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Abstract

Logic programming (LP) is driven by the idea that logic subsumes computation. Over the

past 50 years, along with the emergence of numerous logic systems, LP has also grown into a

large family, the members of which are designed to deal with various computation scenarios.

Among them, we focus on two of the most influential quantitative variants are probabilistic

logic programming (PLP) and weighted logic programming (WLP).

In this thesis, we investigate a uniform understanding of logic programming and its quan-

titative variants from the perspective of category theory. In particular, we explore both a

coalgebraic and an algebraic understanding of LP, PLP and WLP.

On the coalgebraic side, we propose a goal-directed strategy for calculating the probabilities

and weights of atoms in PLP and WLP programs, respectively. We then develop a coalgebraic

semantics for PLP and WLP, built on existing coalgebraic semantics for LP. By choosing

the appropriate functors representing probabilistic and weighted computation, such coalgeraic

semantics characterise exactly the goal-directed behaviour of PLP and WLP programs.

On the algebraic side, we define a functorial semantics of LP, PLP, and WLP, such that they

three share the same syntactic categories of string diagrams, and differ regarding to the semantic

categories according to their data/computation type. This allows for a uniform diagrammatic

expression for certain semantic constructs. Moreover, based on similar approaches to Bayesian

networks, this provides a framework to formalise the connection between PLP and Bayesian

networks. Furthermore, we prove a sound and complete aximatization of the semantic category

for LP, in terms of string diagrams. Together with the diagrammatic presentation of the

fixed point semantics, one obtain a decidable calculus for proving the equivalence between

propositional definite logic programs.
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Impact Statement

Inside Academia. Logic programming, probabilistic logic programming and weighted logic

programming have been put into uniform categorical frameworks. We formalise the intuitive

similarity between these variants of logic programming. We show that coalgebraic semantics can

not only encode the goal-directed search space, but also capture the goal-directed calculation

space for calculating the probabilities or weights in quantitative variants of logic programming.

We propose a functorial semantics for the algebraic interpretation of LP, PLP and WLP, which

feature in sharing the same syntactic category of string diagrams. This framework is expected

to be generalised to other variants of logic programming, and to set the foundation of learning

based on logic programs. Also, it opens the possibility to formally compare those logic program-

ming paradigms with other computation models. Based on this functorial semantics, we give a

complete diagrammatic calculus to turn the problem of equivalence between propositional def-

inite logic programs into proving algebra equations, and indicate the potential generalisation

to probabilistic and weighted setting. The results in this thesis have been published in several

conferences [GZ19, GZ21, GPZ22] and in one journal article [ZG21].

Outside Academia. The uniform categorical framework in this thesis provides a guiding principle

for designing new types of logic programming. For instance, since in our functorial semantics,

PLP and WLP alternate the semantic categories of LP in two different ways, it indicates

that a probabilistic version of weighted logic programming is in principle well-defined. In the

functorial semantics for WLP, the defining property of the semantic category to be traced

provides a general criterion for the choice of the underlying semiring of WLP for the programs

to have well-defined semantics.

Also, the complete diagrammatic calculus for propositional definite logic programs indicates

a potential alternative for program verification in terms of diagrams. While we deal with very

simple logic programs here, one can potentially generalise to a graphical calculus for various

Kleene algebra, used for verifying program equivalence.
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Chapter 1

Introduction

Logic programming (LP) is among the first attempts towards knowledge representation in

artificial intelligence, whose history can be traced back to the 1970s. In its simplest version,

LP is built upon the observation that the seemingly simple logic of Horn clauses is powerful

enough to encode many real-world reasoning scenarios and at the same time enjoys feasible

algorithms for proof-search.

Logic programming, of course, is not the only contestant. Yet there are two key features,

as Kowalski [Kow88] stated, that distinguish LP from mechanical theorem-proving paradigms.

First, “(i)t exploits the fact that logic can be used to express definitions of computable functions

and procedures”. Second, “it exploits the use of proof procedures that perform deductions in

a goal-directed manner, to run such definitions as programs”. These two features induce the

declarative and procedural understanding of knowledge, respectively. For instance, think about

the simple Horn clause path(x, y)← path(x, z), edge(z, y). We can have (at least) two readings

of this clause—from right to left and from left to right—that correspond to the aforementioned

declarative and procedural perspectives: (1) if there is a path from x to z and an edge z→ y,

then there is also a path from x to y; (2) to show that there is a path from x to y, one has to

prove that there exists some z such that there is a path from x to z, and x→ z is an edge. From

a logic point of view, these two features corresponds to the deductive and reductive reading of

proof rules: one can read on rule as either that certain assumptions entails the conclusion, or

that to prove certain conclusion one has to prove these assumptions.

The approach we take in this thesis is to rephrase these two perspectives in logic program-

ming as algebraic and coalgebraic, respectively. On one hand, taking the algebraic perspective,

semantics of logic programs are defined as operations over a suitable algebra domain. On the

other hand, from the coalgbraic point of view, a logic program can be viewed as a system whose

unfolding corresponds to the reduction of a given goal to a set of subgoals. Unsurprisingly, the

algebraic perspective has been explored since the early age of LP [Sco70], while the coalgebraic

perspective receives a relatively late formal treatment [KMP10], even though the underlying

goal-reduction methodology can be traced back to the early days of LP.

It is common practice in theoretical computer science that, after a classical model is invented,
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applied and stabilised, it is then generalised to deal with more complex scenarios. Let us

take automata as an example. Automata has grown from (non)-deterministic finite automata

where each state either accepts or rejects an input string into a giant family, including but

not restricted to: probabilistic automata where at every state there is a probability that it

accepts a given string [Rab63]; weighted automata in which every state assigns weights to the

input strings [Sch61]; nominal automata whose infinite behaviour can be encoded finitely using

theory of nominal sets [LKB14].

Similar evolution takes place in the world of logic programming. As a programming for-

malism, LP has been extended not only regarding the underlying logic (e.g. logic with nega-

tion [AB94], linear logic [Mil04]) but also in the data type to adapt to non-classical circum-

stances. Two of the most prominent variants in the latter sense are probabilistic (PLP) and

weighted logic programming (WLP). In a nutshell, PLP deals with scenarios with random events

and answers the question of the probability of certain event; WLP generalises from Boolean val-

ues to a wide class of semirings, and instead of the truth value of atoms it calculates the weights

of atoms. Consequently, the application of logic programming has also been extended from au-

tomated theorem-proving and knowledge representation to algorithm specification [EGS05],

statistic relational reasoning [DRKT07a, RKNP16], machine learning [MDR94, MDK+18], etc.

However, such an expansion of logic programming is not paired with a unifying mathematical

account. In particular, despite the seemingly close connection between logic programming

and its quantitative relatives, there is a lack of formal investigation into such similarity, in

particular using category theory. Category theory, as a universal language of mathematics, is

particularly useful to describe such scenario as a unifying framework in which different types of

systems are modelled by taking suitable categorical components. Coming back to our example

of automata, variaties of automata can be uniformly modelled as coalgebras over its state space

S as S → T (S), where the functor T is determined by the type of the automata, such as

(non-)deterministic [AM75b, AM75a], probabilistic [HJS07], nominal [MP98, LKB14]. Such a

type is then used to define notions of behavioural equivalence and semantics in a uniform way.

Turning back to LP, the aim is to establish such a framework underlying classical, proba-

bilistic and weighted logic programming such that their difference are both captured modularly

as the change of certain categorical constructs. The categorical semantics for logic programs

per se has been studied in various contexts. The categorical treatment of first-order logic as

Lawvere theory [Law68] can be seen as preliminary work towards categorical understanding

of logic programming. The key notion of most general unifier (mgu) in first-order logic pro-

gramming has been charaterised as pullbacks [BMR01, ALM09]. Kinoshita and Power [KP96]

proposed a typed logic programming language using indexed categories, such that models of

the programs are captured as structure-preserving indexed functors from the indexed category

of program to the indexed category of model. Proof-search in logic programs has been first

treated coalgebraically in Komendantskaya et al. [KMP10], and later extended to first-order

cases [KMP10, BZ13]. Yet to the best of our knowledge these work do not cover any variant of
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LP.

This thesis aims at filling this gap, by presenting a categorical understanding of logic pro-

gramming together with its probabilistic and weighted relatives. In particular, we explore

both the algebraic and coalgebraic perspectives, since both the deductive and reductive read-

ings of clauses remain in PLP and WLP. For instance, think of the clause path(x, y) ←
path(x, z), edge(z, y) but now ornamented with a probability value 0.9. Then the clause

0.9 :: path(x, y) ← path(x, z), edge(z, y) also has two explanations given the chosen perspec-

tive: (1) if there is a path from x to z and an edge z → y, then there is probability 0.9 that

there is also a path from x to z; (2) to calculate the probability that there is a path from x to

z, one may first calculate that for the existence of a path from x to some z and the existence of

a edge z→ y, and then multiply with 0.9. Let us continue with more details about the specific

tools we adopt for unifying categorical treatment in both perspectives.

Coalgebraic perspective. To put it simple, coalgebras capture the behaviour of a dynamic

system with state space S as certain function α : S → T (S) defining the observation and

transition of states. The application of the coalgebra α on some state s can be seen as the

one-step behaviour of the system at state s, intuitively described the unfolding of the system

at state s. If such unfolding continues for infinitely many steps, the result is then essentially

all the possible behaviour of the system starting from state s. Under some conditions such a

space of behaviour lies in the final T -coalgebra, and all possible behaviour at a specific state

s is retrieved via the universal mapping property of the final coalgebra. This is the standard

construction of the final coalgebra semantics.

In terms of logic and proofs, such unfolding matches the one-step reduction of a conclusion

awaits to be proven to the set of assumptions that are sufficient to prove this conclusion.

Consequently, the corresponding final coalgebra captures the search space for proof-searching in

the system. Coalgebraic semantics for logic programming has been well studied. The treatment

for propositional logic programs was developed in [KMP10, KP11]. The first-order case has

been looked at from two perspectives [KP18]: the lax semantics [KPS16], and the saturated

semantics [BZ13]. Both adopt Lawvere theories to deal with the variables, and differ in the

treatment with naturality. However, these work has not been adapted to variations of logic

programs. We follow the saturation semantics approach as it encodes both the theorem-proving

and proof-searching perspectives of logic programs, and we provide a modular solution to the

coalgebraic semantics of PLP and WLP where appropriate functors are chosen for the specific

semantics of the programs.

We follow this line of research to provide a coalgebraic semantics for PLP and WLP that

match the aforementioned reductive reading of clauses. In particular, a PLP (resp. WLP)

program is viewed as a system, in which the states are atoms whose probabilities (resp. weights)

await to be calculated; the transition of states amounts the reduction of the calculation of

an atom A at the current state to that of the probabilities (resp. weights) of those atoms
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B1, . . . , Bk that deduce A, according to clauses of the form p :: A← B1, . . . , Bk. Moreover, we

choose to model PLP and WLP uniformly such that their connection with LP can be reflected

from their coalgebra types. The coalgebraic semantics then encode the top-down computation

of probabilities/weights, a generalisation of the search space in classical LP, using the final

coalgebra.

Algebraic perspective. We adopt string diagrams and functorial semantics as the category

theoretic tools to define a unifying algebraic semantics for the variants of logic programming.

Functorial semantics was proposed by Lawvere [Law63] to study the model theory of algebras

by separating the syntax and semantics of the algebraic theories. In a nutshell, the syntax

of an algebraic theory is encoded as a category of terms called Lawvere theory; the semantic

category corresponds to the models of the algebraic theory, e.g. Set for classical set-theoretical

models. Models are identified with structure-preserving functors from the syntactic category

of Lawvere theory to the semantic category Set. Homomorphisms between two models of a

given algebraic theory are then natural transformations between their corresponding functors.

Functorial semantics thus provides a uniform framework for studying algebras, where ‘algebraic

categories’ become the object of interest, replacing the classical definition of equational definable

classes of algebras. This open the possibility of an algebraic treatment of subjects beyond the

traditional universal algebra domain.

For (propositional) logic programs, our main insight is that LP, PLP and WLP programs

can share the same presentation while their difference in the data types is reflected at the level

of the semantic categories in which they are interpreted. Specifically, we choose string diagrams

as the syntax for logic programs. String diagrams as an intuitive and mathematical rigorous tool

has been successfully applied in signal flow diagram [BSZ14, BSZ15], control theory [FSR16],

quantum processes [AC09], synthetic statistics [Fri20], concurrency [BHP+19], etc.

Besides the intuitive pictorial presentation, using string diagrams as syntax provide much

advantages. First, the two-dimensional structure of string diagrams allows for more flexibility

compared to traditional algebra terms. Second, string diagrams provide a uniform language to

compare different computation models. In our case, we explore the connection between PLP

and Bayesian networks, a probabilistic graphical model encoding conditional (in)dependence

via directed acyclic graphs. While such mutual transformation between (certain subclasses of)

Bayesian networks and PLP has been studied before [MSB08], the translation therein mingle

the syntactic and semantic constructions. Instead, we characterise the transformation under

the functorial semantics. As a result, we can clearly identify the roles played by syntax and

semantics in the construction. Third, there are rich mathematical theories about string dia-

grams in the context of monoidal categories. For instance we will use traces to model feedback

in logic program semantics. We also provide a complete diagrammatic calculus to reason about

the equivalence of propositional definite logic programs.
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Roadmap and original contributions. We outline here the structure of the thesis and the

main original contribution of each chapter.

In Chapter 2 we recall the essential background knowledge for this thesis. The first part

summarises the basics of classical, probabilistic and weighted logic programming. In the rest

of this chapter we recall the basic theory of monoidal categories, with a focus on the graphi-

cal presentation as string diagrams. We demonstrate the power of diagrammatic calculus by

recalling the theory of interacting Hopf algebra for linear relations.

In Chapter 3 we explore the coalgebraic semantics for PLP and WLP.

• We characterise propositional PLP and WLP programs as certain coalgebras with finite

state spaces, in the form of isomorphisms between categories (Proposition 3.1.4, Propo-

sition 3.3.3).

• We give two coalgebraic semantics for PLP programs, both of which are induced by the

universal mapping property of the final coalgebras. The first semantics (Definition 3.1.33,

Proposition 3.1.24) encodes the searching space of the proof for a goal, and the second

semantics (Definition 3.1.33, Proposition 3.1.34) is the foundation for computing the

probabilities of goals.

• We propose an algorithm to compute the distribution semantics based on the second

coalgebraic semantics of a given goal in a PLP program (Proposition 3.2.23).

• Similarly, we provide a coalgebraic semantics for WLP programs (Definition 3.3.6) that

captures the goal-directed behaviour of WLP (Proposition 3.3.7), and showcase how to

derive the weighted of atoms under such coalgebraic semantics.

This chapter is based on the following papers.

– T. Gu, F. Zanasi. A coalgebraic perspective on probabilistic logic programming. CALCO

2019.

– F. Zanasi, T. Gu. Coalgebraic semantics for probabilistic logic programming. Logical

Methods in Computer Science 17 (2021).

In Chapter 4 we develop a functorial semantics of logic programs.

• We propose a syntactic category of string diagrams for propositional LP, PLP and WLP,

in a uniform fashion (Definition 4.1.4).

• We characterise classical (resp. probabilistic, weighted) logic programs as structure-

preserving functors from the syntactic categories to the semantics categories, in the

sense that there is one-one correspondence between programs and such functors (Propo-

sition 4.2.5, 4.3.6, 4.4.6).
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• We extend the string diagrams in the syntactic categories with feedback wires, and change

the semantic categories into traced ones to interpret feedbacks. Based on this, we show

that a least fixed point semantics of propositional definite logic programs and proposi-

tional weighted logic programs can be expressed diagrammatically (Proposition 4.2.17,

Corollary 4.2.18).

• For acyclic probabilistic logic programs we express their canonical distribution semantics

of atoms as string diagrams, in the sense that their interpretation under the functorial

semantics retrieves exactly the probabilities of the atoms (Proposition 4.3.13).

• The mutual translation between propositional probabilistic logic programs and Boolean-

valued Bayesian networks is explored under the functorial semantics. In particular, we

show both directions of this translation can be characterised purely at the level of syntactic

categories (Proposition 4.3.21, 4.3.28).

This chapter is based on the following paper.

– T. Gu, F. Zanasi. Functorial semantics as a unifying perspective on logic programming.

CALCO 2021.

In 5 we develop a diagrammatic calculus using string diagrams to reason about propositional

definite logic programs.

• We provide a sound and complete diagrammatic calculus for the inequational theory of

monotone relations over finite Boolean algebras (Theorem 5.5.21).

• Along the way we consider a sub-theory, the inequational theory of monotone functions

over finite Boolean algebras. We give a sound and complete string diagramsatic axioma-

tization of this theory (Theorem 5.4.5).

• We show that the diagrammatic calculus express the least fixed point semantics of definite

logic programs (Proposition 5.6.4).

• We apply the diagrammatic calculus to give an axiomatisation to decide equality of pro-

grams: two programs are equal precisely if their corresponding diagrams can be proven

to be equivalent in the inequational theory (Theorem 5.6.8).

This chapter is based on the following paper.

– T. Gu, R. Piedeleu, F. Zanasi. A complete diagrammatic calculus for satisfiability. MFPS

2022.

First there is an immediate followup regarding the two topics of this thesis. Given the

coalgebraic and algebraic treatment of logic programming, one natural question is about their
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interaction. To the best of our knowledge, such interaction for LP is encoded as a bialgebraic se-

mantics for definite logic programs [BZ15], where the algebraic and coalgebraic characterisation

of a system interact via a distributive law [Kli11]. To explore a similar approach for PLP and

WLP, the first technical challenge would be to find the appropriate functors to encode the alge-

braic and coalgebraic types of the programs, such that there exists a suitable distributive law.

This problem is non-trivial for distribution monads and multiset functors [Var03, VW06, Jac21].

We are not devoted to this problem in the thesis and leave it for future work, since our algebraic

semantics is defined in terms of functors, and it is not immediate to see how it interacts with

the coalgebraic semantics.

Concerning the diagrammatic calculus, one immediate next step is to generalise the current

calculus for definite logic programs to probabilistic and weighted case. For the former, we

may consider a framework in which the diagrammatic language are equipped with discrete

distributions over sub-diagrams, and the semantic category has morphisms that are discrete

distributions of morphisms of that for logic programs.

For the latter, one may start with looking at some specific semiring structure, such as the

min-plus semiring for shortest path problem.
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Chapter 2

Background

2.1 Logic programming and its variants

In this part we recall logic programming as well as its probabilistic and weighted variants. We

start with fixing some standard notation in predicate and propositional logic.

Definition 2.1.1. A signature Σ is a set of function symbols, each equipped with a fixed finite

arity, explicitly expressed as the superscript when necessary. A context is a list of variables

of the form [x1, x2, . . . , xn]. Given a signature Σ and a countably infinite set of variables

Var = {x1, x2, . . . , }, the Σ-terms in context [x1, . . . , xn] are defined inductively as follows:

• each xi ∈ {x1, . . . , xn} is a Σ-term in context [x1, . . . , xn];

• for each fn ∈ Σ, and Σ-terms t1, . . . , tn in context [x1, . . . , xn], f(t1, . . . , tn) is also a

Σ-term in context [x1, . . . , xn].

A term is ground if it is variable-free.

With some abuse of notation, we shall often use n to denote the context [x1, . . . , xn]. A

Σ-term is simply a Σ-term in some context. We say a Σ-term t is compatible with context n

if t is a Σ-term in context n. Note that a term t is compatible with multiple contexts (indeed

contably many).

Definition 2.1.2. An alphabet A consists of a signature Σ, a set of variables Var , and a set

of predicate symbols Pred = {P1, P2, . . . } (each with a fixed arity). Given an n-ary predicate

symbol P ∈ Pred , and Σ-terms t1, . . . , tn in context n, P (t1 · · · tn) is called an atom over A in

context n. We use A,B, . . . to denote atoms.

A literal is either an atom or a negated atom of the form ¬A where A is an atom.

Definition 2.1.3. A substitution θ : n → m is an n-tuple of Σ-terms in contexts m, namely

(t1, . . . , tm). Given an atom A in context n, and a substitution θ = ⟨t1, . . . , tn⟩ : n → m, we

write Aθ for substitution instance of A obtained by replacing each appearance of xi with ti in

A, namely A[x1/t1, . . . , xn/tn].
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For convenience, we also use {B1, . . . , Bk}θ as a shorthand for {B1θ, . . . , Bkθ}.

Definition 2.1.4. Given two atoms A and B, a unifier of A and B is a pair ⟨σ, τ⟩ of sub-

stitutions such that Aσ = Bτ . Term matching is a special case of unification, where σ is the

identity substitution. In this case we say that τ matches B with A if A = Bτ .

2.1.1 Logic programming

We now recall the basics of logic programming, and refer the reader to [Llo87] for a more

systematic exposition.

Definition 2.1.5. A general logic program L consists of a finite set of clauses φ in the form

H ← L1, . . . , Lk, where H is an atom and L1, . . . , Lk are literals. H is called the head of φ

(denoted as head(φ)), and L1, . . . , Lk form the body of φ (denoted as body(φ)). If the body

of certain clause only contains positive literals, then it is a definite clause. A definite logic

program consists of definite clauses.

We will mostly consider definite logic programs, as they have a more intuitive semantics

defined in terms of least fixed-points. In the remainder of this thesis, by ‘logic programs’ we

refer to definite logic programs unless otherwise stated.

When an atom awaits to be proven, it is sometimes referred to as a goal. Since one can

regard a clause H ← B1, . . . , Bk as the logic formula B1 ∧ · · · ∧Bk → H, we say that a goal G

is derivable in L if there exists a finite derivation of G with empty assumption using the clauses

in L.

The central task of logic programming is to check whether a goal G is provable in a program

L, in the sense that some substitution instance of G is derivable in L. The key algorithm for

this task is SLD-resolution, see e.g. Lloyd [Llo87]. We use the notation L ⊢ G to mean that G

is provable in L.

Such goal-proving perspective is referred to as the operational semantics of logic programs.

We focus on the denotational semantics of logic programming. Fix a logic program L over an

alphabet A.

Definition 2.1.6. The Herbrand universe H is the set of all ground Σ-terms. The Herbrand

base At is the set of all atoms over A. An interpretation I is simply a subset of At.

Definition 2.1.7. Every logic program L determines a monotone function called immediate

consequence operator TL : P(At)→ P(At), such that for each X ∈ P(At), TL(X) is the set of

all A ∈ At such that there exists L-clause φ and substitution θ such that head(φ)θ = A and

body(φ)θ ⊆ X. The least Herbrand model MH
L of L is the least fixed point of TL.

Intuitively, TL maps an interpretation I ∈ P(At) to the set of all atoms that are derivable

from atoms in I using L-clauses in one step. It is obviously monotone since the clauses are

definite, and the larger X is, the more atoms one could derive from X using L. Since TL is

monotone on ⟨P(At),⊆⟩, MH
L is well-defined as its least fixed point.
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Definition 2.1.8. The consequence operator CL : P(At) → P(At) maps X ∈ At to the least

Herbrand model of L ∪ {A← . | A ∈ X}.

The consequence operator captures the algebraic reading of a logic program L as a ‘black

box’: one can input atoms to L, and L will output all the atoms provable using L and input

atoms as facts.

We point out that, using the isomorphism P(X) ∼= BX for arbitrary set X—where B is the

two-element Boolean algebra {0, 1} and BX denotes the set of all functions X → B—all the

above construction of the denotational semantics for definite logic programs can be restated in

Boolean algebra terms. While the set-theoretical narrative is more standard, in the subsequent

sections we will often adopt this perspective whenever necessary. For instance, we shall say

an interpretation TL is a monotone function on BAt. We shall also identify interpretations

I ∈ P(At) with states s ∈ BAt, such that s(A) = 1 if and only if A ∈ I, for arbitrary atom

A ∈ At. A state s ∈ BAt satisfies an atom A if s(A) = 1, and satisfies a negated atom ¬B if

s(B) = 0. That s satisfies a literal L is denoted as s ⊨ L.

2.1.2 Probabilistic logic programming

We now recall the basics of PLP; the reader may consult [DRKT07b, DRKT07a] for a more

comprehensive introduction.

Definition 2.1.9. A probabilistic clause φ (or PLP clause) is of the form r :: A← L1, . . . , Lk,

where r ∈ (0, 1] and A← L1, . . . , Lk is a logic program. The number r is referred to as lab(φ).

A probabilistic logic program (or PLP program) is a finite set of probabilistic clauses such that

no two clauses share the same underlying logic program clause.

Sticking with the terminology for logic programming, we say a PLP clause is definite if no

negation appears in its body, and a PLP program consisting of definite clauses is a definite

program. A program P is ground if it does not have variables.

Example 2.1.10. As our leading example we introduce the following probabilistic logic pro-

gram Pal. It models the scenario of Mary’s house alarm, which is supposed to detect burglars,

but it may be accidentally triggered by an earthquake. Mary may hear the alarm if she is

awake, but even if the alarm is not sounding, in case she experiences an auditory hallucination

(paracusia). The language of Pal includes 0-ary predicates Alarm, Eearthquake, Burglary, and

1-ary predicates Wake(−), Hear alarm(−) and Paracusia(−), and signature Σ = {Mary0} con-

sisting of a constant. We do not have variables here, so Pal is a ground program. For readability

we abbreviate Mary as M in the program.

0.01 :: Earthquake ← 0.01 :: Paracusia(M) ←
0.2 :: Burglary ← 0.6 :: Wake(M) ←
0.5 :: Alarm ← Earthquake 0.8 :: Hear alarm(M) ← Alarm, Wake(M)

0.9 :: Alarm ← Burglary 0.3 :: Hear alarm(M) ← Paracusia(M)
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As a generalisation of the pure case, in probabilistic logic programming one is interested in

the probability of a goal G being provable in a program P. There are potentially multiple ways

to define such probability— in this paper we focus on the distribution semantics [DRKT07b].

The distribution semantics is defined paraterised on a given semantics or notion of deriv-

ability — say some ⊢— with L ⊢ A meaning ‘atom A is true/derivable in the logic program L’.

Given a probabilistic logic program P = {p1 :: φ1, . . . , pn :: φn} where each φ is a logic program

clause, let |P| be its underlying pure logic program, namely |P| = {φ1, . . . , φn}. A sub-program

L of |P| is a logic program consisting of a subset of the clauses in |P|. This justifies using P(|P|)
to denote the set of all sub-programs of |P|, and using L ⊆ |P| to denote that L is a sub-program

of P. The central concept of the distribution semantics is that P determines a distribution µP

over the sub-programs P(|P|): for any L ∈ P(|P|), µP(L) :=
∏

φi∈L pi
∏

φj∈|P|\L(1 − pj). The

value µP(L) is called the probability of the sub-program L.

Definition 2.1.11. The success probability PrP(G) of a goal G in program P is the sum of the

probabilities of all the sub-programs of P in which G is true/derivable:

PrP(G) :=
∑

|P|⊇L⊢G

µP(L) =
∑

|P|⊇L⊢G

∏
φi∈L

pi ·
∏

φj∈|P|\L

(1− pj)

 (2.1)

Intuitively, under the distribution semantics every clause in P is regarded as a random event,

then every sub-program L can be seen as a possible world, and µP is a distribution over the

possible worlds. The success probability of G is then simply the sum of the probabilities of all

worlds in which G is true or derivable, depending on the fixed semantics of the underlying logic

programs.

One comment regarding the execution, while the naive computation of such probability is

to enumerate all sub-programs L ⊆ |P|, more effective implementation have been invented, for

example an algorithm based on BDD tree is introduced in Kimmig et al. [KDDR+10].

Example 2.1.12. Recall the (definite) PLP program Pal from Example 2.1.10, and consider

the least Herbrand semantics of definite logic program. For the goal Hear alarm(M), we can

compute its success probability PrPal(Hear alarm(M)) using (2.1), and the result is 0.091102896.

For instance, the subprogram of |Pal| consisting of Earthquake ← ., Alarm ← Earthquake.,

Wake(M)← ., Hear alarm(M)← Alarm, Wake(M). has Hear alarm(M) in its least Herbrand model,

and it has probability under µPal is 0.01×(1−0.2)×0.5×(1−0.9)×(1−0.01)×0.6×0.8×(1−0.3),

which contributes to PrPal(Hear alarm(M)).

We recall Bayesian networks, a probabilistic graphical model closely related to (ground)

PLP programs.

Definition 2.1.13. A Bayesian network B consists of:

• a directed acyclic graph (DAG) G whose nodes represents random variables;
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• A value space for each random variable;

• A set of conditional probabilities PrB(X | pa(X)), one for each node X, where pa(X) is

the set of parents of X in G .

Moreover, it satisfies the factorisation property, where X1, . . . , Xn are all the nodes in G , and

x1, . . . , xn are values of X1, . . . , Xn, respectively:

PrB(X1 = x1, . . . , Xn = xn) =
∏

i=1,...,n

PrB(Xi = xi | pa(Xi) = pa(xi))

When the value space for each of the random variable is the B, we say B is a Boolean

Bayesian network. We postpone an example of Bayesian network till Example 4.3.19, where

Bayesian networks are actually used in comparison with probabilistic logic programs.

2.1.3 Weighted logic programming

Finally we introduce the weighted variation of logic programming. Let us fix a semiring K =

⟨K,+, · ,0,1⟩, together with a complete lattice structure⪯ that is compatible with the semiring

structure: (i) ∀x1, x2, y1, y2 ∈ K, if x1 ⪯ y1 and x2 ⪯ y2, then x1 + x2 ⪯ y1 + y2 and

x1 ·x2 ⪯ y1 · y2; (ii) 0 is the ⪯-least element in K. We use the standard notation ∧, ⊤, ∨, ⊥
for the lattice structure. Thus 0 = ⊥.

Example 2.1.14. The min-plus semiring MinPlus = ⟨N ∪ {+∞},min,+,∞, 0⟩ has the un-

derlying set natural number equipped with the positive infinity. The operations min and +

are respectively minimise and plus, with min{n,+∞} = n and n + (+∞) = +∞ for arbitrary

n ∈ N∪{+∞}. The semiring axioms are straightforward to verify. For instance, the distributive

axioms holds: ∀x, y, z ∈ N ∪ {+∞}, x+ min{y, z} = min{x+ y, x+ z}.
The complete lattice structure ⪯ is the standard ≥ on N (note the direction) together with

{(+∞, n) | n ∈ N ∪ {+∞}}. The join and meet are then min and max, respectively. It is

complete because the least upper bound and greatest lower bound are both well-defined as min

and max; in particular it is max-complete by including +∞.

Definition 2.1.15. A weighted clause φ based on K is of the form w :: A← B1, . . . , Bk, where

A,B1, . . . , Bk are atoms, and w ∈ K. We refer to w, A, and {B1, . . . , Bk} as lab(φ), head(φ)

and body(φ), respectively. A weighted logic program (or simply WLP program) W is a finite

set of weighted clauses such that no two clauses share the same heads and bodies.

Example 2.1.16. The min-plus semiring N∪{+∞} from Example 2.1.14 can be used for short-

est path problems. Consider the WLP program Psp consisting of all the grounding of the clauses

below left in (2.2), which describes the reachability condition of the weighted directed graph D

below right in (2.2). Then the answer to the shortest path from the initial state to a state x can
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be calculated by the weight of reachable(x) in Psp. For instance, weightPsp
(reachable(b)) = 9,

which is the least path weight from a to b in D .

0 :: initial(a) ← . 10 :: edge(a, b) ← .

4 :: edge(a, c) ← . 3 :: edge(b, c) ← .

5 :: edge(c, b) ← . 2 :: edge(c, c) ← .

0 :: reachable(x) ← initial(x).

0 :: reachable(x) ← reachable(y), edge(y, x).

a

10
��

4

��
b

3

66 c
5vv

2
zz (2.2)

Definition 2.1.17. Every weighted logic program W induces a monotone function Tw
W : KAt →

KAt called weighted immediate consequence operator, such that for arbitrary u ∈ KAt and

A ∈ At ,

Tw
W(u)(A) =

∑
φ∈W,head(φ)=A

lab(φ) ·
 ∏
Bi∈body(φ)

u(Bi)

 (2.3)

The weighted consequence operator Cw
W : KAt → KAt maps u ∈ KAt to the least fixed point of

λv.u+Tw
W(v). The least model of W, denoted as Mw

W, is the least fixed point of λv.Tw
W(v).

Both operators are monotone: Tw
W is monotone because because it only involves + and · ,

which are monotone on ⟨K,⪯⟩ by assumption; Cw
W is monotone because if u1, u2 ∈ KAt satisfy

u1 ⪯ u2, then for any v ∈ KAt , u1+Tw
W(v) ⪯ u2+Tw

W(v), thus λv.u1+Tw
W(v) ⪯ λv.u2+Tw

W(v)

Regarding the least model,Mw
W is equivalently Cw

W(⊥̄), where ⊥̄ ∈ KAt is the constant ⊥ state.

2.2 Basic category theory

We assume familiarity with basic category theory, such as the notions of categories, functors,

natural transformation etc. These can be found in any standard textbook on category theory,

such as MacLane [Mac71], Awodey [Awo10]. For the concepts that we recall in this section, we

refer to the following literature for details.

Jacobs [Jac17] is a recent introductory book to coalgebras. Fong and Spivak [FS19] is an

approachable introduction to monoidal categories and string diagrams. Zanasi [Zan15] contains

a comprehensive discussion of the theory of PROPs (categories of products with permutation).

2.2.1 Monads and multiset functors

We recall some well-known functors that will be used in the later chapters. Some of them carry

extra structure and form so-called monads.

Definition 2.2.1 (Monad). A monad is an endofunctor T : C → C equipped with a mul-

tiplication µT : T T ⇒ T and η : 1 ⇒ T natural transformations commuting the following
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diagrams:

T T T T µ //

µT
��

T T
µ
��

T T µ // T

T
ηT

}}

T η

!!
T T µ // T T Tµoo

A closely related notion is that of adjunction.

Definition 2.2.2 (Adjunction). Two functors F : C → D and G : D → C form an adjunction

if there exist natural transformations η : 1C ⇒ G ◦ F and ε : F ◦ G ⇒ 1D (called the unit and

counit of the adjunction) such that the following diagrams commute:

FGF

εF ""

FGF

F
Fη

<< GFG

Gε ""

GFG

G
ηG

==

In this case we say F is the left adjunction of G, denoted as F ⊣ G.

Every adjunction F ⊣ G induces a monad G ◦ F : C → C, whose monad unit is precisely

the unit of the adjunction. We choose the specific definition of adjunction as in Definition 2.2.2

because it smoothly generalises to 2-categories. Indeed, the specific definition of adjunction in

Definition 2.2.2 is that instantiated in the 2-category Cat of categories, functors, and natural

transformation. We mention that the other direction is also true, namely every monad induces

an adjunction. However not every adjunction arises from a monad, and those adjunctions

that are indeed induced by monads are called monadic adjunction, see e.g. Mac Lane [Mac71,

Chapter VI]. One such construction is via the Kleisli category.

Definition 2.2.3. Let T : C → C be a monad. The Kleisli category Kℓ(C) has C-objects as

objects; morphisms of type X _ Y are C-morphisms of the form X → T Y . The identity

morphism X _ X is the unit ηTX : X → T X. The composition of morphisms f : X _ Y and

g : X _ Y is g ⊙ f = X
f−→ T Y T g−→ T T Y µTY−→ T Y .

The adjunction consists of F : C → Kℓ(C) mapping f : X → Y to ηY ◦ f : X _ Y and

G : Kℓ(C) → C mapping g : X _ Y to µY ◦ T (g) : T X → T Y , with C
F --⊥ Kℓ(C)
G

jj . A

closely related construction is that of Eilenburg-Moore categories, indeed they can be seen as

two extremal solution to the question of whether every monad arises from an adjunction.

Now we look at a wide class of functors on the category Set of sets that are induced by

multisets. Under certain conditions these functors are indeed monads.

Definition 2.2.4. Given a monoid S = ⟨S,+,0⟩, a S-multiset over set X is a function φ : X →
S such that the set {x ∈ X | φ(x) ̸= 0} is finite.

We call {x ∈ X | φ(x) ̸= 0} the support of φ, denoted as supp(φ). So equivalently we

say S-multisets are those functions φ : X → S that have finite supports. We adopt the ‘ket’
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notation to write multisets succinctly as a formal sum: if supp(φ) = {x1, . . . , xm}, then we write

φ as φ(x1)|x1⟩ + · · · + φ(xm)|xm⟩ or
∑m

i=1 φ(xi)|xi⟩. Such ‘ket’ notation adopts the following

conventions: s1|x1⟩+ 0|x2⟩ = s1|x1⟩, and s1|x⟩+ s2|x⟩ = (s1 + s2)|x⟩.
Every monoid induces an endofunctor on Set, mapping each set X to all multisets over X.

Definition 2.2.5. Given a monoid S = ⟨S,+,0⟩, the multiset functor MS : Set → Set is

defined as follows:

• On objects, given an arbitrary X ∈ ob(Set), MS(X) is the set of all S-multisets over X.

