However, we discuss below how some of
the other requirements may be met.

A. Satisfying the requirements of the crystal wave packet

Note that the initial spread σc of each of the superposed
Gaussian wave packets of the crystal are required to satisfy
a couple of conditions to meet some of the simplifying ap-
proximations of our calculations. Note that the position degree
of freedom of all the nuclei (being part of a solid) are, to a
good approximation (at least at the temperatures we consider)
rigidly tied to the center of mass of the crystal and thereby
has the same position spread σc as that of the whole crys-
tal. As stated in Sec. II, we require σc � 1/qx, relating to
the momentum transferred, which in this case boils down to
ensuring σc � �x ∼ 10−14 m. However, we also require the
initial maximum momenta of the crystal ki ∼ 1/σc � mnucl ∼
10−17 m, which stems from the assumption of the heavy
nucleus being effectively at rest. Thus, there is a window. An
initial diamagnetic trap of 105 Hz in the x direction will thus
do the job, with the ground state spread of the center of mass
of the crystal in such a trap being ∼10−16 m.

B. Coherence length of the neutrino

The consideration of processes involving neutrinos brings
about several unknowns, one of which is the particle’s

coherence length. In Ref. [55] the authors opted for a wave-
packet treatment of the neutrino and estimated that an energy
uncertainty of σwp = σν

E (pν ) ∼ 0.01 or larger would influence
decoherence and dispersion effects and thereby reduce the
detector efficiency of reactor antineutrino oscillation experi-
ments. We take this value as a reference to estimate whether
a scattering event could resolve the position of our nucleus
and hence spoil the superposition. Considering σxσν ∼ h̄

2 ,
we obtain an uncertainty σx ∼ 3 × 10−12 m for a neutrino
with energy Eν ∼ 10 MeV. This means that a neutrino with
σwp ∼ 0.01 would indeed be able to resolve the position of any
quantum object in a superposition larger than σx. Seeing as the
matter of the actual wave-packet shape and coherence length
of the neutrino is not solved, our proposed experiment may
also be able to serve as a means of testing the validity of plane
wave approximations of the neutrino wave packet. Depending
on the true wave-packet shape of the neutrino, we expect to
observe either a coherent phase gain or a decoherence effect.

C. Lattice defects

The authors of Ref. [56] considered the structural damage
effects of dark matter and neutrino scattering on dense ma-
terials with defect centers, such as nitrogen vacancy centers
in diamond. In general, the deposited kinetic energies will
exceed typical lattice binding energies of O(10) 10V. Hence,
we anticipate the scattering of a neutrino to lead to the for-
mation of such damage clusters, though they can be expected
to be significantly smaller in size. Based on the analysis in
Ref. [56], we estimate that a nucleus recoiling with an average
kinetic energy of 3 keV could generate O(10) lattice defects
or interstitial sites. We require that these sites are created in
such a manner that we cannot tell from which part of the su-
perposition the neutrino has scattered. Here this requirement
is naturally fulfilled as the size of the superposition is much
smaller than the interatomic spacing in the lattice.

D. Distribution of momentum

It is the center of mass of the whole crystal which is
coupled to the embedded spin used for the superposition
creation/recombination and the phase read-out. However, the
neutrino is initially going to impart its energy to one of the
nuclei in the whole crystal. At this stage, the energy imparted
is localized to this nucleus, but the center of mass already
has the imparted momentum; however, the crystal cannot be
considered as all rigidly connected nuclei moving together,
which is required for the embedded spin to sense the trans-
ferred momentum. A local phonon is excited in the crystal at
the site of the scattering neutrino. However, phonon relaxation
times in crystals are generally ∼1–100 ns [57], after which the
energy would have been transferred to the center of mass of
the whole crystal.

VII. DISCUSSION

We have described the detection of neutrinos from the rela-
tive phase they impart between the components of a quantum
superposition of two spatially localized states of the center
of mass of a crystal. As naturally there is a distribution of
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momentum after the scattering, this process also causes a
decoherence in addition to imparting a change in the relative
phase. We thus formulated a master equation technique to
evolve the full density matrix of the COM of a crystal under
the scenario of the scattering of a relativistic particle from
it. Solving that, we found that the optimal detection requires
a ∼1 g mass placed in a quantum superposition of states
separated by a distance �x ∼ 10−14 m. For completeness,
we have also suggested a schematic and parameter domain
by adopting which such superpositions could be achieved and
maintained for the long duration of our experiment, although
much more analysis will be required for realistic scenarios.

