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Abstract

Endometriosis is a common condition associated with debilitating pelvic pain and infertility. 

A genome-wide association study meta-analysis, including 60,674 cases and 701,926 controls 

of European and East Asian descent, identified 42 genome-wide significant loci comprising 

49 distinct association signals. Effect sizes were largest for stage III/IV disease, driven by 
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ovarian endometriosis. Identified signals explained up to 5.01% of disease variance and regulated 

expression or methylation of genes in endometrium and blood, many of which were associated 

with pain perception/maintenance (SRP14/BMF, GDAP1, MLLT10, BSN, NGF). We observed 

significant genetic correlations between endometriosis and 11 pain-conditions including migraine, 

back, and multisite chronic pain (MCP), as well as inflammatory conditions including asthma and 

osteoarthritis. Multi-trait genetic analyses identified substantial sharing of variants associated with 

endometriosis and MCP/migraine. Targeted investigations of genetically regulated mechanisms 

shared between endometriosis and other pain-conditions are needed to aid the development of new 

treatments and facilitate early symptomatic intervention.

Endometriosis is an inflammatory condition occurring in 5–10% of women of reproductive 

age associated with debilitating pelvic pain and infertility1. It is characterized by the 

presence of endometrial-like tissue outside the uterus, mainly on pelvic organs. Definitive 

diagnosis requires visualization of lesions during surgery, resulting in a delay in diagnosis 

that globally averages 7 years from symptom onset2. Treatments are limited to surgical 

removal of disease and adhesions, or hormonal treatments which can have problematic 

side-effects. Endometriosis is a heterogeneous condition, typically classified according to 

revised American Society of Reproductive Medicine (rASRM) criteria based on surgical 

visualisation of disease. Stage I/II disease features superficial peritoneal lesions and 

minimal adhesions, and stage III/IV more extensive disease including cystic ovarian 

endometriosis (endometrioma), and extensive scarring, fibrosis and adhesions3. Presence 

of deep endometriosis (lesions with >5mm depth that can infiltrate bowel, ureter, bladder, 

including rectovaginal lesions) is not accounted for in the rASRM staging algorithm.

Causes of endometriosis remain largely unknown, but the condition has an estimated 

heritability of ~ 50%4,5 with ~26% estimated due to common genetic variation6. Nine 

genome-wide association studies (GWAS) of endometriosis in women of European and 

East Asian ancestry have been reported to date7. The largest comprised 17,045 cases 

and 191,596 controls and identified 19 distinct associations at genome-wide significance 

(p<5×10−8) mapping to 13 loci separated by >1Mb8, together explaining 1.75% of 

phenotypic variance for endometriosis. Although positional evidence has suggested potential 

involvement of sex-steroid hormone signalling, WNT signaling, cell adhesion/migration, cell 

growth/carcinogenesis and inflammation-related pathways, the regulatory effects of most 

of these loci in tissues relevant to endometriosis have yet to be determined. Moreover, the 

causal variants driving the identified association signals and their functional involvement in 

mediating the underlying pathogenic mechanisms are unknown.

Previous GWAS analyses have highlighted that effect sizes of most known risk-variants 

are larger for rASRM stage III/IV disease3,8, but associations with specific phenotypic 

characteristics in this broad classification (e.g. cystic ovarian endometriosis (endometrioma), 

advanced scarring, fibrosis and adhesions) are unclear. Sub-phenotype analyses focused on 

infertility, pain symptomatology, and surgical phenotypes beyond rASRM stage could help 

decipher causal mechanisms contributing to various components of the complex underlying 

pathophysiology and ultimately better targeted treatments.

Rahmioglu et al. Page 2

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, we report results elucidating the pathogenesis of endometriosis and its association 

with sub-phenotypes derived from the largest GWAS meta-analysis of endometriosis to date, 

including 60,674 cases and 701,926 controls of European and East Asian ancestry, followed 

by fine-mapping of causal variants and comprehensive investigation of their functional 

effects in endometrium, blood and other relevant tissues, as well as sub-phenotype and 

comorbidity analyses.

Results

We conducted a meta-analysis of 24 GWAS with a total effective sample size of 206,106 

(60,674 cases and 701,926 controls) of European (98%: Europe, USA, Australia), and East 

Asian (2%: Japan) ancestry. In 12 GWAS, women had surgically confirmed endometriosis 

including 3,916 with rASRM stage I/II and 4,045 with rASRM stage III/IV disease; in 9 

studies, 3,060 cases had known infertility in addition to endometriosis (Supplementary Table 

1).

Each GWAS dataset was imputed up to 1000 Genomes (1000G P3v5), Haplotype Reference 

Consortium (HRC r1.1 2016) or population-specific whole genome sequence data, and 

standardised quality control was performed (Methods; Supplementary Table 2). Meta-

analysis was conducted for 10,401,531 SNPs under a fixed-effects model with inverse-

variance weighting for overall, rASRM stage I/II, rASRM stage III/IV and endometriosis 

associated infertility (Extended Data Fig. 1–2).

GWAS meta-analysis reveals 42 loci for endometriosis

We identified 42 genome-wide significant loci (p<5×10−8) for overall endometriosis, 

31 of which have not been previously reported (Fig. 1, Supplementary Table 3, 

Extended Data Figs. 1–2); 12 of the 42 loci were significant at a more stringent 

p<5×10−9 threshold, suggested as more appropriate for whole genome sequence data. 

Following earlier observations of a greater genetic contribution to rASRM stage III/IV 

endometriosis9, we conducted sub-phenotype analyses including rASRM stage III/IV 

(4,045 cases/379,890 controls), rASRM stage I/II (3,916 cases/184,006 controls) and 

endometriosis-associated infertility (3,060 cases/242,555 controls). No additional genome-

wide association signals were detected in sub-phenotype analyses; of the 42 loci, eight 

reached genome-wide significance for stage III/IV, one for endometriosis-associated 

infertility but none for stage I/II. However, lead SNPs at 38/42 genome-wide significant 

loci showed larger effect sizes in stage III/IV vs. stage I/II analysis, and of these, 6 

with non-overlapping 95% confidence intervals between the sub-phenotypes (KDR/4q12, 

SYNE1/6q25.1, 7p15.2/7p15.2, CDKN2-BAS1/9p21.3, SLC19A2/1q24.2, IGF1/12q23.2) 

(Fig. 1; Supplementary Table 3; Supplementary Figs. 1–2).

Of the 42 genome-wide significant loci, we observed nominally significant between-study 

heterogeneity for 11 loci (p-overall heterogeneity <0.05, 2.1 loci expected) in the overall 

endometriosis meta-analysis; for six loci this was explained by case ascertainment and two 

by ancestry (Supplementary text; Supplementary Tables 4–6; Supplementary Figs 3–5). 

Sensitivity analyses to test the impact of small datasets and the inclusion of male controls in 
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sex-combined analyses did not alter the results (Supplementary text; Supplementary Table 7, 

Extended data Figs 1e and 3).

Multiple association signals at endometriosis risk loci

To identify the presence of multiple distinct associations at the 42 genome-wide 

significant loci, we conducted approximate conditional analysis based on summary meta-

analysis results restricted to European ancestry GWAS. Four loci had multiple distinct 

associations after conditioning (p<5×10−8; see Methods) including three with two signals 

(GREB1/2p25.1, CDKN2-BAS1/ 9p21.3, IGF1/12q23.2); and SYNE1/6q25.1 with five 

signals (Supplementary Table 3). In total, 49 index SNPs representing distinct associations 

were identified across the 42 endometriosis loci (Supplementary Table 8; Supplementary 

Fig. 6).

The phenotypic variance for overall endometriosis explained by the 42 lead SNPs was 

1.62% vs. 1.98% by the 49 index SNPs. Meta-analysis limited to datasets with surgically/

medically ascertained cases, less prone to misclassification bias and potentially including 

women with more severe symptoms, showed that the 42 lead SNPs explained 3.99% of 

endometriosis variance, and the 49 index SNPs 4.79%. For stage III/IV disease, the 42 lead 

SNPs explained 4.10% and 49 index SNPs 5.01% of disease variance (Supplementary Table 

9).

Fine-mapping of endometriosis association signals

To identify potential causal variants, we performed fine-mapping based on the European 

ancestry-specific meta-analysis results; 99% credible sets were constructed assuming a 

single causal SNP driving each of the 49 distinct association signals (Supplementary Table 

10–12; see Methods). For seven association signals, credible SNP sets containing ≤10 SNPs 

were observed. Fine-mapping uncovered 6 “high-confidence” variants (posterior probability 

(π) >50% to be causal): rs71575922 in SYNE1 and rs73625113 in ESR1; rs6456259 in 

LNC-LBCS; rs6970537 in HOXA10 and rs3803042 1kb downstream of HOXC10; and 

rs73241342 in LINC00629 (Supplementary Table 13). All were in non-coding regions.

Genetic regulation of expression and methylation at endometriosis risk loci

Genes located within ±200kb of each of the 49 index SNPs were enriched for expression in 

endometrium, smooth muscle (Human Protein Atlas) and uterus (GTex) (see Supplementary 

text; Extended Data Figs. 4a–d). To identify specific genes regulated by the 49 distinct 

endometriosis association signals, we analysed four expression quantitative trait loci (eQTL) 

datasets: 1) a gene expression microarray study of 229 endometrial samples10; 2) a meta-

analysis of RNAseq-based eQTL datasets including 368 endometrial samples (11 and 

Supplementary Tables 34–35; see Methods); 3) RNAseq expression data from 129 uterus 

tissue samples from GTEx; and 4) data from 31,684 blood samples from the eQTLGen 

Consortium12. We also associated SNPs in the endometriosis risk regions with DNA 

methylation of nearby CpG sites in endometrium and blood using previously published 

mQTL datasets (Supplementary Table 17).13,14
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Summary data-based Mendelian Randomisation (SMR)15 was used to identify genes whose 

expression (eQTL) or methylation (mQTL) levels are associated with endometriosis due to 

the effects of a common genetic variant (either by direct causal or pleiotropic effects) rather 

than due to linkage disequilibrium (LD). Table 1 summarises the significant eQTL/mQTL 

SMR results across endometriosis GWAS loci, together with evidence from chromatin 

interactions (see Supplementary Text, Supplementary Tables 14–19, and Extended Data Figs 

5–6 for detailed results).

Observations that endometriosis risk variants on chromosomes 2p25.1 and 12q22 may 

function through changes in expression/methylation of GREB1, and VEZT and/or FGD6, 

respectively, have been reported previously10,11,16. Many of the other potentially causal 

genes have strong biological support. Notable was the signal for GDAP1 (GDAP1/8q21.11), 

previously associated with dysmenorrhea severity and neuronal development (Fig. 2)17,18. 

Rs4567029 regulates methylation of probes near GDAP1 and is in perfect LD with 

rs10283076 that was identified as the variant regulating GDAP1 expression in blood 

tissue (Supplementary Table 16). The SRP14-AS1/15q15.1 locus harbored multiple distinct 

association signals in endometrium and blood and chromatin interaction with BMF 
(Bcl2 modifying factor) (Fig. 3; Supplementary Tables 15,16,18). BMF encodes for a 

glycoprotein associated with sex hormone binding globulin and regulating bioavailability 

of oestrogen and testosterone19. Variants in SRP14 may also affect endometriosis-associated 

pain genesis and maintenance through regulation of DHEA-sulfate (DHEA-S) levels20. 

DHEA-S is a neurosteroid functioning as a neurotropin, that can bind and activate nerve 

growth factor (NGF) and brain-derived neurotrophic factor (BDNF)21,22. BDNF has been 

shown to regulate the maintenance of chronic pain in various chronic disorders23, and its 

expression appears increased in the eutopic endometrium of women with endometriosis 

compared to controls24,25. The expression of NGF, one of our other GWAS loci, has been 

suggested to partly mediate local nerve density around endometriosis lesions, associated 

with dyspareunia26.

We next investigated whether the endometriosis-associated genes identified through SMR 

analyses (Table 1) are expressed in specific cell types. We used the large GTEx single 

cell expression database, although this was limited to cellular components from 8 tissues 

not including endometrium, ovary or blood (see Methods). Of the 23 genes, 18 were 

expressed in cells included in the GTEx single cell database, (Extended Data Fig. 7). 

BMF, GDAP1, MLLT10, TRA2A, SRP14, SYNE1, and VEZT and were expressed in 

neuronal and neuroendocrine cells. CALCRL, MLLT10, SYNE1, TRA2A, and VEZT were 

expressed in adipocytes, endothelial cells and fibroblasts and a cluster of genes including 

ARL14EP, ESR1, SYNE1, MLLT10, TRA2A and VEZT were expressed in immune cells, 

most commonly B cells and T cells. Epithelial cells expressed ABO, ESR1, MLLT10, 
TRA2A, SRP14, SYNE1, and VEZT.