• On morphisms, given an arbitrary function f : X → Y , MS(f) maps
∑m

i=1 φ(xi)|xi⟩ to∑m
i=1 φ(xi)|f(xi)⟩.

Moreover, when the underlying monoid S has in addition semiring structure, then its induced

multiset functor is indeed a monad. Recall that a semiring K = ⟨K,+, · ,0,1⟩ has two monoid

structure: (commutative) ⟨K,+,0⟩ and ⟨K, · ,1⟩ satisfying x · (y + z) = x · y + x · z, (x +

y) · z = x · z + x · z, and 0 ·x = 0.

Proposition 2.2.6 ([Jac17]). Given a semiring K, the multiset functorMK is a monad.

It is helpful to spell out the unit and multiplication of the semiring monad. Given a set X,

ηMK
X : X →MK(X) maps x to 1|x⟩; µMK

X : MKMK(X)→MK(X) maps s1|φ1⟩+ · · ·+sk|φk⟩
to s1 ·φ1 + · · ·+ sk ·φk.
Example 2.2.7. Here are some well-known multisets and their induced multiset functors.

1. Let B = ⟨{0, 1},∨,∧, 0, 1⟩ be the Boolean semiring, then B-multisets over a set X are

functions φ : X → {0, 1} such that there are finitely many x ∈ X satisfying φ(x) = 1.

Given a function f : X → Y and B-multiset φ over X,MB(φ)(y) = 1 if and only if there

exists some x ∈ X such that f(x) = y and φ(x) = 1.

Note that B-multisets over X are isomorphic to finite subsets of X: every φ induces a

finite subset A ⊆ X such that x ∈ A if and only if φ(x) = 1, and vice versa. Such

a ‘set-theoretical view’ of MB defines the finite powerset monad Pf : Set → Set. The

monad structure is as follows: given a set X,

η
Pf
X : X → Pf (X) (x ∈ X) 7→ {x}
µ
Pf
X : PfPf (X)→ Pf (X) (A ⊆ Pf (X)) 7→ ⋃A

2. Let N = ⟨N,+, 0⟩ be the natural number monoid, then N-multisets are exactly finite

multisets in the normal sense, or bags. Equipping it with × and 1 return a semiring, and

thus induces a monad MN.

3. Let Pr = ⟨[0, 1],∨pr, 0⟩ be the probabilistic monoid where the probabilistic sum (cf. [WHK10])

is defined as p ∨pr q := 1 − (1 − p) · (1 − q) for arbitrary p, q ∈ [0, 1]. The intuition is
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that, if p and q are the probabilities of two independent (Boolean) events A and B, then

p ∨pr q is the probability of the event ‘A or B’. Then Pr-multisets over a set X are

functions φ : X → [0, 1] that assigns a nonzero probability value to only finitely many

elements in X. We denote the induced multiset functor as Mpr. In particular, given a

function f : X → Y , the image of φ under Mpr(f) : Mpr(X) → Mpr(Y ) is the multiset

over Y such that for arbitrary y ∈ Y , let x1, . . . , xk be all the x ∈ X such that f(x) = y,

Mpr(f)(φ)(y)

4. Another important monad is the distribution monad D. On objects, D(X) is the set of

all finite probability distributions over X, namely p1|x1⟩ + · · · + pk|xk⟩ where
∑k

i=1 pi =

1. On morphisms, D(f : X → Y ) maps a finite distribution p1|x1⟩ + · · · + pk|xk⟩ to

p1|f(x1)⟩ + · · · + pk|(xk)⟩. Despite the similarity of the behaviour of D over morhpisms

with that of multiset functors, D itself is not a multiset functor, yet can be seen as

certain multiset functor plus a restriction of scalars. To be precise, consider the real

number semiring R = ⟨R,+,×, 0, 1⟩, which induces a monad. Then D(X) is the subset

of MR(X) whose multisets are restricted to those with non-negative weighted and sum

up to 1. A closely related monad is the sub-distribution monad D≤ where the condition∑k
i=1 pi = 1 is loosen to

∑k
i=1 pi ≤ 1.

5. Let MinPlus = ⟨N∪ {+∞},min,+,+∞, 0⟩ be the min-plus semiring, where N∪ {+∞}
is adding +∞ to the set of natural numbers as the unit of min. Then MinPlus-multisets

over a set X are functions φ : X → N ∪ {+∞} that assign a finite weight to only finitely

many elements in X. Such tropical semiring is used in shortest-path problems, which

calculates the least path between two given vertices in a weighted graph. The definition

can be generalised to have rational numbers or real numbers as weights, and is known as

tropical semiring, see e.g. Speyer [SS09] for tropical arithmetic.

There is an interesting connection betweenMpr and D. Intuitively, if one has finitely many

independent random Boolean events (namely the outcome is either 0 or 1), then they induce a

finite distribution over all the possible worlds in which they may happen or not. We leave the

details to Proposition 3.1.32.

2.2.2 Coalgebra

Definition 2.2.8 (Coalgebra). A coalgebra of type F where F is an endofunctor C → C is a

C-morphism of the form α : X → FX.

The object X is sometimes refer to as the base of the coalgbera α. Fix an endofunc-

tor F : C → C, all F -coalgebras and coalgebra morphisms between them form a category

Coalg(F ), where a coalgebra morphism between two F -coalgebras α : X → FX and β : Y →
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FY is a C-morphism f : X → Y such that the following diagram commutes:

X
f //

α
��

Y

β
��

FX F(f) // FY

Coalgebras are useful to model transition systems, which we briefly recall the typical ap-

proach. Given a system S, the first step is to find a coalgebraical representation of its one-step

or small-step behaviour as a T -coalgebra for some functor T . The T -coalgebras form a category,

whose objects are T -coalgebras, and whose morphisms are morphisms between the underlying

base of the coalgebras such that the square involving the coalgebras commute. If the functor T
is good enough, the category of T -coalgebras have final objects, called final T -coalgebras. Then

the coalgebraic semantics of system S is define as the universal morphism from its corrrespond-

ing T -coalgebra to the final T -coalgebra. Intuitively, the final T -coalgebra contain exactly all

the possible big-step behaviour of systems of type T , and the universal morphism to the final

T -coalgebra assigns to a state its big-step behaviour in the system.

Example 2.2.9. Given a set of alphabet Σ, a deterministic finite automaton (DFA) is of the

form S = ⟨Q, δ, F ⟩, where Q is a finite set of states, δ : Q × Σ → Q is a transition function,

F ⊆ Q is the set of final states. A state q accepts a finite string σ over Σ if the run of S starting

from q along σ terminates at some state in F . Every DFA can be encoded as a coalgebra,

whose coalgebra type is the Set-functor (·)Σ×{0, 1}. In particular, the DFA S is the coalgebra

s : Q→ QΣ × {0, 1}, where:

• π1 ◦ s(q) : a 7→ δ(q, a), for arbitrary state q ∈ Q and letter a ∈ Σ.

• π2 ◦ s(q) = 1 if and only if q ∈ F .

That is to say, the two functors (·)Σ and {0, 1} captures exactly the δ and F parts of the

automata, respectively.

More importantly, the final (·)Σ × {0, 1}-coalgebra exists, say ζ : PΣ∗ → (PΣ∗)Σ × {0, 1},
where Σ∗ is the set of all finite strings over Σ. In particular, given a set of strings Γ ⊆ Σ∗,

π1 ◦ ζ(Γ) : (a ∈ Σ) 7→ {τ ∈ Σ∗ | aτ ∈ Γ}, and π2 ◦ ζ(Γ) = 1 precisely if ϵ ∈ Γ The finality of ζ

induces a unique coalgebra morphism !s : s→ PΣ∗, which maps a state q to exactly the set of

strings accepted at q.

2.2.3 Symmetric monoidal categories

We recall the basics of symmetric monoidal categories.

Definition 2.2.10. A monoidal category ⟨C,⊗, I⟩ is C equipped with:

• a bifunctor ⊗ : C× C → C called the monoidal or tensor product, whose associativity is

witnessed by a natural isomorphism αA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C
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• an object I called the monoidal unit with natural isomorphisms λA : I ⊗ A → A and

ρA : A⊗ I → A,

Moreover, they commute the following diagrams representing coherence of associativity and

unitality:

A⊗ (B ⊗ (C ⊗D))
αA,B,C⊗D //

αA,B,C⊗D

��

(A⊗B)⊗ (C ⊗D)
αA⊗B,C,D // ((A⊗B)⊗ C)⊗D

αA,B,C⊗idD

��
A⊗ ((B ⊗ C)⊗D)

αA,B⊗C,D // (A⊗ (B ⊗ C))⊗D

A⊗ (I ⊗B)
αA,I,B //

idA⊗λB ''

(A⊗ I)⊗B

ρA⊗idBww
A⊗B

A monoidal category C is symmetric if there is a class of natural isomorphisms σA,B : A⊗B →
B ⊗ A for any objects A,B, that is:

• self-inverse: σB,A ◦ σA,B = idA⊗B,

• compatible with I:

A⊗ I σA,I //

ρA
""

I ⊗ A

λA||
A

• compatible with α:

(A⊗B)⊗ C σA,B⊗idC //

αA,B,C

��

(B ⊗ A)⊗ C αB,A,C // B ⊗ (A⊗ C)

idB⊗σA,C

��
A⊗ (B ⊗ C)

σA,B⊗C // (B ⊗ C)⊗ A αB,C,A // B ⊗ (C ⊗ A)

We say a monoidal category C is strict if α, λ and ρ are all identities.

Definition 2.2.11. Let (C,⊗, IC) and (D,⊕, ID) be two monoidal categories. A monoidal

functor F : C→ D is a functor together with

• a natural transformation ϕA,B : FA⊕FB → F(A⊗B),

• a morphism ϕI : ID → FIC
satisfying the following conherence conditions which state the compatibility with α, λ and ρ:

(FA⊕FB)⊕FC
αD
FA,FB,FC//

ϕA,B⊕idFC

��

FA⊕ (FB ⊕FC)
idFA⊕ϕB,C // FA⊕F(B ⊗ C)

ϕA,B⊗C

��
F(A⊗B)⊕FC ϕA⊗B,C // F((A⊗B)⊗ C)

FαC
A,B,C // F(A⊗ (B ⊗ C))
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FA⊕ ID
idFA⊕ϕI //

ρDFA
��

FA⊕FIC
ϕA,IC
��

FA F(A⊗ IC)
FρCA

oo

IC ⊕FB
ϕI⊗idFA //

λDFB
��

FIC ⊕FB
ϕIC,B

��
FB F(IC ⊗B)

FλCB
oo

In Definition 2.2.11, if both ϕA,B and ϕI are isomorphisms, then F is strong monoidal ; if

they are identities, then they are strict monoidal.

Definition 2.2.12. Given two monoidal functors (F , ϕ) and (G, ψ) of type C→ D, a monoidal

natural transformation between F and G is a natural transformation θ : F ⇒ G that is com-

patible with ϕ and ψ:

FA⊕FB ϕA,B //

θA⊕θB
��

F(A⊗B)

θA⊗B

��
GA⊕ GB ψA,B // G(A⊗B)

ID
ϕI

}}

ψI

!!
FIC

θIC // GIC

The following notion of equivalence is useful for the statement of coherence theorem (??).

Put it simple, it is just the monoidal variant of equivalence between categories.

Definition 2.2.13. Two monoidal categories C and D are monoidal equivalent if there exist

two strong monoidal functors F : C → D and G : D → C equipped with monoidal natural

transformations η : 1C ⇒ G ◦F and ε : F ◦G ⇒ 1D, where 1 is the identity functor on the given

category.

2.3 Graphical calculus

We recall the notion of string diagrams and diagrammatic presentation of monoidal categories.

2.3.1 Categories of string diagrams

Intuitively, one can construct a monoidal category ‘freely’ using some diagrammatic components

of the form f
...

... as ‘lego blocks’. Such diagrams are naturally equipped with the structure

of monoidal categories: the sequential composition of two such pieces is simply connecting

the outcome wires of one block with the input wires of another, and the monoidal product is

juxtapositoin.

In this subsection we illustrate the idea and the bpower of diagrammatic calculus using the

graphical linear algebra (GLA) from Bonchi et al. [BSZ17]. Note that while the construction

there works for arbitrary fields K, we adopt a toy version here by instantiating the theory to

the field ⟨Z,+, ·, 0, 1⟩ of integers.

We start with a diagrammatic calculus for matrices over Z.
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Definition 2.3.1. In the category Mat Z of matrices over integers, objects are natural numbers,

and morphisms m→ n are n×m-matrices in Z. Mat Z together with the direct sum on matrices

form a (symmetric) monoidal category.

The diagrammatic calculus HAZ for Z-matrices is a category of string diagrams inductively

defined (or, freely generated) as follows.

Definition 2.3.2. The symmetric monoidal category Syn has the following components:

• the objects are natural numbers;

• the morphisms are string diagrams freely composed using the following ingredients:

r , r ∈ Z

such that morphisms m→ n are diagrams with m wires on the left port, and n wires on

the right port.

In particular, parallel and sequential compositions are the juxtaposition and sequential com-

position of diagrams. The category HAZ of Hopf algebra over Z is obtained by quotienting the

morphisms of Syn by the axioms in Figure 2.1.

= = =

= = =

=

=

= = = =

r =
r

r
r =

r

r
r = r =

r s = rs
r

s
= r + s 0 =

Figure 2.1: Hopf Algebra axioms for HAZ

Indeed both Syn and HAZ are strict symmetric monoidal categories. We say Syn is the

SMC freely generated with the generating object 1 and generating morphisms , , ,

, r for all integers r; HAZ is the freely generated SMC with the same generators and

moreoever quotiented by the equational theory in Fig. 2.1. In fact HAZ admits a finite set of

generators and a finite axiomatisation, which we refer to [BSZ17] for details.
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Even before giving a precise semantics of the diagrams, there is a intuitive reading of matrices

as diagram. For example, the matrix A =

(
2 3 0

4 0 1

)
is diagrammatically expressed as

2

3

0

4

1

1

=

2

3

4

For instance, the entry A12 = 3 corresponds to the diagram where the second wire on the left

port has one copy that meets a scalar 3 and is added up to the first wire on the right port.

This connection is formalised as a functor ⟨−⟩ : HAZ → Mat Z that interprets every diagram

as a matrix. Given the inductive nature of HAZ, the interpretation can be defined inductively.

The following definition is implicit — for instance ⟨−⟩ maps the monoidal structure to the

monoidal structure.

⟨ ⟩ = 1 ⟨ ⟩ =

(
0 1

1 0

)
⟨c ; d⟩ = ⟨d⟩ · ⟨c⟩ ⟨c⊗ d⟩ =

(
⟨c⟩ 0

0 ⟨d⟩

)

For the generating morphisms specific for GLA, their semantics are defined as follows:

⟨ ⟩ =

(
1

1

)
⟨ ⟩ = ¡ ⟨ ⟩ =

(
1 1

)
⟨ ⟩ = ! ⟨ r ⟩ = r, for all r ∈ Z

where ¡ : 1→ 0 and ! : 0→ 1 are the unique morphisms given by the universal property of 0 (as

both the final and initial object) in Mat Z.

While for a single matrix things look straightforward, it is no longer the case when operations

on matrices come into the picture. In particular, the axioms for HAZ provides enough power

to calculate the direct sum and multiplication of matrices diagrammatically. For instance, the

diagrammatic counterpart of

(
2 3

4 0

)(
1

2

)
=

(
8

4

)
is as follows:

1

2

2

4

3

0

=

2

4

3

0

1

1

2

2

=

2

4

6

0

=

2

4

6

0

=
4

8

That HAZ is exactly the diagrammatic counterpart of Mat Z with direct sum as monoidal

product is formally the following proposition, in which case we say HAZ presents Mat Z.

Proposition 2.3.3. HAZ ∼= Mat Z

In particular, one direction of the isomorphism is witnessed by the interpretation functor

⟨−⟩.
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One important conceptual switch that is important for Section 5.1.2 is to turn from a

functional semantics to a relational semantics. In the case of GLA, this switch is from the

category of matrices in Z to the category of linear relations over Q.

Definition 2.3.4. A linear relation R : m → n over Q is a linear subspace of Qm × Qn.

The symmetric monoidal category LinRelQ of linear relations has rational numbers as objects,

and linear relations over Q as morphisms. Sequential and parallel compositions are relation

composition and product, respectively.

The diagrammatic calculus for LinRelQ is then an enrichment of HAZ which adds and

(together with their units) as well as r , whose intuition is to flow information from

right to left. To match the relational semantics, diagrams are interpreted as relations instead

of functions via some functor ⟨−⟩ : HAZ → LinRelQ. For instance,

⟨ ⟩ = {(x, (x, x)) | x ∈ Q} ⟨ ⟩ = {((y, y), y) | y ∈ Q}
⟨ ⟩ = {((x1, x2), y) ∈ Q2 ×Q | x1 + x2 = y} ⟨ ⟩ = {(x, (y1, y2)) ∈ Q×Q2 | x = y1 + y2}
⟨ r ⟩ = {(x, y) ∈ Q×Q | r · x = y}

The axioms for IHZ are shown in Figure 2.2. In particular, the third block states that

( , ) and ( , ) are two Frobenius algebra, such that only the connectivity matters.

One important consequence is that the Frobenius axioms induce a (self-dual) compact closed

structure where ‘cups’ and ‘caps’ interpret feedback:

:= :=

such that bended wires (using and ) can be pulled straight:

= = =

Then we regard and r as abbreviations:

:= r := r

Theorem 2.3.5 ([BSZ17]). IHZ ∼= LinRelQ

It is helpful to check that some of the axioms semantically hold (soundness). For instance,

⟨ r r ⟩ = ⟨ r ⟩ # ⟨ r ⟩
= {(x, y) ∈ Q×Q | rx = y} # {(u, v) ∈ Q×Q | u = rv}
= {(x, v) ∈ Q×Q | ∃u ∈ Q : rx = u and u = rv}
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= {(x, v) ∈ Q×Q | rx = rv}
= {(x, v) ∈ Q×Q | x = v} = ⟨ ⟩

⟨ r r ⟩ = ⟨ r ⟩ # ⟨ r ⟩
= {(x, y) ∈ Q×Q | x = ry} # {(u, v) ∈ Q×Q | ru = v}
= {(x, v) | ∃y ∈ Q : x = ry = v}
= ⟨ ⟩

Comparing the two calculation, we notice that while ⟨ r r ⟩ = ⟨ ⟩ holds regardless of

the semantic domain being Z or Q, the last step showing ⟨ r r ⟩ = ⟨ ⟩ relies on the

fact that variables take values in rationals rather than integers: let r = 2, then those integers

satisfying that ∃y ∈ Z such that x = 2y = v are only even integers.

The above diagrammatic representation — drawing objects as wires and morphisms as boxes

— works not only for strict monoidal categories, but also for non-strict monoidal categories

in general. This is a consequence of the following result from Mac Lane [Mac71] (note that

the terminology ‘Coherence Theorem’ refers to several statements, and we only mention one of

them here).

Theorem 2.3.6 (Coherence Theorem [Mac71]). Every monoidal category is monoidally equiv-

alent to a strict monoidal category.

As a consequence, we can unambiguously write A⊗B⊗C and f⊗g⊗h without specifying the

bracketing until necessary — the Coherence Theorem guarantees that one can unambiguously

add the brackets whenever necessary. The diagram below are idX , f : A ⊗ B → C ⊗ D ⊗ E,

e : I → X, and two instances of sequential and parallel composition of morphisms:

X
fA

B

C
D
E

fA
B

g H fA
B

C
D
E

hP
Q R

Xe

While morphisms are in general drawn as boxes, we use triangles when the (co)domain is

known to be the tensor unit I. We emphasise that such representation is mathematically

rigorous, see for example Joyal and Street [JS91] for a soundness and completeness result for

the diagrammatic axiomatisation for monoidal categories. Selinger [Sel10] is a survey of the

diagrammatic representation of various monoidal categories.

We illustrate the power and flexibility of the diagrammatic presentation of monoidal cate-

gories via some examples.

We start with symmetric monoidal categories (see Definition 2.2.10). The natural isomor-

phism σA,B is drawn as A

AB

B , and the three conditions for the symmetric structure amounts
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r

= = =

= = =

=

=

= = ==

= = ==

= = = =

= = = =

= = = =

= = = =

r s = rs
r

s
= r + s 0 =

r =
r

r
r =

r

r
r = r =

r r = r r = , for all r ̸= 0

Figure 2.2: Interacting Hopf Algebra IHZ

to
A

B
=

A

B

A

B
and

A

B

C

A

B

C

=
A

B

C

A

B

C

.

The next example is traced monoidal categories, which will also be used in Subsection ??.

While first introduced in the context of balanced monoidal categories by Joyal et al. [JSV96],

we adopt the definition from Hasegawa [Has97] stated for symmetric monoidal categories. In

Definition 2.3.7 below, one can compare the diagrammatic and traditional statement of the

conditions to see how diagrams simplify and visualise the reasoning.

Definition 2.3.7 (Traced monoidal categories). A symmetric monoidal category ⟨C,⊗, I⟩ is

traced if there is a family of morphisms TrUX,Y : C(X ⊗ U, Y ⊗ U) → C(X, Y ) for each objects

X, Y, U , such that for arbitrary f : X ⊗ U → Y ⊗ U , TrUX,Y is depicted diagrammatically as
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f
X

U

Y

U , and satisfies the following conditions:

1. Naturality in X: for arbitrary f : X ⊗ U → Y ⊗ U and g : X ′ → X, TrUX,Y (f) ◦ g =

TrUX′,Y (f ◦ (g ⊗ idU)).

f
g X

U

Y

U

X′

f
g X Y

U

X′

U=

2. Naturality in Y : for arbitrary f : X ⊗ U → Y ⊗ U and h : Y → Y ′, h ◦ TrUX,Y (f) =

TrUX,Y ′((h⊗ idU) ◦ f).

f
X

U
hY

U

Y ′

f hYX

U

Y ′

U=

3. Dinaturality in U : for arbitrary f : X⊗U → Y ⊗U ′ and u : U ′ → U , TrU
′

X,Y (f◦(idX⊗u)) =

TrUX,Y ((idY ⊗ u) ◦ f).

f
X

U

Y

U ′ f
X Y

UU=uU ′ uU ′

4. Vanishing (i): for arbitrary f : X ⊗ I → Y ⊗ I, Tr IX,Y (f) = ρ−1Y ◦ f ◦ λX .

5. Vanishing (ii): for arbitrary f : X ⊗ U ⊗ V → Y ⊗ U ⊗ V , TrUX,Y (TrVX⊗U,Y⊗U(f)) =

TrU⊗VX,Y (f).

f
X

U

Y

U

=V V
f

X

U

Y

U

V V

6. Superposing: for arbitrary f : X ⊗ U → Y ⊗ V and w : W → Z, w ⊗ TrUX,Y (f) =

TrUW⊗X,Z⊗Y (w ⊗ f).

f
X

U

Y

U

wW Z

= f
X

U

Y

U

wW Z

7. Yanking: for arbitrary object X, TrXX,X(σX) = idX .

X X

= X

To our purpose, it is useful to think of the traces as feedback.

Example 2.3.8. ([Has97]) The category CPO⊥ of pointed cpo’s and continuous functions is a

traced monoidal category. Recall that ‘cpo’ stands for complete partial order, namely partial
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orders in which ω-indexed chains always have suprema. It is pointed if it is equipped with a

bottom element ⊥. A function f : X → Y between two pointed cpo is continuous if it preserves

the suprema of any ω-indexed chain. The symmetric monoidal structure is products of posets

and functions, which indeed is cartesian.

Given a CPO⊥-morphism f : X × U → Y × U , to define the trace TrUX,Y : X → Y , let

ux := µu.π2 ◦ f(x, u), then

TrUX,Y (x) = f(x, ux) (2.4)

In other words, ux is the least u satisfying that f(x, u) = (y, u) for some y, whose existence is

guaranteed by the fact that f is continuous on the pointed cpos.

We could verify the naturality in Y as an instance. Consider f : X × U → Y × U and

h : U → U ′. We show that, for an arbitrary x ∈ X, h ◦ TrU,X,Yf (x) = TrUX,Y ′((h× idU) ◦ f)(x).

The following least fixed points are necessary

ux := µu.π2 ◦ f(x, u)

vx := µv.π2 ◦ ((h× idU) ◦ f(x, v))

Thus y1 := h ◦ TrU,X,Yf (x) = h(π1 ◦ f(x, ux)), and y2 := TrUX,Y ′((h × idU) ◦ f)(x) = (π1 ◦ (h ×
idU) ◦ f)(x, vx). It suffices to show that ux = vx, since this implies y1 = y2 as follows

(y2, vx) = ((h× idU) ◦ f)(x, vx)

= ((h× idU) ◦ f)(x, ux)

= (h× idU)(f(x, ux))

= (h× idU)(π1 ◦ f(x, ux), π2 ◦ f(x, ux))

= (h ◦ π1 ◦ f(x, ux), idU ◦ π2 ◦ f(x, ux))

= (y1, ux)

Now we prove ux = vx by the two inequalities. On one hand, π2 ◦ (h × idU) ◦ f(x, ux) =

π2 ◦ (h ◦ π1 ◦ f(x, ux), π2 ◦ f(x, ux)) = π2 ◦ f(x, ux) = ux, thus vx ≤ ux. On the other hand,

π2 ◦ f(x, vx) = π2 ◦ ((h× idU) ◦ f(x, vx)) = vx, thus ux ≤ vx.

The traced structure in CPO⊥ is used to interpret while loops in imperative programming

languages, as certain least fixed points. The details can be found in, for example, Mitchell

[Mit96].

A closely related concept is (self-dual) compact closed categories, which we refer to Kelly

and Laplaza [KL80] for details and the diagrammatic presentation. In short, every object (in

diagrammatic format) X has a dual X such that there are ‘cup’ and ‘cap’

morphisms satisfying the following snake equation:

= =
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Every compact closed category has canonical traces formed of the cups and caps, namely

f := f

Interestingly, for the other direction, every compact closed category arises from a traced mo-

niodal category using so-called Int construction (standing for ‘integers’ as the construction

‘categorifies’ that of integers from natural numbers). Detailed discussion on the connection

between traced and compact closed categories can be found in Joyal et al. [JSV96].

Example 2.3.9. The category Rel of relations is one of the simplest examples of compact

closed categories. In short, Rel has sets as objects, and relations as morphisms denoted as

A 7→ B. Composition of morphisms is relational composition: given relations R1 : X 7→ Y

and R2 : Y # Z, their relational composition R1 # R2 : X 7→ Z is defined as {(x, z) ∈ X × Z |
∃y ∈ Y : (x, y) ∈ R1 and (y, z) ∈ R2}. Category Rel with relation products and the canonical

singleton set 1 = {•} form a SMC, where the relation product is R1 × R3 : X × U 7→ Y × V
is defined as {((x, u), (y, v)) ∈ (X × U) × (Y × V ) | (x, y) ∈ R1 and (u, v) ∈ R3}. Moreover,

Rel is compact closed: every object X is self-dual, with
X

= {(•, (x, x)) | x ∈ X} and

X
= {((x, x), •) | x ∈ X}.

Consequently, ⟨Rel,×,1⟩ is traced, where for an arbitrary relation R : X × U 7→ Y × U ,

TrUX,Y (R) = {(x, y) ∈ X × Y | ∃u ∈ U such that ((x, u), (y, u)) ∈ R}.

As another application of diagrammatic calculus for monoidal categories, we recall the

notion of CD categories.

Definition 2.3.10. A copy-discard category, or CD category in short, is a SMC ⟨C,⊗, I⟩
equipped with two classes of morphisms called duplicators ∇X : X → X ⊗X and dischargers

ϵX : X → I satisfying the following conditions:

1. (∇X ⊗ idX) ◦ ∇X = (idX ⊗∇X) ◦ ∇X .

2. (ϵX ⊗ idX) ◦ ∇X = (idX ⊗ ϵX) ◦ ∇X = idX .

3. σX,Y ◦ ∇X = ∇X .

4. ∇X⊗Y = (idX ⊗ σX,Y ⊗ idY ) ◦ (∇X ⊗∇Y ).

5. ϵX⊗Y = ϵX ⊗ ϵY .

The intuition of ∇ and ϵ is — as their names suggest — to duplicate an object or to discard

it. In Definition 2.3.10, the conditions can be read as: ∇X is associative; ϵX is the unit of ∇X ;

∇X is compatible with σX ; ∇X and ϵX are both compatible with ⊗. Using a diagrammatic

representation of ∇ and ϵ as and , the defining properties of CD categories can be
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expressed as follows:

= = = =

A⊗B
=

A

B

A⊗B
=

A

B

(2.5)

Note that every Cartesian category is automatically a CD category, where the duplicators and

dischargers are the diagonal morphisms and unique morphisms to the terminal object. Indeed,

a CD category is cartesian if and only if all the duplicators and dischargers are natural [Fox76]:

for arbitrary morphism f : X → Y , ∇Y ◦ f = (f ⊗ f) ◦ ∇X , ϵY ◦ f = ϵX . We can equip CD

categories with the ‘duals’ of ∇ and ϵ, say ∆X : X × X → X and η : I → X, respectively,

satisfying the dual of the conditions in Definition 2.3.10 (or in other words, satisfying the

equations in (2.5) ‘flipped along the y-axis’). We refer to such categories as CDMU categories

(for copy, discard, multiplication, unit).
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Chapter 3

Coalgebraic semantics for logic

programming

In this chapter we explore PLP and WLP from a coalgebraic point of view, in the aim of

capturing the goal-directed behaviour of the programs. Recall that in the case of LP, such

goal-directed behaviour amounts to reducing the task of proving one goal to the subtasks of

proving multiple subgoals, according to available clauses from the program. The situation is

similar in the case of PLP and WLP, only that one replaces ‘proving a goal’ with ‘calculating

the probability/weight of a goal’. In both cases, we define certain notion of trees that capture

such (non-deterministic) goal-directed behaviour of PLP and WLP programs, from which one

can retrieve the standard semantics.

We provide such a coalgebraic semantics for both the ground case (i.e. without variable)

and the general case (i.e. possibly with variables). In the ground case, the atoms carry a

simple structure of sets, and this relatively simple case serves to clarify our main coalgebraic

constructs. In particular, both the coalgebraic presentation of PLP and WLP programs and

their coalgebraic semantics are already defined at this stage. Our presentation is inspired by

the coalgebraic treatment of LP in which ground programs are in 1-1 correspondence with

coalgebras for the functor PfPf , and the coalgebraic semantics is defined using the unviersal

property of the final coalgebra.

The general case adds upon the ground case extra categorical structure to deal with variables

and substitutions. Instead of sets, the space of atoms are now a presheaf indexed by a Lawvere

theory of terms and substitutions, a standard categorical tool to deal with term algebra. We

shall follow the saturation approach in Bonchi and Zanasi [BZ15] to define the coalgebraic

semantics which encodes unification.

In light of the coalgebraic treatment of pure logic programming [KMP10, KP11, BZ13,

BZ15], the generalisation to PLP and WLP may not appear so surprising. We believe the

importance is two-fold. First, whereas the derivation semantics J−K (Definition 3.1.23) is a

straight generalisation of the pure setting, the distribution semantics ⟨⟨−⟩⟩ (Definition 3.1.33) is

genuinely novel , and does not have counterpart in pure logic programming. Second, this work
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provides a starting point for a generic coalgebraic treatment of variations of logic programming:

• The coalgebraic approach to pure logic programming has been used as a formal justifica-

tion [KPS16, KL17] for coinductive logic programming [KL18, GBM+07]. Coinduction in

the context of probabilistic and weighted logic programs is, to the best of our knowledge, a

completely unexplored field, for which the current paper establishes semantic foundations.

• As mentioned, reasoning in Bayesian networks can be seen as a particular case of PLP,

equipped with the distribution semantics. Our coalgebraic perspective thus readily applies

to Bayesian reasoning, paving the way for combination with recent works [JKZ19, JZ19,

DDGK16] modelling belief revision, causal inference and other Bayesian tasks in algebraic

terms.

3.1 Probabilistic logic programming: propositional case

This section is devoted to a coalgebraic perspective of propositional PLP. We first introduce

two coalgebraic semantics of PLP, one corresponds to a reductive reading of (probabilistic)

logic programs, and the other relates closely to the distribution semantics of PLP programs.

Then we present how to recover the distribution semantics from the coalgebraic semantics via

an algorithm.

We follow the canonical procedure in Section 2 to define coalgebraic semantics for transition

systems. In our case, our transition systems are propositional PLP programs, and the first step

is to find a coalgebraic treatment of them. Inspired by the coalgebraic treatment of ‘pure’

logic programming from Komendantskaya et al. [KMP10], we observe that propositional PLP

programs are in 1-1 correspondence with coalgebras for the functor MprPf , where Mpr is the

probabilistic multiset functor on [0, 1] and Pf is the finite powerset functor. We then provide

two coalgebraic semantics for propositional PLP.

• The first interpretation J−K is in terms of execution trees called stochastic derivation trees,

which represent parallel SLD-derivations of a program on a goal. Stochastic derivation

trees are the elements of the cofreeMprPf -coalgebra on a given set of atoms At , meaning

that any goal a ∈ At can be given a semantics in terms of the corresponding stochastic

derivation tree by the universal map J−K to the cofree coalgebra.

• The second interpretation ⟨⟨−⟩⟩ recovers the usual distribution semantics of PLP. We

introduce distribution trees, a tree-like representation of the distribution semantics, as

the elements of the cofree D≤PfPf -coalgebra on At , where D≤ is the sub-probability dis-

tribution monad (see Example 2.2.7). In order to characterise ⟨⟨−⟩⟩ as the map given by

universal property of distribution trees, we need a canonical extension of PLP to the set-

ting of D≤PfPf -coalgebras. This is achieved via a ‘possible worlds’ natural transformation

Mpr ⇒ D≤Pf .
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In the remainder of this section, we fix a finite set of atoms At = {A1, . . . , An} and a PLP

program P based on At , unless specified otherwise.

3.1.1 Representing propositional PLP as coalgebras

In aim of obtaining a coalgebraic representation of PLP, we need a change of perspective to

view a PLP program as a transition system that perform reduction of atoms. Our starting point

is the coalgebraic semantics for pure logic programming in Komendantskaya et al. [KMP10],

which we briefly recall here. A logic program L based on At can be read reductively as a system

such that given a goal A, L reduces it to all possible subgoals that one needs to prove in order

to prove goal A. We illustrate this perspective with a toy example.

Example 3.1.1. Let logic program L consist of two clauses, A ← B1 and A ← B2, B3. Then

the reductive reading of L is that, the task of proving atom A can be reduced to that of proving

either one of the following sets of atoms: {B1} and {B2, B3}.

Such a reductive reading of logic programs suggests the representation of a propositional

logic program L as a PfPf -coalgebra l : At → PfPf (At), where the two Pf functors have two

distinct meanings: the inner Pf stands for the fact that the bodies of logic program clauses are

finite sets of atoms, and the outer Pf encode the non-deterministic nature of one-step proof

search. In the case of Example 3.1.1, these two Pf correspond to the two sets {B1}, {B2, B3},
and the set {{B1}, {B2, B3}}, respectively. Intuitively, l reduces an atom A to the set of all

finite sets of atoms {B1, . . . , Bk} satisfying that A← B1, . . . , Bk is a clause in L. We summarise

the central construction for propositional logic programs in Komendantskaya et al. [KMP10].

Definition 3.1.2 ([KMP10]). A logic program L on At determines a PfPf -coalgebra l : At →
PfPf (At) such that

l(A) = {body(φ) | head(φ) = A,φ ∈ L}

for arbitrary A ∈ At .

Then the 1-1 correspondence between logic programs and PfPf -coalgebras with finite do-

mains can be concisely expressed as follows.

Definition 3.1.3. The category PropLP of propositional logic programs has the following

components:

• Objects: each object is a pair ⟨X,L⟩, where X is a finite set, and L is a propositional

logic program using elements in X as atoms.

• Morphisms: a morphism f : ⟨X,L⟩ → ⟨Y,K⟩ is a function f : X → Y that respects

the programs L and K in the following sense: a clause B ← B1, . . . Bk is in K if and

only if there exists L-clause A ← A1, . . . , Aℓ such that f(A) = b and f [{A1, . . . , Aℓ}] =

{B1, . . . , Bk}.
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Proposition 3.1.4. There is an isomorphism of categories PropLP ∼= Fin(Coalg(PfPf )),

where Fin(Coalg(PfPf )) is the full subcategory of Coalg(PfPf ) with objects restricted to finite

sets.

Proof. For objects, on one hand, every logic program L on At determines a Fin(Coalg(PfPf ))-

object l as in Definition 3.1.2. On the other hand, a coalgebra λ : X → PfPf (X) whereX is finite

also uniquely defines a logic program L onX such that for each A ∈ X and {A1, . . . , Ak} ∈ λ(A),

there is a clause A← A1, . . . , Ak in L. It is immediate that these two constructions are inverses

to each other, thus form a bijection between the objects.