It is worth clarifying the role of the various ingredients of
our method proposed herewith. The superposition serves as
a means to detect the momentum recoil k of the crystal in
terms of the relative phase k�x. Of course, that will happen
for a crystal of any mass, including individual atoms in a
superposition of states separated by �x. However, in that case
the cross section is very small. For a crystal of NAtoms, the
cross section is amplified NAtoms times. While an uncorrelated
collection of NAtoms in the same superposition state will have
the same cross section, the neutrino will only scatter from one
of those atoms, and one has to measure each atom after appro-
priate basis rotations to measure whether one of them obtained
a phase. In the case of a crystal with a single embedded
spin, the phase gained by the neutrino hitting any one of the
nuclei is mapped on to the relative phase between the COM
states of the whole crystal. This is because of the very strong
correlations between the positions of the atoms the NAtoms,
since they are all either clustered around the state |x̄0〉 or the
state |x̄1〉. The positions of all the atoms are entangled when
the center of mass is placed in the superposition |x̄0〉 + |x̄1〉.
Moreover, due to the very mechanism of our interferometry,
the embedded spin or other ancillary system is also entangled
with the center of mass during the interferometry, so that at
the end, the phase can be estimated exclusively by measuring
this single spin. The reason that we have used a regime in
which the scattering from each nulceus is coherent is because
it enhances the cross section by N2 times (N being the number
of neutrons in a nucleus), which makes our times-scales about
104 times less than what it would have been otherwise.

It is important to clarify that going to either higher or
lower energy neutrinos is not a trivial problem. For higher
energies, it is true that the cross section increases as ∝ E2,
where E is the energy of the incident neutrinos. However, the
momentum transferred may be too high and knock a nucleus
completely out of the crystal so that the momentum is not
imparted to the rest of the crystal. Moreover, k�x ∼ 1 implies
that much smaller superpositions �x will have to be used,
which implies a great difficulty in satisfying our simplification
assumptions 1/mnucl � σc � �x ∼ 1/k and the calculations
will be needed to be performed in much more generality.
For lower energies, cross section can both decrease due to
the ∝ E2 effect or increase due to scope of scattering co-
herently from all atoms of the crystal. However, producing
a larger �x ∼ 1/k superposition becomes much more diffi-
cult, especially for the masses as large as the ones that are
needed here.

Our technique presented in this work should be adaptable
to any relativistic particles scattering off a quantum super-
position with appropriate modifications. Moreover, neutrinos
will form a background to any other signals one may want
to detect. The calculations here show that even a substantially
large mass in a quantum superposition of distinct spatial states
can remain coherent for a very long time close to a source of
neutrinos so that there is an ample window for the detection
of other signals.

ACKNOWLEDGMENTS

E.K. acknowledges support from the Engineering
and Physical Sciences Research Council (Grant No.
EP/L015242/1). M.T. and S.B. acknowledge EPSRC
Grant No. EP/N031105/1, S.B. the EPSRC Grant No.
EP/S000267/1, and M.T. funding by the Leverhulme
Trust (Grant No. RPG-2020-197). F.F.D. acknowledges
support from a UK STFC consolidated grant (Reference
No. ST/P00072X/1). R.S. acknowledges support from the
Science and Technology Facilities Council (Grant No.
ST/T006439/1).

[1] F. Reines and C. L. Cowan, Jr., The Neutrino, Nature 178, 446
(1956).

[2] Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H.
Ishino, Y. Itow, T. Kajita, J. Kameda, S. Kasuga et al., Evidence
for Oscillation of Atmospheric Neutrinos, Phys. Rev. Lett. 81,
1562 (1998).

[3] The KATRIN Collaboration, M. Aker, A. Beglarian, J. Behrens,
A. Berlev, U. Besserer, B. Bieringer, F. Block, S. Bobien,
M. Böttcher, B. Bornschein et al., Direct neutrino-mass mea-
surement with sub-electronvolt sensitivity, Nat. Phys. 18, 160
(2022).