The SMR results from endometrium and blood implicated several causal genes associated 

with mechanisms of pain perception and maintenance (SRP14/BMF, GDAP1, MLLT10, 
BSN, NGF). We next investigated the association of the GWAS loci with sub-phenotypes of 

endometriosis, including pelvic pain, in more detail.
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Sub-phenotype associations at risk loci

Given the generally stronger GWAS associations with rASRM stage III/IV endometriosis 

(Supplementary Tables 3 and 9), we first explored whether certain surgical or clinical 

features of endometriosis were driving these associations. We compared effect sizes of the 

42 lead SNPs for stage III/IV disease with endometrioma, deep lesions and superficial 

peritoneal lesions using eight studies (6,502 cases/57,407 controls; Supplementary Table 

20) with surgical sub-phenotype information (see Methods). We observed the largest 

correlation between effect sizes for rASRM stage III/IV disease vs. endometrioma (r=0.73), 

compared to deep lesions (r=0.42) and superficial peritoneal lesions (r=0.15; Fig. 5). 

None of the lead SNPs were significantly associated with a surgical sub-phenotype after 

Bonferroni correction (0.05/42=1.19×10−3); nominal associations (p<0.05) included 7 SNPs 

for endometrioma, 6 for superficial peritoneal lesions, and 3 for deep lesions (Fig. 5, 

Supplementary Table 21, Supplementary Fig. 7).

When we tested for differences in effect sizes between endometriosis and adenomyosis 

(the growth of endometrium into the myometrium) for each of the 42 endometriosis lead 

SNPs (Supplementary Text: Methods/Results), no significant differences were observed 

(p<1.19×10−3, Supplementary Table 22). Moderate correlations in effect sizes were 

observed between adenomyosis and rASRM stage I/II (r=0.52), superficial lesions (r=0.40) 

and deep lesions (r=0.31), but low correlations with rASRM stage III/IV (r=0.02) and 

endometrioma (r2=0.18; Extended Data Fig. 8).

Epidemiological evidence has consistently shown a lack of correlation between rASRM 

stage III/IV and pelvic pain severity7. Using six studies with pelvic pain sub-phenotype 

information (Supplementary Table 20; four with World Endometriosis Research Foundation 

(WERF)-Endometriosis Phenome Harmonisation (EPHect) standardised phenotyping27), the 

correlation of effect sizes of the 42 lead SNPs between rASRM stages and the number of 

pelvic pain symptoms as a measure of multi-site pain (see Methods) was weak (Fig. 5; 

r=0.29 for rASRM I/II vs. r= −0.01 for rASRM III/IV). All five pain types consistently 

showed stronger correlations in effect sizes with rASRM stage I/II compared to rASRM 

stage III/IV, particularly dysmenorrhea (rASRM I/II r=0.48 vs. rASRM III/IV r=0.19) 

(Supplementary Fig. 8). For deep endometriosis (not well captured by rASRM staging), 

the strongest correlation was also observed with dysmenorrhea (r=0.36; Supplementary Fig. 

8) while there was low correlation with acyclic pelvic pain (r=0.21), bladder pain (r=0.18), 

GI/IBS pain (r=0.18) and none with dyspareunia (r=−0.01).

Of the 42 lead SNPs, two were significantly associated (p<1.19×10−3) with pain sub-

phenotypes: SYNE1/6q25.1 and WT1/11p14.1 (Supplementary Fig. 8; Supplementary 

Table 21). The WT1/11p14.1 lead SNP was associated with earlier onset (age <18 

years) dysmenorrhea (p=7.86×10−4, OR=1.57 (1.21–2.04)). WT1 encodes a transcription 

factor involved in the development of the urogenital system and female fertility28. The 

lead SNP at SYNE1/6q25.1 was associated with dysmenorrhea (p=5.00×10−5, OR=1.49 

(1.23–1.80)), dyspareunia (p=3.5×10−4, OR=1.48 (95% CI: 1.19–1.83); severe dyspareunia 

p=3.17×10−4, OR=2.07 (95% CI: 1.40–3.08)) and acyclical pelvic pain (p=1.14×10−3, 

OR=1.44 (1.16–1.80)). This locus includes multiple genes involved in sex-steroid hormone 

signalling, SYNE1, ESR1 and CCDC170, harboring multiple variants previously associated 
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with female hormone-dependent diseases29. We identified two high-confidence variants, 

rs71575922 (π=0.997) intronic to SYNE1 and rs73625113 (π=0.506) intronic to ESR1, 

driving two of the five association signals at the SYNE1/6p25.1 locus (Supplementary 

Table 13). These risk-variants are in strong LD (r2>0.8) with variants driving expression of 

ESR1 and DNA methylation near ESR1 and SYNE1, and also with rs2941739 identified 

as a variant regulating ESR1 expression in blood (Table 1; Fig. 4). ESR1 expression has 

been correlated with expression of seven other genes across this region in endometrium30. 

Oestrogen is essential for the growth of endometriotic lesions, and affects inflammation, 

which likely influences endometriosis-associated pain7. In addition to the role of ESR1 
in the sex hormone pathway, it also regulates expression of COMT which encodes 

for a key enzyme (catechol-O-methyltransferase) in catabolic pathways of pain-relevant 

neurotransmitters such as dopamine, epinephrine, shown to play a role in pain vulnerability 

and modulation in animal and human studies31–33.

Lead SNPs at a further 12 loci showed nominal evidence of association (p<0.05) with 

pain sub-phenotypes including 8 with dysmenorrhea, 6 with dyspareunia, 6 with bladder 

pain, 4 with acyclical pelvic pain and 3 with GI/IBS pain (Supplementary Table 21). 

The rs12441483 variant in SRP14-AS1/15q15.1 which functions through regulation of 

expression of SRP14 gene in blood (Table 1; Supplementary Table 16) was nominally 

associated (p<0.05) with dysmenorrhea, dyspareunia, acyclic pain, and GI/IBS pain, and 

with experiencing >2 types of pain (Supplementary Table 21). These analyses revealed 

many biologically interesting candidate regions for pain development and maintenance in 

endometriosis that require further exploration in larger datasets and other ancestry groups.

Genetic correlation: Endometriosis and other conditions

Endometriosis has been associated with a wide range of reproductive, metabolic, immune/

inflammatory, and other chronic pain comorbidities1. To investigate the potential for a 

shared biological basis underlying these phenotypes, we estimated genetic correlations (rg) 

between endometriosis and 32 traits/diseases with European ancestry-based GWAS results 

available using LD score regression (LDSC)34,35. Sample sizes for the GWAS varied from 

4,533 cases for coeliac disease to 98,389 cases for back pain (Supplementary Table 23).

Of nine immune/inflammatory conditions tested, asthma (rg=0.17, p=6.41×10−4), 

and osteoarthritis (rg=0.24, p=2.50×10−8) showed significant (Bonferroni correction, 

p<1.67×10−3) positive genetic correlations with endometriosis, suggesting a likely shared 

genetic component. Using the data available, none of the autoimmune conditions showed 

significant genetic correlation with endometriosis (Fig. 6, Supplementary Table 24).

Significant genetic correlation between endometriosis and excessive/irregular menstruation 

(rg=0.69, p=8.14×10−14), shorter cycle length (rg=−0.26, p=6.65×10−5), earlier age at 

menarche (rg=−0.11, p=8.96×10−8) and risk of uterine fibroids (rg=0.40, p=3.54×10−19) 

was observed, confirming previous epidemiological findings and consistent with increased 

exposure to menstruation and hormones36,37,38. Earlier age at natural menopause (rg=−0.25, 

p=6.09×10−11) and younger age at first birth (rg=−0.35, p=1.11×10−22) were also genetically 

correlated with risk of endometriosis (Fig. 6). Age at first birth is a complex trait influenced 
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by both sociological and biological factors, including oestrogen regulation and age at 

menarche, which could explain the association observed39.

The increased prevalence of other pain conditions among women with endometriosis-

associated pelvic pain has been well recognised40,41. The experience of dysmenorrhea 

and acyclic pelvic pain symptoms associated with endometriosis is associated with 

sensitization of the nervous system40,42–44, increasing the risk of other pain conditions, 

and this sensitization - or a susceptibility to developing it - could be genetically 

mediated. We investigated the genetic correlation between endometriosis and 12 different 

pain conditions available from the UK Biobank (Fig. 6, Supplementary Table 24). 

All showed significant (p<1.56×10−3) positive correlations with endometriosis, including 

migraine (rg=0.29, p=1.05×10−16), headache (rg=0.26, p=4.88×10−17), dorsalgia (rg=0.45, 

p=9.52×10−16), multi-site chronic pain (rg=0.43, p=5.19×10−71) and chronic back pain 

(rg=0.33, p=2.89×10−24) Restricting the analysis to women with surgical and/or medically 

confirmed endometriosis (N=8,390) did not alter the results (Extended Data Fig. 9, 

Supplementary Table 25). Analysis of the genetic correlation of endometriosis and 19 brain 

imaging phenotypes from 7,916 up to 8,427 women in the UK Biobank45 provided no 

evidence that the shared susceptibility between endometriosis and other pain conditions 

is regulated through genetically underpinned alterations in brain structure or resting state 

activity (rg −0.12 to 0.23, with 17/19 < |0.1|), although we recognise that power is low 

(Extended Data Fig. 10, Supplementary Table 26–28).

We investigated if endometriosis-associated variants in the 99% credible sets for each 

distinct endometriosis signal were associated with any of the genetically correlated traits/

conditions at genome-wide significance, using Phenoscanner and GWAS Catalog46. This 

revealed 10 genome-wide significant variants shared with 11 different traits and conditions 

(Supplementary Table 29). Three variants were shared with pain traits: rs1352889 at BSN/

3p21.31 and rs10828249 at MLLT10/10p12.31 with multi-site chronic pain; and rs12030576 

at NGF/1p13.2 with migraine and dysmenorrhea. Loci shared with uterine fibroids (3), 

menstrual cycle length (2), age at menarche (1), age at menopause (1), BMI (2), type 

2 diabetes (1), and asthma (1) are discussed in Supplementary Text. Detailed genomic 

enrichment analyses for endometriosis with each of these traits and conditions is required to 

fully elucidate the biological basis for their genetic correlations.

Multi-trait analysis: Endometriosis and pain conditions

We conducted multi-trait analysis of GWAS (MTAG) between endometriosis and two of 

the most strongly genetically correlated pain traits with large-scale GWAS data available: 

multi-site chronic pain (MCP) (rg=0.43) and migraine (rg=0.29). The MTAG methodology 

leverages genetic correlation between traits to improve power to detect association in 

genome-wide analyses47. The MTAG analysis identified 52 genome-wide significant lead 

SNPs for endometriosis, 18 of which were not reported in our single trait meta-analysis 

(Supplementary Table 30); 12 MCP and/or migraine-associated lead SNPs mapped within 

500Kb of endometriosis lead SNPs, 9 of which were tagging the same signal (r2>0.5) 

(Table 2). Four of the 12 were shared across all three conditions (RAB9BP1/5q21.2, 

MLLT10/10p12.31, OLFM4/13q14.3, NOL4L/20q11.21), 6 between endometriosis and 
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MCP (FAF1/1p32.3, PAPPA2/1q25.2, AFF3/2q11.2, BSN/3p21.31, JADE2/5q31.1, PTPRO/

12p12.3) and 2 between endometriosis and migraine (NGF/1p13.2, FSHB/11p14.1) (Table 

2).

The 9 shared lead SNPs between endometriosis and MCP or migraine are eQTLs in 

diverse tissues (Supplementary Tables 31–32). Rs1352889 regulates the expression of 

multiple genes (UBA7, AMT, RNF123, ARIH2) involved in the ubiquitin system, an 

important cellular mechanism that may be associated with the immune-mediated survival 

of endometrium implants in ectopic locations48. Recent studies have suggested that ubiquitin 

system failures are implicated in chronic, mainly neuropathic pain (pain caused by a 

lesion or disease of the somatosensory system) and inflammatory pain49. Other eQTLs 

include rs12580862 regulating expression of RERG (RAS-like Estrogen Regulated Growth 

Inhibitor), which is induced by estrogen receptors to promote proliferation and survival 

of endometriotic cells50; and rs4071559 in the 5-prime-UTR of ARL14EP, regulating 

expression of ARL14EP which controls export of major histocompatibility class (MHC) 

II molecules involved in initiation of immune response (Table 1). MHCII-restricted T-

helper cells appear to play an important role in the development of clinical symptoms 

associated with neuropathic pain51 and there is increasing interest in the role of MHCII 

gene polymorphisms in the susceptibility to chronic neuropathic pain after nerve injury. 

ARL14EP is located adjacent to FSHB, which encodes follicle-stimulating hormone (FSH) 

β polypeptide; both genes harbour variants associated with sex hormone regulation and 

numerous reproductive traits52–55, suggesting the potential co-regulation of hormone and 

immune responses at this locus. Neuroimmune mechanisms underlie many chronic pain 

conditions and this co-regulation could contribute to the increased prevalence of these 

conditions in women and the frequent observation that symptoms (including non-pelvic 

chronic pain) vary with hormonal state56,57.