On morphisms, given ⟨X,L⟩ and ⟨Y,K⟩, suppose f : X → Y is a coalgebraic morphism,

then the following diagram commutes:

X
f //

l
��

Y

k
��

PfPf (X)
PfPf (f)// PfPf (Y )

Spelling out the definition, it means that, starting from an arbitrary A ∈ X, suppose l(A) is

the set {{A1
1, . . . , A

1
k1
}, . . . , {Am1 , . . . , Amkm}}, then PfPf (f) ◦ l(A) is

{{f(A1
1), . . . , f(A1

k1
)}, . . . , {f(Am1 ), . . . , f(Amkm)}} (3.1)

This being equal to k ◦ f(A) means that for each {f(Ai1), . . . , f(Aiki)} from (3.1) is an element

in k(f(A)), and vice versa. Thus, f(A) ← B1, . . . , Bm is a clause in K if and only if its body

{B1, . . . , Bm} is equal to some {f(Ai1), . . . , f(Aiki)}. This means that f is a PropLP-morphism.

The same reasoning works for the other direction showing that a PropLP-morphism is also a

coalgebra morphism.

Now we turn to probabilistic logic programs. Compared with the aforementioned intuition

for the coalgebraic representation of logic programs, there is one similarity and one difference.

For PLP it remains the fact that the bodies of clauses are finite sets of atoms. However, the

goal-oriented or proof-searching reading of PLP no longer reduces a goal to a set of subgoals but

instead to a set of subgoals augmented with probability labels. From a categorical perspective,

this amounts to saying that we represent propositional PLP again as a coalgebra for some

composite functor T2 ◦ T1: while the inner functor T1 remains to be the finite powerset functor

Pf , the outer functor T2 should be a combination of finite powerset functor Pf and probability

labels. To be precise, T2 is the finite multiset functorMpr : Set→ Set based on the commutative

monoid ([0, 1],∨pr, 0), where ∨pr is the ‘probabilistic or’ defined as p∨pr q := 1− (1− p)(1− q),
for arbitrary p, q ∈ [0, 1] (see Example 2.2.7 for details). We are now ready to represent

propositional PLP programs as MprPf -coalgebras.
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Definition 3.1.5. Let P be a PLP over At . It defines aMprPf -coalgebra p : At →MprPf (At),

such that for an arbitrary atom A ∈ At ,

p(A) : Pf (At) → [0, 1]

{B1, . . . , Bk} 7→

r if r :: A← B1, . . . , Bk is a clause in P

0 otherwise.

(3.2)

The map p is a well-definedMprPf -coalgebra: note that each p(a) has a finite support since

program P consists of only finitely many clauses. Definition 3.1.5 can be equivalently and more

concisely expressed using the ket notation |−⟩ (see the notation after Definition 2.2.4) as

p(A) =
∑

(r::A←B1,...,Bn) ∈ P

r|{B1, . . . , Bn}⟩

Example 3.1.6. Consider program Pal from Example 2.1.10. The set of atoms is

Atal = {Alarm, Earthquake, Burgary, Wake(M), Paracusia(M), Hear alarm(M)} (3.3)

Here are some values of the corresponding coalgebra pal : Atal → MprPf (Atal), denoted using

the ket notation:

pal(Hear alarm(M)) = 0.8|{Alarm, Wake(M)}⟩+ 0.3|Paracusia(M)}⟩
pal(Earthquake) = 0.01|{}⟩

Similar to the case for logic programs, while (3.2) tells us how to represent every proposi-

tional PLP program as a MprPf -coalgebra, the other direction also holds by restricting our-

selves to MprPf -coalgebras with finite bases. To state it formally, we introduce the category

of propositional PLP programs.

Definition 3.1.7. The category of propositional PLP programs PropPLP is defined as follows:

• Object: each object is a pair of the form ⟨A,P⟩, where X is a finite set and P is a PLP

program using elements in X as atoms.

• Morphisms: a morphism f : ⟨X,P⟩ → ⟨Y,Q⟩ is a function f : X → Y that respects

P and Q: a clause p :: B ← B1, . . . , Bk is in Q if and only if, suppose ψ1, . . . , ψm

are all the P-clauses such that f(head(ψ)) = B and f [body(ψ)] = {B1, . . . , Bk}, then

p = Lab(ψ1) ∨pr · · · ∨pr Lab(ψm) = 1−∏m
i=1 (1− Lab(ψi)).

Then our observation that propositional PLP programs are preciselyMprPf -coalgebras with

finite bases can be formally states as follows.

Proposition 3.1.8. There is an isomorphism between categories PropPLP ∼= Fin(Coalg(MprPf )).
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Proof. We define two functors F : PropPLP→ Fin(Coalg(MprPf )) and G : Fin(Coalg(MprPf ))→
PropPLP, and show that they witness the isomorphism.

Let us first look at the objects. Given a PropPLP-object ⟨X,P⟩, we define F(⟨X,P⟩)
to be the coalgebra p : X → MprPf (X) in Definition 3.1.5. Given a Fin(Coalg(MprPf ))

object α : X → MprPf (X) where X is a finite set, we define the PLP Pα as follows: for

each A ∈ X and {A1, . . . , Ak} ∈ supp(α(A)) with α(A)({A1, . . . , Ak}) = p, the clause p ::

A ← A1, . . . , Ak. is in Pα. These two operations are inverses to each other. On one hand, if

p :: A ← A1, . . . , Ak is a clause in P, then the set {A1, . . . , Ak} is in the support of p(A), and

p(A)({A1, . . . , Ak}) = p, thus p :: A ← A1, . . . , Ak is also in the program induced by p. On

the other hand, if {A1, . . . , Ak} ∈ supp(α(A)) and α(A)({A1, . . . , Åk}) = p, then the clause

p :: A← A1, . . . , Ak is in the program Pα induced by α. Then the coalgebra pα induced by Pα
satisfies that pα({A1, . . . , Ak}) = p, thus it is exactly α.

Next we turn to morphisms. Given a PropPLP-morphism f : ⟨X,P⟩ → ⟨Y,Q⟩, we define

F(f) : F(⟨X,P⟩)→ F(⟨Y,Q⟩) mapping A ∈ X to f(A) ∈ Y , and we verify that this F(f) is a

coalgbra morphism between F(⟨X,P⟩) and F(⟨Y,Q⟩), which for simplicity we write as p and

q, respectively. In other words, we show that the following diagram commutes:

X
f //

p

��

Y

q

��
MprPf (X)

MprPf (f)//MprPf (Y )

The commutativity of the above diagram boils down to the following condition: for arbitrary

A ∈ X and set {B1, . . . , Bk} ⊆ Y , q(f(A))({B1, . . . , Bk}) = r for some r ∈ (0, 1] if and only if

1−
∏

{A1,...,Am}

(1− p(A)({A1, . . . , Am})) = r

where the product ranges over all {A1, . . . , Am} ∈ supp(p(A)) such that f [{A1, . . . , Am}] =

{B1, . . . , Bk}. But this is exactly the definition that f is a PropPLP-morphism, so F is

well-defined on morphisms. Then for the isomorphism, it suffices to show that F is full and

faithful. Note that the condition for coalgebra morphisms boils down exactly to the definition

of PropPLP-morphisms, thus F is full. For two different f, g : ⟨X,P⟩ → ⟨Y,Q⟩, suppose

F(f) = F(g), then by the definition of F , f(A) = F(f)(A) = F(g)(A) = g(A) for arbitrary

A ∈ X, so f = g. This finishes the verification that F witnesses the bijection on morphisms.

Therefore the two categories PropPLP and Fin(Coalg(MprPf )) are isomorphic.

Remark 3.1.9. One obvious alternative coalgebra type for propositional PLP programs is the

functor Pf (Pf (·)× [0, 1]), where the inner Pf encodes the bodies of clauses, and the [0, 1] part

keeps track of the probability labels. The main reason why we choose MprPf instead of this

functor to present PLP is that, Proposition 3.1.8 fails for the latter: although every ground

PLP program generates a Pf (Pf (·) × [0, 1])-coalgebra, the other direction does not hold. This
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is because intuitively there are more Pf (Pf (·)× [0, 1])-coalgebras than PLP programs: a clause

φ ∈ Pf (At) may be associated with different probability values in [0, 1], which violates the

definition PLP. For example, consider α : At → Pf (Pf (At)× [0, 1]) where At = {A,B,C} such

that α(A) = {({B,C}, 0.3), ({B,C}, 0.5)}. Then one does not know which clause(s) does α(A)

determine.

3.1.2 Derivation Semantics

In this section we are going to define the first coalgebraic semantics of propositional PLP pro-

grams. Before the technical developments, we give some intuition on the semantics provided

by final coalgebra . The idea is to represent each goal as a stochastic derivation tree (Defini-

tion 3.1.11), the probabilistic version of so-called and-or derivation trees (Definition 3.1.10),

which represent parallel SLD-resolutions for pure logic programming [GC94]. These trees turn

out to be elements in the final At ×MprPf (·)-coalgebra, and the connection between a goal

and its stochastic derivation trees is captured by the final coalgebra semantics.

As before, to get more comfortable with the definition of stochastic derivation trees for PLP,

we briefly recall the definition of and-or derivation trees for pure logic programming.

Definition 3.1.10 (And-or derivation trees, [GC94]). Given a propositional definite logic pro-

gram L based on At , and an atom A ∈ At , the and-or derivation tree for a in L is the possibly

infinite tree T satisfying:

1. Every node is either an or-node (labelled by an atom in At) or a and-node (labelled with

•). These two types of nodes appear alternatingly in depth in this order.

2. The root of T is an or-node labelled with A.

3. Suppose s is an or-node labelled with A′, then for each clause A ← B1, . . . , Bk in L,

s has exactly one and-child t, and t has k-many or-children labelled with B1, . . . , Bk,

respectively.

Intuitively, an and-or derivation tree for an atom A encodes the parallel proof search of A as

a (finite branching) tree. Each or-node represents a single goal, and each and-node represents

a set of subgoals. In order to prove an atom A labelling some or-node s, it suffices to prove

at least one of the set of subgoals represented by the and-children of t; and to prove the set of

subgoals of some and-node t, one needs to prove all the subgoals represented by the or-children

of t. This justifies the terminology ‘and-or’: at an or-node at least of one its children should be

proven; at an and-node all its children should be proven. In the case of PLP, we want to reflect

the reductive nature of PLP using certain stochastic derivation trees, which add to derivation

trees probability labels on the edges that corresponds to the probability labels of the clauses.

Later in Section 3.1.3 we will encounter a further variation of derivation trees called possible-

world trees (Definition 3.1.25), which encode the distribution semantics as tree-like structures.
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So to keep the terminology uniform, we will use atom-node and clause-node for or-node and

and-node, respectively, in the following definition of stochastic derivation trees.

Definition 3.1.11 (Stochastic derivation trees). The stochastic derivation tree for atom A in

P is the possibly infinite tree satisfying the following conditions:

1. Every node is either an atom-node (labelled with an atom B ∈ At) or a clause-node

(labelled with •). These two types of nodes appear alternatingly in depth, in this order.

In particular, the root is an atom-node labelled with A.

2. Each edge from an atom-node to its (clause-)children is labelled with a probability value.

3. Suppose s is an atom-node with label B. Then for every clause r :: B ← B1, . . . , Bk in

P, s has exactly one child t such that the edge s→ t is labelled with r, and t has exactly

k children labelled with B1, . . . , Bk, respectively.

Note that leaves in stochastic derivation trees can be either atom-nodes or clause-nodes,

but they two have different meanings: if an atom-node annotated with B has no child, then

there is no clause in P whose head is B; if a clause-node has no child, then it corresponds to

clause with an empty body (i.e. a fact). Strictly speaking, an atom A might have multiple

and-or (resp. stochastic) derivation trees, but these trees differ only in the ordering of the

children of each node. Therefore up to permutation (of the children of each single node), there

is a unique and-or (resp. stochastic) derivation tree for each atom A in program P, denoted

as TP(A) (resp. T stP (A)). Below we shall use this assumption implicitly in defining distribution

trees (i.e. Definition 3.1.25). In other words, for derivation trees and distribution trees we use

the tree structure where the children of each node form a set instead of a list.

Example 3.1.12. Continuing Example 3.1.6, JHear alarm(M)Kpal is the stochastic deriva-

tion tree below. The subtree highlighted in red represents one of the successful proofs of

Hear alarm(M) in Pal: indeed, note that a single child is selected for each atom-node a (corre-

sponding to a clause matching a), all children of any clause-node are selected (corresponding

to the atoms in the body of the clause), and the subtree has clause-nodes as leaves (all atoms

are proven).

Hear Alarm(M)0.8 0.3

• •
Alarm0.5 0.9 Wake(M)

0.6
Paracusia(M)

0.01
• • • •

Earthquake
0.01

Burglary
0.2

• •

(3.4)

Any such subtree describes a proof, but does not yield a probability value to be associated to

a goal — this is the remit of the distribution semantics, see Example 3.1.26.
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The final coalgebra semantics J−Kp for program P will map a goal A to the and-or (resp.

stochastic) derivation tree representing all possible (resp. stochastic) SLD-resolutions of A in

P. Before this we prove the existence of the domain in which these stochastic derivation trees

live. It is the cofree coalgebra forMprPf , the dual notion of the more well-known free algebra.

Both notions are recalled below.

Definition 3.1.13. For a given endofunctor T : C→ C,

• the free T -algebra on object C (if exists) is the initial C + T (·)-algebra, denoted as

F(T )(C);

• the cofree T -coalgebra on object C (if exists) is the final C × T (·)-coalgebra, denoted as

C(T )(C).

Both notions have very intuitive meaning in the category of sets Set. Given a set X, the free

T -algebra on X is the set of all ‘T -terms’ using x ∈ X as ‘free variables’; the free T -coalgebra

on X is the set of all ‘T -trees’ whose leaves are x ∈ X.

Example 3.1.14. Free algebras in the category of sets Set are best illustrated using algebraic

terms. Let Σ = {c0, f 1, g2} be a signature of function symbols, whose superscripts denote their

respective arities. Σ determines an endofunctor T on Set, namely TΣ = 1 + (·) + (·)2. Then the

free T -algebra on set X = {x0, x1, . . . , } is exactly the set of all Σ-terms freely generated using

xi ∈ X as free variables and Σ. For instance, F(TΣ) contains x2, f(f(x3)), g(fx1)(f(fc)), . . . .

Example 3.1.15. The cofree Pf -coalgebra on X = {x0, x1, . . . } are (possibly infinite) trees

where each node has a set of children instead of a list of children, such that every node has

finitely many children, and the leaves are x ∈ X. For example, the following trees are all

elements in C(Pf )(X):

x1
x0 x4

x2

x1
x0
x1 ...

xn

xn+1
...

Here the first tree consits of only a single node; the last tree is infinite, where each node has

two children and exactly one of these two nodes is a leaf.

The cofree coalgebra — when it exists — can be constructed via a so-called terminal se-

quence construction, introduced in Worrell [Wor99]. The construction can be seen as a (co-

)generalisation of the well-known construction of free algebra as an infinite sum (colimit), as

illustrated by Example 3.1.16. To put it simple, by replacing the coproducts with products in

the free algebra construction one obtains the cofree coalgebra.
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Example 3.1.16. For free algebra, we continue Example 3.1.14. Note that F(TΣ)(X) is

equivalently the countable sum
∑

i∈N T iΣ(X), where T 0
Σ (X) = X. In set-theorectical terms,∑

i∈N T iΣ(X) is exactly the set of all Σ-terms constructed using elements in X as free variables.

Now we present the terminal sequence construction of cofree coalgebra applied to the functor

MprPf for PLP.

Construction 3.1.17. Fix a set Y , the terminal sequence for the functor Y ×MprPf (·) : Set→
Set consists of sequences of objects {Xα}α∈Ord and arrows {δαβ : Xα → Xβ}β<α∈Ord constructed

by the following transfinite induction:

• For objects,

Xα :=


Y α = 0

Y ×MprPf (Xξ) α = ξ + 1

lim{δχξ | ξ < χ < α} α is limit

• For morphisms,

δαβ :=



π0 α = 1, β = 0

idY ×MprPf (δξ+1
ξ ) α = β + 1 = ξ + 2

the universal map to Xβ α = β + 1 & β is limit

the limit projections α is limit & β < α

For the remaining cases where α = β + 1 for some β and ξ < β, δαξ is defined as δαβ ◦ δβξ .

It is helpful to spell out the induction step for δ in Construction 3.1.17 that involves limit

ordinals. For the case where α = β + 1 and β is a limit ordinal, assume that δαξ is already

defined for all ξ < β, then δα+1
α : Xα+1 → Xα is the unique morphism derived from the universal

property of the limit Xα:

Xα+1

!
��

δα+1
0

vv

δα+1
1

||

δα+1
ξ

��

···

%%

Xα

δα0

rr

δα1
uu

δαξ

&&
···

**
Y Y ×MprPf (Y )π0oo · · ·id×MprPf (π0)oo Xξ

oo
δξ1

mm

δξ0

kk · · ·δξ+1
ξ

oo

For the case where α is a limit ordinal and β ≤ α, note that Xα is defined as the limit

lim{δχξ | ξ ≤ χ ≤ α}, and δαβ is defined as the projection morphism Xα → Xβ.

Proposition 3.1.18 ([Wor99, Corollary 3.3]). If T is an accessible endofunctor on a locally

presentable category that preserves monics, then the terminal T -sequence {Aα, fαβ } converges,

necessarily to a terminal T -coalgebra.
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Proposition 3.1.19. The terminal sequence for the functor Y ×MprPf (−) converges to a

limit Xγ such that Xγ ≃ Xγ+1.

Proof. We apply Proposition 3.1.18, and simply verify the conditions for T there holds for

MprPf .

Since Set is a locally presentable category, it remains to verify the two conditions forMprPf .

It is a well-known fact that Pf is ω-accessible, and Mpr has the same property, see e.g. [Sil10,

Prop. 6.1.2]. Because accessibility is defined in terms of colimit preservation, it is clearly

preserved by composition, and thus MprPf is also accessible. Then we check that MprPf
preserves monics. For Mpr, given any monomorphism i : C → D in Set, suppose Mpr(i)(φ) =

Mpr(i)(φ
′) for some φ, φ′ ∈ Mpr(C). Then for any d ∈ D, Mpr(i)(φ)(d) = Mpr(i)(φ

′)(d). If

we focus on the image i[C], then there is an inverse function i−1 : i[C]→ C, and Mpr(i)(φ) =

Mpr(i)(φ
′) implies that φ(i−1(d)) = φ′(i−1(d)) for any d ∈ i[C]. But this simply means

that φ = φ′. As the same is true for Pf and the property is preserved by composition, we

have that MprPf preserves monics. Therefore we can conclude that the terminal sequence for

Y ×MprPf (−) converges to the cofree MprPf -coalgebra on Y .

To our purpose, we take the set Y in Construction 3.1.17 and Proposition 3.1.19 to be At ,

the set of atoms. Note that Xγ+1 is defined as At ×MprPf (Xγ), so the above isomorphism

δγ+1
γ : Xγ+1 → Xγ induces a coalgebra (δγ+1

γ )−1 : Xγ → At ×MprPf (Xγ), which we denote as

ζ. Moreover, this cofree MprPf -coalgebra on At is also the final At ×MprPf -coalgebra. The

finality of ζ in the category of At ×MprPf -coalgebras already gives a final coalgebra semantics

for an arbitrary At × MprPf -coalgebra, say β : B → At × MprPf (B), using the universal

morphism ζ → β. But to better understand what this final coalgebra semantics gives us, we

need the tree representation of the elements of Xγ, the domain of the final coalgebra ζ. This

will finally make the connection back to the resolution tree structure for PLP.

As a slight generalisation of the intuition of cofree Pf -coalgebras from Example 3.1.15,

Komendantskaya et al. [KMP10] observed that cofree coalgebras PfPf -coalgebra on At can be

seen as and-or trees. In the case of PLP, we replace the first Pf with Mpr in the coalgebra

type, which effectively adds probability values to the edges from and-nodes to or-nodes (which

are edges from atom-nodes to clause-nodes in our stochastic derivation trees), as in (3.4). This

suggests that stochastic derivation trees as in Definition 3.1.11 are elements of Xγ.

Proposition 3.1.20. Every stochastic derivation tree is an element in the final At×MprPf (·)-
coalgebra ζ : Xγ → At ×MprPf (Xγ).

Proof. By the terminal sequence construction of cofreeMprPf -coalgebra in Construction 3.1.17,

the elements in the final At ×MprPf (·)-coalgebra ζ can be seen as tree structure, where there

are two types of nodes, say type (i) and (ii), appearing alternatingly in depth in this order.

Every type (i) node is labelled with an atom, with finitely many (possibly none) type (ii) nodes

as children; also, each edge from a type (i) node to its child has a label in (0, 1]. Every type
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(ii) node has finitely many type (i) node as children. Moreover, two siblings has isomorphism

subtrees. Then it is immediate to see that every derivation tree (Definition 3.1.11) has such

tree structure, where the nodes of types (i) and (ii) are the atom-nodes and clause-nodes,

respectively.

Example 3.1.21. We illustrate the action of the coalgebra map ζ : Xγ → At ×MprPf (Xγ)

with the tree T in (3.4). As an element of Xγ, T is mapped to the pair ⟨Hear alarm(M), φ⟩,
where φ ∈MprPf (Xγ) assigns 0.8 to the set consisting of the subtrees of T with root Alarm and

with root Wake(M), 0.3 to the singleton consisting to the subtree of T with root Paracusia(M),

and 0 to any other finite set of trees.

Remark 3.1.22. Note that the converse of Proposition 3.1.20 is not true, namely not every

tree in the final At ×MprPf (·)-coalgebra is a stochastic derivation tree. Compared with the

conditions in Definition 3.1.11, those trees in the final coalgebra only meet conditions (1) and

(2), but do not necessarily satisfy (3), which is specific to the structure of the logic program.

With all the definitions at hand, we are now ready to define our first coalgebraic semantics

of propositional PLP programs.

Definition 3.1.23. The coalgebraic semantics J−Kp : At → Xγ of program P is defined as the

unique morphism from the At ×MprPf (·)-coalgebra ⟨id , p⟩ to the final coalgebra ζ : Xγ →
At ×MprPf (Xγ). Diagrammatically, the situation is depicted as follows.

At
J−Kp //

⟨id ,p⟩
��

Xγ

ζ
��

At ×MprPf (At)
id×MprPf (J−Kp) // At ×MprPf (Xγ)

(3.5)

In particular, J−Kp maps each atom a ∈ At to its stochastic derivation tree T stP (a).

Proposition 3.1.24. For each atom A ∈ At, JAKp = T stP (A).

Proof. By the terminal sequence construction and Proposition 3.1.20, it suffices to show that

for each layer the statement is true, namely JAKp and T stP (A) coincide on the roots, the roots’

children and grandchildren. But this is already implied by the commuting diagram (3.5).

3.1.3 Distribution semantics

This subsection gives a coalgebraic representation of the usual distribution semantics of prob-

abilistic logic programming. Let us gather some preliminary intuition before the technical

developments. Recall from Chapter 2 that the core of the distribution semantics is the prob-

ability distribution over the sub-programs (subsets of clauses) of the given PLP program P.

These sub-programs are also intuitively referred to as (possible) worlds, and the distribution

semantics of a goal is the sum of the probabilities of all the worlds in which it is provable.
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In order to connect the distribution semantics with the tree-like derivation semantics of

PLP in Subsection 3.1.2, we need to first encode the information of possible worlds and their

probabilities in tree-shape. Roughly speaking, a distribution over the sub-programs of the whole

program can be formed in a modular way: first we divide the whole program into several pieces,

then the original distribution can be seen as the composition of several distributions, precisely

one over the sub-programs of each of these pieces. This suggests forming a distribution over the

sub-programs along the derivation trees, where at each atom node annotated with A ∈ At one

picks the sub-program of P whose heads are A. These sub-programs form the aforementioned

pieces of the programs. This suggest the following notion of distribution trees.

Definition 3.1.25 (Distribution trees). The distribution tree for an atom A in program P is

the possibly infinite tree T dstP (A) satisfying the following properties:

1. Every node is exactly one of the three kinds: atom-node (labelled with an atom B ∈ At),

world-node (labelled with ◦), clause-node (labelled with •). They appear alternatingly in

this order in depth. In particular, the root is an atom-node labelled with A.

2. Every edge from an atom-node to its (world-)children is labelled with a probability value,

and the labels on all the edges (if exist) from the same atom-node sum up to 1.

3. Suppose s is an atom-node labelled with A′ ∈ At, and let C = {φ1, . . . , φm} be the set of

all the P-clauses whose heads are A′. Then node s has 2m (world-)children, each standing

for one subset X of C: if a child t stands for X, then the edge s → t is labelled with

probability
∏

φ∈X lab(φ) · ∏φ′∈C\X(1 − lab(φ′)) — recall that lab(φ) is the probability

labelling φ. Also, t has exactly |X|-many (clause-)children, each standing for a clause

φ ∈ X: if a child u stands for φ = r :: A′ ← B1, . . . , Bk, then node u has k (atom-

)children, labelled with B1, . . . , Bk respectively.

Note that the leaves of distribution trees must be either an atom-node or a clause-node, but

never a world-node. Comparing distribution trees with stochastic derivation trees (Definition

3.1.11), the former have in addition another class of nodes — world-nodes — that represent

sub-programs or possible worlds . Moreover, the possible worlds associated with an atom-node

must form a probability distribution, while in stochastic derivation trees probabilities labelling

parallel edges do not need to share any relationship. Indeed the probability labels in stochastic

derivation trees are seen as the probabilities of independent events. We provide an example of

the distribution tree in continuation of our leading example (Examples 2.1.10 and 3.1.12).

Example 3.1.26. In the context of Example 2.1.10, the distribution tree of Hear alarm(M) is

depicted below, where we use grey shades to emphasise sets of edges expressing a probability

distribution. Also, note the ◦s with no children, standing for empty worlds (namely worlds

containing no clause). In terms of PLP, they are labelled exactly by atoms matching no clause
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in the program.

Hear alarm(M)
<latexit sha1_base64="KG/vMAz7WWr7xBwrSbIdzPXOp3g=">AAACAHicbVC7SgNREJ2N7/hatbCwWXxAbMJuLLQM2NgICkaFJITZm1m95O6De2fFsKTxV2wsFLH1M+z8G28SC40eGDicM8PMnDBT0rDvfzqlqemZ2bn5hfLi0vLKqru2fmnSXAtqiFSl+jpEQ0om1GDJiq4zTRiHiq7C3vHQv7ojbWSaXHA/o3aMN4mMpEC2UsfdbDHds4mKE0Ld6qBCHVdO9wcdd8ev+iN4f0nwTXbq0zDCWcf9aHVTkceUsFBoTDPwM24XqFkKRYNyKzeUoejhDTUtTTAm0y5GDwy8Pat0vSjVthL2RurPiQJjY/pxaDtj5Fsz6Q3F/7xmztFRu5BJljMlYrwoypXHqTdMw+tKTYJV3xIUWtpbPXGLGgXbzMo2hGDy5b/kslYNDqq1c5vG7jgNmIct2IYKBHAIdTiBM2iAgAE8wjO8OA/Ok/PqvI1bS873zAb8gvP+Bfi0lo8=</latexit>

Paracusia(M)
<latexit sha1_base64="DUsPFkc/QprGaMrHptJeS3MAJho=">AAAB/nicbVBNS8NAEN34WetXVDx5WaxCvZSkCnosePEiVLAf0Iay2W7apZtN2J2IJRT8K148KOLV3+HNf+OmzUFbHww83pthZp4fC67Bcb6tpeWV1bX1wkZxc2t7Z9fe22/qKFGUNWgkItX2iWaCS9YADoK1Y8VI6AvW8kfXmd96YErzSN7DOGZeSAaSB5wSMFLPPuwCewQdpHWiCE00J+Xbs0nPLjkVZwq8SNyclFCOes/+6vYjmoRMAhVE647rxOClRAGngk2K3USzmNARGbCOoZKETHvp9PwJPjVKHweRMiUBT9XfEykJtR6HvukMCQz1vJeJ/3mdBIIrL+UyToBJOlsUJAJDhLMscJ8rRkGMDSFUcXMrpsMsBzCJFU0I7vzLi6RZrbjnlerdRal2ksdRQEfoGJWRiy5RDd2gOmogilL0jF7Rm/VkvVjv1sesdcnKZw7QH1ifPzmvlYw=</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Wake(M)
<latexit sha1_base64="RMwtJPevQRvJfhNBt5nerulxYxI=">AAAB+XicbVDLSgNBEJyNrxhfqx69DEYhXsJuFPQY8OJFiGAekIQwO+lNhsw+mOkNhiV/4sWDIl79E2/+jZNkD5pY0FBUddPd5cVSaHScbyu3tr6xuZXfLuzs7u0f2IdHDR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PRGtzO/OQalRRQ+4iSGbsAGofAFZ2iknm13EJ5Q+2mTjaB0fzHt2UWn7MxBV4mbkSLJUOvZX51+xJMAQuSSad12nRi7KVMouIRpoZNoiBkfsQG0DQ1ZALqbzi+f0nOj9KkfKVMh0rn6eyJlgdaTwDOdAcOhXvZm4n9eO0H/ppuKME4QQr5Y5CeSYkRnMdC+UMBRTgxhXAlzK+VDphhHE1bBhOAuv7xKGpWye1muPFwVq2dZHHlyQk5JibjkmlTJHamROuFkTJ7JK3mzUuvFerc+Fq05K5s5Jn9gff4AOKmTSQ==</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Wake(M)
<latexit sha1_base64="RMwtJPevQRvJfhNBt5nerulxYxI=">AAAB+XicbVDLSgNBEJyNrxhfqx69DEYhXsJuFPQY8OJFiGAekIQwO+lNhsw+mOkNhiV/4sWDIl79E2/+jZNkD5pY0FBUddPd5cVSaHScbyu3tr6xuZXfLuzs7u0f2IdHDR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PRGtzO/OQalRRQ+4iSGbsAGofAFZ2iknm13EJ5Q+2mTjaB0fzHt2UWn7MxBV4mbkSLJUOvZX51+xJMAQuSSad12nRi7KVMouIRpoZNoiBkfsQG0DQ1ZALqbzi+f0nOj9KkfKVMh0rn6eyJlgdaTwDOdAcOhXvZm4n9eO0H/ppuKME4QQr5Y5CeSYkRnMdC+UMBRTgxhXAlzK+VDphhHE1bBhOAuv7xKGpWye1muPFwVq2dZHHlyQk5JibjkmlTJHamROuFkTJ7JK3mzUuvFerc+Fq05K5s5Jn9gff4AOKmTSQ==</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

Paracusia(M)
<latexit sha1_base64="DUsPFkc/QprGaMrHptJeS3MAJho=">AAAB/nicbVBNS8NAEN34WetXVDx5WaxCvZSkCnosePEiVLAf0Iay2W7apZtN2J2IJRT8K148KOLV3+HNf+OmzUFbHww83pthZp4fC67Bcb6tpeWV1bX1wkZxc2t7Z9fe22/qKFGUNWgkItX2iWaCS9YADoK1Y8VI6AvW8kfXmd96YErzSN7DOGZeSAaSB5wSMFLPPuwCewQdpHWiCE00J+Xbs0nPLjkVZwq8SNyclFCOes/+6vYjmoRMAhVE647rxOClRAGngk2K3USzmNARGbCOoZKETHvp9PwJPjVKHweRMiUBT9XfEykJtR6HvukMCQz1vJeJ/3mdBIIrL+UyToBJOlsUJAJDhLMscJ8rRkGMDSFUcXMrpsMsBzCJFU0I7vzLi6RZrbjnlerdRal2ksdRQEfoGJWRiy5RDd2gOmogilL0jF7Rm/VkvVjv1sesdcnKZw7QH1ifPzmvlYw=</latexit>

0.06
<latexit sha1_base64="YCYNrh6eJCR+l0zw82Ra1CrPEJg=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxUUZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8GOjUw=</latexit>

0.56
<latexit sha1_base64="OPaUUInWZ7WtM0szfv5m2EWtNIE=">AAAB63icbVDLSsNAFL3xWeur6tLNYBVchaQ+lwU3LivYB7ShTKaTdujMJMxMhBL6C25cKOLWH3Ln3zhps9DWAxcO59zLvfeECWfaeN63s7K6tr6xWdoqb+/s7u1XDg5bOk4VoU0S81h1QqwpZ5I2DTOcdhJFsQg5bYfju9xvP1GlWSwfzSShgcBDySJGsMklz7267leqnuvNgJaJX5AqFGj0K1+9QUxSQaUhHGvd9b3EBBlWhhFOp+VeqmmCyRgPaddSiQXVQTa7dYrOrDJAUaxsSYNm6u+JDAutJyK0nQKbkV70cvE/r5ua6DbImExSQyWZL4pSjkyM8sfRgClKDJ9Ygoli9lZERlhhYmw8ZRuCv/jyMmnVXP/CrT1cVuunRRwlOIYTOAcfbqAO99CAJhAYwTO8wpsjnBfn3fmYt644xcwR/IHz+QPJJ41R</latexit>

0.14
<latexit sha1_base64="3mrePS38LAq+zzqRIz9tzopwVa4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LFbBU0hqQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ll+Y1itea63AFonfkFqUKA1rH4NRjFJBZWGcKx13/cSE2RYGUY4nVcGqaYJJlM8pn1LJRZUB9ni1jm6tMoIRbGyJQ1aqL8nMiy0nonQdgpsJnrVy8X/vH5qotsgYzJJDZVkuShKOTIxyh9HI6YoMXxmCSaK2VsRmWCFibHxVGwI/urL66RTd/1rt/7QqDUvijjKcAbncAU+3EAT7qEFbSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QPAC41L</latexit>

0.05
<latexit sha1_base64="NXltlD8xkGuS5rydE/TN2AF/J1M=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxURZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8AKjUs=</latexit>

0.45
<latexit sha1_base64="lHffAMkQSWT70qUSA/cDw3WzQ6c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4Ckmt6LHgxWMF+wFtKJvtpl26uwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTDjTxvO+nbX1jc2t7dJOeXdv/+CwcnTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0ueW79elCpeq43B1olfkGqUKA5qHz1hzFJBZWGcKx1z/cSE2RYGUY4nZX7qaYJJhM8oj1LJRZUB9n81hm6sMoQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qotsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxlG0I/vLLq6Rdc/0rt/ZQrzbOizhKcApncAk+3EAD7qEJLSAwhmd4hTdHOC/Ou/OxaF1zipkT+APn8wfGHo1P</latexit>

0.99
<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit>

0.05
<latexit sha1_base64="NXltlD8xkGuS5rydE/TN2AF/J1M=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxURZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8AKjUs=</latexit>

0.45
<latexit sha1_base64="lHffAMkQSWT70qUSA/cDw3WzQ6c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4Ckmt6LHgxWMF+wFtKJvtpl26uwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTDjTxvO+nbX1jc2t7dJOeXdv/+CwcnTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0ueW79elCpeq43B1olfkGqUKA5qHz1hzFJBZWGcKx1z/cSE2RYGUY4nZX7qaYJJhM8oj1LJRZUB9n81hm6sMoQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qotsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxlG0I/vLLq6Rdc/0rt/ZQrzbOizhKcApncAk+3EAD7qEJLSAwhmd4hTdHOC/Ou/OxaF1zipkT+APn8wfGHo1P</latexit>

0.4
<latexit sha1_base64="weY42Ijnrlku/of/HZcjlgNsa8M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4Ckkt6LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0U0wESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadog3BX355lTQrrn/lVu6r5dp5HkcBTuEMLsGHa6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBQUI0Q</latexit>

0.6
<latexit sha1_base64="VMRsbfERpHIYdFI8lI1yjT2bUCA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV9Vjw4rGi/YA2lM120y7dbMLuRCilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUykMet63s7K6tr6xWdgqbu/s7u2XDg4bJsk043WWyES3Qmq4FIrXUaDkrVRzGoeSN8Ph7dRvPnFtRKIecZTyIKZ9JSLBKFrpwXOvuqWy53ozkGXi56QMOWrd0lenl7As5gqZpMa0fS/FYEw1Cib5pNjJDE8pG9I+b1uqaMxNMJ6dOiFnVumRKNG2FJKZ+ntiTGNjRnFoO2OKA7PoTcX/vHaG0U0wFirNkCs2XxRlkmBCpn+TntCcoRxZQpkW9lbCBlRThjadog3BX3x5mTQqrn/hVu4vy9XTPI4CHMMJnIMP11CFO6hBHRj04Rle4c2Rzovz7nzMW1ecfOYI/sD5/AFTWI0S</latexit> 0.99

<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit>

0.99
<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit> 0.99

<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit>

0.8
<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.2
<latexit sha1_base64="fO/MKjfP4d5nx2U/+RB9iG8LAKQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0iqoMeCF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04LnVXrniud4cZJX4OalAjnqv/NXtJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JulT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6CaYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyKmlWXf/Srd5fVWpneRxFOIFTuAAfrqEGd1CHBjAYwDO8wpsjnBfn3flYtBacfOYY/sD5/AFNSI0O</latexit>0.8

<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.2
<latexit sha1_base64="fO/MKjfP4d5nx2U/+RB9iG8LAKQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0iqoMeCF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04LnVXrniud4cZJX4OalAjnqv/NXtJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JulT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6CaYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyKmlWXf/Srd5fVWpneRxFOIFTuAAfrqEGd1CHBjAYwDO8wpsjnBfn3flYtBacfOYY/sD5/AFNSI0O</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</ latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit> Earthquake

<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

0.05
<latexit sha1_base64="NXltlD8xkGuS5rydE/TN2AF/J1M=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxURZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8AKjUs=</latexit>

0.45
<latexit sha1_base64="lHffAMkQSWT70qUSA/cDw3WzQ6c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4Ckmt6LHgxWMF+wFtKJvtpl26uwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTDjTxvO+nbX1jc2t7dJOeXdv/+CwcnTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0ueW79elCpeq43B1olfkGqUKA5qHz1hzFJBZWGcKx1z/cSE2RYGUY4nZX7qaYJJhM8oj1LJRZUB9n81hm6sMoQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qotsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxlG0I/vLLq6Rdc/0rt/ZQrzbOizhKcApncAk+3EAD7qEJLSAwhmd4hTdHOC/Ou/OxaF1zipkT+APn8wfGHo1P</latexit> 0.05
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.