[4] S. Bose, K. Jacobs, and P. L. Knight, Scheme to probe the
decoherence of a macroscopic object, Phys. Rev. A 59, 3204
(1999).

[5] A. D. Armour, M. P. Blencowe, and K. C. Schwab, Entangle-
ment and Decoherence of a Micromechanical Resonator Via
Coupling to a Cooper-Pair Box, Phys. Rev. Lett. 88, 148301
(2002).

[6] W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, To-
ward Quantum Superpositions of a Mirror, Phys. Rev. Lett. 91,
130401 (2003).

[7] O. Romero-Isart, Quantum superposition of massive ob-
jects and collapse models, Phys. Rev. A 84, 052121
(2011).

[8] O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek,
N. Kiesel, M. Aspelmeyer, and J. I. Cirac, Large Quantum
Superpositions and Interference of Massive Nanometer-Sized
Objects, Phys. Rev. Lett. 107, 020405 (2011).

023012-11

https://doi.org/10.1038/178446a0
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1038/s41567-021-01463-1
https://doi.org/10.1103/PhysRevA.59.3204
https://doi.org/10.1103/PhysRevLett.88.148301
https://doi.org/10.1103/PhysRevLett.91.130401
https://doi.org/10.1103/PhysRevA.84.052121
https://doi.org/10.1103/PhysRevLett.107.020405


EVA KILIAN et al. PHYSICAL REVIEW RESEARCH 5, 023012 (2023)

[9] J. Bateman, S. Nimmrichter, K. Hornberger, and H. Ulbricht,
Near-field interferometry of a free-falling nanoparticle from a
point-like source, Nat. Commun. 5, 4788 (2014).

[10] M. Scala, M. S. Kim, G. W. Morley, P. F. Barker, and S. Bose,
Matter-Wave Interferometry of a Levitated Thermal Nano-
Oscillator Induced and Probed by a Spin, Phys. Rev. Lett. 111,
180403 (2013).

[11] Z. Q. Yin, T. Li, X. Zhang, and L. M. Duan, Large quantum
superpositions of a levitated nanodiamond through spin-
optomechanical coupling, Phys. Rev. A 88, 033614 (2013).

[12] C. Wan, M. Scala, G. W. Morley, A. A. Rahman, H. Ulbricht,
J. Bateman, P. F. Barker, S. Bose, and M. S. Kim, Free
Nano-Object Ramsey Interferometry for Large Quantum Super-
positions, Phys. Rev. Lett. 117, 143003 (2016).

[13] J. S. Pedernales, G. W. Morley, and M. B. Plenio, Motional
Dynamical Decoupling for Interferometry with Macroscopic
Particles, Phys. Rev. Lett. 125, 023602 (2020).

[14] Y. Margalit, O. Dobkowski, Z. Zhou, O. Amit, Y. Japha, S.
Moukouri, D. Rohrlich, A. Mazumdar, S. Bose, C. Henkel et al.,
Realization of a complete stern-gerlach interferometer: Toward
a test of quantum gravity, Sci. Adv. 7, eabg2879 (2021).

[15] B. D. Wood, S. Bose, and G. W. Morley, Spin dynamical
decoupling for generating macroscopic superpositions of a free-
falling nanodiamond, Phys. Rev. A 105, 012824 (2022).

[16] R. J. Marshman, A. Mazumdar, R. Folman, and S. Bose, Large
splitting massive Schrödinger kittens, Phys. Rev. Res. 4, 023087
(2022).

[17] Y. Y. Fein, P. Geyer, P. Zwick, F. Kiałka, S. Pedalino, M. Mayor,
S. Gerlich, and M. Arndt, Quantum superposition of molecules
beyond 25 kDa, Nat. Phys. 15, 1242 (2019).

[18] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek,
S. G. Hofer, S. Hong, N. Kiesel, A. Kugi, and M. Aspelmeyer,
Real-time optimal quantum control of mechanical motion at
room temperature, Nature 595, 373 (2021).
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