Discussion

In this study we identified 42 loci with 49 distinct signals associated with endometriosis, a 

3-fold increase from previous studies8. Most had larger effect sizes for stage III/IV disease, 

and combined they explained 5.01% of stage III/IV disease variance. Our sub-phenotype 

analysis provided evidence that the presence of ovarian endometriosis drives the larger effect 

sizes for stage III/IV disease at least in part, with a genetic basis that is distinct from 

other disease manifestations. While we did not observe significant differences in effect sizes 

between endometriosis and adenomyosis (sometimes referred to as “endometriosis of the 

uterus”)58, the correlation of effects was highest with stage I/II endometriosis and superficial 

peritoneal lesions suggesting a shared pathogenesis of these subtypes, or their associated 

symptoms, with adenomyosis. Important caveats are the potential for misclassification 

of ICD-defined adenomyosis as controls59 (although this will have applied similarly to 

endometriosis diagnoses) and the modest sample size of adenomyosis-only cases.

The SMR analyses linking variants at the identified risk loci to expression and DNA 

methylation differences in endometrium and blood identified numerous functional insights 

into the mechanisms through which endometriosis association signals are mediated. 

Potentially causal relationships were observed with genes expressed in endometrium 
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(SRP14, HOXB9, TRA2A, with previous evidence confirmed for VEZT/FGD9 and 

GREB1) 11,14,60 and in blood (including ABO, ESR1/SYNE1, GDAP1, FSHB, MLLT10, 
SRP14-AS1, WNT4). Many of these genes are expressed in different cell types relevant 

to endometriosis pathogenesis, including neuronal cells, immune cells, and epithelial 

cells; eQTL studies associating genetic variants to cell-specific expression patterns in 

endometrium and peritoneal fluid are needed to dissect differential regulation at a cellular 

level.

The genes causally related to endometriosis risk variants have functions in sex-hormone 

driven signalling, uterine development, oncogenesis, inflammatory adhesion molecules and 

angiogenic factors. Particularly notable, however, was the link of many of the genes 

identified, such as SRP14/BMF, GDAP1, MLLT10, BSN, NGF, as well as ‘hormone 

regulators’ SYNE1/ESR1 and FSHB, to mechanisms of pain perception and maintenance. 

Our genetic correlation analysis highlighted significant correlations between endometriosis 

and 11 pain conditions - including migraine, headache, dorsalgia, chronic back pain and 

MCP. Multi-trait analysis of GWAS summary statistics between endometriosis, MCP and 

migraine, highlighted many additional genome-wide significant variants, 12 mapping within 

500Kb across diseases and 9 tagging the same association signals. These results provide 

support to the hypothesis that the presence of endometriosis can result in pain through 

interlinked activation of hormonal, immune, and neuronal pathways as is seen in other 

chronic pain conditions61. It also provides strong support for further investigation of the 

mechanisms underlying the genetically regulated comorbidity between endometriosis and 

other types of pain, both to aid the development of new treatments that facilitate early 

intervention and rationalise the repurposing of currently available therapies.

We also observed significant genetic correlations between endometriosis and two 

inflammatory conditions: asthma and osteoarthritis. Asthma has previously been associated 

with endometriosis in epidemiological studies62,63, and a shared genetic target with was 

recently highlighted64. Endometriosis has also previously been linked epidemiologically 

to increased risk of joint inflammation, but mainly in relation to rheumatoid arthritis, an 

auto-immune condition65, and not osteoarthritis characterised by auto-inflammation66. This 

link has not been fully explored as the onset of osteoarthritis would typically post-date 

an endometriosis diagnosis by several decades, and many musculoskeletal cohorts do not 

capture detailed women’s health data. Given that osteoarthritis also appears to be associated 

with fluctuations in sex hormones67 a more detailed exploration into the genetically driven 

shared pathogenesis of these conditions is warranted.

Our results demonstrate genetic underpinning of shared pathogenesis of endometriosis with 

other chronic pain conditions, as well as other inflammatory conditions. Our identification of 

a range of genes with strong evidence for causal association with endometriosis, should 

inform new avenues of targeted research into gene-specific mechanisms of pain and 

pathogenesis, with the potential to identify new - or repurposing of existing - treatment 

targets for this debilitating, enigmatic disease.
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Methods

Ethics statement

All human research was approved by the relevant Institutional Review Boards and conducted 

according to the Declaration of Helsinki. All participants provided written informed consent. 

Study level ethical statements are provided in the Supplementary Information.

Study-level analyses

The meta-analysis included 24 datasets, which in total contribute 58,961 cases, and 700,345 

controls of mainly European ancestry and one dataset from Japanese ancestry (1,713 cases: 

1,581 controls). Case and control ascertainment and study descriptions are summarised 

in Supplementary table 1. The datasets were genotyped with various genotyping arrays 

and each dataset was subject to sample and variant quality controls, genomic control 

adjustments where genomic inflation factor is reported per study (Supplementary Table 

2). For each GWAS, samples were pre-phased and imputed up to reference panels from the 

1000 Genomes Project (phase 1, March 2012 release; phase 3, October 2014 release)69,70, 

Haplotype Reference Consortium71, or population-specific whole-genome sequencing72,73 

(Supplementary Table 2). SNVs with poor imputation quality were excluded from 

downstream association analyses (Supplementary Table 2). Association with endometriosis 

was evaluated in a regression framework, under an additive model in the dosage of the 

minor allele, with adjustment for study-specific covariates (Supplementary Table 2). Allelic 

effects and corresponding standard errors that were estimated from a linear (mixed) model 

were converted to the log-odds scale74. Study-level association summary statistics (P-values 

and standard error of allelic log-ORs) were corrected for residual structure, not accounted 

for in the regression analysis, by means of genomic control75 if the inflation factor was 

>1 (Supplementary Table 2). Genome-wide association analyses were conducted for overall 

endometriosis and sub-phenotype GWAS analyses were conducted for stage I/II, stage 

III/IV, infertile endometriosis case groups in studies with the respective case categorisation 

(Supplementary Table 1).

Meta-analyses

To increase power, accuracy of effect estimates and generalisability between studies, GWAS 

summary statistics were combined in a meta-analysis. Variants were first filtered at the study 

level for: MAF>0.5%, SE<10, info>0.4 or r2>0.3. The summary statistics for each study 

were genomic control corrected to adjust for any residual population structure. Per-variant 

estimates collected from each individual study from 60,674 cases and 701,926 controls, 

for 10,401,531 SNPs were meta-analysed using the inverse variance weighting fixed-effects 

method implemented in METAL76. We conducted additional sub-phenotype meta-analyses 

including (1) Stage III/IV endometriosis (4,045 cases), (2) Stage I/II endometriosis (3,916 

cases), (3) Infertile endometriosis (3,060 cases). Post meta-analysis, we excluded variants 

that were not present in more than 50% of the total effective sample size (N=8,163,508 

SNPs). We maintained the conventional genome-wide significance threshold 5×10−8. 

Moreover we conducted two meta-analysis for sensitivity testing: (1) a meta-analysis of 

datasets including >300 cases (15 studies of the 24) for overall endometriosis to ensure 

smaller studies are not contributing noise, (2) a meta-analysis of GWAS with only female 
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controls (N cases=44,176: N controls=657,747) and a meta-analysis of GWAS with mixed 

female and male controls (N cases=5,222: N controls=44,176) with the ‘sex-differentiated’ 

function in GWAMA77 to estimate heterogeneity in allelic effect sizes due to sex differences 

in the controls sets. Significant heterogeneity was defined as 0.05/42=1.19×10−3.

Evaluating the source of heterogeneity in allelic effects on endometriosis across GWAS 
via meta-regression

For each lead SNV, we modelled allelic log-ORs across GWAS in a linear regression 

framework, weighted by the inverse of the variance of the effect estimates, incorporating 

the following covariates: (i) an indicator variable representing the ancestry of the study 

(European or East Asian); and (ii) two indicator variables representing case ascertainment 

in the study (Self-reported, medical records, mixed (Medical records and self-reported). In 

this modelling framework, we tested for heterogeneity in allelic effects on endometriosis 

between GWAS that is: (i) due to ancestry (after adjustment for case ascertainment); (ii) 

due to ascertainment (after adjustment for ancestry); and (iii) due to other unmeasured 

confounders (residual after accounting for ancestry and case ascertainment).

Multiple association signals at endometriosis risk loci (GCTA)

We defined a locus as the chromosomal regions 500 kb up- and down-stream of the lead 

SNP. If we had more than one lead SNP within 500Kb up- and down-stream we combined 

these into one locus. To identify the presence of distinct associations at genome-wide 

significant loci, we conducted approximate conditional analysis based on summary meta-

analysis results restricted to European ancestry GWAS (because the approximation requires 

a reference for LD, which is not consistent across ancestry groups) in GCTA software78. 

We used 1000G P3v5 European population as the reference panel. We utilised genome-wide 

significance p<5×10−8. For loci with a single signal of association, we defined the index 

SNP as the lead SNP from the multi-ancestry unconditional analysis. For loci with multiple 

signals of association, we defined index SNPs as having the minimum p-value in the 

European conditional approximate analysis.

Liability-scale variance explained by the endometriosis risk variants

Based on the liability threshold model79, we estimated the proportion of variance explained 

by SNPs using the effective allele frequency and odds ratio from GWAS analysis of 

European ancestry meta-analysis80. We assumed population prevalence of 8%, 2.5%, 5.5% 

and 2.5% for overall endometriosis, stage III/IV endometriosis, stage I/II endometriosis and 

infertile endometriosis, respectively9,81,82.

Fine-mapping association signals as endometriosis risk loci.

Within each locus, for each distinct signal, we first approximated the Bayes’ factor in favour 

of endometriosis association of each SNV using summary statistics from the European 

ancestry-specific meta-analysis. Specifically, the Bayes’ factor for the jth SNV at the ith 

distinct association signal is approximated by

Rahmioglu et al. Page 12

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Λij = V ij
V ij + ωexp ωβij

2

2V ij V ij + ω

where βij and V ij denote the estimated allelic effect (log-OR) and corresponding variance 

from the meta-analysis83. In loci with multiple distinct signals of association, summary 

statistics were obtained from the approximate conditional analysis after adjusting for all 

other index variants in the fine-mapping region. In loci with a single association signal, 

summary statistics were obtained from the unconditional meta-analysis. The parameter ω
denotes the prior variance in allelic effects, taken here to be 0.0483.

Within each locus, for each distinct signal, we then calculated the posterior probability of 

driving the endometriosis association for each SNV under a uniform prior model for causal 

variants. Specifically, for the jth SNV at the ith distinct signal, the posterior probability is 

given by πij ∝ Λij, where Λij is the Bayes’ factor in favour of association. We then derived a 

99% credible set84 for the ith distinct association signal by: (i) ranking all SNVs according 

to their posterior probability πij; and (ii) including ranked SNVs until their cumulative 

posterior probability attains or exceeds 0.99.

Functional annotation of variants within 99% credible sets.

Variants within the credible sets for each of the 49 distinct signal associated with 

endometriosis were annotated using Ensembl Variant Effect Predictor (VEP) (https://

github.com/Ensembl/ensembl-vep%20401). PhastCon, Grantham, GERP and PolyPhen 

predictions for all coding variants were accessed via the Exome Variant server (https://

evs.gs.washington.edu/EVS/) and from SIFT (https://sift.bii.a-star.edu.sg/). Moreover, the 

web-based software platform, FUMA85, was used to annotate 99% credible sets. 

Variants were annotated with Combined Annotation Dependent Depletion (CADD) scores, 

RegulomeDB scores, chromatin states and chromatin interactions using reference datasets 

available in the software. SNPs were also annotated to valid promoter associated chromatin 

loops generated from H3K27Ac HiChIP libraries from a normal immortalized endometrial 

cell line (E6E7hTERT) and three endometrial cancer cell lines (ARK1, Ishikawa and 

JHUEM-14)86. We determined if SNPs fell within chromatin interaction anchor points that 

interacted with the promoter of a gene.

Enrichment of gene expression across tissues and pathways

Tissue Enrichment—To determine if genes located in loci associated with endometriosis 

risk were enriched in particular tissues we conducted a tissue enrichment analysis. Genes 

with a transcription start site (TSS) within ±200kb of each of the 49 index SNPs were tested 

for enrichment in specific tissues using the TissueEnrich R package87. TissueEnrich uses a 

hypergeometric test approach to calculate tissue-specific gene enrichment using the available 

Human Protein Atlas (HPA) dataset containing RNA-Seq data across 35 human tissues88 

and GTEx dataset containing RNA-Seq data across 29 human tissues89.
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Quantitative Trait Loci (QTL) and Summary-based-data Mendelian Randomization (SMR)

To test for causality or pleiotropy between a variant, expression of a gene and risk 

of endometriosis we performed SMR analysis15. The SMR was applied using cis-QTL 

summary statistics for tissues enriched for genes in risk loci, as shown in our previous 

analysis. This included cis-eQTLs summary statistics from endometrium11,90, uterus91 and 

cis-mQTL summary statistics from endometrium14. A proportion of QTLs are shared and 

correlated between tissues92,93, as such, we repeated the analysis in a large blood eQTL 

dataset94 and mQTL dataset13 as a proxy.