In the literature, the distribution semantics usually associates with a goal a single probability

value (2.1), rather than a tree structure. However, given the distribution tree it is straightfor-

ward to compute such probability. The subtree highlighted in red above describes a refutation

of Hear alarm(M), and the probability of this subtree is the product of all the probabilities

appearing in the subtree, namely 0.000001296. The distribution semantics is then the sum of

all the probabilities associated to such ‘proof’ subtrees. The computation is shown in detail in

3.2.4.

So far we have defined distribution trees and seen how it encode the caonnical distribution

semantics in tree-like structure. Next we focus on the coalgebraic characterisation of distribu-

tion trees and the associated semantics map, similar to the development in Subsection 3.1.2 for

stochastic derivation trees and the final coalgebraic semantics J−K.
Our strategy will be to introduce a novel coalgebra type D≤PfPf , such that distribution trees

can be seen as elements of the cofree D≤PfPf -coalgebra on At , or in other words, elements of the

final At ×D≤PfPf (·)-coalgebra. Then, we will provide a natural transformationMpr ⇒ D≤Pf ,

which can be used to transform stochastic derivation trees into distribution trees. Finally,

composing the universal properties of these cofree coalgebras will yield the desired distribution

semantics.

We begin with explaining the intuition behind choosing the coalgebra type D≤PfPf . This

functor is simply the composite of the sub-distribution functor D≤ and two finite powerset

functors Pf . Based on the experience of cofree Pf -coalgebras (Example 3.1.15) and cofree

MprPf -coalgebras (Proposition 3.1.20), cofree D≤PfPf -coalgebras can be seen as trees with

three different sorts of nodes, one for each functor among D≤, Pf , Pf . This intuition matches

the structure of distribution trees (Definition 3.1.25).

Remark 3.1.27. Note that we cannot work with full probabilities by replacing the functor

D≤ with D here: a goal may not match any clause, and there is no distribution (though a

sub-distribution) over the empty set. In such a case there is no world in which the goal is
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provable and its probability in the program is 0.

The next step is to recover distribution trees as the elements of the D≤PfPf -cofree coalgebra

on At . This goes via a terminal sequence, similarly to the case ofMprPf in the previous section.

For convenience we will simply state the terminal sequence construction for set At .

Construction 3.1.28. The terminal sequence for the functor At × D≤PfPf (·) : Set → Set

consists of sequences of objects {Yα}α∈Ord and arrows {λαβ : Yα → Yβ}β<α∈Ord constructed by

the following transfinite induction:

• For objects,

Yα :=


At α = 0

At ×D≤PfPf (Yξ) α = ξ + 1

lim{λχξ | ξ < χ < α} α is limit

• For morphisms,

λαβ :=



π0 α = 1, β = 0

idAt ×D≤PfPf (λξ+1
ξ ) α = β + 1 = ξ + 2

the universal map to Yβ α = β + 1 & β is limit

the limit projections α is limit & β < α

For the remaining cases where α = β + 1 for some β and ξ < β, λαξ is defined as λαβ ◦ λβξ .

The details of the cases for λαβ is similar to the explanation right after Construction 3.1.17,

and we do not repeat here.

Proposition 3.1.29. The terminal sequence of At×D≤PfPf (·) converges at some limit ordinal

χ, and (λχ+1
χ )−1 : Yχ → At ×D≤PfPfYχ is the final At ×D≤PfPf coalgebra.

Proof. As for Proposition 3.1.19, by [Wor99, Corollary 3.3] it suffices to show that D≤Pf is

accessible and preserves monos. Both are simple exercises; in particular, see [BSdV04] for

accessibility of D≤.

For readability we denote the final At ×D≤PfPf (·)-coalgebra as θ : Yχ → At ×D≤PfPf (Yχ).

The association of distribution trees with elements of Yχ is suggested by the type At×D≤PfPf .

Indeed, At × D≤ is the layer of atom-nodes, labelled with elements of At and with outgoing

edges forming a sub-probability distribution; the first Pf is the layer of world-nodes; the second

Pf is the layer of clause-nodes. The coalgebra map Yχ → At × D≤PfPfYχ associates a goal to

subtrees of its distribution trees, analogously to the coalgebra structure on stochastic derivation

trees in the previous section.

Proposition 3.1.30. Every distribution tree for atoms in P is an element in Yχ.
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Proof. The proof is similar to that for stochastic derivation tree (Proposition 3.1.20). In par-

ticular, elements in Yχ can be seen as trees with three types of nodes, which instantiate to

atom-nodes, world-nodes, clause-nodes in distribution trees.

Finally we establish the coalgebraic semantics in terms of distribution trees. For this pur-

pose we use the stochastic derivation trees and its corresponding coalgebraic semantics as an

intermediate step, by translating stochastic derivation trees into distribution trees. Graphically,

starting from a stochastic derivation tree, for each atom node s one can form a distribution over

the subsets of all its children, by regarding the probability labels on the edges to these children

nodes as the probability of individual events. The result will share the structure of a distribution

tree. To formalise this translation, we introduce a natural transformation pw :Mpr ⇒ D≤Pf ,

which basically expands a finite set of independent random events into a joint distribution over

the possible outcomes of these events.

Definition 3.1.31. The ‘possible worlds’ natural transformation pw : Mpr⇒D≤Pf is defined

at each set X as

pwX : φ 7→
∑

Y⊆supp(φ)

rY |Y ⟩ (3.6)

where each rY =
∏

y∈Y φ(y) ·∏y′∈supp(φ)\Y (1 − φ(y′)). In particular, when supp(φ) is empty,

pwX(φ) is the empty sub-distribution ∅.

Proposition 3.1.32. The class of mappings pw defined in Definition 3.1.31 is a natural trans-

formation.

Proof. It is straightforward to see that pwX(φ) in (3.6) is an element in D≤Pf (X): supp(φ) is

finite, and when supp(φ) is nonempty,
∑

Y⊆supp(φ) rY = 1 thus forms a distribution.

To check the naturality, we show that for an arbitrary function h : X → Y , the following

diagram commutes:

Mpr(X)
Mpr(h) //

pwX

��

Mpr(Y )

pwY

��
D≤Pf (X)

D≤Pf (h)
// D≤Pf (Y )

(3.7)

Let us start from an arbitrary φ ∈ Mpr(X). The case where φ is an empty probabilistic

multiset is trivial, so we assume that φ is nonempty, say φ = p1|x1⟩+ · · ·+ pk|xk⟩.
On one hand we follow the down-right route. The distribution pwX(φ) has support P(supp(φ)),

and for any A ∈ P(supp(φ)), pwX(φ)(A) =
(∏

a∈A φ(a)
)
·
(∏

a∈supp(φ)\A(1− φ(a))
)

. Then

the support of D≤Pf (h)(pwX(φ)) is h[supp(pwX(φ))] = h[P(supp(φ))], and for each B ∈
h[P(supp(φ))],

D≤Pf (h)(pwX(φ))(B) =
∑

A∈supp(pwX(φ))
& h[A]=B

pwX(φ)(A)
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=
∑

A∈P(supp(φ))
& h[A]=B

pwX(ϕ)(A)

=
∑

A∈P(supp(φ))
& h[A]=B

∏
a∈A

φ(a) ·
∏

a∈supp(φ)\A

(1− φ(a))

 (3.8)

On the other hand we follow the right-down route. Mpr(h)(φ) has support h[supp(φ)], and

for arbitrary y ∈ h[supp], Mpr(h)(φ)(y) =
∨pr
x∈h−1(y) φ(x) = 1 −∏x∈h−1(y)(1 − φ(x)). Then

pwY (Mpr(h)(φ)) has support P(supp(Mpr(h)(φ))) = P(h[supp(φ)]). And for each B′ in this

support set,

pwY (Mpr(h)(φ))(B′) =
∏
y∈B′

Mpr(h)(φ)(y) ·
∏

y∈h[supp(φ)]\B′

(1−Mpr(h)(φ)(y)) (3.9)

First we note that the two supports h[P(supp(φ))] and P(h[supp(φ)]) are equivalent: B ∈
h[P(supp(φ))] if and only if ∃A ⊆ supp(φ) such that h[A] = B; B′ ∈ P(h[supp(φ)]) if and only

if B′ ⊆ h[supp(φ)] if and only if ∃A′ ⊆ supp(φ) such that h[A′] = B′.

Next we further expand (3.9) by spelling out the definition ofMpr(h). We leave the detailed

explanation to steps (3.10), (3.11) below till after the calculation.

pwY (Mpr(h)(φ))(B′)

=
∏
y∈B′

1−
∏

x∈h−1(y)

(1− φ(x))

 · ∏
y∈h[supp(φ)]\B′

1−

1−
∏

x∈h−1(y)

(1− φ(x))


=
∏
y∈B′

1−
∏

x∈h−1(y)

(1− φ(x))

 · ∏
y∈h[supp(φ)]\B′

∏
x∈h−1(y)

(1− φ(x))

(3.12)
=
∏
y∈B′

 ∑
Z⊆ih−1(y)

∏
x∈Z

φ(x) ·
∏

x∈h−1(y)\Z

(1− φ(x))

 · ∏
y∈h[supp(φ)]\B′

x∈h−1(y)

(1− φ(x)) (3.10)

=
∑

A′⊆supp(φ)
& h[A′]=B′

∏
x∈A′

φ(x) ·
∏

x∈h−1[B]\A′

(1− φ(x))

 · ∏
y∈h[supp(φ)]\B′

x∈h−1(y)

(1− φ(x)) (3.11)

=
∑

A′⊆supp(φ)
& h[A′]=B′

∏
x∈A′

φ(x) ·
∏

x∈h−1[B′]\A′

(1− φ(x))

 · ∏
x∈supp(φ)

& x ̸∈h−1[B′]

(1− φ(x))

=
∑

A′⊆supp(φ)
& h[A′]=B′

∏
x∈A′

φ(x) ·
∏

x∈h−1[B′]\A′

(1− φ(x)) ·
∏

x∈supp(φ)
x ̸∈h−1[B′]

(1− φ(x))


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=
∑

A′⊆supp(φ)
& h[A′]=B′

∏
x∈A′

φ(x) ·
∏

x∈supp(φ)\A′

(1− φ(x))


(3.8)
= D≤Pf (h)(Mpr(φ))(B′)

The two steps (3.10) and (3.11) in the above reasoning deserves more explanation. In (3.10),

⊆i is the subset relation ⊆ restricted to non-empty subsets, so the sum is over all non-empty

subsets Z of h−1(y). Moreover, (3.10) instantiates the following more general equation that

holds for arbitrary set X, a probabilistic multiset ψ ∈Mpr(X) and set A ⊆ supp(ψ):

1−
∏
a∈A

(1− ψ(a)) =
∑
Z⊆iA

∏
a∈Z

ψ(a) ·
∏

a∈A\Z

(1− ψ(a))

 (3.12)

It generalises the equation 1 − (1 − p)(1 − q) = pq + p(1 − q) + q(1 − p). We briefly explain

its proof in words. Intuitively, one can think of A as a (finite) set of independent events, and

ψ(a) as the probability of event a. Then the left-hand-side of (3.12) calculates 1 minus the

probability that none of a ∈ A happens; the right-hand-side sums up the probabilities of all

possible worlds in which some of a ∈ A happens. Both calculate the same value, namely the

probability that at least one event in A happens.

Equation (3.11) is obtained by expanding
∏

y∈B′
∑

Z⊆ih−1(y)G(y, Z) into a summation, where

G(y, Z) :=
∏

x∈Z φ(x) · ∏x∈h−1(y)\Z(1 − φ(x)). In the resulting summation, each summand

chooses exactly one summand from every sum
∑

Z⊆ih−1(y)G(y, Z) for a given y ∈ B′. Moreover,

every such choice corresponds to exactly one A′ satisfying h[A′] = B′: basically we select for

each y ∈ B′ a non-empty subset of pre-images of y. So we have∏
y∈B′

∑
Z⊆ih−1(y)

G(y, Z) =
∑

A′⊆supp(φ)
h[A′]=B′

∏
y∈B′

G(y, h−1(y) ∩ A′)

=
∑

A′⊆supp(φ)
h[A′]=B′

∏
y∈B′

 ∏
x∈h−1(y)∩A′

φ(x) ·
∏

x∈h−1(y)\(h−1(y)∩A′)

(1− φ(x))



=
∑

A′⊆supp(φ)
h[A′]=B′

∏
x∈A′

φ(x) ·
∏

x∈h−1[B′]\A′

(1− φ(x))


and this is exactly the summation in (3.11).

Now the aformentioned intuition for translating stochastic derivation trees into distribution

trees can be formalised using pw . More precisely, applying pw at each atom node in the

stochastic trees returns the desired derivation tree, and such ‘layer-by-layer’ transformation

can be formalised using the universal property of final coalgebras.
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Definition 3.1.33. The coalgebraic distribution semantics ⟨⟨−⟩⟩p is defined as the following

unique morphism At → C(D≤PfPf ).

At

⟨⟨−⟩⟩p

++J−Kp //

<idAt ,p>

��

Xγ
ex //

∼=
��

Yχ

∼=

��

At ×MprPfAt
idAt×MprPf (J−Kp)//

idAt×pwPf (At)

��

At ×MprPfXγ

idAt×pwPf (Xγ )

��
At ×D≤PfPfAt

idAt×D≤PfPf (J−Kp)// At ×D≤PfPfXγ

idAt×D≤PfPf (ex) // At ×D≤PfPfYχ
(3.13)

Let us provide some explanation for (3.13). The left-top square is the one defining the

coalgebraic semantics ⟨⟨−⟩⟩p in terms of stochastic derivation trees. The left-bottom square

applies pw exactly one step, and form a distribution for a possible world of atoms or stochastic

derivation trees. The right square and the whole big square both apply the universal property

of the final At×D≤PfPf (·)-coalgebra Yχ. In particular, ex extends probabilistic logic programs

and stochastic derivation trees to the same coalgebra type as distribution trees. Then the

distribution semantics ⟨⟨−⟩⟩p is defined as the unique morphism to Yχ. By uniqueness, ⟨⟨−⟩⟩p
can also be computed as the composite ex ◦ J−Kp, that is, first one derives the semantics J−Kp,
then applies the translation pw to each level of the resulting stochastic derivation tree, in order

to turn it into a distribution tree.

Finally, this coalgebraic semantics ⟨⟨−⟩⟩p exactly assigns to each atom its distribution tree.

Proposition 3.1.34. For each atom A ∈ At, ⟨⟨A⟩⟩p = T dstP (A).

Proof. The proof is similar to that for stochastic derivation trees (Proposition 3.1.24). In

particular, the commuting diagram (3.13) implies that at each layer ⟨⟨A⟩⟩p behaves exactly as

the distribution tree of A.

3.2 Probabilistic logic programming: first-order case

In this subsection we generalise our coalgebraic treatment for the propositional case to arbi-

trary probabilistic logic programs and goals, possibly including variables. First, in Subsection

3.2.1, we give a coalgebraic representation for general PLP, and equip it with a final coalgebra

semantics in terms of stochastic derivation trees (Subsection 3.2.2). Next, in Subsection 3.2.3,

we study the coalgebraic representation of the distribution semantics. Before the technical

development, we begin by introducing our leading example — an extension of Example 2.1.10.

Example 3.2.1. We tweak the ground program of Example 2.1.10 to allow variables and

function symbols. Let us explain the scenario alongside looking at the details of the program.
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Now it is not just Mary that may hear the alarm, but also her neighbours (represented by

Neigh(Mary), Neigh(Neigh(Mary)), . . . ). Moreover, besides the aforementioned two reasons in

Example 2.1.10 for the alarm to ring, there is also a small probability that the alarm rings

because someone passes too close to Mary’s house. Also, we can only estimate the possibility

of paracusia and being awake for Mary, not the neighbours (but intuitively these factors shall

not affect whether the alarm in Mary’s place rings or not). The revised program Pal is based on

an extension of the language in Example 2.1.10: we add a new 1-ary function symbol Neigh1

to the signature and a new 1-ary predicate PassBy(−) to the alphabet. Note the appearance

of a variable x, which can be freely substituted by an arbitrary term.

0.01 :: Earthquake ← 0.5 :: Alarm ← Earthquake

0.2 :: Burglary ← 0.9 :: Alarm ← Burglary

0.6 :: Wake(Mary) ← 0.1 :: Alarm ← PassBy(x)

0.01 :: Paracusia(Mary) ← 0.3 :: Hear alarm(x) ← Paracusia(x)

0.8 :: Wake(Neigh(x)) ← Wake(x) 0.8 :: Hear alarm(x) ← Alarm, Wake(x)

We attempt to maintain our approach as a direct generalisation of the coalgebraic semantics

for pure logic programs in Bonchi and Zanasi [BZ15], which we briefly recall here. There the

derivation semantics for general (definite) logic programs represents resolution by unification.

This means that, at each step of the computation, given a goal A, one seeks substitutions θ, τ

such that Aθ = Hτ for the head H of some clause in the program.

Example 3.2.2. In the context of Example 3.2.1, the tree for JHear alarm(x)KPal is (partially)

depicted below. For the reason of space, in (3.14) we abbreviate Neigh as N and Mary as M.

Compared to the ground case (Example 3.1.12), now substitutions applied on the goal side

appear explicitly as labels (e.g. x 7→ N(x)). Moreover, note that for each atom Aθ and clause

φ, there might be multiple substitutions τ such that Aθ = head(φ)τ . This is presented in the

following tree (3.14) by the ♦-labelled nodes, which are children of the clause-nodes (labelled

with •).
Hear alarm(x)

<latexit sha1_base64="hJ+KifK8TTcAGh5rlLSCc56QZK4=">AAACAHicbVA9SwNBEN2LXzF+nVpY2BxGITbhLgpaCjYpFYwGciHMbeZ0yd4Hu3NiONL4V2wsFLH1Z9j5b9zEKzTxwcDjvRlm5gWpFJpc98sqzc0vLC6Vlysrq2vrG/bm1rVOMsWxxROZqHYAGqWIsUWCJLZThRAFEm+CwfnYv7lHpUUSX9EwxW4Et7EIBQcyUs/e8QkfSId5E0H5PZCgotrD4ahnV926O4EzS7yCVFmBi5796fcTnkUYE5egdcdzU+rmoEhwiaOKn2lMgQ/gFjuGxhCh7uaTB0bOgVH6TpgoUzE5E/X3RA6R1sMoMJ0R0J2e9sbif14no/C0m4s4zQhj/rMozKRDiTNOw+kLhZzk0BDgSphbHX4HCjiZzComBG/65Vly3ah7R/XG5XH1bL+Io8x22R6rMY+dsDPWZBesxTgbsSf2wl6tR+vZerPef1pLVjGzzf7A+vgG3wqWeg==</latexit>

Wake(M)
<latexit sha1_base64="RMwtJPevQRvJfhNBt5nerulxYxI=">AAAB+XicbVDLSgNBEJyNrxhfqx69DEYhXsJuFPQY8OJFiGAekIQwO+lNhsw+mOkNhiV/4sWDIl79E2/+jZNkD5pY0FBUddPd5cVSaHScbyu3tr6xuZXfLuzs7u0f2IdHDR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PRGtzO/OQalRRQ+4iSGbsAGofAFZ2iknm13EJ5Q+2mTjaB0fzHt2UWn7MxBV4mbkSLJUOvZX51+xJMAQuSSad12nRi7KVMouIRpoZNoiBkfsQG0DQ1ZALqbzi+f0nOj9KkfKVMh0rn6eyJlgdaTwDOdAcOhXvZm4n9eO0H/ppuKME4QQr5Y5CeSYkRnMdC+UMBRTgxhXAlzK+VDphhHE1bBhOAuv7xKGpWye1muPFwVq2dZHHlyQk5JibjkmlTJHamROuFkTJ7JK3mzUuvFerc+Fq05K5s5Jn9gff4AOKmTSQ==</latexit> Paracursia(M)

<latexit sha1_base64="9CK9lk7QeEc6nYby/xUAPdK/z44=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AV6qbMVEGXBTduhAr2AW0pmTTThmYyQ3JHLGMX/oobF4q49Tfc+Tdm2llo64HA4ZxzuTfHiwTX4DjfVm5peWV1Lb9e2Njc2t6xd/caOowVZXUailC1PKKZ4JLVgYNgrUgxEniCNb3RVeo375nSPJR3MI5YNyADyX1OCRipZx90gD2A9pMaUYTGJkhKN6eTnl10ys4UeJG4GSmiDLWe/dXphzQOmAQqiNZt14mgmxAFnAo2KXRizSJCR2TA2oZKEjDdTab3T/CJUfrYD5V5EvBU/T2RkEDrceCZZEBgqOe9VPzPa8fgX3YTLqMYmKSzRX4sMIQ4LQP3uWIUxNgQQhU3t2I6TIsAU1nBlODOf3mRNCpl96xcuT0vVo+zOvLoEB2hEnLRBaqia1RDdUTRI3pGr+jNerJerHfrYxbNWdnMPvoD6/MHFKCWCA==</latexit>

Wake(N(x))
<latexit sha1_base64="MmtLlOiShqOsfULrNeBQ+ky/yJs=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBKvQbkpSBV0W3LiSCvYBbSiT6aQdOpmEmYkYQv0VNy4UceuHuPNvnKZZaOuBgcM593LPHC9iVCrb/jYKa+sbm1vF7dLO7t7+gXl41JFhLDBp45CFouchSRjlpK2oYqQXCYICj5GuN72e+90HIiQN+b1KIuIGaMypTzFSWhqa5UGA1ET6aRdNSfW2+lirzYZmxa7bGaxV4uSkAjlaQ/NrMApxHBCuMENS9h07Um6KhKKYkVlpEEsSITxFY9LXlKOASDfNws+sM62MLD8U+nFlZervjRQFUiaBpyezqMveXPzP68fKv3JTyqNYEY4Xh/yYWSq05k1YIyoIVizRBGFBdVYLT5BAWOm+SroEZ/nLq6TTqDvn9cbdRaV5mtdRhGM4gSo4cAlNuIEWtAFDAs/wCm/Gk/FivBsfi9GCke+U4Q+Mzx/Cd5QW</latexit>

PassBy(N(M))
<latexit sha1_base64="FfJ5Ri6QnBT4geJpm+dUGbGTmpU=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2AV2k2ZqYIui27cKBVsLbRDyaSZNjTzIMkIw1DwV9y4UMSt3+HOvzGdzkJbDwQO59ybnBw34kwqy/o2CkvLK6trxfXSxubW9o65u9eWYSwIbZGQh6LjYkk5C2hLMcVpJxIU+y6nD+74auo/PFIhWRjcqySijo+HAfMYwUpLffOg52M1kl7axFJeJpXbyk21OumbZatmZUCLxM5JGXI0++ZXbxCS2KeBIlzf1LWtSDkpFooRTielXixphMkYD2lX0wD7VDppFn+CTrQyQF4o9AkUytTfGyn2pUx8V09mYee9qfif142Vd+GkLIhiRQMye8iLOVIhmnaBBkxQoniiCSaC6ayIjLDAROnGSroEe/7Li6Rdr9mntfrdWblxnNdRhEM4ggrYcA4NuIYmtIBACs/wCm/Gk/FivBsfs9GCke/swx8Ynz8M/ZTJ</latexit>

PassBy(N(x))
<latexit sha1_base64="FdN3XJcG2sBC0E7rzpxR+t5LPVY=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2AV2k2ZqYIui25cSQXbCu1QMmmmDc08SDLiMBT8FTcuFHHrd7jzb0yns9DWA4HDOfcmJ8eNOJPKsr6NwtLyyupacb20sbm1vWPu7rVlGAtCWyTkobh3saScBbSlmOL0PhIU+y6nHXd8NfU7D1RIFgZ3Komo4+NhwDxGsNJS3zzo+ViNpJc2sZSXSeWm8litTvpm2apZGdAisXNShhzNvvnVG4Qk9mmgCNc3dW0rUk6KhWKE00mpF0saYTLGQ9rVNMA+lU6axZ+gE60MkBcKfQKFMvX3Rop9KRPf1ZNZ2HlvKv7ndWPlXTgpC6JY0YDMHvJijlSIpl2gAROUKJ5ogolgOisiIywwUbqxki7Bnv/yImnXa/ZprX57Vm4c53UU4RCOoAI2nEMDrqEJLSCQwjO8wpvxZLwY78bHbLRg5Dv78AfG5w9OqpT0</latexit>

PassBy(M)
<latexit sha1_base64="7Tyyu52E0+gkbrsyMgZQOwtpazM=">AAAB+3icbVDLSsNAFL3xWesr1qWbYBXqpiRV0GXRjRuhgn1AG8pkOmmHTiZhZiKGkF9x40IRt/6IO//GaZqFth4YOJxz78yZ40WMSmXb38bK6tr6xmZpq7y9s7u3bx5UOjKMBSZtHLJQ9DwkCaOctBVVjPQiQVDgMdL1pjczv/tIhKQhf1BJRNwAjTn1KUZKS0OzMgiQmkg/bSEpr5Pa3Vk2NKt23c5hLROnIFUo0BqaX4NRiOOAcIWZvqbv2JFyUyQUxYxk5UEsSYTwFI1JX1OOAiLdNM+eWadaGVl+KPThysrV3xspCqRMAk9P5kkXvZn4n9ePlX/lppRHsSIczx/yY2ap0JoVYY2oIFixRBOEBdVZLTxBAmGl6yrrEpzFLy+TTqPunNcb9xfV5klRRwmO4Bhq4MAlNOEWWtAGDE/wDK/wZmTGi/FufMxHV4xi5xD+wPj8AZgtlAw=</latexit>

PassBy(y)
<latexit sha1_base64="KpHdlgaM45VI2b5o172jTqSek88=">AAAB+3icbVC7TsMwFL0pr1JeoYwsFgWpLFVSkGCsYGEsEn1IbVQ5rtNadR6yHUQU5VdYGECIlR9h429w0wzQciRLR+fcax8fN+JMKsv6Nkpr6xubW+Xtys7u3v6BeVjtyjAWhHZIyEPRd7GknAW0o5jitB8Jin2X0547u537vUcqJAuDB5VE1PHxJGAeI1hpaWRWhz5WU+mlbSzlTVJPzrORWbMaVg60SuyC1KBAe2R+DcchiX0aKML1NQPbipSTYqEY4TSrDGNJI0xmeEIHmgbYp9JJ8+wZOtPKGHmh0CdQKFd/b6TYlzLxXT2ZJ1325uJ/3iBW3rWTsiCKFQ3I4iEv5kiFaF4EGjNBieKJJpgIprMiMsUCE6XrqugS7OUvr5Jus2FfNJr3l7XWaVFHGY7hBOpgwxW04A7a0AECT/AMr/BmZMaL8W58LEZLRrFzBH9gfP4A2zWUOA==</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit> x �� x

<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

x �� N(x)
<latexit sha1_base64="GX0hsBLaOHTV0Neuy6xv0m10oOE=">AAACAHicbVC7SgNBFL0bXzG+Vi0sbAajEJuwGwUtAzZWEsE8IFnC7GQ2GTL7YGZWEpZt/BUbC0Vs/Qw7/8bJZgtNPDBwOOde5p7jRpxJZVnfRmFldW19o7hZ2tre2d0z9w9aMowFoU0S8lB0XCwpZwFtKqY47USCYt/ltO2Ob2Z++5EKycLgQU0j6vh4GDCPEay01DePej5WI+klE6RZJFWI7iqT87Rvlq2qlQEtEzsnZcjR6JtfvUFIYp8GinAsZde2IuUkWChGOE1LvVjSCJMxHtKupgH2qXSSLECKzrQyQF4o9AsUytTfGwn2pZz6rp7Mzl30ZuJ/XjdW3rWTsCCKFQ3I/CMv5kjHnLWBBkxQovhUE0wE07ciMsICE6U7K+kS7MXIy6RVq9oX1dr9Zbl+mtdRhGM4gQrYcAV1uIUGNIFACs/wCm/Gk/FivBsf89GCke8cwh8Ynz82TJYN</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Paracusia(N(x))
<latexit sha1_base64="b4tSFQDSyjWOdfxvhRLEsGyVLQc=">AAACAXicbVDLSsNAFL3xWesr6kZwM1iFdlOSKuiy4MaVVLAPaEOZTCft0MmDmYlYQt34K25cKOLWv3Dn3zhJs9DWAxcO59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/stGcaC0CYJeSg6LpaUs4A2FVOcdiJBse9y2nbHV6nfvqdCsjC4U5OIOj4eBsxjBCst9c3Dno/VSHpJAwtMYslw+ab8UKlM+2bJqloZ0CKxc1KCHI2++dUbhCT2aaAIx1J2bStSToKFYoTTabEXSxphMsZD2tU0wD6VTpJ9MEWnWhkgLxS6AoUy9fdEgn0pJ76rO7N7571U/M/rxsq7dBIWRLGiAZkt8mKOVIjSONCACUoUn2iCiWD6VkRGaRRKh1bUIdjzLy+SVq1qn1Vrt+el+kkeRwGO4BjKYMMF1OEaGtAEAo/wDK/wZjwZL8a78TFrXTLymQP4A+PzB8lHllk=</latexit>

x �� x
<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit>...

<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

0.8
<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.8
<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.5
<latexit sha1_base64="V1kkhuGPhiMmGH+ZeD87U/3V4FI=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgKiRV0WXBjcsK9gFNKJPppB06mYSZiVBCf8ONC0Xc+jPu/BsnaRbaemDgcM693DMnSDhT2nG+rcra+sbmVnW7trO7t39QPzzqqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3uV+74lKxWLxqGcJ9SM8FixkBGsjeV6E9USFmWNfz4f1hmM7BdAqcUvSgBLtYf3LG8UkjajQhGOlBq6TaD/DUjPC6bzmpYommEzxmA4MFTiiys+KzHN0bpQRCmNpntCoUH9vZDhSahYFZrLIuOzl4n/eINXhrZ8xkaSaCrI4FKYc6RjlBaARk5RoPjMEE8lMVkQmWGKiTU01U4K7/OVV0m3a7qXdfLhqtM7KOqpwAqdwAS7cQAvuoQ0dIJDAM7zCm5VaL9a79bEYrVjlzjH8gfX5A4nPkUI=</latexit>

0.9
<latexit sha1_base64="1l1LlAIfvkJaZ8W15cPmPpQFAaU=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgKiRVUHcFNy4r2Ac0oUymk3boZBJmJkIJ/Q03LhRx68+482+cpFlo64GBwzn3cs+cIOFMacf5tipr6xubW9Xt2s7u3v5B/fCoq+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepf7vScqFYvFo54l1I/wWLCQEayN5HkR1hMVZo59Ox/WG47tFECrxC1JA0q0h/UvbxSTNKJCE46VGrhOov0MS80Ip/OalyqaYDLFYzowVOCIKj8rMs/RuVFGKIyleUKjQv29keFIqVkUmMki47KXi/95g1SHN37GRJJqKsjiUJhypGOUF4BGTFKi+cwQTCQzWRGZYImJNjXVTAnu8pdXSbdpu5d28+Gq0Tor66jCCZzCBbhwDS24hzZ0gEACz/AKb1ZqvVjv1sditGKVO8fwB9bnD4/jkUY=</latexit>

0.1
<latexit sha1_base64="93jDpD1qxB7qCXQxuuOqSAwSCwQ=">AAAB83icbVDLSsNAFL3xWeur6tLNYBVchaQKuiy4cVnBPqAJZTKdtEMnkzAPoYT+hhsXirj1Z9z5N07TLLT1wMDhnHu5Z06Ucaa05307a+sbm1vblZ3q7t7+wWHt6LijUiMJbZOUp7IXYUU5E7Stmea0l0mKk4jTbjS5m/vdJyoVS8WjnmY0TPBIsJgRrK0UBAnWYxXnnuvPBrW653oF0CrxS1KHEq1B7SsYpsQkVGjCsVJ938t0mGOpGeF0Vg2MohkmEzyifUsFTqgK8yLzDF1YZYjiVNonNCrU3xs5TpSaJpGdLDIue3PxP69vdHwb5kxkRlNBFodiw5FO0bwANGSSEs2nlmAimc2KyBhLTLStqWpL8Je/vEo6Dde/chsP1/XmeVlHBU7hDC7Bhxtowj20oA0EMniGV3hzjPPivDsfi9E1p9w5gT9wPn8Ag7uRPg==</latexit>

0.3
<latexit sha1_base64="naXh/lIh2rhxnIVor4Xsa4i2VYA=">AAAB83icbVDLSsNAFL2pr1pfUZduBqvgKiStoMuCG5cV7AOaUCbTSTt0MgkzE6GE/oYbF4q49Wfc+TdO0yy09cDA4Zx7uWdOmHKmtOt+W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3i383hOViiXiUc9SGsR4LFjECNZG8v0Y64mKctdpzod23XXcAmideCWpQ4n20P7yRwnJYio04VipgeemOsix1IxwOq/5maIpJlM8pgNDBY6pCvIi8xxdGmWEokSaJzQq1N8bOY6VmsWhmSwyrnoL8T9vkOnoNsiZSDNNBVkeijKOdIIWBaARk5RoPjMEE8lMVkQmWGKiTU01U4K3+uV10m04XtNpPFzXWxdlHVU4g3O4Ag9uoAX30IYOEEjhGV7hzcqsF+vd+liOVqxy5xT+wPr8AYbFkUA=</latexit>

0.3
<latexit sha1_base64="naXh/lIh2rhxnIVor4Xsa4i2VYA=">AAAB83icbVDLSsNAFL2pr1pfUZduBqvgKiStoMuCG5cV7AOaUCbTSTt0MgkzE6GE/oYbF4q49Wfc+TdO0yy09cDA4Zx7uWdOmHKmtOt+W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3i383hOViiXiUc9SGsR4LFjECNZG8v0Y64mKctdpzod23XXcAmideCWpQ4n20P7yRwnJYio04VipgeemOsix1IxwOq/5maIpJlM8pgNDBY6pCvIi8xxdGmWEokSaJzQq1N8bOY6VmsWhmSwyrnoL8T9vkOnoNsiZSDNNBVkeijKOdIIWBaARk5RoPjMEE8lMVkQmWGKiTU01U4K3+uV10m04XtNpPFzXWxdlHVU4g3O4Ag9uoAX30IYOEEjhGV7hzcqsF+vd+liOVqxy5xT+wPr8AYbFkUA=</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

(3.14)

Resolution by unification as above will be implemented in two stages. The first step is

devising a map for term-matching. Assuming that the substitution instance Aθ of a goal A is
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already given, we define p performing term-matching of Aθ in a given program P as follows,

where Γ ranges over all subsets of substitutions:

p(Aθ) : {B1τ, . . . , Bkτ}τ∈Γ 7→


r (r :: H ← B1, . . . , Bk) ∈ P and

Γ contains all τ s.t. Aθ = Hτ

0 otherwise.

(3.15)

Intuitively, one application of such map is represented in a tree structure as Example 3.2.2

by the first two layers of the subtree rooted at θ. Note that each element in the support of

p(A) is a countable set {B1τ, . . . , Bkτ}τ∈Γ of instances of the same body B1, . . . , Bk is that the

same clause may match a goal with countably many different substitutions τi. For example in

the bottom part of (3.14) there are countably infinite substitutions τi matching the head of

Alarm← PassBy(x) to the goal Alarm, substituting x with countably infinitely many constants

Mary, Neigh(Mary), Neigh(x), · · · . In the next part we will see this reflected in the coalgebraic

representation of PLP (see (3.17) below) by the use of the countable powerset functor Pc.
In order to model arbitrary unification, the second step is considering all substitutions θ on

the goal A such that a term-matcher for Aθ exists. There is an elegant categorical construction

[BZ15] packing together these two steps into a single coalgebra map. We will start with this

in the next session. Below we fix an alphabet A = ⟨Σ,Var ,Pred⟩ and a general PLP program

based on A (see Section 2.1).