We conducted a meta-analysis for eQTLs in endometrium using a previously published 

eQTL dataset11 generated on an Australian cohort (N=206) and an eQTL dataset from a 

UK cohort (N=163) (Supplementary Table 34–35) consisting of endometrial samples from 

a total of 369 women for 1MB around the 42 lead SNPs. The Australian dataset contained 

6,230,993 genotyped and imputed SNPs and 17,255 genes with CPM>0.22 (~10 counts) 

in 90% samples. The UK dataset contained 7,179,995 genotyped and imputed SNPs and 

18,152 genes with CPM>0.22 in 90% samples. Both RNA-sequencing datasets were aligned 

to GRCh38 and underwent TMM normalisation and log2 transformation using the edgeR R 

package95. eQTL analysis was performed using the nominal pass method in QTLTools96, the 

cis distance was set of 1Mb and data was adjusted to match a normal distribution (--normal). 

Flow cell, lane, menstrual cycle stage and endometriosis status were included as covariates 

in the analysis of the Australian dataset. Principal components 1–3 generated from RNAseq 

data were included as covariates in the analysis of the UK dataset. Effect alleles were 

harmonised between the datasets. The two eQTL datasets were meta-analysed for the 1MB 

region around the 42 lead SNPs using the software tool OSCA (OmicS-data-based Complex 

trait Analysis)97 and secondary signals were identified using conditional analyses utilising 

QIMIRHCS as the LD reference cohort in GCTA-COJO78.

SMR was performed using these QTL datasets alongside results from the endometriosis 

meta-analysis of European cohorts in this study. For analyses containing endometrial 

QTLs, Oxford and Melbourne cohorts were removed from the meta-analysis to ensure 

GWAS and endometrial eQTL datasets were independent. A total of 531 probes and 

571 genes were included from the array and RNA-Seq endometrial eQTLs respectively 

and SMR p-value thresholds of 9.42×10−5 (0.05/531) and 8.76×10−5 (0.05/571) were 

applied to determine significance. Heterogeneity of effect sizes in cis-eQTL regions can 

result from colocalization and LD between multiple casual SNPs. Heterogeneity was 

tested using the HEIDI (heterogeneity in dependent instruments) test. A HEIDI p-value 

of <0.05/m_SMR_sig, where m_SMR_sig is the number of genes that passed the SMR 

P-value threshold, suggests heterogeneity in the SNP effects in the region. The SMR 

and HEIDI test was repeated using eQTLs for 15,513 genes (PeQTL<5×10−8) from the 

eQTLGen blood dataset94 and an SMR P-value threshold of 3.22×10−6 and using eQTLs 

for 939 (PeQTL<5×10−8) genes with from GTEx uterus91 and an SMR P-value threshold of 

5.33×10−5.

Any association between endometriosis risk variants and regulation of methylation was also 

tested using SMR and HEIDI. Two mQTL datasets were used including an endometrial 

mQTL dataset14 (7,803 probes with PmQTL<5×10−8) and large blood mQTL dataset13 
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(93,154 probes with PmQTL<5×10−8). SMR p-value thresholds of 6.41×10−6 and 5.37×10−7 

were applied to the endometrial and blood SMR results respectively.

As described previously for the 99% credible set, significant variants from the SMR 

analysis were annotated with CADD scores, RegulomeDB scores, chromatin states and 

chromatin interactions using reference datasets available in the FUMA85 software. Similarly, 

SNPs were also annotated to promoter associated chromatin loops from endometrial 

(E6E7hTERT) and three endometrial cancer cell lines (ARK1, Ishikawa and JHUEM-14)86.

The genes identified from the SMR analysis (N=23) were annotated for cell-type specific 

expression utilising GTEx multi-gene single cell viewer. This is a visualization tool which 

helps explore single cell expression data for a list of genes from various cell types. The 

GTEx single cell data is generated from 8 tissues including, breast, esophagus mucosa, 

esophagus muscularis, heart, lung, skeletal muscle, prostate and skin from 25 archived, 

frozen tissue sample from 16 donors of GTEx project98. We determined an arbitrary cut-off 

of detection in at least 10% of the respective cells and looked at patterns of expression in 

these cells.

Sub-phenotype analysis

To determine if any of the endometriosis GWAS meta-analysis associations were driven by 

particular surgical or clinical features we tested for association of the lead 42 SNPs with 

17 sub-phenotypes summarised in three groups: Surgical sub-phenotypes, symptom sub-

phenotypes and common morbidity sub-phenotypes. Definitions of the sub-phenotypes, their 

data sources and study-level statistical analyses are described in detail in the supplementary 

information: methods. The meta-analysis was performed using an inverse variance weighted 

approach conducted with METAL software76. I2 measures were reported to estimate 

heterogeneity between studies included for each sub-phenotype analysis (Supplementary 

Table 21). Descriptive statistics were generated as forest plots for SNP-sub-phenotype 

associations using the forestplot package in R99. Correlation and scatter plots of sub-

phenotype association effect sizes were generated using R. Due to the lack of independence 

between women contributing to the different phenotypic analyses, no formal statistical tests 

could be conducted.

Genetic correlation using Linkage Disequilibrium (LD) score regression

To determine the genetic correlation between endometriosis and related traits, we performed 

linkage disequilibrium (LD) score regression using LDSC v1.0.1 (https://github.com/

bulik/ldsc)34,35. The software was installed on local secure cluster GenomeDK. The 

LDSC program was run using precomputed European LD scores available from Broad 

Institute (https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2), with 

calculations limited to SNPs from HapMap3 (https://data.broadinstitute.org/alkesgroup/

LDSCORE/w_hm3.snplist.bz2). Summary statistics for 49 traits were downloaded and 

grouped in five categories, relating to the immune system/inflammation, pain, reproduction, 

obesity and brain volume. All summary statistics were prepared for analysis by determining 

the effect allele and using the munge_sumstats.py function of LDSC (Supplementary 

Tables 23 and 26). Bonferroni correction was applied to determine significant correlations, 
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resulting in an adjusted p-value threshold of p<1.56×10−3 (0.05/32) for disease/traits; 

p<2.63×10−3(0.05/19) for brain volume and function traits. A list of all summary statistics 

can be found in supplementary table 24 and 27. Both analyses were repeated with 

only medically confirmed endometriosis GWAS (N=8,390 cases) as sensitivity analyses 

(Supplementary Table 25 and 28).

Liability scale SNP heritability was calculated using LDSC by using the --sample-prev 

(disease prevalence in the sample) and --pop-prev (disease prevalence in the population) 

flags in the ldsc.py function. This enables the function to convert binary trait heritability 

estimates from the observed scale. Population prevalence was primarily obtained from the 

paper presenting the sumstat. In cases where this was not possible, prevalence was taken 

from suitable scientific literature as seen in supplementary table 23.

Phenoscanner analysis

For all coding variants within the credible sets for each of the 49 distinct signals associated 

with endometriosis we searched for reported associations (P<5×10−8) with other traits and 

conditions using Phenoscanner46 (http://www.phenoscanner.medschl.cam.ac.uk/) (February 

2020) and GWAS catalog (https://www.ebi.ac.u/gwas/home) (December 2019).

Multi-trait analysis (MTAG) between endometriosis and pain conditions

Samples.—The summary GWAS results from the latest European ancestry GWAS meta-

analysis was requested and obtained (1) for migraine excluding 23andMe and UKBB 

datasets including 38,094 migraine cases and 210,211 controls100, (2) for multi-site chronic 

pain from UKBB including 240,651 individuals101. For endometriosis, the European 

ancestry GWAS meta-analysis results are utilised for this analysis.

Preprocessing of GWAS data.—The following SNPs were filtered out: (1) SNPS 

with MAF=<0.01 from all datasets, (2) Multiple SNPs mapping to identical chromosome 

positions among datasets, (3) SNPs with conflicting alleles among datasets, (4) SNPs with 

MAF differences of >0.2 among datasets, (5) SNPs not on the autosomes. Only SNPs that 

are shared between the GWAS analyses were utilised in the analysis. Z-scores (log(OR/SE)) 

were computed for all SNPs. After variant filtering, a total of 5,945,867 common SNPs 

between endometriosis, migraine and MCP were included in the MTAG analysis.

Multi-trait analysis of GWASs.—MTAG is a generalisation of standard inverse-variance 

weighted meta-analysis framework. It takes pre-processed GWAS summary statistics from 

multiple traits. Here, MTAG was utilised to run a meta-analysis including endometriosis, 

MCP and migraine. Birvarite LD score regression was used as part of MTAG analysis to 

account for possibly unknown sample ovarlap between GWAS results of different traits. In 

the results, MTAG outputs trait-specific effect estimated for each SNP and resulting p-value 

can be interpreted and used like those in single-trait GWAS47.

Identification of significant shared genetic risk variants.—For each trait, 

significant lead SNPs were identified based on (1) achiving a genome-wide significant 

p-value (p<5×10−8), (2) being 500Kb away from each other and, (3) being independent 
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(r2<0.1). Then, the lead SNPs associated with respective traits (i.e. from endometriosis and 

MCP) that sit within 500Kb were identified and LD between them was checked. If the LD 

between lead SNPs of respective traits were r2>=0.8, they were deemed shared loci between 

those traits.

Data availability: Summary results for the top 10,000 SNPs included in the entire Genome-

wide Association Study (GWAS) meta-analysis are provided in Supplementary Table 33. 

Summary statistics from the endometriosis meta-analysis excluding 23andMe is available 

from: EBI GWAS Catalog Study Accession GCST90205183. GWAS summary statistics 

from 23andMe, Inc were made available under a data use agreement that protects participant 

privacy. Please contact dataset-request@23andme.com or visit research.23andMe.com/

collaborate for more information and to apply to access the data. The UK endometrium 

eQTL dataset (N=163) 1MB around each 42 lead SNPs is provided in Supplementary Table 

34–35.

Code availability

We utilised publicly available software in all the analyses. These are listed with appropriate 

citations in the methods.

Statistics and Reproducibility

No statistical method was used to predetermine sample size. We used the largest sample 

size of endometriosis cases and controls with GWAS data available to us. Within each 

contributing study, data were excluded on the basis of well-established individual and 

variant quality control (QC) procedures to remove poor quality genotypes, samples and 

variants. These QC procedures are described in Supplementary Table 2 for each study. We 

did not conduct replication since we had already brought together all study data available to 

us via meta-analysis. All reported association signals were checked to confirm that effects 

were not driven by false positives in single studies. Randomisation was not performed. 

Within each study, covariates were adjusted for to account for potential confounding. 

Covariate adjustments are reported in Supplementary Table 2. Group allocation was not 

relevant to this study, so blinding was not necessary.
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Extended Data

Extended Data Figure 1. Q-Q plots for genome-wide association results.
Q-Q plot for genome-wide association results for a. overall endometriosis, b. rASRM 

stage I/II endometriosis, c. rASRM stage III/IV endometriosis, d. endometriosis-associated 

infertility, e. only studies with >300 cases.

Rahmioglu et al. Page 18

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 2. Manhattan plots for genome-wide association results.
Manhattan plot for genome-wide association results for a. overall endometriosis, b. rASRM 

stage I/II endometriosis, c. rASRM stage III/IV endometriosis, d. endometriosis associated 

infertility. The GWAS meta-analysis results are shown on the y-axis as −log10(P-value) and 

on the x-axis is the chromosomal location. The red vertical line illustrates the genome-wide 

significance (p<5×10−8) and the blue vertical line shows the nominal genome-wide results 

(p<1×10−5).
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Extended Data Figure 3. Comparison of mixed female and male controls GWAS meta-analysis 
vs. female only controls GWAS meta-analysis results.
Results from meta-analysis contrasting GWAS studies with mixed female and male 

controls (N cases=5,222, N controls=44,176) vs. GWAS studies with only female controls 

(N cases=44,176, N controls=657,747). Significant heterogeneity: p-value<1.19×10–3 

(0.05/42). The error bars represent standard error estimates for the beta co-efficient 

estimates. * SNPs with nominal heterogeneity p-values: rs1430787, p=0.03, rs1451383, 

p=0.01.
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Extended Data Figure 4. Tissue-specific gene enrichment results.
Tissue-specific gene enrichment using RNA-Seq data across 35 human tissues from the 

Human Protein Atlas (a and b) and 29 human tissues from GTEx (c and d). The x-axis 

shows each of the tissues, and the y-axis represents the tissue-specific gene enrichment 

−Log10(P−Value) (left) and the fold-change values of the tissue-specific gene enrichment 

(right).
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Extended Data Figure 5. SKAP1/17q21.32 locus.
a. Illustration of the regional association plot for the SKAP1/17q21.32 locus including 

the 99% credible sets. eSMR endometrium SNP: SMR SNP identified as causal for 

endometriosis utilizing the eQTL data from endometrium; The shaded region in the credible 

sets panel is further annotated in panel c. b. SMR significant endometrial eQTL for HOXB9 

(SMR p-value=2×10−6). The lower and upper bounds of the boxes represent the first and 

third quantiles, the whiskers extend 1.5 times the interquartile range from the bounds 

of the box and the line represents the median. c. position of the SMR-significant eQTL 

in the SKAP1/17q21.32 locus along with HOXB9 promoter-associated chromatin loops 

with anchor points containing the lead SNP and the SMR SNP. The SMR-significant 

SNP associated with expression of HOXB9 in endometrium (eQTL) and endometriosis 

is shown in black and the associated HOXB9¬ target is shown in red. Valid promoter-

associated chromatin loops were generated from H3K27Ac HiChIP libraries from a normal 

immortalized endometrial cell line (E6E7hTERT) and three endometrial cancer cell lines 

(ARK1, Ishikawa and JHUEM-14)68.
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Extended Data Figure 6. sICAM-1 level results.
Box plots of log scale sICAM-1 levels in a. overall endometriosis cases (N=136) vs. 

controls (N=54), b. rASRM stage I/II cases (N=85) vs. controls and rASRM stage III/IV 

(N=51) vs. controls. Reported p-values are from the adjusted logistic regression model 

(see Supplementary Information: Methods) (Supplementary Table 19). The lower and upper 

bounds of the boxes represent the first and third quantiles, the whiskers extend 1.5 times the 

interquartile range from the bounds of the box and the line represents the median.