3.2.1 Coalgebraic representation of general PLP

Towards a categorification of general PLP, the first concern is to account for the presence of

variables in atoms. For this we adopt a standard functorial approach using Lawvere theories.

The idea originates from Lawvere’s doctorial dessertaion [Law63]: an algebraic theory is defined

as certain category with finite products that encode operators, and models of that theory are

identified with product-preserving functors from that category to the semantic category of

choice. Here we focus on algebraic theories of Σ-atoms and substitution between Σ-terms, thus

the following definition of the category of theories.

Definition 3.2.3 (Lawvere theory). The opposite Lawvere Theory of Σ is LopΣ , where:

• objects are natural numbers standing for contexts;

• a morphism n→ m is an n-tuple of Σ-terms in context m, namely ⟨t1, . . . , tn⟩ where each

ti has free variables appearing in x1, . . . , xm.

Intuitively, object n in LopΣ can be thought of as the set of all Σ-atoms in context n, and

each morphism ⟨t1, . . . , tn⟩ : n→ m is a substitution — thus we denote as θ when necessary —

such that every xi is replaced with ti, so when applied to an atom A(x1, . . . , xn) in context n
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the result is an atom A[t1/x1, . . . , tn/xn] in context m. This is formalised by letting the space

of atoms on an alphabet A be a presheaf At : LopΣ → Set rather than a set.

Definition 3.2.4. The functor At : LopΣ → Set is defined as follows:

• On objects, At(n) is the set of all atoms in context n.

• Ob morphisms, given an n-tuple θ = ⟨t1, . . . , tn⟩ ∈ LopΣ [n,m] of Σ-terms in context m,

At(θ) : At(n) → At(m) is defined by substitution, namely At(θ)(A) = Aθ, for any A ∈
At(n).

As observed in Komendantskaya et al. [KP11] for pure logic programs, if we naively try

to model our specification p for program P (3.15) as a coalgebra on At, we run into problems:

indeed p is not a natural transformation, namely the following naturality diagram does not

commute.

At(n)
pn //

At(θ)

��

PcPf (At(n))

PcPf (At(θ))
��

At(m)
pm // PcPf (At(m))

Intuitively, this is because the existence of a term-matching for a substitution instance Aθ of A

does not necessarily imply the existence of a term-matching for A itself. For pure logic programs,

this problem can be solved in at least two ways. First, Komendantskaya and Power [KP11] re-

laxes naturality by changing the base category of presheaves from Set to Poset. We take here the

second route from Bonchi and Zanasi [BZ15], namely give a ‘saturated’ coalgebraic treatment

of PLP that generalises the modelling of pure logic programs. This approach has the advantage

of letting us work with Set-based presheaves, and be still able to recover term-matching via a

‘desaturation’ operation — see Bonchi and Zanasi [BZ15] and Proposition 3.2.26. A detailed

discussion of the relation between these two approaches can be found in Power [Pow16].

The key categorical tool we need for the saturated approach is the following saturation

adjunction.

Definition 3.2.5 (Saturation adjunction). The saturation adjunction U ⊣ K is the following

adjunction on presheaf categories:

SetL
op

U
++

⊥ Set|L
op|

K

jj (3.16)

Here |Lop| is the discretisation of Lop, i.e. all the arrows but the identities are dropped. The

left adjoint U is the forgetful functor, given by precomposition with the obvious inclusion

ι : |LopΣ | → LopΣ .

The (necessarily unique) right adjunction K indeed sends every presheaf F : |LopΣ | → Set to

its right Kan extension Ranι : Set
|Lop| → SetL

op
Σ along ι, as in the following diagram:
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|Lop| � � ι //

F
��

Lop

K(F)||
Set

Intuitively K(F) is the ‘best possible solution’ to the above commuting diagram. Moreover,

K(F) as a right Kan extension can be computed following Mac Lane [Mac71] as follows:

• On objects, given a functor F ∈ ob(SetL
op
Σ ), the presheaf K(F) : LopΣ → Set is defined by

letting K(F)(n) be the product
∏

θ∈Lop[n,m]F(m), where m ranges over ob(LopΣ ). Intu-

itively, every element in K(F)(n) is a tuple with index set
⋃
m∈ob(LopΣ ) LopΣ [n,m], and its

component at index θ : n → m must be an element in F(m). We follow the convention

of [BZ15] and write ẋ, ẏ, . . . for such tuples, and ẋ(θ) for the component of ẋ at index θ.

With this convention, given an arrow σ ∈ LopΣ [n, n′], K(F)(σ) is defined by pointwise

substitution as the mapping of the tuple ẋ to the tuple ⟨ẋ(θ ◦ σ)⟩θ : n′→m.

• On arrows, given a morphism α : F → G in Set|L
op
Σ |, K(α) is a natural transformation

K(F)→ K(G) defined pointwisely as K(α)(n) : ẋ 7→ ⟨αm(ẋ(θ))⟩θ : n→m.

It is also useful to record the unit ηKU : 1 ⇒ KU of the adjunction U ⊣ K. Given a presheaf

F : LopΣ → Set, ηKUF : F ⇒ KUF is a natural transformation, such that at each n ∈ N,

ηF(n) : F(n)→ KUF(n) is defined by ηF(n) : x 7→ ⟨F(θ)(x)⟩θ : n→m.

We are now ready to construct the coalgebra structure on the presheaf At to model PLP.

First, we are now able to represent p in (3.15) as a coalgebra morphism. The aforementioned

naturality issue is solved by defining p as a morphism in Set|L
op
Σ | rather than in SetL

op
Σ . Indeed

naturality now becomes trivial. The coalgebra p (over UAt) will now have the following type

p : UAt→ M̂prP̂cP̂fUAt (3.17)

where (̂·) is the obvious extension of Set-endofunctors to Set|L
op
Σ |-endofunctors, defined by func-

tor precomposition. Take Pf as an example, the lifted functor P̂f : Set|L
op
Σ | → Set|L

op
Σ | maps

F : |LopΣ | → Set to |LopΣ |
F−→ Set

Pf−→ Set.

With respect to the ground case, note the insertion of P̂c, the lifting of the countable

powerset functor, in order to account for the countably many instances of a clause that may

match the given goal (cf. the discussion below (3.15)).

Example 3.2.6. Our program Pal from Example 3.2.1 is based on Atal : LopΣ → Set. Some of

its values are listed below:

Atal(0) = {Mary, Neigh(Mary), Neigh(Neigh(Mary)), . . . }
Atal(1) = {x, Mary, Neigh(x), Neigh(Mary), . . . }
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Part of the coalgebra pal modelling the program Pal is as follows (cf. the tree (3.14)). For space

reason, we abbreviate Mary as M in the second equation.

(pal)0(Hear alarm(Mary)) = 0.8{{Alarm, Wake(Mary)}}+ 0.3{{Parasusia(Mary)}}
(pal)1(Alarm) = 0.5{{Earthquake}}+ 0.9{{Burglary}}

+ 0.1{{PassBy(M)}, {PassBy(Neigh(M))}, {PassBy(Neigh(x))}, . . . }

We are now ready to define the coalgebra performing unification, rather than just term-

matching. Essentially K enables one to

Definition 3.2.7. Every PLP program P is represented as a KM̂prP̂cP̂fU -coalgebra p♯ on At,

defined as

p♯ := At
ηAt−→ KUAt Kp−→ KM̂prP̂cP̂fUAt (3.18)

where ηKU is the unit of the saturation adjunction U ⊣ K.

Spelling the definition out, at each n ∈ N, p♯ is the mapping

p♯n : A ∈ At(n) 7→ ⟨pm(Aθ)⟩θ : n→m

Intuitively, p♯n retrieves all the unifiers ⟨θ, τ⟩ of A and heads H in P: for each LopΣ -morphism

θ : n → m, first we have Aθ ∈ At(m) as a component of the saturation of A by ηKUAt ; then we

term-match the heads of P-clause with Aθ by pm.

Remark 3.2.8. Note that the parameter n ∈ ob(LopΣ ) in the natural transformation p♯ fixes

the pool {x1, . . . , xn} of variables appearing in the atoms (and relative substitutions) that are

considered in the computation. Analogously to the case of pure logic programs [KP11, BZ15], it

is intended that such n can always be chosen ‘big enough’ so that all the relevant substitution

instances of the current goal and clauses in the program are covered — note the variables

occurring therein always form a finite set, included in {x1, . . . , xm} for some m ∈ N.

3.2.2 Derivation Semantics

Once we have identified our coalgebra type, the construction leading to the derivation seman-

tics J−Kp♯ for general PLP is completely analogous to the ground case. One can define the

cofree coalgebra for KM̂prP̂cP̂fU by terminal sequence, similarly to Construction 3.1.17. For

simplicity, henceforth we denote the functor KM̂prP̂cP̂fU(−) by S.

Construction 3.2.9. The terminal sequence for At × S(·) : SetL
op → SetL

op

consists of a

sequence of objects Xα and morphisms δβα : Xβ → Xα, for α < β ∈ Ord, defined analogously to

Construction 3.1.17, with p♯ and S replacing p and FPf , respectively.

This terminal sequence converges by the following proposition.
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Proposition 3.2.10. S is accessible, and preserves monomorphisms.

Proof. Since both properties are preserved by composition, it suffices to show that they hold

for all the component functors. For M̂pr, P̂c and P̂f , they follow from accessibility and mono-

preservation of F , Pc and Pf (see Proposition 3.1.19), as (co)limits in presheaf categories are

computed pointwise. For K and U , these properties are proven in [BZ15].

Therefore the terminal sequence for At×S(·) converges at some limit ordinal, say γ, yielding

the final At × S(·)-coalgebra Xγ
≃−→ At × S(Xγ). Then we can canonically define the final

coalgebra semantics.

Definition 3.2.11. The derivation semantics for general PLP is defined as J−Kp♯ : At → Xγ

by the universal property of the final coalgebra Xγ, shown in the diagram below.

At
J−K

p♯ //

<idAt,p
♯>
��

Xγ

≃
��

At × S(At)
idAt×J−K

p♯

// At× S(Xγ)

(3.19)

A careful inspection of the terminal sequence constructing Xγ allows to infer a representation

of its elements as trees, among which we have those representing computations by unification

of goals in a PLP program. We call these stochastic saturated derivation trees, as they extend

the derivation trees of Definition 3.1.11 and are the probabilistic variant of saturated and-or

trees in [BZ15]. Using (3.19) one can easily verify that JAKp♯ is indeed the stochastic saturated

derivation tree for a given goal A. Example 3.2.2 provides a pictorial representation of one such

tree.

Definition 3.2.12 (Stochastic saturated derivation trees). Given a probabilistic logic program

P, a natural number n and an atom A ∈ At(n). The stochastic saturated derivation tree for A

in P is the possibly infinite tree T satisfying the following properties:

1. There are four kinds of nodes: atom-node (labelled with an atom), substitution-node

(labelled with a substitution), clause-node (labelled with •), instance-node (labelled with

♦), appearing alternatively in depth in this order.In particular, the root is an atom-node

with label A.

2. Each edge between a substitution node and its clause-node children is labelled with some

r ∈ [0, 1].

3. Suppose an atom-node s is labelled with A′ ∈ At(n′). For every substitution θ : n′ → m′,

s has exactly one (substitution-node) child t labelled with θ. For every clause r :: H ←
A1, . . . , Ak in P such that H matches A′θ (via some substitution), t has exactly one

(clause-)child u, and edge t → u is labelled with r. Then for every substitution τ such
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that A′θ = Hτ and B1τ, . . . , Bkτ ∈ At(m′), u has exactly one (instance-)child v. Also

v has exactly |{B1, . . . , Bk}|τ -many (atom-)children, each labelled with one element in

{B1, . . . , Bk}τ .

Proposition 3.2.13. The stochastic derivation tree of an atom A in context n is JAKp♯(n), up

to isomorphism.

Proof. The proof is similar to that for the derivation trees of general logic programs in Bonchi

and Zanasi [BZ13], where the only difference is the probability labels here from substitution

nodes to clause nodes.

Sometimes when the context n is clear, we are sloppy and simply write JAKp♯ for JAKp♯(n).

Intuitively, the stochastic derivation tree of A encodes the proof-search of A in P, using unifi-

cation. The probability labels encode the possibility of the clauses used along the search.

3.2.3 Distribution Semantics

In this section we conclude by giving a coalgebraic perspective on the distribution semantics

⟨⟨−⟩⟩ for general PLP. Mimicking the ground case (Section 3.1.3), this will be presented as an

extension of the derivation semantics, via a ‘possible worlds’ natural transformation. Also in

the general case, we want to guarantee that a single probability value is computable for a given

goal A from the corresponding tree ⟨⟨A⟩⟩ in the final coalgebra — whenever this probability is

also computable in the ‘traditional’ way (see (2.1)) of giving distribution semantics to PLP. In

this respect, the presence of variables and substitutions poses additional challenges, for which

we refer to Section 3.2.4. In a nutshell, the issue is that the distribution semantics counts the

existence of a clause in the program rather than the number of times a clause is used in the

computation. This means that every clause is counted at most once, independently from how

many times that clause is used again in the computation. Note that our tree representation,

as in the ground case, presents the resolution (thus computation aspect) of the program. So in

our tree representation we need to give enough information to determine which clause is used

at each step of the computation, so that a second use can be easily detected. However, neither

our saturated derivation trees, nor a ‘naive’ extension of them to distribution trees, carry such

information: what appears in there is only the instantiated heads and bodies, but in general

one cannot retrieve the atom A from a substitution θ and the instantiation Aθ. This is best

illustrated via a simple example.

Example 3.2.14. Consider the following program, based on the signature Σ = {a0} and two

1-ary predicates P , Q. It consists of two clauses:

0.5 :: P (x1)← Q(x1) 0.5 :: P (x1)← Q(x2)

The goal P (c) matches the head of both clauses. However, given the sole information of the
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next goal being Q(c), it is impossible to say whether the first clause has been used, instantiated

with x1 7→ c, or the second clause has been used, instantiated with x1 7→ c, x2 7→ c.

This observation motivates, as intermediate step towards the distribution semantics, the

addition of labels to clause-nodes in derivation trees, in order to make explicit which clause is

being applied. From the coalgebraic viewpoint, this just amounts to an extension of the type

of the term-matching coalgebra:

p̃ : UAt→ M̂pr(P̂cP̂fUAt× (UAt× P̂fUAt)) (3.20)

Note the insertion of (−) × (UAt × P̂fUAt), which allows us to indicate at each step the head

(encoded by UAt) and the body (encoded by P̂fUAt) of the clause being used, its probability

label being already given by M̂pr. More formally, for any n and atom A ∈ At(n), we define

p̃n(A) : ⟨{B1τ, . . . , Bkτ}τ∈Γ⊆mor(LopΣ ), ⟨H, {B1, . . . , Bk}⟩⟩ 7→


r (r ::H←B1, . . . , Bk) ∈ P

and Hτi = A

0 otherwise

As in the case of p in (3.17), we can move from term-matching to unification by using the

universal property of the adjunction U ⊣ K, yielding p̃ ♯ : At → KM̂pr(P̂cP̂fUAt × (UAt ×
P̂fUAt)). For simplicity henceforth we denote the functor KM̂pr(P̂cP̂fU(·) × (UAt × P̂fUAt))
by R.

As noted in Remark 3.2.8, instantiating p̃ to some n ∈ ob(LopΣ ) fixes a variable context

{x1, . . . , xn} both for the goal and the clause labels. In practice, because the set of clauses is

always finite, it suffices to chose n ‘big enough’ so that the variables appearing in the clauses

are included in {x1, . . . , xn}.
We are now able to conclude our characterisation of the distribution semantics. The ‘possible

worlds’ transformation pw : Mpr ⇒ D≤Pf (Definition 3.1.31) yields a natural transformation

p̂w : M̂pr → D̂≤Pf , defined pointwise by pw . We can use p̂w to translate R into the functor

KD̂≤Pf (P̂cP̂fU(·) × (UAt × P̂fUAt)), abbreviated as O, which is going to give the type of

saturated distribution trees for general PLP programs.

As a simple extension of the developments in Section 3.2.2, we can construct the cofree

R-coalgebra Φ
≃−→ At×R(Φ) via a terminal sequence. Similarly, one can obtain the final At×O-

coalgebra, or equivalently the cofree O-coalgebra at At , which we denote as Ψ
≃−→ At×O(Ψ). By

the universal property of Ψ, all these ingredients get together in the definition of the distribution

semantics ⟨⟨−⟩⟩p̃ ♯ for arbitrary PLP programs p̃ ♯.

Definition 3.2.15. The coalgebraic distribution semantics ⟨⟨−⟩⟩p̃ ♯ is defined as follows using
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the universal mapping property of the final At×O-coalgebra Ψ
≃−→ At×O(Ψ).

At

⟨⟨−⟩⟩
p̃ ♯

))!Φ //

<idAt ,p̃
♯>

��

Φ
!Ψ //

∼=
��

Ψ

∼=

��

At×RAt idAt×R(!Φ) //

idAt×Kp̂w
��

At ×RΦ

idAt×Kp̂w
��

At×OAt idAt×O(!Φ) // At×OΦ
idAt×O(!Ψ) // At×OΨ

where !Φ and !Ψ are given by the evident universal properties, and show the role of the cofree

R-coalgebra Φ as an intermediate step.

The layered construction of the final coalgebras Ψ and Φ, together with the above charac-

terisation of ⟨⟨−⟩⟩p̃ ♯ , allow to conclude that the distribution semantics for the program p̃ ♯ maps

a goal A to its saturated distribution tree ⟨⟨A⟩⟩p̃ ♯ , as formally defined below.

Definition 3.2.16 (Saturated distribution tree). The saturated distribution tree for A ∈ At(n)

in P is the possibly infinite T satisfying the following properties based on Definition 3.2.12:

1. There are five kinds of nodes: in addition to the atom-, substitution-, clause- and instance-

nodes, there are world-nodes. The world-nodes are children of the substitution-nodes, and

parents of the clause nodes. The root and the order of the rest of the nodes are the same

as in Definition 3.2.12, condition 1. The clause-nodes are now labelled with clauses in P.

2. Suppose s is an atom-node labelled with A′ ∈ At(n′), and t is a substitution-child of s

labelled with θ : n′ → m. Let C be the set of all clauses φ such that head(φ) matches A′θ.

Then t has 2|C| world-children, each representing a subset X of C. If a world-child u of t

represents subset X, then the edge t→ u has probability label
∏

φ∈X lab(φ) ·∏φ′∈C\X(1−
lab(φ′)). Also u has |X| clause-children, one for each clause φ ∈ X, labelled with the

corresponding clause. The rest for clause-nodes and instance-nodes are the same as in

Definition 3.2.12, condition 3.

Proposition 3.2.17. The saturated distribution tree for atom A in context n is ⟨⟨A⟩⟩p̃ ♯(n).

Remark 3.2.18. Note that, in principle, saturated distribution trees could be defined coal-

gebraically without the intermediate step of adding clause labels. This is to be expected:

coalgebra typically captures the one-step, ‘local’ behaviour of a system. On the other hand, as

explained, the need for clause labels is dictated by a computational aspect involving the depth

of distribution trees, that is, a ‘non-local’ dimension of the system.

We conclude with the pictorial representation of the saturated distribution tree of a goal in

our leading example.
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Example 3.2.19. In the context of Example 3.2.1, the tree ⟨⟨Hear alarm(x)⟩⟩ capturing the

distribution semantics of Hear alarm(x) is (partially) depicted as follows. Note the presence of

clauses labelling the clause-nodes.

Hear alarm(x)
<latexit sha1_base64="hJ+KifK8TTcAGh5rlLSCc56QZK4=">AAACAHicbVA9SwNBEN2LXzF+nVpY2BxGITbhLgpaCjYpFYwGciHMbeZ0yd4Hu3NiONL4V2wsFLH1Z9j5b9zEKzTxwcDjvRlm5gWpFJpc98sqzc0vLC6Vlysrq2vrG/bm1rVOMsWxxROZqHYAGqWIsUWCJLZThRAFEm+CwfnYv7lHpUUSX9EwxW4Et7EIBQcyUs/e8QkfSId5E0H5PZCgotrD4ahnV926O4EzS7yCVFmBi5796fcTnkUYE5egdcdzU+rmoEhwiaOKn2lMgQ/gFjuGxhCh7uaTB0bOgVH6TpgoUzE5E/X3RA6R1sMoMJ0R0J2e9sbif14no/C0m4s4zQhj/rMozKRDiTNOw+kLhZzk0BDgSphbHX4HCjiZzComBG/65Vly3ah7R/XG5XH1bL+Io8x22R6rMY+dsDPWZBesxTgbsSf2wl6tR+vZerPef1pLVjGzzf7A+vgG3wqWeg==</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit>

x �� x
<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

x �� N(x)
<latexit sha1_base64="GX0hsBLaOHTV0Neuy6xv0m10oOE=">AAACAHicbVC7SgNBFL0bXzG+Vi0sbAajEJuwGwUtAzZWEsE8IFnC7GQ2GTL7YGZWEpZt/BUbC0Vs/Qw7/8bJZgtNPDBwOOde5p7jRpxJZVnfRmFldW19o7hZ2tre2d0z9w9aMowFoU0S8lB0XCwpZwFtKqY47USCYt/ltO2Ob2Z++5EKycLgQU0j6vh4GDCPEay01DePej5WI+klE6RZJFWI7iqT87Rvlq2qlQEtEzsnZcjR6JtfvUFIYp8GinAsZde2IuUkWChGOE1LvVjSCJMxHtKupgH2qXSSLECKzrQyQF4o9AsUytTfGwn2pZz6rp7Mzl30ZuJ/XjdW3rWTsCCKFQ3I/CMv5kjHnLWBBkxQovhUE0wE07ciMsICE6U7K+kS7MXIy6RVq9oX1dr9Zbl+mtdRhGM4gQrYcAV1uIUGNIFACs/wCm/Gk/FivBsf89GCke8cwh8Ynz82TJYN</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Paracusia(N(x))
<latexit sha1_base64="b4tSFQDSyjWOdfxvhRLEsGyVLQc=">AAACAXicbVDLSsNAFL3xWesr6kZwM1iFdlOSKuiy4MaVVLAPaEOZTCft0MmDmYlYQt34K25cKOLWv3Dn3zhJs9DWAxcO59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/stGcaC0CYJeSg6LpaUs4A2FVOcdiJBse9y2nbHV6nfvqdCsjC4U5OIOj4eBsxjBCst9c3Dno/VSHpJAwtMYslw+ab8UKlM+2bJqloZ0CKxc1KCHI2++dUbhCT2aaAIx1J2bStSToKFYoTTabEXSxphMsZD2tU0wD6VTpJ9MEWnWhkgLxS6AoUy9fdEgn0pJ76rO7N7571U/M/rxsq7dBIWRLGiAZkt8mKOVIjSONCACUoUn2iCiWD6VkRGaRRKh1bUIdjzLy+SVq1qn1Vrt+el+kkeRwGO4BjKYMMF1OEaGtAEAo/wDK/wZjwZL8a78TFrXTLymQP4A+PzB8lHllk=</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

Wake(N(x))
<latexit sha1_base64="MmtLlOiShqOsfULrNeBQ+ky/yJs=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBKvQbkpSBV0W3LiSCvYBbSiT6aQdOpmEmYkYQv0VNy4UceuHuPNvnKZZaOuBgcM593LPHC9iVCrb/jYKa+sbm1vF7dLO7t7+gXl41JFhLDBp45CFouchSRjlpK2oYqQXCYICj5GuN72e+90HIiQN+b1KIuIGaMypTzFSWhqa5UGA1ET6aRdNSfW2+lirzYZmxa7bGaxV4uSkAjlaQ/NrMApxHBCuMENS9h07Um6KhKKYkVlpEEsSITxFY9LXlKOASDfNws+sM62MLD8U+nFlZervjRQFUiaBpyezqMveXPzP68fKv3JTyqNYEY4Xh/yYWSq05k1YIyoIVizRBGFBdVYLT5BAWOm+SroEZ/nLq6TTqDvn9cbdRaV5mtdRhGM4gSo4cAlNuIEWtAFDAs/wCm/Gk/FivBsfi9GCke+U4Q+Mzx/Cd5QW</latexit>

Hear alarm(x)� Alarm, Wake(x)
<latexit sha1_base64="EutX3SIyAQS7rLvDy3Dw8ZONNXo=">AAACInicbVDLSgMxFM34rPVVdekmWAQFKTMqqLuKmy4r2Ad0SrmT3tHQzGRIMmoZ+i1u/BU3LhR1Jfgxpo+FWg8EDufcy805QSK4Nq776czMzs0vLOaW8ssrq2vrhY3NupapYlhjUkjVDECj4DHWDDcCm4lCiAKBjaB3MfQbt6g0l/GV6SfYjuA65iFnYKzUKZz5gbzHbuZHYG50mFUQlN8BASrau9+nvsDQgFLyjp4PtQPagB5aZzDoFIpuyR2BThNvQopkgmqn8O53JUsjjA0ToHXLcxPTzkAZzgQO8n6qMQHWg2tsWRpDhLqdjSIO6K5VujSUyr7Y0JH6cyODSOt+FNjJUZK/3lD8z2ulJjxtZzxOUoMxGx8KU0GNpMO+aJcrZEb0LQGmuP0rZTeggBnbat6W4P2NPE3qhyXvqHR4eVws00kdObJNdsge8cgJKZMKqZIaYeSBPJEX8uo8Os/Om/MxHp1xJjtb5Becr29x2qQR</latexit>

Hear alarm(x)� Paracusia(x)
<latexit sha1_base64="r+NH/YjOp+F4HS9kbC0DFyoG7d0=">AAACIHicbVBNS8NAFNz4WetX1aOXxSLUS0lUqEfBi8cKthWaEl62L7q4yYbdjbaE/hQv/hUvHhTRm/4at20OWh1YGGbe4+1MmAqujet+OnPzC4tLy6WV8ura+sZmZWu7rWWmGLaYFFJdhaBR8ARbhhuBV6lCiEOBnfD2bOx37lBpLpNLM0yxF8N1wiPOwFgpqDT8UA6wn/sxmBsd5ecIyg9AgIprgwPqC4wMKCXvaRMUsExzsPpoFFSqbt2dgP4lXkGqpEAzqHz4fcmyGBPDBGjd9dzU9HJQhjOBo7KfaUyB3cI1di1NIEbdyycBR3TfKn0aSWVfYuhE/bmRQ6z1MA7t5CTHrDcW//O6mYlOejlP0sxgwqaHokxQI+m4LdrnCpkRQ0uAKW7/StnNuAhjOy3bErzZyH9J+7DuHdUPL46rp7Soo0R2yR6pEY80yCk5J03SIow8kCfyQl6dR+fZeXPep6NzTrGzQ37B+foGxVGj1Q==</latexit>

Hear alarm(x)� Alarm, Wake(x)
<latexit sha1_base64="EutX3SIyAQS7rLvDy3Dw8ZONNXo=">AAACInicbVDLSgMxFM34rPVVdekmWAQFKTMqqLuKmy4r2Ad0SrmT3tHQzGRIMmoZ+i1u/BU3LhR1Jfgxpo+FWg8EDufcy805QSK4Nq776czMzs0vLOaW8ssrq2vrhY3NupapYlhjUkjVDECj4DHWDDcCm4lCiAKBjaB3MfQbt6g0l/GV6SfYjuA65iFnYKzUKZz5gbzHbuZHYG50mFUQlN8BASrau9+nvsDQgFLyjp4PtQPagB5aZzDoFIpuyR2BThNvQopkgmqn8O53JUsjjA0ToHXLcxPTzkAZzgQO8n6qMQHWg2tsWRpDhLqdjSIO6K5VujSUyr7Y0JH6cyODSOt+FNjJUZK/3lD8z2ulJjxtZzxOUoMxGx8KU0GNpMO+aJcrZEb0LQGmuP0rZTeggBnbat6W4P2NPE3qhyXvqHR4eVws00kdObJNdsge8cgJKZMKqZIaYeSBPJEX8uo8Os/Om/MxHp1xJjtb5Becr29x2qQR</latexit>

Hear alarm(x)� Paracusia(x)
<latexit sha1_base64="r+NH/YjOp+F4HS9kbC0DFyoG7d0=">AAACIHicbVBNS8NAFNz4WetX1aOXxSLUS0lUqEfBi8cKthWaEl62L7q4yYbdjbaE/hQv/hUvHhTRm/4at20OWh1YGGbe4+1MmAqujet+OnPzC4tLy6WV8ura+sZmZWu7rWWmGLaYFFJdhaBR8ARbhhuBV6lCiEOBnfD2bOx37lBpLpNLM0yxF8N1wiPOwFgpqDT8UA6wn/sxmBsd5ecIyg9AgIprgwPqC4wMKCXvaRMUsExzsPpoFFSqbt2dgP4lXkGqpEAzqHz4fcmyGBPDBGjd9dzU9HJQhjOBo7KfaUyB3cI1di1NIEbdyycBR3TfKn0aSWVfYuhE/bmRQ6z1MA7t5CTHrDcW//O6mYlOejlP0sxgwqaHokxQI+m4LdrnCpkRQ0uAKW7/StnNuAhjOy3bErzZyH9J+7DuHdUPL46rp7Soo0R2yR6pEY80yCk5J03SIow8kCfyQl6dR+fZeXPep6NzTrGzQ37B+foGxVGj1Q==</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit>

x �� N(x)
<latexit sha1_base64="GX0hsBLaOHTV0Neuy6xv0m10oOE=">AAACAHicbVC7SgNBFL0bXzG+Vi0sbAajEJuwGwUtAzZWEsE8IFnC7GQ2GTL7YGZWEpZt/BUbC0Vs/Qw7/8bJZgtNPDBwOOde5p7jRpxJZVnfRmFldW19o7hZ2tre2d0z9w9aMowFoU0S8lB0XCwpZwFtKqY47USCYt/ltO2Ob2Z++5EKycLgQU0j6vh4GDCPEay01DePej5WI+klE6RZJFWI7iqT87Rvlq2qlQEtEzsnZcjR6JtfvUFIYp8GinAsZde2IuUkWChGOE1LvVjSCJMxHtKupgH2qXSSLECKzrQyQF4o9AsUytTfGwn2pZz6rp7Mzl30ZuJ/XjdW3rWTsCCKFQ3I/CMv5kjHnLWBBkxQovhUE0wE07ciMsICE6U7K+kS7MXIy6RVq9oX1dr9Zbl+mtdRhGM4gQrYcAV1uIUGNIFACs/wCm/Gk/FivBsf89GCke8cwh8Ynz82TJYN</latexit>

x �� x
<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit> ...

<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

Paracusia(N(x))
<latexit sha1_base64="b4tSFQDSyjWOdfxvhRLEsGyVLQc=">AAACAXicbVDLSsNAFL3xWesr6kZwM1iFdlOSKuiy4MaVVLAPaEOZTCft0MmDmYlYQt34K25cKOLWv3Dn3zhJs9DWAxcO59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/stGcaC0CYJeSg6LpaUs4A2FVOcdiJBse9y2nbHV6nfvqdCsjC4U5OIOj4eBsxjBCst9c3Dno/VSHpJAwtMYslw+ab8UKlM+2bJqloZ0CKxc1KCHI2++dUbhCT2aaAIx1J2bStSToKFYoTTabEXSxphMsZD2tU0wD6VTpJ9MEWnWhkgLxS6AoUy9fdEgn0pJ76rO7N7571U/M/rxsq7dBIWRLGiAZkt8mKOVIjSONCACUoUn2iCiWD6VkRGaRRKh1bUIdjzLy+SVq1qn1Vrt+el+kkeRwGO4BjKYMMF1OEaGtAEAo/wDK/wZjwZL8a78TFrXTLymQP4A+PzB8lHllk=</latexit> ...

<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

0.14
<latexit sha1_base64="3mrePS38LAq+zzqRIz9tzopwVa4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LFbBU0hqQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ll+Y1itea63AFonfkFqUKA1rH4NRjFJBZWGcKx13/cSE2RYGUY4nVcGqaYJJlM8pn1LJRZUB9ni1jm6tMoIRbGyJQ1aqL8nMiy0nonQdgpsJnrVy8X/vH5qotsgYzJJDZVkuShKOTIxyh9HI6YoMXxmCSaK2VsRmWCFibHxVGwI/urL66RTd/1rt/7QqDUvijjKcAbncAU+3EAT7qEFbSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QPAC41L</latexit>

0.24
<latexit sha1_base64="a7Vj152FKyaZdBiqEI72qAMQ0Lc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LFbBU0hqQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ln1xrBa81xvAbRO/ILUoEBrWP0ajGKSCioN4Vjrvu8lJsiwMoxwOq8MUk0TTKZ4TPuWSiyoDrLFrXN0aZURimJlSxq0UH9PZFhoPROh7RTYTPSql4v/ef3URLdBxmSSGirJclGUcmRilD+ORkxRYvjMEkwUs7ciMsEKE2PjqdgQ/NWX10mn7vrXbv2hUWteFHGU4QzO4Qp8uIEm3EML2kBgAs/wCm+OcF6cd+dj2VpyiplT+APn8wfBkI1M</latexit>

0.56
<latexit sha1_base64="OPaUUInWZ7WtM0szfv5m2EWtNIE=">AAAB63icbVDLSsNAFL3xWeur6tLNYBVchaQ+lwU3LivYB7ShTKaTdujMJMxMhBL6C25cKOLWH3Ln3zhps9DWAxcO59zLvfeECWfaeN63s7K6tr6xWdoqb+/s7u1XDg5bOk4VoU0S81h1QqwpZ5I2DTOcdhJFsQg5bYfju9xvP1GlWSwfzSShgcBDySJGsMklz7267leqnuvNgJaJX5AqFGj0K1+9QUxSQaUhHGvd9b3EBBlWhhFOp+VeqmmCyRgPaddSiQXVQTa7dYrOrDJAUaxsSYNm6u+JDAutJyK0nQKbkV70cvE/r5ua6DbImExSQyWZL4pSjkyM8sfRgClKDJ9Ygoli9lZERlhhYmw8ZRuCv/jyMmnVXP/CrT1cVuunRRwlOIYTOAcfbqAO99CAJhAYwTO8wpsjnBfn3fmYt644xcwR/IHz+QPJJ41R</latexit>

0.06
<latexit sha1_base64="YCYNrh6eJCR+l0zw82Ra1CrPEJg=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxUUZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8GOjUw=</latexit>

Wake(N(x))
<latexit sha1_base64="MmtLlOiShqOsfULrNeBQ+ky/yJs=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBKvQbkpSBV0W3LiSCvYBbSiT6aQdOpmEmYkYQv0VNy4UceuHuPNvnKZZaOuBgcM593LPHC9iVCrb/jYKa+sbm1vF7dLO7t7+gXl41JFhLDBp45CFouchSRjlpK2oYqQXCYICj5GuN72e+90HIiQN+b1KIuIGaMypTzFSWhqa5UGA1ET6aRdNSfW2+lirzYZmxa7bGaxV4uSkAjlaQ/NrMApxHBCuMENS9h07Um6KhKKYkVlpEEsSITxFY9LXlKOASDfNws+sM62MLD8U+nFlZervjRQFUiaBpyezqMveXPzP68fKv3JTyqNYEY4Xh/yYWSq05k1YIyoIVizRBGFBdVYLT5BAWOm+SroEZ/nLq6TTqDvn9cbdRaV5mtdRhGM4gSo4cAlNuIEWtAFDAs/wCm/Gk/FivBsfi9GCke+U4Q+Mzx/Cd5QW</latexit>

3.2.4 Computability of the distribution semantics

In this subsection we slightly turn away from coalgebras and justify the tree representation of

the distribution semantics established so far. Before we claimed that the probability PrP(A)

associated with a goal (see (2.1)) can be straightforwardly computed from the corresponding

distribution tree ⟨⟨A⟩⟩p, and here supplies such algorithms, for both the ground case and general

case. Note that this serves just as a proof of concept, without any claim of efficiency compared

to pre-existing implementations, algorithms using BDD in e.g. De Raedt et al. [DRKT07a].

3.2.4.1 Ground case PLP.

We start with the simpler case of ground programs. Let us fix a ground PLP program P with

atoms At , a goal A ∈ At and the distribution tree T for A in P (see Definition 3.1.25).

First, we claim that without loss of generality we may assume that the distribution tree T
is finite. Indeed, in the ground case, infinite branches only result from loops, namely multiple

appearances of an atom in some path, which can be easily detected (this is no longer the case

in the following general case). We can always prune the subtrees of T rooted by atoms that

already appeared at an earlier stage: this does not affect the computation of PrP(A), and it

makes T finite.

Next, we introduce the concept of deterministic subtrees of distribution trees, which can be

seen as the chose possible worlds. Basically a deterministic subtree of a distribution tree T can

be obtained by traversing from the root, such that at each atom node one selects exactly one

child and prune the rest. Moreover, this slection should be uniform for any two aomts nodes

with the same atom label. Recall that every clause-node t in T represents a clause φ in the

pure logic program |P|, whose head head(φ) is the label of the atom-grandparent of t, and body

body(φ) consists of the labels of the atom-children of t.
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Definition 3.2.20. A subtree S of a distribution tree T is deterministic if (i) it contains

exactly one child (world-node) for each atom-node and all children for other nodes, and (ii) for

any distinct atom-nodes s, t in S with the same label, s and t have their clause-grandchildren

representing the same clauses.