Extended Data Figure 7. Single cell expression profiles.
Single cell expression profiles for 18/23 genes regulated by endometriosis risk variants in 

GTEx Multi-Gene Single Cell Viewer (5 were not included in the database). This is an 

aster plot where the fraction of cells in which a gene is detected is shown. The cells are 

categorised by cell-type.
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Extended Data Figure 8. Correlation of 42 GWAS loci between endometriosis surgical sub-types 
and adenomyosis.
Correlation between the effect sizes of 42 endometriosis-associated GWAS loci contrasting 

endometriosis surgical sub-types and adenomyosis: a. Adenomyosis vs. rASRM stage I/II, b. 

Adenomyosis vs. rASRM stage III/IV, c. Adenomyosis vs. endometrioma, d. Adenomyosis 

vs. deep lesions, e. Adenomyosis vs. superficial lesions. Minor allele frequency for each of 

the 42 variants is given by shade of grey: Lighter shade of grey designates a smaller MAF, 

darker shade of grey a larger MAF. Nominal associations (p<0.05) are annotated with locus 

name and larger circles. The solid black line represents the linear regression line and the 

dotted black line is the x=y with a slope of 1 for reference of change in ORs. Test statistics 

including p-values for all the associations are provided in Supplementary Table 21.
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Extended Data Figure 9. Genetic correlation results between only surgically or medically 
confirmed endometriosis and 32 traits/conditions.
Genetic correlation between only surgically or medically confirmed endometriosis (N=8,390 

cases) and 32 immune/inflammatory, pain, reproductive, and metabolic traits/conditions 

using LD score regression analysis (LDSC). Heritability of each trait is noted in parenthesis 

on the x-axis. The significance threshold is adjusted for multiple testing using Bonferroni 

correction. Significant (p<1.56×10−3) correlations are denoted with a red star (*), nominal 

correlation (p<0.05) with a green star (*). Bars present the genetic correlation (rg) for each 

trait in relation to endometriosis and the error bars are standard errors. The exact p-values 

are provided in Supplementary Table 25.

Rahmioglu et al. Page 25

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 10. Genetic correlation results between endometriosis and 19 brain 
imaging traits in UKBB.
Genetic correlation between 19 brain imaging traits in UKBB and 

a. endometriosis (N=58,961) and b. surgically or medically confirmed 

endometriosis (N=8,390 cases) using LD score regression analysis (LDSC). 

A total of 6 functional MRI measures (netmat_ICA_09Aug2017_001–

006), structural MRI measures including 11 freesurfer derived variables 

(aseg_lh_volume_Left-Thalamus-Proper, aseg_lh_volume_Left-Hippocampus, aseg_lh_ 

volume_Left-Amygdala, aseg_lh_volume_Right-Thalamus-Proper, aseg_lh_volume_Right-
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Hippocampus, aseg_lh_volume_Right-Amygdala, aseg_lh_volume_CC_Posterior, 

aseg_lh_volume_CC_Mid_Posterior, aseg_lh_volume_CC_Central, 

aseg_lh_volume_CC_Mid_Anterior, aseg_lh_volume_CC_Anterior) and 2 FAST 

calculations for insula region (IDP_T1_FAST_ROIs_L_insular_cortex, 

IDP_T1_FAST_ROIs_R_insular_cortex) were analysed. Heritability of each trait is noted 

in parenthesis on the x-axis. Nominal correlations are denoted with a green star (*). Bars 

present the genetic correlation (rg) for each trait in relation to endometriosis and the error 

bars are standard errors. The exact p-values are provided in Supplementary Table 27 and 28.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Nilufer Rahmioglu1,2,*, Sally Mortlock3, Marzieh Ghiasi4, Peter L Møller5, 
Lilja Stefansdottir6, Geneviève Galarneau7, Constance Turman8, Rebecca 
Danning9, Matthew H Law10,11, Yadav Sapkota12, Paraskevi Christofidou13, 
Sini Skarp14, Ayush Giri15, Karina Banasik16, Michal Krassowski1,2, Maarja 
Lepamets17, Błażej Marciniak18, Margit Nõukas17, Danielle Perro2, Eeva Sliz19,20, 
Marta Sobalska-Kwapis18, Gudmar Thorleifsson6, Nura F Topbas-Selcuki2, 
Allison Vitonis21,22, David Westergaard16, Ragnheidur Arnadottir23, Kristoffer 
S Burgdorf24, Archie Campbell25, Cecilia SK Cheuk1,2, Caterina Clementi7, 
James Cook26, Immaculata De Vivo8, Amy DiVasta21,27, O Dorien28,29, 
Jacqueline F Donoghue30, Todd Edwards15, Pierre Fontanillas31, Jenny N Fung3, 
Reynir T Geirsson23, Jane E Girling30,32, Paivi Harkki33, Holly R Harris34, 
Martin Healey30, Oskari Heikinheimo33, Sarah Holdsworth-Carson30, Isabel C 
Hostettler35,36,37, Henry Houlden36, Sahar Houshdaran38, Juan C Irwin38, Marjo-
Riitta Jarvelin12,19,39,40, Yoichiro Kamatani41, Stephen H Kennedy2, Ewa Kepka18, 
Johannes Kettunen19,20,42, Michiaki Kubo41, Bartosz Kulig43, Venla Kurra44,45, 
Hannele Laivuori44,45,46,47, Marc R Laufer21,27,48,49, Cecilia M Lindgren1,2,50, 
Stuart MacGregor10,51, Massimo Mangino13,52, Nicholas G Martin53, Charoula 
Matalliotaki54, Michail Matalliotakis54, Alison D Murray55, Anne Ndungu1,2, 
Camran Nezhat56, Catherine M Olsen57, Jessica Opoku-Anane38, Sandosh 
Padmanabhan58, Manish Paranjpe59, Maire Peters60,61, Grzegorz Polak62, David 
J Porteous25, Joseph Rabban63, Kathyrn M Rexrode64,65, Hanna Romanowicz66, 
Merli Saare60,61, Liisu Saavalainen33, Andrew J Schork67,68,69, Sushmita Sen38, 
Amy L Shafrir21,27, Anna Siewierska-Górska19, Marcin Słomka19, Blair H Smith70, 
Beata Smolarz66, Tomasz Szaflik43, Krzysztof Szyłło43, Atsushi Takahashi41,71, 
Kathryn L Terry8,21,22, Carla Tomassetti28,29, Susan A Treloar53, Arne Vanhie28,29, 
Katy Vincent2, Kim C Vo38, David J Werring35, Eleftheria Zeggini72,73,74, Maria I 
Zervou75, DBDS Genomic Consortium*, FinnGen Study*, The Celmatix Research 
Team*, The 23andMe Research Team*, Sosuke Adachi76, Julie E Buring9,65, 
Paul M Ridker9,65, Thomas D’Hooghe29,77,78, George N Goulielmos75, Dharani 
K Hapangama79, Caroline Hayward80, Andrew W Horne81, Siew-Kee Low82, 
Hannu Martikainen83,84,85, Daniel I Chasman9,65, Peter AW Rogers30, Philippa 

Rahmioglu et al. Page 27

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



T Saunders86, Marina Sirota59,87, Tim Spector13, Dominik Strapagiel18, Joyce 
Y Tung31, David C Whiteman57, Linda C Giudice38, Digna R Velez-Edwards15, 
Outi Uimari83,84,85, Peter Kraft8,88, Andres Salumets60,61,17,89, Dale R Nyholt53,90, 
Reedik Mägi17, Kari Stefansson6,91, Christian M Becker2, Piraye Yurttas-Beim7, 
Valgerdur Steinthorsdottir6, Mette Nyegaard5,92, Stacey A Missmer8,21,27,93,†, Grant 
W Montgomery3,†, Andrew P Morris94,†, Krina T Zondervan1,2,†,*

Affiliations
1Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

2Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s and 
Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK.

3The Institute for Molecular Bioscience, The University of Queensland, Brisbane, 
Queensland, Australia.

4Department of Epidemiology, College of Human Medicine, Michigan State 
University, Grand Rapids, MI, USA.

5Department of Biomedicine, Aarhus University, Aarhus, Denmark.

6deCODE genetics/Amgen, Reykjavik, Iceland.

7Celmatix Inc. New York, NY USA.

8Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 
MA, USA.

9Division of Preventive Medicine, Brigham and Women’s Hospital, Boston MA, USA.

10Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, 
Queensland, Australia.

11School of Biomedical Sciences, Faculty of Health, and Institute of health 
and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 
Queensland, Australia.

12Department of Epidemiology and Cancer Control, St. Jude Children’s Research 
Hospital, Memphis, TN, USA.

13Department of Twin Research and Genetic Epidemiology, St. Thomas’ Hospital, 
Kings College London, London, UK.

14Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, 
Finland.

15Department of Obstetrics and Gynecology, Institute of Medicine and Public Health, 
Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Vanderbilt University 
Medical Center, Nashville, TN, USA.

16Novo Nordisk Foundation Center for Protein Research, Faculty of Health and 
Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Rahmioglu et al. Page 28

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, 
Estonia.

18Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and 
Environmental Protection, University of Lodz, Łódź, Poland.

19Computational Medicine and Center for Life Course Health Research, Faculty of 
Medicine, University of Oulu, Oulu, Finland.

20Biocenter Oulu, University of Oulu, Oulu, Finland.

21Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and 
Women’s Hospital, Boston, MA, USA.

22Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital 
and Harvard Medical School, Boston, MA, USA.

23Department of Obstetrics and Gynecology, Landspitali University Hospital, 
Reykjavik, Iceland.

24Department of Clinical Immunology, Copenhagen University Hospital, 
Copenhagen, Denmark.

25Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, 
University of Edinburgh, Western General Hospital, Edinburgh, UK.

26Department of Biostatistics, University of Liverpool, Liverpool, UK.

27Division of Adolescent and Young Adult Medicine, Department of Medicine, 
Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA.

28Department of Obstetrics and Gynaecology, Leuven University Fertility Centre, 
University Hospital Leuven, Leuven, Belgium.

29KULeuven (University of Leuven), Department of Development and Regeneration, 
Organ systems, Leuven, Belgium.

30University of Melbourne Department of Obstetrics and Gynaecology, Royal 
Women’s Hospital, Melbourne, Australia.

3123andMe, Inc. Sunnyvale, CA, USA.

32Department of Anatomy, School of Biomedical Sciences, University of Otago, New 
Zealand

33Department of Obstetrics and Gynecology, University of Helsinki and Helsinki 
University Hospital, Helsinki, Finland

34Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson 
Cancer Research Center, Seattle, WA, USA.

35Stroke Research Centre, University College London, Institute of Neurology, 
London, UK.

36Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, 
London, UK.

Rahmioglu et al. Page 29

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37Department of Neurosurgery, Klinikum rechts der Isar, Technical University 
Munich, Munich, Germany.

38Center for Reproductive Sciences, Department of Obstetrics, Gynecology & 
Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 
USA.

39Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.

40Department of Life Sciences, College of Health and Life Sciences, Brunel 
University London, Uxbridge, Middlesex, UK.

41Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.

42Institute for Health and Welfare, Helsinki, Finland

43Department of Operative Gynecology and Oncological Gynecology, Polish 
Mother’s Memorial Hospital - Research Institute, Łódź, Poland.

44Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, 
Finland.

45Faculty of Medicine and Health Technology, University of Tampere, Tampere, 
Finland.

46Medical and Clinical Genetics, University of Helsinki and Helsinki University 
Hospital, Helsinki, Finland.

47Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, 
University of Helsinki, Helsinki, Finland.

48Division of Gynecology, Boston Children’s Hospital and Harvard Medical School, 
Boston, MA, USA.

49Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and 
Women’s Hospital and Harvard Medical School, Boston, MA, USA.

50Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, 
University of Oxford, Oxford, UK.

51Faculty of Medicine, University of Queensland, Queensland, Australia.

52NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, 
London, UK.

53Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, 
Queensland, Australia.

54Third Department of Obstetrics and Gynecology, Aristotle University of 
Thessaloniki, Thessaloniki, Greece.

55The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, 
University of Aberdeen, Aberdeen, UK.

56Center For Special Minimally Invasive and Robotic Surgery, Camran Nezhat 
Institute, Palo Alto, CA, USA.

Rahmioglu et al. Page 30

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



57Department of Population Health, QIMR Berghofer Medical Research Institute, 
Brisbane, Queensland, Australia.

58Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, 
UK.

59Bakar Computational Health Sciences Institute, University of California, San 
Francisco, CA, USA.

60Institute of Clinical Medicine, Department of Obstetrics and Gynecology, 
University of Tartu, Tartu, Estonia.

61Competence Centre on Health Technologies, Tartu, Estonia.

621st Department of Oncological Gynecology and Gynecology, Medical University of 
Lublin, Poland.

63Department of Pathology, University of California, San Francisco, CA, USA.

64Division of Women’s Health, Brigham and Women’s Hospital, Boston MA, USA

65Harvard Medical School, Boston, MA, USA.

66Laboratory of Cancer Genetics, Department of Clinical Pathomorphology, Polish 
Mother’s Memorial Hospital - Research Institute, Łódź, Poland.

67Institute of Biological Psychiatry, Mental Health Center, Sct. Hans, Mental Health 
Services, Copenhagen, Denmark.

68The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 
Copenhagen, Denmark.

69Neurogenomics Division, The Translational Genomics Research Institute (TGEN), 
Phoenix, AZ, USA.

70Division of Population Health and Genomics, Ninewells Hospital and Medical 
School, University of Dundee, Dundee, UK.

71Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan.

72Institute of Translational Genomics, Helmholtz Zentrum München - German 
Research Center for Environmental Health, Neuherberg, Germany.

73Wellcome Sanger Institute, Hinxton, United Kingdom.

74TUM School of Medicine, Technical University of Munich and Klinikum Rechts der 
Isar, Munich, Germany.

75Section of Molecular Pathology and Human Genetics, Department of Internal 
Medicine, School of Medicine, University of Crete, Heraklion, Greece.

76Department of Obstetrics and Gynecology, Niigata University Graduate School of 
Medical and Dental Sciences, Niigata, Japan.

77Global Medical Affairs Fertility, Research and Development, Merck, Darmstadt, 
Germany.

Rahmioglu et al. Page 31

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



78Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of 
Medicine, New Haven, CT, USA.

79Department of Women’s and Children’s Health, Institute of Life Course and 
Medical Sciences, University of Liverpool, Liverpool, UK.

80MRC Human Genetics Unit, Institute of Genetics and Cancer, University of 
Edinburgh, Western General Hospital, Edinburgh, UK.

81MRC Centre for Reproductive Health, University of Edinburgh, Institute for 
Regeneration and Repair, Edinburgh, UK.

82Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 
Tokyo, Japan.

83Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, 
Finland.

84Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.

85Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland.

86Centre for Inflammation Research, University of Edinburgh, Institute for 
Regeneration and Repair, Edinburgh, UK.

87Department of Pediatrics, University of California, San Francisco, CA, USA.

88Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan 
School of Public Health, Boston, MA, USA.

89Division of Obstetrics and Gynecology, Department of Clinical Science, 
Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska 
University Hospital, Stockholm, Sweden.

90School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and 
Personalised Health, Queensland University of Technology, Brisbane, Queensland, 
Australia.

91Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, 
Iceland.

92Department of Health, Science and Technology, Aalborg University, Aalborg, 
Denmark.

93Department of Obstetrics, Gynecology, and Reproductive Biology, College of 
Human Medicine, Michigan State University, Grand Rapids, MI, USA.

94Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal 
Research, The University of Manchester, Manchester, UK.

Acknowledgements

We thank all the study participants in the individual studies. We also thank many hospital directors and 
staff, gynaecologists, general practitioners and pathology services who provided assistance with confirmation of 
diagnoses. We would like to thank the research participants and employees of 23andMe, Inc. for making this work 
possible. We thank the women of the Icelandic deCODE study for their participation. We would like to express our 

Rahmioglu et al. Page 32

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gratitude to the staff and members of the Biobank Japan and Laboratory for Statistical Analysis, RIKEN Center 
for Integrative Medical Sciences for their outstanding assistance. We thank all the UK Biobank participants. Part 
of this research has been conducted using the UK Biobank Resource under Application Number 9637. Generation 
Scotland received core support from the Chief Scientist Office of the Scottish
Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006] and is currently 
supported by the Wellcome Trust [216767/Z/19/Z]. Genotyping of the GS:SFHS
samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research
Facility, University of Edinburgh, Scotland and was funded by the Medical Research Council
UK and the Wellcome Trust (Wellcome Trust Strategic Award “STratifying Resilience and
Depression Longitudinally” (STRADL) Reference 104036/Z/14/Z. The QIMR study was supported by grants 
from the National Health and Medical Research Council (NHMRC) of Australia (GNT241944, GNT339462, 
GNT389927, GNT389875, GNT389891, GNT389892, GNT389938, GNT443036, GNT442915, GNT442981, 
GNT496610, GNT496739, GNT552485, GNT552498, GNT1026033, GNT1050208 and GNT1147846), the 
Cooperative Research Centre for Discovery of Genes for Common Human Diseases (CRC), Cerylid Biosciences 
(Melbourne) and donations from N. Hawkins and S. Hawkins. Analyses of the QIMRHCS and OX GWAS were 
supported by the Wellcome Trust (WT084766/Z/08/Z) and makes use of WTCCC2 control data generated by the 
Wellcome Trust Case-Control Consortium (awards 076113 and 085475). The ENDOX gene expression analyses 
were funded by the Medical Research Council UK (MR/K011480/1). We thank the participants of the Women’s 
Health Study: From Adolescence to Adulthood (A2A) for their valuable contributions and all staff of the Boston 
Center for Endometriosis. Financial support for establishment of and data collection within the A2A cohort was 
provided by the J. Willard and Alice S. Marriott Foundation. A.L.S., K.L.T., S.A.M were supported by NICHD 
R01 HD094842 and NICHD R21 HD096358 from the Eunice Kennedy Shriver National Institute of Child Health 
and Human Development. We would like to thank the participants and staff of the Nurses’ Health Study (NHS) 
and Nurses’ Health Study 2 (NHS2) cohorts for their contributions. NHS/NHS2 are supported by grants UM1 
CA186107 and UM1 CA176726 from the National Institutes of Health. C.T., P.K., S.A.M. were supported by 
NICHD R01 HD096033. S.A.M. and K.T.Z. gratefully acknowledge funding provided by the Nezhat Family 
Foundation on behalf of Worldwide EndoMarch to their research programmes. N.R. was supported by a grant from 
Wellbeing of Women UK (RG2031) and the EU Horizon 2020 funded project FEMaLe (ID 101017562). G.W.M. 
was supported by NHMRC Fellowships (GNT0613667, GNT1078399, and GNT1177194), D.R.N. was supported 
by NHMRC Fellowship (GNT0613674); and ARC Future Fellowship (FT0991022), S.Mortlock by Australian 
Government Medical Research Future Fund Research Grant (MRF1199785) and S.MacGregor by Australian 
National Health and Medical Research Council Fellowship. A.P.M. was supported in part by Versus Arthritis (grant 
21754). The Melbourne study was supported by grants from the National Health and Medical Research Council 
(NHMRC) of Australia (GNT1026033, GNT1046880, GNT1049472, GNT1105321, and GNT1147846). R.M. 
and M.L. were supported by Estonian Research Council grant PRG1911, M.S. and M.P. by Estonian Research 
Council grant PRG1076 and A.S. by Estonian Research Council grant PRG1076, Horizon 2020 innovation 
(ERIN) (EU952516) of the European Commission and Enter-prise Estonia (EU48695), MSCA-RISE-2020 project 
TRENDO (101008193). B.M., M.S.K., E.K., M.S., A.S.G., and D.S. were supported by Polish POIG grant 
01.01.02-10-005/08 TESTOPLEK from the European Regional Development Fund. B.N. and D.W. were supported 
by NNF14CC0001, NNF17OC0027594 and NNF18SA0034956. J.F.D., J.E.G., M.H., S.H.C. and P.A.W.R. were 
supported by NHMRC GNT1105321. S.H., J.C.I., S.S., M.P., K.C.V., M.S. and L.C.G. were supported by NIH 
NICHD R01HD089511. J.K. was supported by The Sigrid Juselius Foundation, the Academy of Finland (297338 
and 307247) and Novo Nordisk Foundation (NNF17OC0026062). C.M.L. was supported by the Li Ka Shing 
Foundation, NIHR Oxford Biomedical Research Centre, Oxford, NIH (1P50HD104224-01), Gates Foundation 
(INV-024200), and Wellcome Trust Investigator Award (221782/Z/20/Z). A.S. was supported by J. Willard and 
Alice S. Marriott Foundation, NIH NICHD R21 HD096358, NIH NICHD R01 HD094842. D.K.H. was supported 
by Wellbeing of Women (RG2137 and RG1073). C.H. was supported by MRC University Unit Programme 
Grant (MC_UU_00007/10 - QTL in Health and Disease). D.C.W. was supported by NHMRC APP1155413, 
APP1185416, APP1073898, APP1063061. M.N. acknowledge the Novo Nordisk Foundation (NNF21OC0071050). 
K.B. acknowledge the Novo Nordisk Foundation (NNF17OC0027594 and NNF14CC0001). TwinsUK receives 
funding from the Wellcome Trust (212904/Z/18/Z),Chronic Disease Research Foundation (CDRF), and European 
Union (H2020 contract no. 733100). TwinsUK and M. M. are supported by the National Institute for Health 
Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy’s 
and St Thomas’ NHS Foundation Trust in partnership with King’s College London.

This research was funded in part by The Wellcome Trust (216767; 104036; 084766; 212904; 076113 and 085475). 
For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted 
Manuscript (AAM) version arising from this submission.

References

1. Zondervan KT, Becker CM & Missmer SA Endometriosis. N Engl J Med 382, 1244–1256 (2020). 
[PubMed: 32212520] 

2. Nnoaham KE et al. Impact of endometriosis on quality of life and work productivity: a multicenter 
study across ten countries. Fertil Steril 96, 366–373 e8 (2011). [PubMed: 21718982] 

Rahmioglu et al. Page 33

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. ASRM. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. 
Fertil Steril 67, 817–21 (1997). [PubMed: 9130884] 

4. Saha R et al. Heritability of endometriosis. Fertil Steril 104, 947–952 (2015). [PubMed: 26209831] 

5. Treloar SA, O’Connor DT, O’Connor VM & Martin NG Genetic influences on endometriosis in an 
Australian twin sample. sueT@qimr.edu.au. Fertil Steril 71, 701–10 (1999). [PubMed: 10202882] 

6. Lee SH et al. Estimation and partitioning of polygenic variation captured by common SNPs for 
Alzheimer’s disease, multiple sclerosis and endometriosis. Hum Mol Genet 22, 832–41 (2013). 
[PubMed: 23193196] 

7. Zondervan KT et al. Endometriosis. Nat Rev Dis Primers 4, 9 (2018). [PubMed: 30026507] 

8. Sapkota Y et al. Meta-analysis identifies five novel loci associated with endometriosis highlighting 
key genes involved in hormone metabolism. Nat Commun 8, 15539 (2017). [PubMed: 28537267] 

9. Painter JN et al. Genome-wide association study identifies a locus at 7p15.2 associated with 
endometriosis. Nat Genet 43, 51–4 (2011). [PubMed: 21151130] 

10. Fung JN et al. Genetic regulation of disease risk and endometrial gene expression highlights 
potential target genes for endometriosis and polycystic ovarian syndrome. Sci Rep 8, 11424 
(2018). [PubMed: 30061686] 

11. Mortlock S et al. Tissue specific regulation of transcription in endometrium and association with 
disease. Hum Reprod 35, 377–393 (2020). [PubMed: 32103259] 

12. Võsa U Unraveling the polygenic architecture of complex traits using blood eQTL meta-analysis. 
BioRxiv (2018).

13. McRae AF et al. Identification of 55,000 Replicated DNA Methylation QTL. Sci Rep 8, 17605 
(2018). [PubMed: 30514905] 

14. Mortlock S et al. Genetic regulation of methylation in human endometrium and blood and gene 
targets for reproductive diseases. Clin Epigenetics 11, 49 (2019). [PubMed: 30871624] 

15. Zhu Z et al. Integration of summary data from GWAS and eQTL studies predicts complex trait 
gene targets. Nat Genet 48, 481–7 (2016). [PubMed: 27019110] 

16. Fung JN et al. Functional evaluation of genetic variants associated with endometriosis near 
GREB1. Hum Reprod 30, 1263–75 (2015). [PubMed: 25788566] 

17. Jones AV et al. Genome-wide association analysis of pain severity in dysmenorrhea identifies 
association at chromosome 1p13.2, near the nerve growth factor locus. Pain 157, 2571–2581 
(2016). [PubMed: 27454463] 