The idea is that S describes a computation in which the choice of a possible world (i.e.

a sub-program of P) associated to any atom B appearing during the resolution is uniquely

determined. Because of this feature, each deterministic subtree uniquely identifies a set of

sub-programs of P, and together the deterministic subtrees of T form a partition over the set

of these sub-programs (see Proposition 3.2.23 below).

Example 3.2.21. Consider the following program Pdeter:

0.5 :: A ← B,C 0.5 :: C ← E

0.5 :: B ← C 1 :: D ←
0.5 :: C ← D 1 :: E ←

Then for the following two subtrees of the distribution tree of A, the one on the right is

deterministic, while the one on the left is not deterministic. In the latter case, it does not

represent a sub-program: at the two atom-nodes labelled with C, two different world nodes are

chosen, one contains only the clause C ← D, and the other only the clause C ← E.

A
0.5
◦
•

B
0.5

C
0.5

◦ ◦
• •
C

0.5
E
1

◦ ◦
• •
D
1
◦
•

A
0.5
◦
•

B
0.5

C
0.5

◦ ◦
• •
C

0.5
E
1

◦ ◦
•
E
1
◦
•

Figure 3.1: (Non-)deterministic subtrees in Pdeter

Since T is finite, it is clear that we can always provide an enumeration of its deterministic

subtrees. We can now present our algorithm, in two steps (see Figure 3.2). First, Algorithm

1 computes the probability associated with a deterministic subtree. Second, Algorithm 2 com-

putes PrP(A) by summing up the probabilities found by Algorithm 1 on all the deterministic
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Algorithm 1 Compute probability of a deterministic subtree

Input: A deterministic subtree S of T
Output: The probability of S

1: prob list = [ ]
2: for atom-node s in S do
3: if s has child then
4: prob list.append(label(s→ child(s)))

5: if prob list == [ ] then
6: return 0
7: else prob = product of values in prob list
8: return prob

Algorithm 2 Compute probability of a goal

Input: The distribution tree T of A in P
Output: The success probability PrP(A)

1: prob suc = 0
2: for deterministic subtree S of T do
3: if S proves A then
4: prob suc += Algorithm 1(S)

5: return prob suc

Figure 3.2: Compute distribution semantics from distribution trees, ground case

subtrees of T that contains a refutation of A. In the algorithms we use label(s→ t) to denote

the probability value labelling the edge from s to t.

The above procedure terminates because T is finite and every for-loop is finite. We now

focus on the correctness of the algorithm.

Recall the intuition that each world-node in a deterministic subtree can be seen as a choice

of clauses: one chooses the clauses represented by its clause-children, and discards the clauses

represented by its ‘complement’ world. For correctness, we make this precise, via the following

definition.

Definition 3.2.22. Given a clause φ in P, a deterministic subtree S of T , a world-node t,

and its atom-parent s in S, we say node t accepts clause φ if head(φ) = label(s) and there

is a clause-child of t that represents φ; node t rejects clause φ if head(φ) = label(s) but no

clause-child of t represents φ. We say the deterministic subtree S accepts (rejects) φ if there

exists a world-node t in S that accepts (rejects) φ.

Note that in Definition 3.2.20, condition (ii) prevents the existence of world-nodes t, t′ in S
such that t accepts φ and t′ rejects φ. Thus the notion that S accepts (rejects) φ is well-defined.
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We denote the set of clauses accepted and rejected by S by Acc(S) and Rej(S), respectively.

Then we can define the set SubProg(S) of sub-programs represented by S as

SubProg(S) := {L ⊆ |P| | ∀φ ∈ Acc(S), φ ∈ L;∀ψ ∈ Rej(S), ψ /∈ L} (3.21)

The correctness of the algorithms are then proven through the following basic observations on

the connection between deterministic subtrees and the sub-programs they represent:

Proposition 3.2.23. Suppose S is a deterministic subtree of the distribution tree T of A.

1. {SubProg(S) | S is deterministic subtree of T } forms a partition of P(|P|).

2. Either L ⊢ A for all L ∈ SubProg(S) or L ̸⊢ A for all L ∈ SubProg(S).

3.
∑

L∈SubProg(S) PrP(L) =
∏

ri∈S ri, where the ris are all the probability labels appearing in S
(on the atom-node→ world-node edges).

Proof. 1. Given any two distinct deterministic subtrees, there is an atom-node s in T such

that the subtrees include distinct world-child of s. So by (3.21) the sub-programs they

represent differ at least regarding one clause. Moreover, given a sub-program L, one can

always identify a deterministic subtree S such that L ∈ SubProg(S), as follows: given the

A-labelled root of T , select the world-child w of A representing the (possibly empty) set

X of all clauses in L whose head is A; then select the children (if any) of w, and repeat

the procedure.

2. Note that a sub-program L ∈ SubProg(S) proves the goal A iff S contains a successful

refutation of A, and the latter property is independent of the choice of L.

3. We refer to
∏

ri∈S ri as the probability of the deterministic subtree S. For each sub-

program L ∈ SubProg(S), its probability can be written as

µP(L) =

 ∏
φ∈Acc(S)

lab(φ)

 ·
 ∏
φ′∈Rej(S)

(1− lab(φ′))

 ·µP\(Acc(S)∪Rej(S))(L\Acc(S)) (3.22)

Note that SubProg(S) can also be written as {X ∪ Acc(S) | X ⊆ P \ (Acc(S) ∪ Rej(S))},
so ∑

L∈SubProg(S)

µP\(Acc(S)∪Rej(S))(L \ Acc(S)) = 1. (3.23)

Applying equation (3.23) to the sum of (3.22) over all L ∈ SubProg(S), we get∑
L∈SubProg(S)

µP(L) =
∏

φ∈Acc(S)

lab(φ) ·
∏

φ′∈Rej(S)

(1− lab(φ′)) (3.24)
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For each world-node t and its atom-parent s, we can use the terminology in Definition

3.2.22, and express label(s→ t) (see Definition 3.1.25) as

label(s→ t) =
∏

t accepts φ

lab(φ) ·
∏

t rejects φ′

(1− lab(φ′)). (3.25)

Applying (3.25) to the whole deterministic subtree S, we obtain∑
L∈SubProg(S)

µP(L)
(3.24)
=

∏
φ∈Acc(S)

lab(φ) ·
∏

φ′∈Rej(S)

(1− lab(φ′))

Def.3.2.22
=

∏
(world-node t in S)

( ∏
t accepts φ

lab(φ) ·
∏

t rejects φ′

(1− lab(φ′))

)
(3.25)
=
∏
ri∈S

ri

If we say two world-nodes t and t′ are equivalent if their clause-children represent exactly the

same clauses in P, then the
∏

(world-node t in S) in the above calculation visits every world-node

exactly once modulo equivalence.

We can now formulate the success probability of A as follows

PrP(A) =
∑
|P|⊇L⊢A

µP(L)
(Prop.3.2.23,1&2)

=
∑
S⊢A

∑
L∈SubProg(S)

µP(L)

(3.24)
=

∑
S⊢A

 ∏
φ∈Acc(S)

lab(φ) ·
∏

φ′∈Rej(S)

(1− lab(φ′))

 (Prop.3.2.23,3)
=

∑
S⊢A

∏
ri∈S

ri

In words, this is exactly Algorithm 2: we sum up the probabilities of all deterministic subtrees

S of the distribution tree T which contain a proof of A.

3.2.4.2 General case PLP

Computability of the distribution semantics for arbitrary PLP programs relies on the substi-

tution mechanism employed in the resolution. This aspect deserves a preliminary discussion.

Traditionally, logic programming has both the theorem-proving and problem-solving perspec-

tives [KP18]. From the problem-solving perspective, the aim is to find a proof of some substi-

tution instance of G. From the theorem-proving perspective, the aim is to search for a proof of

the goal G itself as an atom. The main difference is in the substitution mechanism of resolu-

tion: one uses unification for the problem-solving and term-matching for the theorem-proving

perspective.

We will first explore computability within the theorem-proving perspective. As resolution

therein is by term-matching, the probability PrTMP (A) of proving a goal A in a PLP program

P is formulated as PrTMP (A) :=
∑
|P|⊇L⊢A µP(L).
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In our coalgebraic framework, the distribution semantics for general PLP programs is rep-

resented on ‘saturated’ trees, in which computations are performed by unification. However,

following [BZ15], one can define the TM (Term Matching) distribution tree of a goal A in a

program P by ‘desaturation’ of the saturated distribution tree for A in P. The coalgebraic

definition, for which we refer to [BZ15], applies pointwise on the saturated tree the counit

ϵUAt : UKUAt→ UAt of the adjunction U ⊣ K (cf. (3.16)), whose details we spell out here. The

counit ε : U ◦ K ⇒ 1
Set

|Lop
Σ

| of the adjunction U ⊣ K is defined on a presheaf F : |LopΣ | → Set as

follows: for arbitrary n ∈ ob(|LopΣ |) and ẋ ∈ UK(F)(n),

εF(n) : ẋ 7→ ẋ(idn)

Recall that ẋ ∈ UK(F)(n) is a tuple in
∏

θ∈LopΣ [n,m]F(m), so εF(n)(ẋ) is the component of ẋ at

index idn.

The TM distribution tree which results from ‘desaturation’ can be described very simply:

at each layer of the starting saturated distribution tree, one prunes all the subtrees which are

not labelled with the identity substitution id := x1 7→ x1, x2 7→ x2, . . . . In this way, the only

remaining computation are those in which resolution only applies a non-trivial substitution on

the clause side, that is, in which unification is restricted to term-matching.

We formalise the idea above using a construction on the terminal sequences. First, we

identify TM distribution trees as elements in certain final coalgebra. The coalgebra type is

determined by the form of TM distribution trees, namely UAt × D̂≤P̂f (P̂cP̂f (−) × (UAt ×
P̂fUAt)) : Set|L

op
Σ | → Set|L

op
Σ |, which we denote as UAt×Q.

Construction 3.2.24. The terminal sequence for UAt × Q consists of a sequence of objects

{Zα}α∈Ord and morphisms ζβα : Zβ → Zα for α ≤ β defined by induction on α in the same

pattern as Construction 3.1.28. For instance,

Zα =


UAt α = 0

UAt×Q(Xβ) α = β + 1

the expected limit α is limit ordinal

Since Q is a mono-preserving accessible functor, then the sequence converges at some limit

ordinal χ such that Zχ ∼= Zχ+1. Then this Zχ is the final UAt ×Q-coalgebra, or equivalently,

the cofree coalgebra of Q at UAt, namely C(Q)(UAt).

Then the aim is to construct a morphism d : U(C(O)(At))→ C(Q)(UAt): since every satu-

rated distribution tree is an element in C(O)(At) thus in U(C(O)(At)), a proper morphism of

the above type maps a distribution tree to its TM distribution tree. Intuitively, such d per-

forms desaturation via εKU layer by layer to the saturated distribution tree. The method is to

construct a sequence of morphisms between the terminal sequence, whose universal mapping

property induces the desired d. Let us suppose that the terminal sequence of O is {Xα}α∈Ord
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and {δβα}α≤β, and it terminates at some limit ordinal γ.

Construction 3.2.25. Consider the terminal sequence {δβα : Xβ → Xα} for O and the ter-

minal sequence {ζβα : Zβ → Zα} for Q (Construction 3.2.24). We define a sequence of natural

transformations {dα : UXα → Zα}α∈Ord inductively as follows:

• For α = 0, d0 = idUAt.

• For successor ordinal α = β + 1, dα = idUAt × (Q(dβ) ◦ εUKO−Xβ
), where O− is the functor

obtained by removing the K in O.

• For limit ordinal α, dα : UXα → Zα is defined using the universal mapping property of

Zα, since the latter is defined as the limit of the terminal sequence {ζαξ }ξ<α preceding Zα.

Now we are ready to define d : U(C(O)(At))→ C(Q)(UAt). Equivalently, using the terminal

sequence construction such d is of the form UXγ → Zχ, so we make a case distinction on γ ≤ χ

and γ > χ (note that there is no guarantee that these two terminal sequences converge at the

same ordinal). If γ ≤ χ, then Xχ
∼= Xγ, and let d simply be dχ. If γ > χ, then Zγ ∼= Zχ, and

let d be dγ ◦ δγχ.

Proposition 3.2.26. Given arbitrary n ∈ ob(LopΣ ) and A ∈ At(n), the TM distribution tree of

A in P is
(
d ◦ U

(
⟨⟨−⟩⟩p̃ ♯

))
(n)(A), where ⟨⟨−⟩⟩p̃ ♯ is defined in Definition 3.2.15.

So far we have formally shown how, in our coalgebraic picture, one can obtain the TM

distribution tree from the saturated one. We conclude this part with a few remarks on how to

compute the probability of atoms in general PLP, given the algorithms for ground PLP.

For the term-matching perspective, one may compute the success probability PrTMP (A) from

the TM distribution tree of A. The computation goes similarly to Algorithm 2 : the problem

amounts to calculating the probabilities of those deterministic subtrees of the distribution tree

which prove the goal. However there are some crucial difference compared to the ground case.

1. The probability PrTMP (A) is not computable in whole generality. It depends on whether

one can decide all the proofs of A in the pure logic program |P|, and there are various

heuristics in logic programming for this task.

2. It is still possible to decide whether a subtree is deterministic, but the algorithm in the

general case is a bit subtler, as it is now possible that two different goals match the same

clause (instantiated in two different ways).

3. When calculating the probability of a deterministic subtree in the TM distribution tree,

multiple appearances of a single clause (possibly instantiated with different substitutions)

should be counted only once. In order to ensure this one needs to be able to identify which

clause is applied at each step of the computation described by the distribution trees: this

is precisely the reason of the addition of the clause labels in the coalgebra type of these

trees, as discussed in Section 3.2.3.
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For the problem-solving perspective, where resolution is based on arbitrary unification rather

than just term-matching, one works directly with the saturated distribution trees. In standard

SLD-resolution, computability relies on the possibility of identifying the most general unifier

between a goal and the head of a given clause. This can be done also within saturated distri-

bution trees, since saturation supplies all the unifiers, thus in particular the most general one.

This means that, in principle, one may compute the distribution semantics based on most gen-

eral unification from the saturated distributed tree associated with a goal, with similar caveats

as the ones we described for the term-matching case. However, the lack of a satisfactory coalge-

braic treatment of most general unifiers [BZ15] makes us prefer the theorem-proving perspective

discussed above, for which desaturation provides an elegant categorical formalisation.

3.3 Coalgebraic perspective of WLP

In this part we will present the coalgebraic semantics for WLP analogous to that for PLP in

Section 3.1. We focus on ground WLP, where a coalgebraic presentation of WLP programs

is given, followed by a derivation semantics (Section 3.3.1). The computation of the weight

semantics from the derivation semantics is in Section 3.3.2.

3.3.1 Coalgebraic semantics of ground WLP

Let us fix a finite set of atoms At , a semiring K = ⟨K,+, · ,0,1⟩, and a ground WLP program

W based on At , whose weights take value in K. Then W can be represented as a coalgebra of

the typeMKPf : Set→ Set, whereMK is the multiset functor corresponding to the underlying

semiring (see Section 2.1.3).

Definition 3.3.1. The WLP program W induces a MKPf -coalgebra w : At →MKPf (At) as

follows. For each A ∈ At ,

w(A) : Pf (At) → K

{B1, . . . , Bn} 7→

c if c :: A← B1, . . . , Bn is a clause in W

0 otherwise.

Example 3.3.2. Consider the following ground program Pgsp obtained as a simple ground

version of Psp. The underlying semiring is still MinPlus = ⟨N ∪ {+∞},min,+,+∞, 0⟩.
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0 :: initial(a) ← 0 :: reachable(a) ← reachable(a), edge(a, a)

4 :: edge(a, c) ← 0 :: reachable(a) ← reachable(c), edge(c, a)

20 :: edge(a, d) ← 0 :: reachable(a) ← reachable(d), edge(d, a)

9 :: edge(c, a) ← 0 :: reachable(c) ← reachable(a), edge(a, c)

15 :: edge(c, d) ← 0 :: reachable(c) ← reachable(d), edge(d, c)

16 :: edge(d, c) ← 0 :: reachable(d) ← reachable(a), edge(a, d)

0 :: reachable(a) ← initial(a) 0 :: reachable(d) ← reachable(c), edge(c, d)

0 :: reachable(c) ← initial(c) 0 :: reachable(c) ← reachable(c), edge(c, c)

0 :: reachable(d) ← initial(d) 0 :: reachable(d) ← reachable(d), edge(d, d)

The program describes the following (single-sourced, directed) weighted graph (3.26) where a is

the entering node, such that the value of reachable(x) in the program represents the shortest

path from the entering node to x:
a

4

��

20

��
c

15

66
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VV

d
16vv

(3.26)

The (finite) set of atoms Atgsp is

{initial(a), . . . , initial(c), edge(a, c), . . . , edge(d, c), reachable(a), . . . , reachable(c)}.

This program induces a coalgebra pgsp : Atgsp →MMinPlusPf (Atgsp), some of whose images are

presented below:

pgsp(initial(a)) = 0|{}⟩ pgsp(edge(a, d)) = 20|{}⟩ pgsp(edge(d, a)) = ∅

pgsp(reachable(a)) = 0|{initial(a)}⟩+ 0|{reachable(c), edge(c, a)}⟩+ 0|{reachable(d), edge(d, a)}⟩

Note that the 0 in the above equations is the · -unit 1 in MinPlus, and should not be confused

with the +-unit 0.

Unsurprisingly, there is a 1-1 correspondence between WLP programs over andMK-coalgebras.

Proposition 3.3.3. Let PropWLPK be the category of propositional WLP programs based on

K, defined similar to PropPLP (Definition 3.1.7). Then PropWLPK
∼= Fin(Coalg(MKPf )).

Just as in the case of PLP, we may represent operationally the recursive calculation of the

weight weight(A) of a goal A as a certain kind of tree, which we call weighted derivation tree.

These are weighted version of the and-or trees for pure logic programming [GC94]. They are

formally defined analogously to the stochastic derivation trees in Definition 3.1.11, except that

the probability labels are replaced by weight labels.

Definition 3.3.4. The weighted derivation tree for atom A in W is the possibly infinite tree

satisfying the following conditions:
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1. Every node is either an atom-node (labelled with an atom B ∈ At) or a clause-node

(labelled with •). These two types of nodes appear alternatingly in depth, in this order.

In particular, the root is an atom-node labelled with A.

2. Each edge from an atom-node to its (clause-)children is labelled with a weight in K.

3. Suppose s is an atom-node with label B. Then for every clause r :: B ← B1, . . . , Bk in

P, s has exactly one child t such that the edge s→ t is labelled with r, and t has exactly

k children labelled with B1, . . . , Bk, respectively.

We illustrate the concept with an example.

Example 3.3.5. In the context of Example 3.3.2, the weighted derivation tree for reachable(a)

is partially depicted below. Note the different meaning for an atom-node and a clause-node

to have no child. For instance, the clause-node following init(a) has no child because ‘0 ::

initial(a) ←’ is a clause in Pgsp, while the atom-node edge(d, a) has no child because there

is no clause in Pgsp whose head is edge(d, a).

reach(a)0

0 0

0

• • • •
init(a)

0
reach(a) edge(a, a) reach(c) edge(c, a)

9
reach(d) edge(d, a)

• •
(3.27)

By replacingMpr byMK in Construction 3.1.17, one may construct the terminal sequence

for the functor At ×MKPf (−), which by accessibility [Wor99] converges to a limit Xγ at some

limit ordinal γ, yielding the final At×MKPf -coalgebra Xγ
∼= At×MKPf (Xγ), or equivalently,

the cofree coalgebra C(MKPf )(At). This gives us the final coalgebra semantics.

Definition 3.3.6. The coalgebraic semantics of WLP program W is the unique coalgebra

morphism J−Kw : At → C(MKPf )(At) induced by the universal property of the final MKPf -

coalgebra:

At
J−Kw //

<id ,w>
��

Xγ

≃
��

At ×MKPf (At)
id×MKPf (J−Kw)

// At ×MKPf (Xγ).

By construction, one may readily verify that weighted derivation trees are elements of Xγ,

and J−Kw maps an atom A to its weighted derivation tree, computed according to the program

W. Thus we can define the derivation semantics for WLP as the map J−Kw.

Proposition 3.3.7. The weighted derivation tree of A in W is JAKw.

Note that, similar to that for logic programming and probabilistic logic programming, the

weight weightw(A) of a goal is effectively computable from its semantics JAKw — see Section 3.3.2

for details.
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As a final remark, we choose not to explore the full details of the coalgebraic semantics

of general WLP, mainly out of two reasons. First, to the best of our knowledge, most of the

programs in WLP literature and application are either propositional or function-free, namely

the signature of the language has no function symbol. As a consequence, given such a finite

signature, its corresponding Herbrand space of the program is finite, as it only consists of the

constants in the signature. Therefore one can always view a WLP clause with variables as

the abbreviation of finitely many grounded clauses resulting from instantiating the clause with

constants. For instance, recall the program Pgsp from Example 2.1.16. It has variables but

is function-free, thus the clause 0 :: reachable(x) ← reachable(y), edge(y, x) can be seen as

the abbreviation of the ground clauses 0 :: reachable(a) ← reachable(a), edge(a, a)., 0 ::

reachable(a)← reachable(b), edge(b, a), . . . , 0 :: reachable(d)← reachable(d), edge(d, d)

in Psp from Definition 3.3.1. These two programs have the same semantics for all ground

atoms. Indeed, to obtain a well-defined semantics of weighted logic program in general (i.e.

possible containing function symbols), one may need several extra assumption of the underlying

semiring K, such as +-complete and · distributes over countable + sum. Second, even if one

is to consider the coalgebraic representation of general WLP, there is minor adjustment given

the saturated semantics for PLP in Section 3.2.4.2.

3.3.2 Computability of the weight semantics

To finalise the discussion on the coalgebraic semantics of WLP, we show how the weight

weightW(A) of an atom A in W is computable from its weighted derivation tree JAKw.

One preliminary consideration concerns cycles in WLP. Indeed, in a weighted derivation

tree it may be the case that an atom-node has a directed path to another atom-node labelled

with the same atom. While different ways to assign meaning to cycles may be justifiable (for

instance in the context of (co)inductive logic programming), we restrict ourselves to one of the

standard choice where any proof subtree containing a cycle is regarded as failing to prove the

given goal (see e.g. Shay et al. [CSS10]). In concrete, this means that proof subtrees with

cycles may be simply discarded when calculating the weight of the goal.

To make this precise in our computation, recall that a proof subtree for a goal A is a subtree

of JAKw where we select exactly one child for each atom-node with children. A proof tree is a

successful one if it is finite and every leaf succeeds (i.e. is a clause node without child). We

may define the weight of a finite proof subtree for A inductively as the weight of the root node

u (labelled with A) in that particular tree using the following formula:

weight(u) = c ·weight(v1) · · · · ·weight(vk) (3.28)

where c is the weight label of the (unique) edge from u, and v1, . . . , vk are all the grandchildren

(atom-nodes) of u. Note the overall weight of a goal A in JAKw is then the +-sum of the weights

of its proof subtrees ([CSS10]).
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This means that, from a computational viewpoint, discarding a proof subtree is equivalent

to assigning weight 0 (the +-unit) to that proof subtree. In order to assign weight 0 to each

proof subtree with cycles, we look for the first appearance of a cycle, re-label the next edge

with 0, and discard all the descendants. This works because, according to (3.28) and the fact

that 0 · c = c ·0 = 0 for any c ∈ K, any finite proof subtree containing an edge labelled with

0 has weight 0. We illustrate this idea with the following example.

Example 3.3.8. Recall Pgsp from Example 3.3.2, and consider the goal reachable(c). Its

weighted derivation tree Jreachable(c)KPgsp includes a finite path (subtree) witnessing a proof of

the goal.

reach(c)
4−→ • → reach(a)

0−→ • → init(a)
0−→ •

Intuitively, this says that c is reachable from the initial state a in in (3.26), with weight 4.

However, in Jreachable(c)KPgsp there are also other proof subtrees, which feature cycles, as for

instance

reach(c)
4−→ • → reach(a)

9−→ • → reach(c)
4−→ • → reach(a)

0−→ • → init(a)
0−→ • (3.29)

reach(c)
4−→ • → reach(a)

9−→ • → reach(c)
4−→ • → reach(a)

9−→ • → reach(c)→ · · · (3.30)

Our algorithm for computing the weight of w(reachable(c)) will prune both (3.29) and (3.30),

letting them both become equal to

reach(c)
4−→ • → reach(a)

+∞−−→ • (3.31)

where +∞ is the element 0 in the semiring of Pgsp. To see that this procedure yields the correct

result, note that the weight of the proof subtree (3.31) is 4 + (+∞) = +∞, which does not

affect the calculation of the weight (= 4) of reachable(c).

Now we give the generic algorithms which compute the weight of a goal A given its weighted

derivation tree JAKw in the program W. For readability, we divide our approach into 2 algo-

rithms in Figure 3.3.

Algorithm 3 uses depth-first search to find the first node whose atom label already appeared

in some of its ancestors. This search procedure terminates because the set At of atoms is finite.

Since a weighted derivation tree is finitely branching, the whole algorithm also terminates.

Algorithm 4 is a typical divide-and-conquer algorithm, where the weight of an atom-node

is calculated via the weights of its (atom-)grandchildren. The procedure is simply spelling out

the calculation of weights in the weighted derivation tree.
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Algorithm 3 Prune a weighted derivation tree

Input: a weighted derivation tree T
Output: T pruned all cycles

1: for path π in T do
2: atom list = [ ]
3: for node v in π do
4: if label(v) in atom list then
5: t = grandparent of v, u = parent of v
6: cut the descendants of u from T
7: re-label the edge t→ u by 0
8: else
9: atom list.append(label(v))

10: return tree T

Algorithm 4 Calculate weight of the root node from a pruned weighted derivation tree

Input: the weighted derivation tree T for the goal A
Output: the weight of A

1: Prune T using Algorithm 3
2: function Weight(x, T )
3: sum list = [ ]
4: for children y of x do
5: prod list = [label(x→ y)] ▷ first get the weight of the clause
6: for children z of y do
7: prod list.append(WEIGHT(z, T ))
8: cur weight =

∏
prod list ▷ calculate the · -product of all the values in prod list

9: sum list.append(cur weight)

10: return
∑

sum list ▷ return the +-sum of all the values in product list

11: s = root of T ▷ calculate the weight of node s in T
12: return WEIGHT(s, T )

Figure 3.3: Algorithms for computing WLP weights
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Chapter 4

Functorial semantics for logic

programming

In this section we turn to an algebraic perspective of (probabilistic, weighted) logic programs,

restricted to the propositional cases. The guiding principle adopted here is the functorial se-

mantics approach proposed by Lawvere [Law63], where an algebraic theory is encoded as a

syntactic category of terms, and models of this algebraic theory are identified with product-

preserving functors from the syntactic category to appropriate semantic categories. In analogy,

we make a formal distinction between the syntax and semantics of logic programs, both as

categories. This ‘separation of concern’ has the benefit of clearly isolating the purely inferen-

tial structure underlying a program from its ‘type’ (i.e. classical, probabilistic, or weighted,

expressed by the semantics). In a nutshell, given a (probabilistic, weighted) logic program P,

we freely generate a category Syn of string diagrams as its syntactic category that captures

the inferential structure of P. Then the semantics is given by structure-preserving functors

from Syn into some other categories that act as the semantic domain of interpretation. The

main conceptual contribution is that different flavours of logic programs — classical, probabilis-

tic, weighted — amount to choosing different semantic categories but for the same syntactic

category.

The main gain of this perspective is a diagrammatic presentation of some well-known se-

mantic constructs. Thanks to the two-dimensional syntax of string diagrams, one can compose

the diagrams representing clauses into more elaborated morphisms, possibly including feedback

wires. We provide a diagrammatic description of some common semantics in the logic program-

ming literature, such as immediate consequence operators, least Herbrand models, distribution

semantics for probabilistic programs.

Another payoff of this functorial semantics approach is an original perspective on the cor-

respondence between propositional PLP programs and Bayesian networks (Definition 2.1.13).

Interestingly, we show that the two-way transformation between (acyclic) PLP programs and

Bayesian networks is captured purely at the syntactic level in our framework.

This section is organised as follows. We start with defining the syntactic categories under-
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lying classical, probabilistic and weighted logic programs (Section 4.1). Next we present the

functorial semantics of classical logic programs, ad use it to diagrammatically present the Her-

brand semantics (Section 4.2). Then we move on to probabilistic logic programs, and study the

correspondence with Bayesian networks from a functorial point of view (Section 4.3.1). Finally

we discuss the case of weighted logic programming, and present a diagrammatic account of the

least-fixed point semantics (Section 4.4.1).

4.1 Syntactic categories

In this subsection we introduce the syntactic categories to be used in all the following discussion

on the functorial semantics of logic programs, for classical, probabilistic and weighted case.

The starting point of this syntactic category is the observation that every (classical, prob-

abilistic, weighted) logic program P has an underlying definite logic program inf(P) (to be

formally introduced in Definition 4.1.1) describing the purely inferential structure of P. Intu-

itively, inf(P) disregards the information about probabilities, weights, and negated clauses, and

only stores which atoms directly determines the values of which atoms. inf(P) is commonly

used in the definition of the dependency graph of P [DSBS02], which describes the dependency

relation between atoms in P, and plays a key role in, for example, the definition of stratified

logic programs [ABW88]. To incorporate this idea in our approach, we define a ‘forgetful’

function from arbitrary clauses to definite clauses.

Definition 4.1.1. The forgetful function τ gen (resp. τ pr, τwt) from arbitrary classical (resp.

probabilistic, weighted) clauses to definite clauses is defined as follows:

τ gen : A ← B1, ..., Bk,¬C1, ...,¬Cℓ. 7→ A← B1, ..., Bk, C1, ..., Cℓ.

τ pr : p :: A ← B1, ..., Bk,¬C1, ...,¬Cℓ. 7→ A← B1, ..., Bk, C1, ..., Cℓ.

τwt : w :: A ← B1, ..., Bk. 7→ A← B1, ..., Bk.

The inference program of P is the image of P-clauses under the suitable forgetful function τ ,

namely inf(P) = {τ(φ) | φ ∈ P}.

In words, τ drops the quantitative labels and the negation, and only keeps the atom infor-

mation. We say P is based on a definite logic program L if inf(P) = L. The resulting syntactic

category is closely related with dependency graphs of the program.

Definition 4.1.2 ([DSBS02]). The dependency graph of a (LP, PLP, or WLP) program P is a

directed graph, whose nodes are atoms in P, and there is an edge B → A if and only if there

exists a P-clause whose head is A and body contains B (either positively or negatively).

Note that, if we read the definite clause A← B1, . . . , Bk as ‘nodes B1, . . . , Bk are parents of

A’, then inf(P) defines exactly (the components of) the dependency graph of P. Observe that

there may exist distinct clauses in P that have the same image under τ , so the size of inf(P) is

less or equal to that of P.
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Example 4.1.3. We demonstrate inf(·) via the PLP program Pwet below. It describes how the

season affects the probability of raining and a sprinkler to leak, which cause the grass to be

wet and the road to be slippery.

0.25 :: Winter ← . (ψ1) 0.9 :: WetGrass ← Sprinkler. (ψ5)

0.2 :: Sprinkler ← Winter. (ψ2) 0.8 :: WetGrass ← Rain. (ψ6)

0.6 :: Rain ← Winter. (ψ3) 0.7 :: SlipperyRoad ← Rain. (ψ7)

0.1 :: Rain ← ¬Winter. (ψ4) 0.1 :: SlipperyRoad ← ¬Rain. (ψ8)

For instance, we can calculate the success probability πPwet(Winter ∧ WetGrass) = 0.1434. Its

inference program inf(Pwet) consists of the following six clauses:

Winter ← . (φ1) WetGrass ← Sprinkler. (φ4)

Sprinkler ← Winter. (φ2) WetGrass ← Rain. (φ5)

Rain ← Winter. (φ3) SlipperyRoad ← Rain. (φ6)

For instance, τ pr(ψ3) = τ pr(ψ4) = (Rain← Winter.) = φ3. In particular, note the distinc-

tion between |Pwet| and inf(Pwet): the latter is obtained by simply forgetting about all the

probabilistic labels, thus containing eight clauses and is not definite.

As hinted by the dependency graphs and their connection with inference programs, such

inferential structure of P can be captured diagrammatically, indeed as a category of string

diagrams.

Definition 4.1.4. Given a definite logic program L over At , We define SynL to be a freely

generated CDMU category (see Definition 2.3.10), such that:

• the generating objects are A ∈ At ;

• the generating morphisms are string diagrams of the form
... φ

B1

Bm
A, one for each clause

B1, . . . , Bm → A in L.

In words, objects in SynL are finite lists of atoms, and morphisms are string diagrams freely

composed using generating morphisms of the form
... φ

B1

Bm
A (that is sensitive to L) as well as

, , , (that is irrelevant to L). With some abuse of notation, we use φ to refer to

both a clause and its corresponding string diagram in SynL when the context is clear. We choose

to work with CDMU categories because their equations subsume structure that is always present

in logic programs. Roughly speaking, ( , ) reflects the fact that in the logic programming

paradigms we consider here one can use as many copies of an atom as one wants; ( , )

corresponds to the implicit structure in logic programming to ‘bundle together’ all the possible

derivation of the same atom. For example, = and = reflect

the intuition that there is no ordering on the (possibly multiple) clauses in which an atom may
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appear; = = says that generating two occurrences of the same atom and

then disregarding one is equivalent to just working with a single occurrence.

As we mentioned at the beginning, SynL will act as the syntactic category for all (classical,

probabilistic, or weighted) P such that whose inference structure is inf(P) = L. In the parts

on functorial semantics, we will identify logic programs based on L with structure-preserving

functors from SynL to some appropriate ‘semantic categories’, which will vary depending on

whether the program is classical, probabilistic, or weighted.

4.2 Logic programming

In this section we introduce a functorial semantics of classical propositional logic programs,

which culminates in Proposition 4.2.5 below. In Subsection 4.2.1on functorial semantics, we

provide a semantic category, and identify logic programs with certain models — structure-

preserving functors from the syntactic category to the semantic category. Then in Subsec-

tion 4.2.2 we describe some well-known semantics (immediate consequence operator, least Her-

brand semantics, stratified semantics) of logic programs as images of specific string diagrams

in the syntax, under the functorial interpretation. This perspective will provide an original,

diagrammatic representation for such semantic constructs.

4.2.1 Functorial Semantics of LP

In this subsection we introduce a categorical semantics for classical logic programming, and

characterise logic programs as functors from the syntactic categories introduced in Defini-

tion 4.1.4 to an appropriate semantic domain. In the current case of classical logic programming,

such semantic domain, as a category, should reflect the fact that atoms take Boolean values,

and clauses are functions between Boolean states.

Definition 4.2.1. The category Set(B) has the following components:

• Objects are finite products of two-element Boolean algebras.

• Morphisms are functions between the objects.

In particular, we pick a specific singleton set 1 = {•} as the 0-ary product object. We write

∨, ∧, (·)− for the standard Boolean algebra operations, which are also morphisms in Set(B).

Note that every Set(B)-object is itself a finite Boolean algebra, with the operations defined

pointwise.

Since the syntactic category is a CDMU category, first we need to check that the semantic

category has enough structure to interpret the CDMU part of Syn. Note that in the proof

of Proposition 4.2.2 we deliberately use the symbolic rather than diagrammatic notation for

the CDMU structure in Set(B) — for instance ∇ rather than — to distinguish from the

79



syntactic category; but once the functorial semantics is established this distinction is no longer

necessary thus we use the more intuitive diagrammatic notation for both.

Proposition 4.2.2. Set(B) is a CDMU category.

Proof. The category ⟨Set(B),×,1⟩ is a SMC category, where × is the cartesian product in Set,

and 1 is the singleton set {∗} (which is the 0-ary product of copies of B). We define the CDMU

structure on the two-element boolean algebra B = {0, 1} as follows.

∇B : B → B× B
x 7→ (x, x)

ϵB : B → 1

x 7→ ∗
∆B : B× B → B

(x, y) 7→ x ∨ y
ηB : 1 → B

∗ 7→ 0

We only verify the equations for the monoid structure. Given arbitrary x, y, z ∈ B (below we

omit the obvious subscripts for readability),

• ((id ⊗ η) ; ∆)(x) = ∆(x, 0) = x ∨ 0 = x. Similarly (∆⊗ id) ; ∆ = id .

• ((∆⊗ id) ; ∆)(x, y, z) = ∆(x ∨ y, z) = x ∨ y ∨ z = ((id ⊗∆) ; ∆)(x, y, z).

• (γ ; ∆)(x, y) = ∆(y, x) = x ∨ y = ∆(x, y).

The CDMU structure on arbitrary objects of the form B1× · · ·×Bk are defined pointwise, and

it follows immediately that they satisfy the CDMU equations.