18. Barneo-Munoz M et al. Lack of GDAP1 induces neuronal calcium and mitochondrial defects in 
a knockout mouse model of charcot-marie-tooth neuropathy. PLoS Genet 11, e1005115 (2015). 
[PubMed: 25860513] 

19. Ruth KS et al. Using human genetics to understand the disease impacts of testosterone in men and 
women. Nat Med 26, 252–258 (2020). [PubMed: 32042192] 

20. Zhai G et al. Eight common genetic variants associated with serum DHEAS levels suggest a key 
role in ageing mechanisms. PLoS Genet 7, e1002025 (2011). [PubMed: 21533175] 

21. Rahmani A, Shoae-Hassani A, Keyhanvar P, Kheradmand D & Darbandi-Azar A 
Dehydroepiandrosterone stimulates nerve growth factor and brain derived neurotrophic factor in 
cortical neurons. Adv Pharmacol Sci 2013, 506191 (2013). [PubMed: 24381588] 

22. Maninger N, Wolkowitz OM, Reus VI, Epel ES & Mellon SH Neurobiological and 
neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front 
Neuroendocrinol 30, 65–91 (2009). [PubMed: 19063914] 

23. Obata K & Noguchi K BDNF in sensory neurons and chronic pain. Neurosci Res 55, 1–10 (2006). 
[PubMed: 16516994] 

24. Browne AS et al. Proteomic identification of neurotrophins in the eutopic endometrium of women 
with endometriosis. Fertil Steril 98, 713–9 (2012). [PubMed: 22717347] 

25. Wang S et al. BDNF and TrKB expression levels in patients with endometriosis and their 
associations with dysmenorrhoea. J Ovarian Res 15, 35 (2022). [PubMed: 35300713] 

26. Peng B, Alotaibi FT, Sediqi S, Bedaiwy MA & Yong PJ Role of interleukin-1beta in nerve growth 
factor expression, neurogenesis and deep dyspareunia in endometriosis. Hum Reprod 35, 901–912 
(2020). [PubMed: 32240297] 

Rahmioglu et al. Page 34

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Vitonis AF et al. World Endometriosis Research Foundation Endometriosis Phenome and 
Biobanking Harmonization Project: II. Clinical and covariate phenotype data collection in 
endometriosis research. Fertil Steril 102, 1223–32 (2014). [PubMed: 25256930] 

28. Nathan A et al. The Wilms tumor protein Wt1 contributes to female fertility by regulating 
oviductal proteostasis. Hum Mol Genet 26, 1694–1705 (2017). [PubMed: 28334862] 

29. O’Mara TA et al. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for 
endometrial cancer. Endocr Relat Cancer 22, 851–61 (2015). [PubMed: 26330482] 

30. Marla S et al. Genetic risk factors for endometriosis near estrogen receptor 1 and coexpression of 
genes in this region in endometrium. Mol Hum Reprod 27(2021).

31. Smith SB et al. Epistasis between polymorphisms in COMT, ESR1, and GCH1 influences COMT 
enzyme activity and pain. Pain 155, 2390–9 (2014). [PubMed: 25218601] 

32. Martin VT Ovarian hormones and pain response: a review of clinical and basic science studies. 
Gend Med 6 Suppl 2, 168–92 (2009). [PubMed: 19406368] 

33. Smith YR et al. Pronociceptive and antinociceptive effects of estradiol through endogenous opioid 
neurotransmission in women. J Neurosci 26, 5777–85 (2006). [PubMed: 16723535] 

34. Bulik-Sullivan B et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 
47, 1236–41 (2015). [PubMed: 26414676] 

35. Bulik-Sullivan BK et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet 47, 291–5 (2015). [PubMed: 25642630] 

36. Shafrir AL et al. Risk for and consequences of endometriosis: A critical epidemiologic review. Best 
Pract Res Clin Obstet Gynaecol 51, 1–15 (2018). [PubMed: 30017581] 

37. Missmer SA et al. Reproductive history and endometriosis among premenopausal women. Obstet 
Gynecol 104, 965–74 (2004). [PubMed: 15516386] 

38. Sampson JA Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of 
Endometrial Tissue into the Venous Circulation. Am J Pathol 3, 93–110 43 (1927). [PubMed: 
19969738] 

39. Barban N et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. 
Nat Genet 48, 1462–1472 (2016). [PubMed: 27798627] 

40. As-Sanie S et al. Changes in regional gray matter volume in women with chronic pelvic pain: a 
voxel-based morphometry study. Pain 153, 1006–14 (2012). [PubMed: 22387096] 

41. Coxon L, Horne AW & Vincent K Pathophysiology of endometriosis-associated pain: A review of 
pelvic and central nervous system mechanisms. Best Pract Res Clin Obstet Gynaecol (2018).

42. Bajaj P, Bajaj P, Madsen H & Arendt-Nielsen L Endometriosis is associated with central 
sensitization: a psychophysical controlled study. J Pain 4, 372–80 (2003). [PubMed: 14622679] 

43. Berkley KJ, Rapkin AJ & Papka RE The pains of endometriosis. Science 308, 1587–9 (2005). 
[PubMed: 15947176] 

44. Vincent K et al. Dysmenorrhoea is associated with central changes in otherwise healthy women. 
Pain 152, 1966–75 (2011). [PubMed: 21524851] 

45. Elliott LT et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. 
Nature 562, 210–216 (2018). [PubMed: 30305740] 

46. Kamat MA et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype 
associations. Bioinformatics 35, 4851–4853 (2019). [PubMed: 31233103] 

47. Turley P et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. 
Nat Genet 50, 229–237 (2018). [PubMed: 29292387] 

48. Ilad RS, Fleming SD, Bebington CR & Murphy CR Ubiquitin is associated with the survival of 
ectopic stromal cells in endometriosis. Reprod Biol Endocrinol 2, 69 (2004). [PubMed: 15447789] 

49. Cheng J, Deng Y & Zhou J Role of the Ubiquitin System in Chronic Pain. Front Mol Neurosci 14, 
674914 (2021). [PubMed: 34122010] 

50. Garcia-Gomez E et al. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid 
Hormones in Endometriosis. Front Endocrinol (Lausanne) 10, 935 (2019). [PubMed: 32063886] 

51. Ding YQ, Luo H & Qi JG MHCII-restricted T helper cells: an emerging trigger for chronic tactile 
allodynia after nerve injuries. J Neuroinflammation 17, 3 (2020). [PubMed: 31900220] 

Rahmioglu et al. Page 35

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



52. Gougeon A Human ovarian follicular development: from activation of resting follicles to 
preovulatory maturation. Ann Endocrinol (Paris) 71, 132–43 (2010). [PubMed: 20362973] 

53. Jones MR & Goodarzi MO Genetic determinants of polycystic ovary syndrome: progress and 
future directions. Fertil Steril 106, 25–32 (2016). [PubMed: 27179787] 

54. Ruth KS et al. Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, 
increase age at menopause and impact female reproductive health. Hum Reprod 31, 473–81 
(2016). [PubMed: 26732621] 

55. Ruth KS et al. Genome-wide association study with 1000 genomes imputation identifies signals for 
nine sex hormone-related phenotypes. Eur J Hum Genet 24, 284–90 (2016). [PubMed: 26014426] 

56. Gregus AM, Levine IS, Eddinger KA, Yaksh TL & Buczynski MW Sex differences in 
neuroimmune and glial mechanisms of pain. Pain 162, 2186–2200 (2021). [PubMed: 34256379] 

57. Lenert ME, Avona A, Garner KM, Barron LR & Burton MD Sensory Neurons, Neuroimmunity, 
and Pain Modulation by Sex Hormones. Endocrinology 162(2021).

58. Choi EJ et al. Comorbidity of gynecological and non-gynecological diseases with adenomyosis and 
endometriosis. Obstet Gynecol Sci 60, 579–586 (2017). [PubMed: 29184867] 

59. Loughlin AM et al. Method used to identify adenomyosis and potentially undiagnosed 
adenomyosis in a large, U.S. electronic health record database. Pharmacoepidemiol Drug Saf 30, 
1675–1686 (2021). [PubMed: 34292640] 

60. Powell JE et al. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and 
LINC00339. Hum Mol Genet 25, 5046–5058 (2016). [PubMed: 28171565] 

61. Cohen SP, Vase L & Hooten WM Chronic pain: an update on burden, best practices, and new 
advances. Lancet 397, 2082–2097 (2021). [PubMed: 34062143] 

62. Kvaskoff M et al. Endometriosis: a high-risk population for major chronic diseases? Hum Reprod 
Update 21, 500–16 (2015). [PubMed: 25765863] 

63. Shafrir AL et al. Co-occurrence of immune-mediated conditions and endometriosis among 
adolescents and adult women. Am J Reprod Immunol 86, e13404 (2021). [PubMed: 33583078] 

64. Tapmeier TT et al. Neuropeptide S receptor 1 is a nonhormonal treatment target in endometriosis. 
Sci Transl Med 13(2021).

65. Shigesi N et al. The association between endometriosis and autoimmune diseases: a systematic 
review and meta-analysis. Hum Reprod Update 25, 486–503 (2019). [PubMed: 31260048] 

66. McGonagle D & McDermott MF A proposed classification of the immunological diseases. PLoS 
Med 3, e297 (2006). [PubMed: 16942393] 

67. Parazzini F & Progretto Menopausa Italia Study, G. Menopausal status, hormone replacement 
therapy use and risk of self-reported physician-diagnosed osteoarthritis in women attending 
menopause clinics in Italy. Maturitas 46, 207–12 (2003). [PubMed: 14585523] 

68. O’Mara TA, Spurdle AB, Glubb DM & Endometrial Cancer Association C Analysis of Promoter-
Associated Chromatin Interactions Reveals Biologically Relevant Candidate Target Genes at 
Endometrial Cancer Risk Loci. Cancers (Basel) 11(2019).

69. Genomes Project C et al. An integrated map of genetic variation from 1,092 human genomes. 
Nature 491, 56–65 (2012). [PubMed: 23128226] 

70. Genomes Project C et al. A global reference for human genetic variation. Nature 526, 68–74 
(2015). [PubMed: 26432245] 

71. McCarthy S et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 
1279–83 (2016). [PubMed: 27548312] 

72. Jonsson H et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci 
Data 4, 170115 (2017). [PubMed: 28933420] 

73. Mitt M et al. Improved imputation accuracy of rare and low-frequency variants using population-
specific high-coverage WGS-based imputation reference panel. Eur J Hum Genet 25, 869–876 
(2017). [PubMed: 28401899] 

74. Cook JP, Mahajan A & Morris AP Guidance for the utility of linear models in meta-analysis of 
genetic association studies of binary phenotypes. Eur J Hum Genet 25, 240–245 (2017). [PubMed: 
27848946] 

Rahmioglu et al. Page 36

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



75. Devlin B & Roeder K Genomic control for association studies. Biometrics 55, 997–1004 (1999). 
[PubMed: 11315092] 

76. Willer CJ, Li Y & Abecasis GR METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics 26, 2190–1 (2010). [PubMed: 20616382] 

77. Magi R, Lindgren CM & Morris AP Meta-analysis of sex-specific genome-wide association 
studies. Genet Epidemiol 34, 846–53 (2010). [PubMed: 21104887] 

78. Yang J, Lee SH, Goddard ME & Visscher PM GCTA: a tool for genome-wide complex trait 
analysis. Am J Hum Genet 88, 76–82 (2011). [PubMed: 21167468] 

79. Wang H et al. SKAP-55 regulates integrin adhesion and formation of T cell-APC conjugates. Nat 
Immunol 4, 366–74 (2003). [PubMed: 12652296] 

80. Morris AP et al. Large-scale association analysis provides insights into the genetic architecture and 
pathophysiology of type 2 diabetes. Nat Genet 44, 981–90 (2012). [PubMed: 22885922] 

81. Janssen EB, Rijkers AC, Hoppenbrouwers K, Meuleman C & D’Hooghe TM Prevalence of 
endometriosis diagnosed by laparoscopy in adolescents with dysmenorrhea or chronic pelvic pain: 
a systematic review. Hum Reprod Update 19, 570–82 (2013). [PubMed: 23727940] 

82. Zondervan KT, Cardon LR & Kennedy SH The genetic basis of endometriosis. Curr Opin Obstet 
Gynecol 13, 309–14 (2001). [PubMed: 11396656] 

83. Wakefield J A Bayesian measure of the probability of false discovery in genetic epidemiology 
studies. Am J Hum Genet 81, 208–27 (2007). [PubMed: 17668372] 

84. Wellcome Trust Case Control, C. et al. Bayesian refinement of association signals for 14 loci in 3 
common diseases. Nat Genet 44, 1294–301 (2012). [PubMed: 23104008] 

85. Watanabe K, Taskesen E, van Bochoven A & Posthuma D Functional mapping and annotation of 
genetic associations with FUMA. Nat Commun 8, 1826 (2017). [PubMed: 29184056] 

86. O’Mara TA, Spurdle AB & Glubb DM Analysis of Promoter-Associated Chromatin Interactions 
Reveals Biologically Relevant Candidate Target Genes at Endometrial Cancer Risk Loci. Cancers 
(Basel) 11(2019).