Now we are ready to establish the functorial semantics. Let us fix a classical logic program

P over At , with underlying inference structure being L := inf(P). The goal is to associate P
with a functor of the form SynL → Set(B) that fully captures the information of P.

Definition 4.2.3. The CDMU functor J−KP : SynL → Set(B) is defined as follows using the

free construction of the domain category SynL:

• On objects, J−KP maps each A ∈ At to BA = {0A, 1A}.

• On morphisms, for each L-clause φ ≡ B1, . . . , Bk → A and its associated generating mor-

phism
... φ

B1

Bm
A , JφKP maps a state u ∈ BB1×· · ·×BBk

to 1A if u as an interpretation

(cf. Chapter 2) satisfies u ⊨ body(ψ) for some ψ ∈ P where τ gen(ψ) = φ, and to 0A

otherwise.

It is helpful to explicitly write down the behaviour of the functor J−KP on the CDMU

structure of SynL. In a nutshell, it maps the CDMU structure to the CDMU structure, where

the latter guaranteed by Proposition 4.2.2. More precisely,

J KP : B → B × B J KP : B → 1

x 7→ (x, x) x 7→ •
J KP : B × B → B J KP : 1 → B

(x1, x2) 7→ x1 ∧ x2 • 7→ 1
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Example 4.2.4. Let us look at the clause ψ ≡ A ← B1,¬B2. Its inference structure is

captured by the definite clause φ ≡ A ← B1, B2. Moreover, ψ is interpreted as a function

JφK : BB1×BB2 → BA mapping, for instance, (1B1 , 0B2) to 1A and (1B1 , 1B2) to 0A. Incidentally,

note that JφK is not a Boolean function (i.e. it does not respect the lattice structure), as for

instance (1B1 , 0B2) ∨ (1B1 , 0B2) = (1B1 , 1B2) but JφK (1B1 , 1B2) ∨ JφK (1B1 , 1B2) ̸= JφK (1B1 , 1B2).

This explains why we cannot choose to interpret in the category of finite Boolean algebras and

Boolean functions between them.

The next proposition formally states the correspondence characterising the functorial se-

mantics of logic programs. In there, we say a functor F : C → D preserves generating objects

if it maps generating objects of C to generating objects of D (assuming the objects of each

of these two categories are freely obtained from some sets of generators, respectively). In our

case, our choice of C and D are SynL and Set(B), respectively, by noticing that Set(B) has B as

the generating objects. Then the requirement of preserving generating objects ensures that a

functor maps each atom A ∈ At — seen as object of SynL — to a two-element Boolean algebra

B, which we write BA = {0A, 1A} to emphasise this correspondence.

Proposition 4.2.5. There is a 1-1 correspondence between logic programs based on L and

CDMU functors of type SynL → Set(B) that preserve generating objects.

Proof. The construction of a generator-preserving CDMU functor J−KP from a program P is

already discussed in Definition 4.2.3.

For the other direction, given a CDMU functor G : SynL → Set(B) that preserves generating

objects, we construct a logic program Prog(G). We know that for each A ∈ At , G(A) is some

copy of B, which we denote as BA. For each generating morphism
... φ

B1

Bm
A of SynL, G(φ)

is a function of the form BB1×· · ·×BBm → BA. We assume that the support of G(φ) — the set

of all v such that G(φ)(v) = 1A — is {v1, . . . , vd}. Then we construct d-many clauses φ1, . . . , φd

such that τ gen(φj) = A ← B1, . . . , Bm, one for each vi. In particular, suppose vi satisfies

that vi(p1) = 1Bp1
, . . . , vi(pk) = 1Bpk

, vi(q1) = 0Bq1
, . . . , vi(qℓ) = 0Bqℓ

(with k + ℓ = m and

{p1, . . . , pk, q1, . . . , qℓ} = {1, . . . ,m}), then φi is defined as A ← Bp1 , . . . , Bpk ,¬Bq1 , . . . ,¬Bqℓ .

The program Prog(G) is then the collection of all the clauses constructed from each generating

morphism for SynL.

Next we show that the aforementioned two constructions are inverse to each other, thus

witnessing the isomorphism between logic programs and functors as in the statement.

• We start from a logic program P based on SynL. For an arbitrary clause φ ≡ A ←
B1, . . . , Bm. in L, suppose {φ1, . . . , φd} are all the clauses φj such that τ gen(φj) = φ,

then JφKP is defined as a function of type BB1 × · · · ×BBm → BA whose support (namely

the set G(φ)−1(1A)) has size d: each element in the support corresponds to the body of

one of those d-many clauses. Then from JφKP we retrieve d clauses, which are exactly

φ1, . . . , φd: if v ∈ BB1 × · · · × BBm satisfies JφKP (v) = 1A, then there exists some φj such
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that for all i = 1, . . . ,m, v(Bi) = 1Bi
if and only if Bi appears positively (namely as B)

in body(φj), and the clause induced by v is exactly φj itself.

• We start from a functor G : SynL → Set(B). Fix some L-clause φ, and suppose G(φ)−1(1A) =

{v1, . . . , vd}. This means G determines d-many clauses φ1, . . . , φd whose images under τ gen

are all φ. Then the action of the functor J−KProg(G) : SynL → Set(B) on φ ∈ L is totally de-

termined by {φ1, . . . , φd}: JφKProg(G) (v) = 1A if and only if v is compatible with body(φj)

for some φj ∈ {φ1, . . . , φd}; but φj is exactly represented by vj, so JφKProg(G) (v) = 1A if

and only if v = vj, for some vj ∈ {v1, . . . , vd}. This means that JφKProg(G) = G(φ), for

arbitrary L-clause φ.

Therefore we can conclude the bijection between logic programs based on L and generator-

preserving CDMU functors SynL → Set(B).

Echoing the terminology of Lawvere’s functorial semantics [Law63], we will refer to the

functors as in Proposition 4.2.5 simply as models of the syntactic theory SynL. When we want

to emphasise that such models are that corresponding to classical logic programs, we will say

it is a model in Set(B).

4.2.2 Diagrammatic representations of some semantic constructs

One useful outcome of the functorial semantics in general is the possibility of capturing some

algebraic properties solely in the syntactic categories. In our case, the functorial semantics

established so far enables us to present some well-known semantic concepts of logic programs

using the diagrammatic language. More precisely, we will study string diagrams in the syntactic

category whose images under the model are precisely the semantics that we are interested in. In

this subsection we restrict ourselves to two simple yet fundamental semantic concepts of classical

logic programming: the immediate consequence operator, and the consequence operator for

definite programs (with the least Herbrand semantics as a special case), which we refer to

Section 2 for an overview.

Immediate consequence operator

We begin with the immediate consequence operator T (cf. Definition 2.1.7), a basic yet fun-

damental concept beneath many denotational semantics of logic programs [Gel87, ABW88,

GL88, VGRS91a]. Let us fix a logic program P over atom set At = {A1, . . . , An}, and denote

its inference structure as L, namely L = inf(P). We provide an example below, both to recall

immediate consequence operators and to serve as a running-example of this part.

Example 4.2.6. We consider an example from [GL88]. The atom set Atpq consists of p(1, 1),

p(1, 2), p(2, 1), p(2, 2), q(1), q(2), and the program Ppq contains the following six clauses:
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ψ1 ≡ p(1, 2)← . ψ3 ≡ q(1)← p(1, 1),¬q(1). ψ5 ≡ q(2)← p(2, 1),¬q(1).

ψ2 ≡ p(2, 1)← . ψ4 ≡ q(1)← p(1, 2),¬q(2). ψ6 ≡ q(2)← p(2, 2),¬q(2).

Then the immediate consequence operator TPpq is a function of the form BAtpq → BAtpq , or

equivalently P(Atpq) → P(Atpq). We use the latter type to simplify the notation used in the

remainder of this example. For instance, maps both ∅ and {p(1, 2), q(2)} to {p(1, 2), p(2, 1)}
(via clauses ψ1 and ψ2), and maps {p(1, 2)} to {p(1, 2), p(2, 1), q(1)} (via clauses ψ1, ψ2 and

ψ4).

As stated in the very beginning of this subsection, the goal is to express TP via our dia-

grammatic language as certain string diagram, in the sense that its semantics under the model

J−KP is precisely TP. Intuitively, to capture that the immediate consequence operator uses

every single clause exactly once in parallel, we put side-by-side all the generating morphisms

for SynL, as each one of such generating morphism represent one clause in L.

Definition 4.2.7. The immediate consequence diagram TL for P is defined as the following

morphism of type [A1, . . . , An]→ [A1, . . . , An] in SynL:

... σ1 σ2
...

ℓ1

ℓn

k1

kn

...
...

...
...

...
...

... φ1

...

φN
...

A1

An

A1

An

(4.1)

The left and the right ports both consist of all the atoms A1, . . . , An in At . For each Ai, suppose

there are ki-many L-clauses whose bodies include Ai and ℓi-many L-clauses whose heads are

Ai, then we construct ki copies (via in the left blue box) and ℓi cocopies (via in

the right blue box) of Ai. The yellow box contains the parallel composition of the associated

string diagrams of all the L-clauses φ1, . . . , φN . In the two grey boxes, there are suitably many

swapping morphisms to match each copy/cocopy of Ai with an input/output wire Ai in

the yellow box.

The immediate consequence diagram expresses the immediate consequence operator dia-

grammatically in the following sense.

Proposition 4.2.8. The immediate consequence diagram expresses the immediate consequence

operator under interpretation J−KP:
JTLKP = TP

Proof. It suffices to show that for arbitrary u ∈ BA1×· · ·×BAn and A ∈ At , JTLKP (u)(A) = 1A

if and only if TP(u)(A) = 1A.

By definition TP(u)(A) = 1A if and only if there exists ψ ∈ P such that head(ψ) = A and

u ⊨ body(ψ). Let φ = τ gen(ψ), then u ⊨ body(ψ) if and only if JφKP : u|φ 7→ 1A, where u|φ is the
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projection of u (as a tuple of values) to those atoms in body(φ). This means that TP(u)(A) = 1A

if and only if there exists φ ∈ inf(P) such that head(φ) = A and JφKP : u|φ 7→ 1A. By the

interpretation of and under J−KP, this again is equivalent to that JTLKP (u)(A) =

1A.

Example 4.2.9. The inference structure inf(Ppq) of Ppq in Example 4.2.6 consists of the fol-

lowing six definite clauses:

φ1 ≡ p(1, 2)← . φ3 ≡ q(1)← p(1, 1), q(1). φ5 ≡ q(2)← p(2, 1), q(1).

φ2 ≡ p(2, 1)← . φ4 ≡ q(1)← p(1, 2), q(2). φ6 ≡ q(2)← p(2, 2), q(2).

These clauses also constitute the set of generating morphisms of SynLpq
. Then the immedi-

ate consequence diagram TLpq for TPpq is depicted as follows, where we colour the diagrams

according to that in Definition 4.2.7:

p(2, 2)
p(2, 1)

q(1)

q(2)

φ3

φ5

p(1, 1)
p(1, 2)

φ4

φ6

p(2, 2)

p(2, 1)

q(1)

q(2)

p(1, 1)
p(1, 2)φ1

φ2

Interlude: traced extension

Before considering the next semantic constructs of consequence operators and Herbrand models,

we point out that these are fixed point-style semantics for definite logic programs. Therefore

to provide the same kind of analysis as for the immediate consequence operator, we need to

mildly extend our string diagrammatic language SynL to include ‘feedback wires’ (formally

called ‘traces’, see Definition 2.3.7), and also extend the semantic category accordingly. While

we continue with the setting of program P of this section, we add the further assumption that

P is definite, namely has not negation in the body. Although in this case L := inf(P) = P, we

still keep to use L and P separately to highlight the difference between syntactic and semantic

components. The necessity of such distinction is clearer in the latter discussion on probabilistic

and weighted programs.

Definition 4.2.10. The syntactic category SyntrL is the free traced CMUD category freeTrCDMU(At ,ΣL),

namely:

• The objects are finite lists over At .

84



• The morphisms are string diagrams from freeCDMU(At ,ΣL) plus the possibility of adding

traces of the form
f

A B

, modulo the axioms for traced categories (see Defini-

tion 2.3.7).

Note that we purposefully choose not to include traces in the ‘basic’ syntactic category

SynL (Sec. 4.1), out of three reasons. First, we consider fixed points as a feature specific to

certain semantic constructs, rather than a primitive construction of logic program syntax itself.

Second, for a traced syntactic category one also needs a traced semantic category to properly

interpret the syntactic objects, which is not met by Set(B) essentially because clauses involving

negations are not monotone in general, nor met by the semantic category we choose later for

interpreting PLP. Third, we point out that traces are not required for developments in case

one restricts attention to acyclic programs. This is mostly evident in the probabilistic case (see

Subsection 4.3.3), where we relate PLP programs with Bayesian networks.

Turning to the semantics, since the category Set(B) used to interpret SynL-morphisms is

not traced (similar to the fact that Set is not), we need to turn to another semantic category

that is both traced and close enough to Set(B) to retain the functorial semantics established

in Subsection 4.2.1. We choose the subcategory MonFunc(B) of Set(B) whose morphisms are

restricted to monotone functions regarding the ordering 1 ≥ 0. Thanks to the fact that definite

clauses have no negation in their bodies, they can be read as monotone functions of the form∏
B∈body(φ) BB → Bhead(φ) that maps only (1, . . . , 1) to 1. So they are morphisms in this category

of monotone functions.

Definition 4.2.11. MonFunc(B) is the subcategory of Set(B) where morphisms are restricted

to monotone functions Bm → Bn.

This new semantic category MonFunc(B) is also a CDMU category because the morphisms

forming the SMC and CDMU structure of Set(B) are all monotone. Moreover, it has enough

structure to interpret feedback in the novel syntactic category SyntrL .

Proposition 4.2.12. The category MonFunc(B) is traced.

Proof. We give a direct proof which verifies every axioms of traced monoidal categories. A

simpler proof is provided later using the compact structure of MonRelB.

We first define the family of functions Tr in Set(B). Given f : X×U → Y×U in MonFunc(B),

for arbitrary x ∈ X, let ux be the smallest u ∈ U such that π2 ◦ f(x, u) = u, whose existence is

guaranteed by the fact that π2 ◦ f(x, ·) is a monotone function U → U . Then define

TrUX,Y (x) = (π1 ◦ f)(x, ux) (4.2)

Now we verify all the traced monoidal category conditions for such Tr . Fix some f : X ×U →
Y × U .
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1. Naturality in X. Given an arbitrary g : X ′ → X, we show that TrUX,Y (f)◦ g = TrUX′,Y (f ◦
(g × idU)), both as functions X ′ → Y . Pick an arbitrary x′ ∈ X ′. Let u1 = µu.π2 ◦
f(g(x′), u). Then TrUX,Y (f)◦g(x′) = π1 ◦f(g(x′), u1). Let u2 = µu.π2 ◦f ◦ (g× idU)(x′, u),

then TrUX′,Y (f ◦ (g × idU))(x′) = π1 ◦ f ◦ (g × idU)(x′, u2).

It suffices to show that u1 = u2, because in that case, π1◦f(g(x′), u1) = π1◦f(g(x′), u2) =

π1◦f ◦(g×idU)(x′, u2). And to show u1 = u2, we observe that they satisfies the fixed-point

equation of each other. On one hand, π2 ◦ f ◦ (g × idU)(x′, u1) = π2 ◦ f(g(x′), u1) = u1.

On the other hand, π2 ◦ f(g(x′), u2) = π2 ◦ f ◦ (g × idU)(x′, u2) = u2.

2. Natuality in Y . Given an arbitrary h : Y → Y ′, we show that h◦TrUX,Y (f) = TruX,Y ′((h×
idU) ◦ f), both as functions X → Y ′. We start with an arbitrary x ∈ X. Let u1 =

µu.π2◦f(x, u), then h◦TrUX,Y (f)(x) = h◦π1◦f(x, u1). Let u2 = µu.π2◦(h×idU)◦f(x, u).

Then TrUX,Y ′((h× idU) ◦ f) = π1 ◦ (h× idU) ◦ f(x, u2). It suffices to show that u1 = u2,

since then h ◦ π1 ◦ f(x, u1) = h ◦ π1 ◦ f(x, u2) = π1 ◦ (h × idU) ◦ f(x, u2). For this, we

again show that u1 and u2 are fixed points of the operator for each other. This follows

by observing that u2 = µu.π2 ◦ (h× idU) ◦ f(x, u) = µu.π2 ◦ f(x, u) = u1.

3. Dinaturality in U . Suppose f is of type X ×U → Y ×U ′, and d : U ′ → U . We show that

TrU
′

X,Y (f ◦ (idX × d)) = TrUX,Y ((idY × d) ◦ f). The LHS is

TrU
′

X,Y (f ◦ (idX × d))(x) = π1 ◦ (f ◦ (idX × d))(x, u′0) = π1 ◦ f(x, d(u′0))

where u′0 = µu′.π2 ◦ f ◦ (idX × d)(x, u′). The RHS is

TrUX,Y ((idY × d) ◦ f)(x) = π1 ◦ (idY × d) ◦ f(x, u0) = π1 ◦ f(x, u0)

where u0 = µu.π2 ◦ (idY × d) ◦ f(x, u). It suffices to show that u0 = d(u′0), as this entails

that

LHS = π1 ◦ f(x, d(u′0)) = π1 ◦ f(x, u0) = RHS

On one hand, d(u′0) ≥ u0 because d(u′0) satisfies the defining fixed-point equation of u0:

π2 ◦ (idY × d) ◦ f(x, d(u′0)) = d ◦ π2 ◦ f(x, d(u′0))

= d ◦ π2 ◦ f ◦ (idX × d)(x, u′0)

= d(u′0)

On the other hand, to prove that d(u′0) ≤ u0, we note that

d(u′0) = d(
∧
{u′ ∈ U ′ | π2 ◦ f(x, d(u′)) ≤ u′})

≤
∧
{d(u′) | u′ ∈ U ′ & π2 ◦ f(x, d(u′)) ≤ u′} (Proposition 4.2.13)
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u0 =
∧
{u ∈ U | π2 ◦ (idY × d) ◦ f(x, u) ≤ u}

Let Ψ = {u′ ∈ U ′ | π2 ◦ f(x, d(u′)) ≤ u′} and Φ = {u ∈ U | π2 ◦ (idY × d) ◦ f(x, u) ≤ u},
it suffices to show that for every u ∈ Φ, there exists u′ ∈ U ′ such that d(u′) ≤ u. Indeed,

we can let u′ = π2 ◦ f(x, u).

d(u′) = d(π2 ◦ f(x, u))

= π2 ◦ (idY × d) ◦ f(x, u)

≤ u

And u′ ∈ Ψ because

π2 ◦ f(x, d(u′)) = π2 ◦ f ◦ (idX × d)(x, u′)

= π2 ◦ f ◦ (idX × d)(x, π2 ◦ f(x, u))

= π2 ◦ f(x, d ◦ π2 ◦ f(x, u))

= π2 ◦ f(x, π2 ◦ (idY × d) ◦ f(x, u))

≤ π2 ◦ f(x, u)

= u′

4. Vanishing (i). Suppose U = I = 1, namely f : X × 1→ Y × 1, we show that Tr1X,Y (f) =

ρY ◦ f ◦ λX . Given an arbitrary x ∈ X, µu.π2 ◦ f(x, u) = •, the only element in 1. Thus

Tr1X,Y (f)(x) = π1 ◦ f(x, •) = (ρY ◦ f ◦ λX)(x, •).

5. Vanishing (ii). Assume f : X×U×V → Y ×U×V , we show that TrUX,Y (TrVX×U,Y×U(f)) =

TrU×VX,Y (f). Fix an arbitrary x.

TrUX,Y (TrVX×U,Y×U(f))(x)

=π1 ◦ TrVX×U,Y×U(f)(x, µu.π2 ◦ TrVX×U,Y×U(f)(x, u))

=π1 ◦ TrVX×U,Y×U(f)(x, µu.π2 ◦ π1,2 ◦ f(x, u, µv.π3 ◦ f(x, u, v)))

Denote µu.π2 ◦ π1,2 ◦ f(x, u, µv.π3 ◦ f(x, u, v)) as u0, and we have

u0 = π1µ(u, v).π2,3f(x, u, v)

Then continuing the previous calculation we have:

π1 ◦ TrVX×U,Y×U(f)(x, µu.π2 ◦ π1,2 ◦ f(x, u, µv.π3 ◦ f(x, u, v)))

=π1 ◦ TrVX×U,Y×U(f)(x, u0)

=π1 ◦ π1,2f(x, u0, µv.f(x, u0, v))
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=π1 ◦ f(x, π1µ(u, v).π2,3f(x, u, v), π2µ(u, v).π2,3f(x, u, v))

=π1 ◦ f(x, µ(u, v).π2,3f(x, u, v))

=TrU×VX,Y (f)(x)

6. Superposing. Given some e : W → Z, we verify that e× TrUX,Y (f) = TrUW×X,Z×Y (e× f),

both functions of type W ×X → Z × Y . So we pick an arbitrary (w, x) ∈ W ×X.

TrUW×X,Z×Y (e× f)(w, x)

=π1,2(e× f)(w, x, µu.π3(e× f)(w, x, u))

=π1,2(e× f)(w, x, µu.π3(e(w), f(x, u)))

=π1,2(e× f)(w, x, µu.π2 ◦ f(x, u))

=π1,2(e(w), f(x, µu.π2 ◦ f(x, u)))

=(e(w), π1f(x, µu.π2 ◦ f(x, u)))

=(e(w),TrUX,Y (f)(x))

=(e× TrUX,Y (f))(w, x)

7. Yanking. We verify that TrXX,X( X) = idX . Fix some x ∈ X. Note that µz.π2 ◦
(x, z) = x, so TrXX,X( X) = π1 ◦ X(x, µz.π2 ◦ (x, z)) = π1(x, x) = x.

This completes the verification of all the axioms for MonFunc(B) being traced.

Proposition 4.2.13. Every MonFunc(B) morphism f : Bm → Bn preserves ∧ in one direction:

f(a ∧ b) ≤ f(a) ∧ f(b).

Proof. We know that every monotone function between finite products of B is defined using ∧
and ∨, namely all monotone functions Bm → B can inductively defined as follows:

f ::= 0 | 1 | πi, where i ∈ {1, . . . ,m} | f ∧ f | f ∨ f (4.3)

thus we define by induction on the structure of f .

The base case of the constant functions 0 and 1 are trivial, so are the projection cases. We

focus on the induction step.

If f = f1 ∧ f2, then for arbitrary a,b ∈ Bm,

f(a ∧ b) = f1(a ∧ b) ∧ f2(a ∧ b)

≤ (f1(a) ∧ f1(b)) ∧ (f2(a) ∧ f2(b)) (IH)

= (f1(a) ∧ f2(a)) ∧ (f1(b) ∧ f2(b))

= (f1 ∧ f2)(a) ∧ (f1 ∧ f2)(b)

= f(a) ∧ f(b)
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If f = f1 ∨ f2, then for arbitrary a,b ∈ Bm,

f(a ∧ b) = (f1 ∨ f2)(a ∧ b)

= f1(a ∧ b) ∨ f2(a ∧ b)

≤ (f1(a) ∧ f1(b)) ∨ (f2(a) ∧ f2(b)) (IH)

= (f1(a) ∨ f2(a)) ∧ (f1(a) ∨ f2(b)) ∧ (f1(b) ∨ f2(a)) ∧ (f1(b) ∨ f2(b))

≤ (f1(a) ∨ f2(a)) ∧ (f1(b) ∨ f2(b))

= (f1 ∨ f2)(a) ∧ (f1 ∨ f2)(b)

= f(a) ∧ f(b)

Therefore we can conclude that f(a ∧ b) ≤ f(a) ∧ f(b).

Again, we can establish a functorial semantics for definite logic program P for the semantic

category. Since SyntrL just adds SynL with traces, the construction of this functor is to simply

equip J−KP with canonical interpretation of traces.

Definition 4.2.14. A definite logic program P uniquely determines a traced CDMU functor

J−KTrP :

• for every generating object and morphism, J−KTrP behaves the same as J−KP;

• for traced diagrams,

u

v f
X

U

Y

U

}

~

Tr

P

= TrUX,Y (f).

It immediately follows from Proposition 5.4.37 that J−KTrP is a traced CDMU functor that

preserves generators. Now we are ready to present some fixed-point semantics for definite logic

programs.

Consequence operators and Herbrand semantics

As already introduced in Section 2.1.1, the importance of the immediate consequence operator

TP lies in that it performs the single ‘iteration step’ in various denotational semantics of logic

programs. For definite logic programs, the canonical models are precisely the least fixed points

of the immediate consequence operators, which exist because the operators are monotonic on

the complete lattice P(At), or equivalently, BAt =
∏

A∈At BA. This suggests that one can

express the least Herbrand modelsMH (cf. Definition 2.1.7) simply as immediate consequence

operators plus ‘feedback wires’. We first deal with consequence operators, by which Herbrand

models can be defined straightforwardly.
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Definition 4.2.15. The consequence diagram CL is a SyntrL -morphism defined as follows, where

the box is the immediate consequence diagram TL in (4.1):

An

A1...
...

tP
An

A1

...

(4.4)

In traditional categorical terms, CL is

Tr
[A1,...,An]
[A1,...,An],[A1,...,An]

(( A1 ⊗ · · · ⊗ An) ; TL ; ( A1 ⊗ · · · ⊗ An))

and in this form it is not easy to comprehend. This again emphasises the advantage of diagra-

mamtic language which is succinct and intuitive, yet mathematically strict. We include this

following statement which seems to be a repetition of Proposition 4.2.8, yet stated instead for

the new model J−KTrP that we use here to interpret diagrams with feedbacks.

Lemma 4.2.16. JTLK
Tr
P = TP.

Proof. Note that TL is trace-free, and J·KTrP and J·KP coincide on the trace-free fragment of SyntrL ,

the claim follows immediately from Proposition 4.2.8.

Proposition 4.2.17. The string diagram CL in (4.4) expresses the consequence operator of P,
in the sense that JCLK

Tr
P = CP.

Proof. For readability, we denote the diagram

An

A1...
...

TL

An

A1

An

A1 ...
...

An

A1

...
... as g, so the consequence

diagram CL is Tr (g) (where we omit the obvious sub/superscripts for Tr ). Then for arbitrary

(a1, . . . , an) ∈ BA1 × · · · × BAn ,

JCLK
Tr
P (a1, · · · , an) =

r
Tr

[A1,...,An]
[A1,...,An],[A1,...,An]

(g)
zTr

P
(a1, . . . , an)

= Tr
BA1
×···BAn

BA1
×···BAn ,BA1

×···BAn
(JgKTrP )(a1, . . . , an)

= πn+1,...,2n ◦ JgKTrP (u1, . . . , un, a1, . . . , an)

where (u1, . . . , un) ∈ BA1 × · · · × BAn is the least fixed point of λu.π1,...,n ◦ JgKTrP (u, a). Since

µu.π1,...,n ◦ JgKTrP (u, a) = µu.π1,...,n ◦
q

[A1,...,An] ◦ TL ◦ [A1,...,An]

yTr

P (u, a)

= µu.π1,...,n ◦
q

[A1,...,An]

yTr

P ◦ JTLK
Tr
P (u1 ∨ a1, . . . , un ∨ an)

= µu1, . . . , un. JTLK
Tr
P (u1 ∨ a1, . . . , un ∨ an)

= µu1, . . . , un.TP(u1 ∨ a1, . . . , un ∨ an)

= CP(a1, . . . , an)
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we have

JCLK
Tr
P (a1, . . . , an) = πn+1,...,2n ◦ JgKTrP (u1, . . . , un, a1, . . . , an)

= πn+1,...,2n ◦ JgKTrP (CP(a1, . . . , an), a1, . . . , an)

= πn+1,...,2n(CP(a1, . . . , an),CP(a1, . . . , an))

= CP(a1, . . . , an)

Therefore JCPK
Tr
L = CP.

The Herbrand semantics, or least model semantics, of definite logic programs, is then rep-

resented diagrammatically using the consequence diagrams together with which stands for

for input value 0.

Corollary 4.2.18. The following string diagram HL expresses the least Herbrand model of P,
in the sense that JHLK

Tr
P =MH

P .

=

An

A1...
...

tP
An

A1

...

An

A1...
tP

An

A1

...

...
(4.5)

Proof. Note that J KTrP denotes 0. Then

JHLK
Tr
P = J( A1 ⊗ · · · ⊗ An) ; CLK

Tr
P

= JCLK
Tr
P ◦ J A1 ⊗ · · · ⊗ AnK

Tr
P

= CP(0A1 , . . . , 0An) (Proposition 4.2.17)

=MH
P (Definition 2.1.7)

4.3 Probabilistic logic programming

In this section we turn to probabilistic logic programming (PLP). The structure of this section

is as follows. We first present the functorial semantics of PLP in Section 4.3.1. Next we discuss

a pictorial representation of distribution semantics, in Section Section 4.3.2. We justify the

diagrammatic representation of PLP syntax as string diagrams by comparison with Bayesian

networks (BNs): we explore this in Section 4.3.3, where we show the equivalence between

Boolean-valued BNs and acyclic PLP programs, and then illustrate their relationship with

functors between the underlying categories.

For PLP, the separation of syntax and semantics into different categories provides two main

insights. First, we are able to define PLP programs as models of the same syntax category
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as LP programs. This formalises the intuition that the difference between the two formalisms

is only at the semantics level. Second, we present a formal correspondence between (acyclic)

PLP programs and Boolean-valued BNs using only transformation at the syntactic level. This

reveals that PLP and BN differ in their syntactic structures, and their mutual transformation

lies in the syntactic region.

4.3.1 Functorial Semantics of PLP

We start with the functorial semantics of PLP. Throughout this section we fix a PLP program

P over At , and denote its underlying inference structure inf(P) as L. Our goal is to provide for

PLP a functorial semantics characterisation analogous to the one for logic programs (Proposi-

tion 4.2.5). As mentioned above, we will use the same syntactic category as that for LP (see

Section 4.1). As for the semantic category, one needs to switch from Boolean-valued functions

to their probabilistic counterpart.

Definition 4.3.1. The category Stoch(B) has the following structure:

• The objects are the same as that for Set(B), namely finite products of two-element Boolean

algebras.

• Morphisms B1 × · · · × Bk _ B1 × · · · × Bm are functions of the form f : B1 × · · · × Bk →
D(B1 × · · · × Bm), where D(B1 × · · · × Bm) is the set of probability distributions on

B1 × · · · × Bm.

• The identity morphism idB is the Dirac distribution on 1 ∈ B, namely idB = 1|1⟩;

• Given morphisms f : X → D(Y ) and g : Y → D(Z), their composition g ◦ f : X → D(Z)

assigns to each x ∈ X a distribution
∑

z∈Z

(∑
y∈Y f(x)(y) · g(y)(z)

)
|z⟩.

An alternative description of Stoch(B) is that it is the full subcategory of the category

of stochastic matrices Stoch whose objects are restricted to those of Set(B). Since Stoch

is exactly the Kleisli category for the distribution monad D, we may regard composition in

Stoch(B) simply as Kleisli composition, and use _ for arrows in Stoch(B) to distinguish it

from their function counterpart. For example, we use B _ B and B → D(B) interchangeably

for the types of Stoch(B)-morphisms. As before, we verify that Stoch(B) has enough structure

to interpret the syntactic categories.

Lemma 4.3.2. Stoch(B) is a CDMU category.

Proof. First of all, since Stoch(B) is a full subcategory of the SMC Stoch, ⟨Stoch(B),×,1⟩
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forms a SMC as well [JKZ19]. Moreover, we define the CDMU structure on B as follows:

∇ : B _ B × B ϵ : B _ 1

x 7→ 1|(x, x)⟩ x 7→ 1|•⟩
∆ : B × B _ B η : 1 _ B

(x1, x2) 7→ 1|x1 ∨ x2⟩ • 7→ 1|1⟩

We only verify the CDMU equations for the monoid structure, and that for the comonoid

structure can be found in [JKZ19], for the CD category Stoch. Given arbitrary x, y, z ∈ B,

• Unital: ((id ⊗ η) ; ∆)(x) = 1|x ∨ 0⟩ = 1|x⟩ = id(x). Similarly (η ⊗ id) ; ∆ = id .

• Associative: ((∆⊗ id) ; ∆)(x, y, z) = 1|x ∨ y ∨ z⟩ = ((id ⊗∆) ; ∆)(x, y, z).

• Commutative: (γ ; ∆)(x, y) = 1|x ∨ y⟩ = ∆(x, y).

The CDMU structure on arbitrary objects of the form B1× · · ·×Bk are defined pointwise, and

it follows immediately that the structure satisfies CDMU equations.

Now we are ready to formalise the functorial semantics of PLP. Similar to the case of LP,

we will present PLP as certain structure-preserving functors, and the other way around, such

that they form the 1-1 correspondence between PLP programs and functors. The idea is that

the probabilistic feature of PLP can be fully captured by the images of its associated functors

in the category Stoch(B).

On one hand, we start with a PLP P with inf(P) = L. The associated functor will map

every generating morphism ψ of SynL to the Markov kernel it represents.

Definition 4.3.3. The functor J−KP : SynL → Stoch(B) is defined as follows:

• on objects, J−KP maps A ∈ At to BA;

• on morphisms, J−KP maps the CDMU structure of SynL to that of Stoch(B) as shown in

Lemma 4.3.2; for each generating morphism
... φ

B1

Bm
A in SynL,

JφKP : u 7→

p|1A⟩+ (1− p)|0A⟩ ∃ψ such that τ pr(ψ) = φ, u ⊨ body(ψ), and lab(ψ) = p

1|0A⟩ else

On the other hand, a generator-preserving CDMU functor F : SynL → Stoch(B) determines

a PLP program whose underlying inference structure is L, and its clauses capture exactly the

F -image of the generating string diagram of SynL.

Definition 4.3.4. The PLP program ProgF consists of all φv defined as below. For each

generatig morphism
... φ

B1

Bm
A of SynL, let {v1, . . . , vs} be the set of all v ∈ BB1 × · · · × BBm

satisfying F(φ)(v) ̸= 1|0A⟩. Suppose:
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1. v(Bi1) = 1Bi1
, . . . , v(Bik) = 1Bik

and v(Bj1) = 0Bj1
, . . . , v(Bjℓ) = 0Bjℓ

exhaust all

B1, . . . , Bm;

2. F(φ)(v) = p|1A⟩+ (1− p)|0A⟩,

then φv is p :: A← Bi1 , . . . , Bik ,¬Bj1 , . . . ,¬Bjℓ .

Example 4.3.5. We exemplify the Prog(·) construction via a toy example. Consider the atom

set At = {A,B,C} and the definite progred3am L consisting of two clause φ1 and φ2 of the form

A ← B,C and A ← B, respectively. Suppose further that the functor G : SynL → Stoch(B)

maps the generating morphism φ1 to the function G(φ1) : BB × BC → D(BA) such that:

(0B, 0C) 7→ 1|0A⟩ (0B, 1C) 7→ 0.3|0A⟩+0.7|1A⟩ (1B, 0C) 7→ 1|0A⟩ (0B, 0C) 7→ 0.5|0A⟩+0.5|1A⟩

and maps the generating morhpism φ2 to the function G(φ2) : BB → D(BA) such that:

0B 7→ 1|0A⟩ 1B 7→ 0.9|0A⟩+ 0.1|1A⟩

Then the induced program ProgG consists of the following three clauses:

0.7 :: A← ¬B,C 0.5 :: A← ¬B,¬C 0.1 :: A← B

Note that, for instance, 0B 7→ 1|0A⟩ does not give rise to a clause, because the clause that

corresponds to this semantics would be 0 :: A← ¬B, which is not a valid clause for PLP as its

existence does not affect the semantics of the program at all.

Indeed these two directions establish the functorial semantics of PLP.

Proposition 4.3.6. There is a 1-1 correspondence between PLP programs based on L and

generator-preserving CDMU functors SynL → Stoch(B).

Proof. We show that the aforementioned two constructions J−K(·) and Prog(·) are inverse to

each other.

On one hand, we start from a P-clause ψ ≡ p :: A → Bi1 , . . . , Bik ,¬Bj1 , . . . ,¬Bjℓ . with

τ pr(ψ) = φ. This clause ψ determines the behaviour of the Markov kernel JφKP : BBi1
× · · · ×

BBik
× BBj1

× · · · × BBjℓ
at the unique state v satisfying v ⊨ body(ψ), such that JφKP (v) =

p|A⟩ + (1 − p)|¬A⟩. This defines a unique clause in the program ProgJ−KP , which is exactly

ψ. Moreover, every clause in ProgJ−KP is generated in this way: for a clause φv to appear in

ProgJ−KP , it must be the case that JφKP (v) ̸= 1|0A⟩, thus there is a clause ψ from the original

program P that determines JφKP (v) is supported.