87. Jain A & Tuteja G TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics 35, 
1966–1967 (2019). [PubMed: 30346488] 

88. Uhlen M et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 
(2015). [PubMed: 25613900] 

89. Consortium GT Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: 
multitissue gene regulation in humans. Science 348, 648–60 (2015). [PubMed: 25954001] 

90. Fung JN et al. The genetic regulation of transcription in human endometrial tissue. Hum Reprod 
32, 893–904 (2017). [PubMed: 28177073] 

91. Gamazon ER et al. Using an atlas of gene regulation across 44 human tissues to inform complex 
disease- and trait-associated variation. Nat Genet 50, 956–967 (2018). [PubMed: 29955180] 

92. Consortium GT et al. Genetic effects on gene expression across human tissues. Nature 550, 204–
213 (2017). [PubMed: 29022597] 

93. Qi T et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic 
data from blood. Nat Commun 9, 2282 (2018). [PubMed: 29891976] 

94. Vosa U, C.A., Westra HJ, Bonder MJ, Deelen P, Zeng B, Kirsten H, Saha A, Kreuzhuber R, Kasela 
S, Pervjakova N, et al. Unraveling the polygenic arhitecture of complex traits using blood eQTL 
metaanalysis. BioRxiv (2018).

95. Robinson MD, McCarthy DJ & Smyth GK edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139–40 (2010). [PubMed: 
19910308] 

96. Delaneau O et al. A complete tool set for molecular QTL discovery and analysis. Nat Commun 8, 
15452 (2017). [PubMed: 28516912] 

97. Zhang F et al. OSCA: a tool for omic-data-based complex trait analysis. Genome Biol 20, 107 
(2019). [PubMed: 31138268] 

98. Gokcen Eraslan ED, Anand Shankara, Subramanian Ayshwarya, Fiskin Evgenij, Slyper Michal, 
Wang Jiali, Van Wittenberghe Nicholas, Rouhana John M., Waldman Julia, Ashenberg Orr, Dionne 
Danielle, Win Thet Su, Cuoco Michael S., Kuksenko Olena, Branton Philip A., Marshall Jamie L., 

Rahmioglu et al. Page 37

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Greka Anna, Getz Gad, Segrè Ayellet V., Aguet François, Rozenblatt-Rosen Orit, Ardlie Kristin 
G., Regev Aviv. Single-nucleus cross-tissue molecular reference maps to decipher disease gene 
function. (bioRxiv, 2021).

99. Gordon M, L.T. Advanced Forest Plot Using “Grid” Graphics. (2017).

100. Hautakangas H et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci 
and subtype-specific risk alleles. Nat Genet 54, 152–160 (2022). [PubMed: 35115687] 

101. Johnston KJA et al. Genome-wide association study of multisite chronic pain in UK Biobank. 
PLoS Genet 15, e1008164 (2019). [PubMed: 31194737] 

Rahmioglu et al. Page 38

Nat Genet. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Circular Manhattan plots for genome-wide association analysis for overall endometriosis, 
rASRM stage III/IV disease, rASRM stage I/II disease and infertility.
Circular Manhattan plots for genome-wide association analysis for overall endometriosis 

(blue), revised American Society of Reproductive Medicine (rASRM) stage III/IV disease 

(green), rASRM stage I/II disease (orange), and endometriosis associated infertility 

(yellow). Genome-wide significant signals are marked in red and their chromosomal 

location is denoted with dotted grey lines. The 6 loci with significantly larger effect sizes in 

rASRM stage III/IV vs. rASRM stage I/II analysis are annotated in green.
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Fig. 2. GDAP1/8q21.11 regional association results and summary data-based mendelian 
randomisation (SMR) evidence based on expression (eQTL) and methylation (mQTL) 
quantitative trait loci data in blood.
a) Illustration of the regional association plot for the GDAP1/8q21.11 locus. eSMR blood 

single nucleotide polymorphism (SNP): SMR SNP identified as causal for endometriosis 

utilizing the eQTL data from blood tissue. mSMR blood SNP: SMR SNP identified as 

causal for endometriosis utilizing the mQTL data from blood tissue. b) SMR significant 

blood based eQTL for GDAP1 and mQTL of probe cg23779890 located in GDAP1 gene are 

shown. c) The genic content and locations for the region are illustrated.
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Fig. 3. SRP14-AS1/15q15.1 regional association results and SMR evidence based on eQTL and 
mQTL data in endometrium and blood.
a) Illustration of the regional association plot for the SRP14-AS1/15q15.1 locus. eSMR 

endometrium SNP: SMR SNP identified as causal for endometriosis utilizing the eQTL data 

from endometrium; mSMR blood SNP: SMR SNP identified as causal for endometriosis 

utilising the mQTL data from blood tissue. eSMR blood SNP: SMR SNP identified 

as causal for endometriosis utilizing the eQTL data from blood tissue. SMR SNPs not 

passing the HEIDI-heterogeneity test are annotated in black. b) SMR significant eQTLs 

and mQTLs in the SRP14-AS1/15q15.1 locus along with SRP14 promoter associated 
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chromatin loops with anchor points containing the lead SNP and the SMR SNPs. SMR 

significant SNPs associated with expression of SRP14 in endometrium and blood (eQTL), 

methylation at cg27155939 in blood (mQTL), and endometriosis are shown in black and the 

associated SRP14/CpG target is shown in red. Valid promoter associated chromatin loops 

were generated from H3K27Ac HiChIP libraries from a normal immortalized endometrial 

cell line (E6E7hTERT) and three endometrial cancer cell lines (ARK1, Ishikawa and 

JHUEM-14)68.
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Fig. 4. SYNE1/6q25.1 regional association results with 5 distinct signals and SMR evidence based 
eQTL and mQTL data in endometrium and blood.
Illustration of the regional association plot for the SYNE1/6q25.1 locus that includes 5 

distinct signals from approximate conditional analysis. On the plot are also the SMR 

significant eQTL and mQTLs from endometrium and blood tissue along with promoter 

associated chromatin loops with anchor points containing the lead SNP and the SMR SNPs. 

Multiple distinct signals significantly associated with endometriosis were identified in this 

region and r2 values displayed are relative to the closest lead SNP. eSMR endometrium SNP: 

SMR SNP identified as causal for endometriosis utilizing the eQTL data from endometrium; 

mSMR endometrium SNP: SMR SNP identified as causal for endometriosis utilizing the 

mQTL data from endometrium; mSMR blood SNP: SMR SNP identified as causal for 

endometriosis utilising the mQTL data from blood tissue. eSMR blood SNP: SMR SNP 

identified as causal for endometriosis utilizing the eQTL data from blood tissue. SMR SNPs 

not passing the HEIDI-heterogeneity test are annotated in black. SMR significant SNPs 

associated with expression of ESR1 in blood (eQTL), methylation at cg24075332 (mQTL1), 

cg14416726 (mQTL2), cg18745416 (mQTL3) and cg01066157 (mQTL4) in blood, and 

endometriosis are shown in black and the associated ESR1/CpG targets are shown in red. 

Ovarian enhancers were available from the Roadmap Epigenomics Project. Valid promoter 
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associated chromatin loops were generated from H3K27Ac HiChIP libraries from a normal 

immortalized endometrial cell line (E6E7hTERT) and three endometrial cancer cell lines 

(ARK1, Ishikawa and JHUEM-14)68.
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Fig. 5. Correlation of the effect sizes of lead SNPs between rASRM disease stage and surgical 
subtypes and extended of pelvic pain.
Correlation between the effect sizes of 42 endometriosis associated lead SNPs comparing 

rASRM stage III/IV disease vs. surgical subtypes (endometrioma; deep lesions; superficial 

lesions; panels a-c) and rASRM stage I/II, rASRM stage III/IV, deep lesions vs. risk of 

reporting more than 2 types of pelvic pain (panels d-f). Loci nominally associated (p<0.05) 

with individual sub-phenotypes are annotated with locus name and larger circles. Circle size 

represent significance level of correlation: Larger circles have smaller p-values and smaller 

circles have larger p-values. Solid black line represents the linear regression line, dotted 

black line is the x=y reference slope, dotted grey lines x=1 and y=1 are reference to odds 

ratio (OR). The grey error band represents 95% confidence interval. Test statistics including 

p-values for all the associations are provided in Supplementary Table 21.
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Fig. 6. Genetic correlation between endometriosis and 32 immune/inflammatory, pain, 
reproductive, and metabolic traits/conditions.
Genetic correlation between endometriosis and 32 immune/inflammatory, pain, 

reproductive, and metabolic traits/conditions using linkage disequilibrium score regression 

analysis (LDSC). Heritability of each trait is noted in parenthesis on the x-axis. 

The significance threshold is adjusted for multiple testing using Bonferroni correction. 

Significant (p<1.56×10−3) correlations are denoted with a red asterisk (*). Bars present the 

genetic correlation (rg) for each trait in relation to endometriosis and the error bars are 

standard errors. The exact p-values are provided in Supplementary Table 24.
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Table 1.

Significant SMR results based on eQTL and mQTL analyses in endometrium and blood in identified GWAS 

loci regions and the respective genes identified through chromatin interactions.

GWAS locus
SMR identified gene (QTL type, tissue and SMR 
SNP)*

Genes with chromatin interaction

WNT4/1p36.12 WNT4 (mQTL blood, rs55938609) C1QC, C1QB, C1QA

GREB1/2p25.1
GREB1 (mQTL endometrium, rs59129126)

LPIN1, PDIA6, C2orf50, KCNF1, NTSR2, E2F6,GREB1
%, 

AC092687.4, AC099344.1GREB1 (mQTL blood, rs59129126)

BMPR2/2q33.1 CALCRL (eQTL blood, rs8176580) SLC40A1, ZSWIM2

CD109/6q13 CD109 (mQTL blood, rs2917883) COL12A1

ID4/6p22.3

LNC-LBCS (eQTL endometrium, rs17483277) RNF144B

HLA-H (eQTL blood, rs147947139) -

HCG4P6 (eQTL blood, rs147947139) -

SYNE1/6q25.1

ESR1 (eQTL blood, rs2941739)
MYCT1

ESR1 (mQTL blood, rs862346)

SYNE1 (mQTL blood, rs2881823) IYD,ESR1, CCDC170, MYCT1, VIP, ARMT1, RMND1, 
ZBTB2

FAM120B/6q27 LINC00574 (mQTL blood, rs1532389) FAM120B, DLL1

7p15.2/7p15.2 TRA2A (eQTL endometrium, rs10238290) OSBPL3, GSDME, KLHL7, IGF2BP3, GPNMB, NUP42, 
MALSU1,TRA2A, CYCS

GDAP1/8q21.11
GDAP1 (eQTL blood, rs10283076)

PI15
GDAP1 (mQTL blood, rs4567029)

ABO/9q34.2 ABO (eQTL blood, rs550057) GTF3C4, DDX31, CACFD1, SLC2A6, OBP2B, MYMK, 
FAM163B, ADAMTSL2

MLLT10/10p12.13 MLLT10 (mQTL blood, rs12251016) SPAG6, COMMD3, MSRB2, ARL5B, BMI1, MIR1915HG, 
NSUN6, COMMD3-BMI1

FSHB/11p14.1
FSHB (mQTL blood, rs11031040) ARL14EP , BDNF

ARL14EP (mQTL blood, rs12271187) ARL14EP , BDNF

VEZT/12q22 VEZT (eQTL endometrium, rs7296348)
VEZT , NTN4, EEA1, METAP2, NR2C1, SOCS2, USP44, 
PLXNC1, SNRPF, CRADD, CEP83, UBE2N, FGD6, 
NDUFA12, PLEKHG7, LINC02410, AC073655.2

HOXC10/12p13.13 HOXC-AS2 (mQTL blood, rs3803042) HOXC8, GPR84, HOXC5, HOXC4

SRP14-AS1/15q15.1

SRP14 (eQTL endometrium, rs4770) BMF , EIF2AK4, IVD, KNSTRN, PLCB2, PAK6, BAHD1, 
DISP2, FSIP1, BUB1B, GPR176, LINC02694, C15orf56, 
ANKRD63, PHGR1, BUB1B-PAK6SRP14-AS1 (mQTL blood, rs12441483)

BMF (mQTL blood, rs7162269)
EIF2AK4, IVD, KNSTRN, PLCB2, PAK6,SRP14, BAHD1, 
DISP2, FSIP1, BUB1B, GPR176, C15orf56, ANKRD63, 
PHGR1, BUB1B-PAK6

SKAP1/17q21.32
HOXB9 (eQTL endometrium, rs2938475)

COPZ2, NFE2L1, CDK5RAP3, HOXB6, HOXB8, HOXB5, 
HOXB3, HOXB1, CALCOCO2, SKAP1, PRAC1, HOXB13, 
ATP5MC1, UBE2Z,HOXB9, TTLL6, HOXB2, HOXB4, SP6, 
HOXB7

LGALS9B (eQTL blood, rs9912844) -

*
Full SMR results are presented in supplementary tables 15–18.

%
In bold are genes for which there is also QTL evidence.
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