On the other hand, starting from a generator-preserving CDMU functor G, for each gener-

ating morphism
... φ

B1

Bm
A , suppose the set V + = {v ∈ BB1 × · · · × BBm | G(φ)(v) ̸= 1|0A⟩}

has size s, then ProgG has exactly s-many clause whose inference structure is φ, say φv for

each v. Indeed φv satisfies that
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• head(φv) = A;

• Bi ∈ body(φv) iff v(Bi) = 1;

• ¬Bj ∈ body(φv) iff v(Bj) = 0;

• no other literals appear in body(φv).

Together these s-many φv determine the behaviour of J−KProgG on φ, and JφKProgG maps u ∈
BB1×· · ·×BBm to 1|0A⟩ if u does not match the body any of those φv; it maps u to p|1A⟩+(1−
p)|0A⟩ if it matches the body of some φv such that lab(φv) = p. This means that JφKProgG =

G(φ). Thus J−KProgG = G.

4.3.2 Distribution semantics in string diagrams

As an immediate application of the functorial semantics of PLP, we now study diagrammatic

representations of PLP semantics, in a similar flavour to that for LP. We restrict ourselves

to acyclic programs, which have a straightforward distribution semantics (Definition 2.1.11).

This enables us to stick with the simpler diagrammatic language SynL, instead to moving to

the diagrammatic language with traces SyntrL . Let us formalise the intuitive notion of acyclic

program first.

Definition 4.3.7. A definite logic program L is acyclic if there is no finite sequence of L-

clauses φ0, . . . , φm such that head(φi+1) ∈ body(φi) for all i = 0, . . . ,m − 1, and head(φ0) ∈
body(φm). A (classical, probabilistic, weighted) logic program P is acyclic if its underlying

inference striucture inf(P) is acyclic.

In words, program L contains a cycle if there is some reduction chain from heads to bodies of

clauses, such that some goal is eventually reduced to itself. Thus a trace-free diagrammatic lan-

guage suffices for acyclic programs because there is no feedback needed to depict the derivation

of the atoms of interest, which expresses the semantics of these atoms.

The goal of this subsection is to diagrammatically express the probability distribution of

a set of atoms under the standard distribution semantics. The idea is to construct a string

diagram fĀ : [ ] → [A1, . . . , Ak] which exhausts all possible derivations of {A1, . . . , Ak} in P,

and its interpretation JfĀKP returns exactly the desired distribution semantics of Ā in P. As

a preliminary, we introduce below the notion of ‘A-component’. Intuitively the A-component

collects all the clauses with heads A, and ‘bundle’ them into a string diagram whose output wire

is A, and whose input wires does not have duplicate of atoms. We separate out this concept

because of its importance in both the diagrammatic distribution semantics and the comparison

of PLP with the diagrammatic representation of Bayesian networks in the next subsection.
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Definition 4.3.8. The A-component in L is a string diagram compA : [B1, . . . , Bk] → [A] in

SynL below, where:

φ1B1

Bk

A

φn

...
...

...

...

... σ
...

...
...

...

1. B1, . . . , Bk are all the atoms B satisfying that there exists φ ∈ L such that head(φ) = A

and B ∈ body(φ).

2. In the first block, for each atom Bi, there are ki-many copies of Bi (via ), where ki is

the number of L-clauses φ satisfying head(φ) = A and B ∈ body(φ).

3. The third block contains parallel string diagrams all each L-clause φ1, . . . , φn with head

A.

4. In the fourth block, there are n-many cocopies of A (via ), where n is the number of

L-clauses with head A.

5. The second block (marked with σ) contains suitably many swapping morphisms to

match each copy of Bi in the first block to an input wire Bi for some φ in the third block.

Note that the above definition covers the corner case where n = 0, namely the case where

there is no L-clause with head A. In this situation, the definition says that we make 0 copy

of A, and compA simplifies to A. This matches our intuition that, if there is no clause with

head A, then A is not derivable thus should have truth value 0, expressed by .

To construct the diagram expressing the joint distribution of a set of atoms Ā := {A1, . . . , Ak},
we basically need to exhaust all the possible derivations in P of each of these Ai, and then com-

pose them in a suitable manner. The key step of exhausting all the possible derivations is

to form A-components. We illustrate this idea using a simple example before diving into the

formal construction — the later is not hard but cumbersome.

Example 4.3.9. Recall the program Pwet from Example 4.1.3. To consider the joint distribution

of the set of atoms {WetGrass, Winter} in Pwet, intuitively we want to exhaust all possible

derivations of WetGrass and Winter in Pwet from scratch, such that the only ‘open’ wires are

WetGrass and Winter:

ψ2
Sprinkler

ψ3

ψ1

Winter

Rain
ψ5

ψ4

WetGrass

In particular, the highlighted parts in the above diagram are compRain and compWetGrass, respec-

tively.
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We need the following handy notion of ancestors of atoms in a program to facilitate the

construction of distribution diagrams.

Definition 4.3.10. An atom B is an ancestor of atom A in L if there exists a chain of L-

clauses φ1, . . . , φk such that B ∈ body(φ1), head(φi) ∈ body(φi+1) for all i = 1, . . . , k − 1, and

head(φk) = A. We denote the set of all ancestors of A in L as AncestorL(A), and the union of

ancestors
⋃
A∈A AncestorL(A) as AncestorL(A).

For example, in Pwet (Example 4.3.9), the atom Sprinkler an ancestor of WetGrass, but

not an ancestor of Rain.

Definition 4.3.11. Let B = {B1, . . . , Bk} be a subset of At . The PLP distribution diagram

fB : [ ] → [B1, . . . , Bk] is defined using the following construction of a sequence of diagrams

{gi}mi=1, where we assume {B1, . . . , Bk} ∪ AncestorL({B1, . . . , Bk}) = {C1, . . . , Cm}:

• g0 is the empty diagram;

• Suppose gj is defined for some j < m, and is of type [ ] → [Cs1 , . . . , Csj ], then gj+1 is

defined as the following string diagram:

gj

compA
...Cs1

Csj

...

... Cpℓ

Cp1

Cpℓ

Csk+1

...

...

Cp1

Cpℓ

Cp1

Cq1
Cqj−ℓ

σ1

σ2

In particular, we pick an Csj+1
∈ {C1, . . . , Cm} \ {Cs1 , . . . , Csj} such that all atoms in

dom(compCsj+1
) already appear in Cs1 , . . . , Csj , say compCsj+1

: [Cp1 , . . . , Cpℓ ] → [Csj+1
]

with {Cp1 , . . . , Cpℓ} ⊆ {Cs1 , . . . , Csj}. In the green block we make two copies for each

atom in {Cp1 , . . . , Cpℓ} from the codomain of gj in the leftmost block. σ1 consists of

suitably many to match one of the copies of each Cpi to the left port of compA in the

blue block. σ2 again contains that make the codomain [Cs1 , . . . , Csj+1
].

Finally, the distribution diagram is defined as fB = gm ; (h1⊗· · ·⊗hm), where each hi = Ci

if Ci ∈ B, and hi = Ci
if Ci ̸∈ B.

In words, one first construct a diagram gm whose wires on the right port represent exactly

everyB ∈ B and their ancestors, and fB is obtained by dropping all the atoms in AncestorL(B)\B
using .

Example 4.3.12. The construction of fB can be exemplified by the running example Exam-

ple 4.1.3. The set of variables of interest is B = {Winter, WetGrass}. Their ancestor set
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AncestorLwet(B) is {Winter, Sprinkler, Rain}. For instance, the WetGrass-component is:

ψ4

ψ5

WetGrass

Sprinkler

Rain

Now we are ready to construct the series of diagrams {gi}4i=0 (note that 4 is the size of B ∪
AncestorLwet(B)) as follows:

g1 = ψ1
Winterg0 =

ψ3
ψ1

Winter

Rain
g2 = g3 =

ψ2
Sprinkler

ψ3
ψ1

Winter

Rain

g4 = ψ2

Sprinkler

ψ3

ψ1

Winter

Rain

ψ5

ψ4

WetGrass

Finally, by discarding the atoms Rain, Sprinkler in AncestorLwet(B)\B, we obtain f{Winter,WetGrass} =

g4 ; ( Rain ⊗ Sprinkler ⊗ idWetGrass ⊗ idWinter), or diagrammatically,

f{Winter,WetGrass} =
ψ2

Sprinkler

ψ3

ψ1

Winter

Rain

ψ5

ψ4

WetGrass =
ψ2

Sprinkler

ψ3

ψ1

Winter

Rain
ψ5

ψ4

WetGrass

In particular, note that SlipperyRoad ∈ Atwet did not appear in the construction of f{Winter,WetGrass},

because it appears in neither {Winter, WetGrass} nor AncestorPwet({Winter, WetGrass}).

The distribution diagram calculates exactly the distribution of the atoms of interest, under

the interpretation J−KP.

Proposition 4.3.13. fB expresses the distribution semantics: JfBKP = δ(B).

Proof. Let us follow the same assumption and notation in Definition 4.3.11. Moreover, without

loss of generality we assume that {C1, . . . , Cm}\{B1, . . . , Bk} = {D1, . . . , Dm−k}. We prove the

following result for the series of diagrams {gi}mi=0: for each gi, say of type [ ] → [Cs1 , . . . , Csi ],

JgiKPwet
= δ({Cs1 , . . . , Csi}). Suppose this is true, then the original statement holds since

JfBKP =
q
gm ; ( B1 ⊗ · · · ⊗ Bk

⊗ D1 ⊗ · · · ⊗ Dm−k
)
y
P
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= δ({B1, . . . , Bk, D1, . . . , Dm−k}) ;
q

B1 ⊗ · · · ⊗ Bk
⊗ D1 ⊗ · · · ⊗ Dm−k

y
P

= δ({B1, . . . , Bk})

where the last equation uses the fact that the semantic category Stoch(B) is a Markov category

in which is natural.

So now we focus on the statement about gi. We prove by induction on i = 0, . . . ,m.

For i = 0 the statement is trivial. For i = 1, g1 : [ ] → [Cs1 ]. By the choice of Cs1 , the

domain of compCs1
is already contained in ∅, namely compCs1

has type ∅ → [Cs1 ]. In other

words, all clauses in P with heads Cs1 have empty bodies (note that it is possible that there

is no clause with head Cs1 at all). Then g1 = compCs1
, and

q
compCs1

y
P is a distribution in

D(BCs1
), such that

q
compCs1

y
P (0Cs1

) =
∏

head(ψ)=Cs1
lab(ψ). This is exactly δ(Cs1)(0Cs1

) under

the distribution semantics, so Jg1KP = δ(Cs1).

For the induction step, suppose JgiKP = δ(Cs1 , . . . , Csi) holds (IH) for some i < m. We prove

the statement for gi+1. Without loss of generality assume further that compgi+1
has domain

[Cs1 , . . . , Csℓ ]. On one hand,

Jgi+1KP =
r
gi ; ( [Cs1 ,...,Csℓ

] ⊗ [Csℓ+1
,...,Csi ]

) ; (compCsi+1
⊗ [Cs1 ,...,Csi ]

)
z

P

= JgiKP ;
r

( [Cs1 ,...,Csℓ
] ⊗ [Csℓ+1

,...,Csi ]
) ; (compCsi+1

⊗ [Cs1 ,...,Csi ]
)
z

P

= δ(Cs1 , . . . , Csi) ;
r

( [Cs1 ,...,Csℓ
] ⊗ [Csℓ+1

,...,Csi ]
) ; (compCsi+1

⊗ [Cs1 ,...,Csi ]
)
z

P
(IH)

Thus for each value (cs1 , . . . , csi , csi+1
) ∈ BCs1

× · · · × BCsi+1
,

Jgi+1KP (cs1 , . . . , csi , csi+1
) = JgiKP (cs1 , . . . , csi) ·

r
compCsi+1

z

P
(cs1 , . . . , csℓ)(csi+1

)

= δ(Cs1 , . . . Csi)(cs1 , . . . csi) ·
r
compCsi+1

z

P
(cs1 , . . . , csℓ)(csi+1

)

= δ(Cs1 , . . . Csi , Csi+1
)(cs1 , . . . csi , csi+1

)

Therefore Jgi+1KP = δ(Cs1 , . . . Csi , Csi+1
).

Example 4.3.14. Continuing Example 4.3.12, the distribution diagram f{WetGrass,Winter} has

interpretation
q
f{WetGrass,Winter}

y
Pwet

=, which is exactly the distribution δ({WetGrass, Winter})
for atoms under Pwet.

4.3.3 Correspondence of PLP and BNs, from a functorial semantics

perspective

In this section we turn to an application of the functorial semantics of PLP which is of dif-

ferent flavour compared the discussion on LP. We study the relationship between PLP and

Bayesian networks (Definition 2.1.13). Beyond their intuitive resemblance, formally every

acyclic PLP can be transformed into an equivalent Boolean-valued BN, and vice versa (see
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e.g. Meert [MSB08]). Let us first provide some intuition of this two-way translation. Starting

from a Bayesian network, the structure of its DAG can be described via a definite logic pro-

gram containing clauses of the form pa(A) → A, and the conditional probability distributions

Pr(A|B1, . . . , Bk) can be expressed using (at most) 2k-many PLP clauses. On the other hand,

given an acyclic PLP program P, one can encode its inference structure using a DAG, and the

distribution semantics as conditional probability distributions on this DAG.

Our goal is formulating this two-way translation between these two formalisms at the func-

torial level, taking advantage on one side of the functorial semantics of PLP in Subsection ??,

and on the other side of the functorial semantics of Bayesian networks.

4.3.3.1 Overview: functorial semantics of Bayesian networks

Let us first recall the functorial semantics of Bayesian networks, as described in Jacobs et

al. [JKZ19] (see also Fong [Fon13]).

Definition 4.3.15. Given a Bayesian network B = ⟨G ,Pr⟩, its syntactic category SynBNG is

the freely generated CD category of string diagrams, such that:

• The generating objects are nodes in G (or equivalently, events in B).

• The generating morpihsms contains one string diagram of the form
... e

B1

Bm
A for each

node A in G , where B1, . . . , Bm are all the parents of A in G .

Note that SynBN is only a CD category rather than a CDMU category in that it does not have

the monoidal structure , . Its associated functor J−KB : SynBNB → Stoch maps each

generating object A to its value space in B, and maps a generating morphism
... e

B1

Bm
A to

Pr(A|B1, . . . , Bm).

In the aim of comparing BN with PLP, we need a restriction of this characterisation result

to Boolean-valued Bayesian networks (cf. discussion below Definition 2.1.13), which we report

below. We note that it is possible to generalise the connection between BN and PLP beyond

Bolean-valued ones, with a suitable extension of PLP semantics.

Proposition 4.3.16 ([JKZ19]). There is 1-1 correspondence between Boolean-valued Bayesian

networks based on a DAG G and generator-preserving CD functors SynBNG → Stoch(B).

4.3.3.2 From BN to PLP

We begin with the simpler direction, say building a (acyclic) PLP program from a Boolean-

valued Bayesian network. We recall the standard construction first, followed by the transfor-

mation on the functorial level.

Let us fix a BN B = ⟨G ,Pr⟩ over an event set At , where G is a DAG, and Pr are conditional

probability distributions Pr(A | pa(A)) for all A ∈ At .

100



Definition 4.3.17. The program associated with B is Prog(B) over At , where for each A ∈
At and conditional probability distribution Pr(A|B1 = b1, . . . , Bk = bk), if Pr(A = 1|B1 =

b1, . . . , Bk = bk) = p for some p ̸= 0, then the clause p :: A← L1, . . . , Lk is in Prog(B), where

Li = Bi if bi = 1, and Li = ¬Bi if bi = 0, for all i = 1, . . . , k.

The resulting program Prog(B) has the same semantics for all atoms in the following sense.

Proposition 4.3.18. For arbitrary C1, . . . , Cm ∈ At, PrB(C1, . . . , Cm) = δProg(B)(C1, . . . , Cm).

Example 4.3.19. We illustrate the Prog(·) construction with the following Bayesian network

Bwet shown as below. The DAG is as follows:

Winter

SprinklerRain

SlipperyRoad WetGrass

(4.6)

And the conditional probability tables are listed below:

Pr(Winter)

0.25

Pr(Rain)

0Winter 0.1

1Winter 0.6

Pr(Sprinkler)

0Winter 0

1Winter 0.2

Pr(WetGrass)

0Sprinkler 0Rain 0

0Sprinkler 1Rain 0.8

1Sprinkler 0Rain 0.9

1Sprinkler 1Rain 0.98

Pr(SlipperyRoad)

0Rain 0.1

1Rain 0.7

Then Prog(Pwet) consists of the following clauses:

0.25 :: Winter ← . 0.1 :: Rain ← ¬Winter.
0.6 :: Rain ← Winter. 0.2 :: Sprinkler ← Winter.

0.8 :: WetGrass ← ¬Sprinkler, Rain. 0.9 :: WetGrass ← Sprinkler,¬Rain.
0.98 :: WetGrass ← Sprinkler, Rain. 0.1 :: SlipperyRoad ← ¬Rain
0.7 :: SlipperyRoad ← Rain.

We remark that, this program is different from Pwet (see Example 4.1.3), in particular they

have distinct clauses with head WetGrass. Yet these two programs are equivalent in the sense

that they have the same distribution semantics.

Now we turn to the functorial semantics perspective. The Bayesian network B determines

a BN model J−KB : SynBNG → Stoch(B), as in Definition 4.3.15. To derive a PLP model,
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we first define the syntactic category. Let the definite program L describing the inference

structure be L = {pa(A) → A | A ∈ At}, namely encode the DAG as clauses. The syntactic

category is defined as SynL. Note that SynL and SynBNG share the same generating objects

and morphisms, and they only differ in that the former is a free CDMU category, while the

latter is a free CD category (i.e. does not have , ). Thus the PLP model is simply

defined as the CDMU functor α(J−KB) : SynL → Stoch(B) obtained by canonically lifting

the CD functor J−KB : SynBNG → Stoch(B) along the inclusion functor ι : SynBNG → SynL

which embeds the CD structure of SynBNG = freeCD(VG ,ΣG) into the CDMU structure of

SynL = freeCDMU(VG ,ΣG).

Definition 4.3.20. The PLP model α(J−KB) : SynL → Stoch(B) maps each generating mor-

phism φ to JφKB, and maps the CDMU structure in SynG to that of Stoch(B).

The resulting PLP model is exactly that corresponding to the program associated with B
in Definition Definition 4.3.17.

Proposition 4.3.21. J−KProg(B) = α(J−KB)

Proof. Since their domain categories are both the freely generated category SynPLPL, it suffices

to verify that they two behave the same on all generating objects and morphisms. For objects

it is obviously true by definition. So we focus on generating morphisms.

For generating morphisms, it is by the definition of α(J−KB) that it maps each generating

morphism e of SynPLPL (thus of SynBNB) to JeKB, which is exactly JeKProg(B).

The construction of α(J−KB) is simple because it suffices to encode each Pr(A|pa(A)) in

the Bayesian network by PLP clauses, and the underlying inference structure of the program

is exactly encoded by the DAG of the Bayesian network. We shall soon see that this is not the

case for the other way around.

4.3.3.3 From PLP to BN

Next we turn to the less straightforward direction, namely encoding an acyclic PLP into a

Bayesian network. Let us fix an acyclic PLP program P over At , with underlying inference

structure L := inf(P).

As for the standard transformation, the associated BN BN(P) is defined as follows.

Definition 4.3.22. The Bayesian network associated with P is BN(P) = ⟨GBN(P),PrBN(P)⟩
with the following components:

• In its DAG GBN(P), the vertices are exactly At ; a vertex B is a parent of A if and only

if there exists a clause φ in P such that head(φ) = A, and B appears in body(φ) (either

positively or negatively).
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• For its conditional probability distributions PrBN(P), given arbitrary A and pa(A) =

{B1, . . . , Bk} in GBN(P), PrBN(P)(A = 1|B1 = b1, . . . , Bk = bk) = 1 −∏p(1 − p), where

p ranges over the probability label of all P-clauses φ such that head(φ) = A and (B1 =

b1, . . . , Bk = bk) satisfies body(φ).

Note that in the above definition of BN(P), the structure of DAG GBN(P) is indeed only

relies on the inference structure inf(P). The construction of the conditional distributions PrBN(P)

deserves some discussion. Intuitively, given an atom A, there can be multiple P-clauses whose

heads are A, or in other words, which can be used to prove A. Each clause determines a

conditional distribution. Thus to determine the truth value of A one needs to ‘bundle together’

all those conditional distributions which may have different sets of conditioning events.

Example 4.3.23. We illustrate the construction in Definition 4.3.22 via the running example

Pwet from Example 4.1.3). Its associated Bayesian network BN(Pwet) is shown as below, where

on the left is the DAG GBN(Pwet), and on the right is part of the conditional probability table

instantiated to WetGrass:

Winter

SprinklerRain

SlipperyRoad WetGrass

Pr(WetGrass)

¬Sprinkler ¬Rain 0

¬Sprinkler Rain 0.8

Sprinkler ¬Rain 0.9

Sprinkler Rain 0.98

(4.7)

For instance, Pr(WetGrass = 1 | Sprinkler = 1, Rain = 1) = 1− (1− 0.8)× (1− 0.9) = 0.98.

Indeed, the resulting Bayesian network Bwet is that in Example 4.3.23. Since Pwet is different

from Prog(BN(Pwet)), the composition Prog(·) ◦BN(·) is not identity.

Before turning to the functorial semantics perspective, we take a closer look at Defini-

tion 4.3.22 and try to separate the role of syntax and semantics in this construction. While

the construction of the DAG GBN(P) only replies on the underlying inference structure inf(P)

of P, the definition of PrBN(P) does not seem to rely solely on the inference structure and thus

mingle the syntax and semantics. We claim this view is clarified using the functorial semantics.

So now let us turn to the functorial semantics perspective. Recall Definition 4.3.3 that

the program P determines a PLP model J−KP : SynP → Stoch(B), and the goal is to derive

a BN model of the form SynBN → Stoch(B). The main insight is that, on the functorial

level the aforementioned construction of Pr in Definition 4.3.22 is purely syntactical: it suf-

fices to define a syntactic category SynBNGBN(P)
together with a ‘syntactic translation’ func-

tor F : SynBNGBN(P)
→ SynL. Then the BN model is simply the composite functor J−KP ◦

F : SynBNL → Stoch(B).

Definition 4.3.24. The category SynBNL is the freely generated CD category with the following

generators:
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• the generating objects are At ;

• the generating morphisms are the following set of string diagrams{
... e

B1

Bm
A

∣∣∣∣ A ∈ At , {B1, . . . , Bm} = {B | ∃φ ∈ L such that A = head(φ), B ∈ body(φ)}
}

In words, there is one generating morphism e whose right port is A, and left ports contains

exactly all the atoms B whose value may directly influence that of A via some clause. Note that

this is exactly the definition of parental relations of GBN(P), and the syntax category SynBNP

is exactly

Definition 4.3.25. The translation functor F : SynBNL → SynL is defined via the free construc-

tion of the domain category SynBNL: F is identity on generating objects; on each generating

morphism
... e

B1

Bm
A , F(e) = compA (see Definition 4.3.8).

Example 4.3.26. Recall Pwet from Example 4.1.3. We illustrate the behaviour of Fwet : SynBNLwet
→

SynLwet
via the following string diagrams, where the φis are as in Example 4.1.3:

Fwet :

e2

e3

e4e1
Winter

Rain

Sprinkler

e5
SlipperyRoad

WetGrass

7→
φ2

φ3

φ4

φ5

φ1
Winter

Rain

Sprinkler

φ6
SlipperyRoad

WetGrass

In particular, the highlighted part in the bottom diagram is the Fwet-image of the highlighted

part from the top diagram, and it yields (via the interpretation) precisely the conditional

probability distribution BSprinkler×BRain → D(BWetGrass) in Bwet represented by the conditional

probability distribution in (4.7).

Remark 4.3.27. Thanks to the separation of syntax and semantics, our construction is able to

simplify and divide in two steps what in the literature (cf. [MSB08]) is performed in a single step.

In the traditional approach, from a PLP P, a DAG is constructed with ‘AND’ nodes and ‘noisy-

OR’ nodes [MSB08], from which one derives the conditional probability distributions. Instead,

we construct a simpler DAG H = (VH ,ΣH)—in fact, a syntax category SynBNH encoding H—and

only as a next step we introduce a richer structure (modelled with , see Example 4.3.26)

via Fwet. Moreover, all these steps are performed at a purely syntactic level: obtaining the

conditional probabilities is ‘delegated’ to composition with the given functor J−KP : SynPLPL →
Stoch(B).
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The correctness of the functorial construction is captured by the following statement of the

equivalence of two BN models.

Proposition 4.3.28. J−KBN(P) = J−KP ◦ F

Proof. We first check that these two functors have the same domain. In other words, we

check that SynBNBN(P) = SynBNL. Note that they are free CDMU categories with the same

generating set of objects and morphisms: for every A ∈ At , there is precisely one generating

morphism of the form [B1, . . . , Bm] → [A], where B1, . . . , Bm are all those Bi such that there

exists φ ∈ L satisfying head(φ) = A and B ∈ body(φ).

Then it suffices to show that the two functors behave the same on all generating objects

and morphisms of their domain (syntactic) category. For generating objects, this is imme-

diate by the definitions. So we focus on generating morphisms. Pick an arbitrary A with

pa(A) = {B1, . . . , Bk} in GBN(P), and values b = (b1, . . . , bk) ∈ BB1 × · · · × BBk
, assume the

corresponding generating morphism in SynBNGBN(P)
is e : [B1, . . . , Bk] → [A], we show that

JeKBN(P) (b) = JF(e)KP (b), both as distributions over BA. Equivalently, the goal is to show

that JeKBN(P) (b)(1A) = JF(e)KP (b)(1A).

We assume that φ1, . . . , φℓ are all the L-clauses such that head(φ) = A, and ψ1, . . . , ψs are

all the P-clauses such that τ pr(ψ) is one of those φi (note that ℓ ≤ s). Moreover, we suppose

that ψ1, . . . , ψr are those ψj whose bodies are satisfied by the given b.

Now, on one hand, to work directly with the Bayesian network BN(P), by Definition 4.3.22

and Proposition 4.3.16, JeKBN(P) (b)(1A) = 1−
(∏r

j=1 (1− lab(ψj))
)

.

On the other hand, using the syntactic transformation,

JF(e)KP (b) = JcompAKP (b) (Def. 4.3.25)

= µD ◦ D
(r

ℓ
z

P

)
(Jφ1KP (b)⊗ · · · ⊗ JφℓKP (b)) (Def. 4.3.8)

= µD ◦ D
(r

ℓ
z

P

)
((1− lab(ψ1))|0A⟩+ lab(ψ1)|1A⟩, . . . ,

(1− lab(ψr))|0A⟩+ lab(ψr)|1A⟩, 1|0A⟩, . . . , 1|0A⟩)

=

(
r∏
j=1

(1− lab(ψj))

)
|0A⟩+

(
1−

(
r∏
j=1

(1− lab(ψj))

))
|1A⟩ (Def. 4.3.3)

This means that JF(e)KP (b)(1A) = 1 −
(∏r

j=1 (1− lab(ψj))
)

, so JeKBN(P) (b) = JF(e)KP (b).

Therefore the two functors J−KBN(P) and J−KP ◦ F are equal.

The two constructions of this section are summarised by the following commutative diagrams

(in the category Cat).

On one hand, the following diagram presents that we start with a PLP program P with un-

derlying L, transform it into a BN BN(P), and then turn it into a PLP program Prog(BN(P))
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(with underlying inference structure L′).

SynL SynBNGBN(P)
SynL′

Stoch(B) Stoch(B)

J−KP

G

F

J−KBN(P)

ι

(1)

(3)

J−KProg(BN(P))
(2) (4.8)

Given the definition of SynBNG and SynL, we may let G be F plus the clause that G(d) = d

for d ∈ { , }. Triangle (1) is the functorial definition of J−KBN(P) (Proposition 4.3.28);

square (2) states that J−KBN(P) factors through its CDMU-lifting J−KProg(BN(P)) via the inclu-

sion functor ι between the two syntactic categories; (3) connects the program Prog(BN(P))

associated with BN(P) with the original program P.

On the other hand, the following diagram describes the situation when one starts with a

Bayesian network B, generates a PLP program Prog(B) via canonical lifting (square (4)), and

then construct the associated Bayesian network BN(Prog(B)) (triangle (5)). The resulting BN

is exactly B (diagram (6)).

SynBNG SynL SynBNGBN(Prog(B))

Stoch(B) Stoch(B)

J−KB

ι

=

J−KProg(B)(4)

(6)

J−KBN(Prog(B))

F

(5) (4.9)

4.4 Weighted logic programming

In this section we extend the above functorial approach to encompass weighted logic program-

ming (WLP). We will provide a functorial semantics for WLP (Section 4.4.1), based on which

one can express the least fixed-point semantics for WLP diagrammatically (Section 4.4.2).

The similarity of the diagrams expressing certain semantic components in WLP with those in

logic programs (Section 4.2.2) helps to formally establish the distinction between these two

paradigms.

Let us fix a semiring K = ⟨K,+, · ,0,1⟩ with a compatible lattice structure ≤ (Sec-

tion 2.1.3). Also, we fix a weighted logic program W over K, with atoms from a given set

At . It might be helpful to take K as the min-sum semiring (Example 2.1.14) when reading

through the following section, since the examples are all based on shortest-path problems over

this semiring.
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4.4.1 Functorial semantics of WLP

We start with the syntactic category. It is the same as that for LP and PLP, reflecting the

intuition that the extension provided by WLP only affects the semantic dimension through the

functorial perspective. We assume that the underlying inference structure of W is the definite

program L.

Definition 4.4.1. The syntactic category for WLP W is SynL, the freely generated CDMU

category with generating objects and morphisms determined by L = inf(W).

Next we turn to the semantic category, which distinguishes WLP with LP and PLP. Intu-

itively the semantic category should reflect the fact that atoms are now interpreted no longer

to Boolean values (as in LP and PLP), but instead take values in the semiring K. Also, ac-

cording to the least fixed-point semantics of WLP, clauses are read as monotone functions,

thus the morphisms in this syntactic category should (at least) include monotone functions

between the finite products of K. Indeed, including only the monotone functions rather than

all functions suffices for our current purpose. These justify the following choice of MonFunc(K)

as the semantic cateogry.

Definition 4.4.2. The category MonFunc(K) has the following components:

• the objects are finite products of the form K1 × · · · ×Kk, where each Ki is some copy of

K;

• the morphisms are monotone functions between the sets.

In particular, we denote the empty product as 1 = {•}. We need to make sure that this

category MonFunc(K) has enough structure to interpret the CDMU syntactic category.

Proposition 4.4.3. MonFunc(K) is a CDMU category.

Proof. As a subcategory of Set, the symmetric monoidal structure of MonFunc(K) is inherited

from that of Set, because the copier and discharger are both monotone functions. So we focus

on the CDMU structure, which relies on the semiring structure of K.

∇ : K → K×K ϵ : K → 1

x 7→ (x, x) x 7→ •
∆ : K×K → K η : 1 → K

(x1, x2) 7→ x1 + x2 • 7→ 0

All these functions are monotone; in particular, ∆ is monotone by the assumption that the

ordering ≤ is compatible with the semiring structure, thus x1 ≤ y1 and x2 ≤ y2 implies

∆(x1, x2) = x1 + x2 ≤ y1 + y2 = ∆(y1, y2). To verify the CDMU axioms, we note that those for

the comonoid structure (∇, ϵ) is the same as before. The correctness of the monoid structure

axioms is below:
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• Unital: ((id ⊗ η) ; ∆)(x) = ∆(x,0) = x+ 0 = x = id(x). Similarly (η ⊗ id) ; ∆ = id .

• Associative: ((∆⊗ id) ; ∆)(x, y, z) = x+ y+ z = ((id ⊗∆) ; ∆)(x, y, z).

• Commutative: (γ ; ∆)(x, y) = ∆(y, x) = x+ y = ∆(x, y).

This completes the verification that MonFunc(K) is CDMU.

Example 4.4.4. For the min-sum semiring MinPlus (see Example 2.2.7), its associated se-

mantic category MonFunc(MinPlus) has comonoid structure:

∆ : (N ∪ {+∞})× (N ∪ {+∞}) → N ∪ {+∞} η : 1 → N ∪ {+∞}
(x1, x2) 7→ min(x1, x2) • 7→ +∞

Similar to the case of LP and PLP, a WLP program W (denote inf(W) by L) uniquely

determines a functor J−KW : SynWLPL → MonFunc(K), which maps each generating string

diagram to (the semantics of) its corresponding WLP clause.

Definition 4.4.5. The functor J−KW : SynL → MonFunc(K) is defined as follows:

• On objects, JAKP := KA for each A ∈ At .

• On morphisms, given each generating morphism
... φ

B1

Bm
A of SynL, JφKW maps a state

(u1, . . . , um) ∈ KB1×· · ·×KBm to lab(ψ) ·u1 · · · · ·um, where ψ is the (unique) W-clause

satisfying τwt(ψ) = φ.

• J−KW maps the CDMU structure to the CDMU structure of Set(K) (see Proposition 4.4.3).

Following Proposition 4.4.3, J−KW is a CDMU functor. We call it a (WLP) model because

of the following result relating WLP programs and such functors.

Proposition 4.4.6. There is a 1-1 correspondence between weighted logic programs with infer-

ence structure L and generator-preserving CDMU functors SynL → Set(K).

Proof. We first define two constructions, from WLP to functors and the other way around, and

then prove that they constitute the isomorphism.

The construction J−KW of an object-preserving CDMU functor from a WLP W is al-

ready defined in Definition 4.4.5. For the other direction, given an object-preserving CDMU

functor G : SynWLPL → Set(K), we define a WLP program Prog(G) as follows. For each

generating morphism
... φ

B1

Bm
A, we define a clause w :: A ← B1, . . . , Bk. where w =

G
(

... φ
B1

Bm
A

)
(1B1 , . . . ,1Bk

).

Next we show that J−K(·) and Prog(·) are inverse to each other.
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• Starting from a WLP W, and pick an arbitrary clause φ of the form w :: A→ B1, . . . , Bk.,

JφKW is a function KB1 × · · · ×KBk
→ KA mapping (b1, . . . , bk) to w · b1 · · · · · bk. Then

the program Prog(J−KW) has exactly one clause ψ with τwt(ψ) = φ, whose weight lable

lab(ψ) = JφKW (1B1 , . . . ,1Bk
) = w. Thus we obtain the original clause that we start with.

Moreover, every clause in Prog(J−KW) is generated in this way. So Prog(J−KW) = W.

• Starting from an object-preserving CDMU functor G, we get the program Prog(G) such

that for each generating morphism
... φ

B1

Bm
A in SynWLPL, Prog(G) has exactly one

clause ψ with τwt(ψ) = φ, and lab(ψ) = G
(

... φ
B1

Bm
A

)
(1B1 , . . . ,1Bk

). Then the

induced functor J−KProg(G) maps
... φ

B1

Bm
A to the function KB1 × · · · × KBk

→ KA

mapping (b1, . . . , bk) to lab(ψ) · b1 · · · · · bk, thus behaves the same on
... φ

B1

Bm
A as G.

So J−KProg(G) = G.

Therefore J−K(·) and Prog(·) witness the 1-1- correspondence between WLP programs with un-

derlying inference structure L and generator-preserving CDMU functors SynWLPL → Set(K).

Before going further with WLP, we find here a good place to postpone and discuss its con-

nection with classical logic programming. Indeed it is well-known that propositional definite

logic program is a special case of WLP, by taking the underlying semiring to be the Boolean

semiring B = ⟨B,∨,∧, 0, 1⟩. Then a definite LP clause of the form A← B1, . . . , Bk. is semanti-

cally a function BB1×· · ·×BBk
→ BA mapping each (b1, . . . , bk) to 1∧b1∧· · ·∧bk = b1∧· · ·∧bk,

which is exactly the semantics of LP clauses. Under this view, Proposition 4.2.5 restricted to

definite programs can be seen as a special case of Proposition 4.4.6, where K = B. However,

general logic programs with negation cannot fit into the framework of WLP, at least not by

taking the Boolean semiring B. This can be seen by observing that the semantics of LP clauses

with negations is not monotone.

Apart from that, an interesting observation regarding LP, PLP and WLP is that the se-

mantic variation required for PLP and WLP are different. At the intuitive level, whereas the

semantic category Stoch(B) for PLP can be thought as a ‘Kleisli’ variation of Set(B), in the

semantic category Set(K) for WLP the morphisms of the ‘basic’ semantic category Set(B) re-

mains as functions, but the objects change from B to K. One potential implication of this

observation is the possibility to combine these two variation to obtain a ‘probabilistic weighted

logic programming’. From a functorial perspective, this amounts to choosing a suitable se-

mantic category, which is the ‘D-Kleisli’ variation of MonFunc(K). The application of such a

formalism and its potential connection with Bayesian networks beyond Boolean-values remain

to be studied.
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4.4.2 Some semantic construct for WLP

Analogously to what we did with LP and PLP, we conclude the current section on WLP

by describing how certain semantics of WLP (Section 2.1.3) can be expressed with string

diagrams of the syntax category. Our aim semantic constructs are the weighted version of

immediate consequence operator and consequence operator. For simplicity, we dive into the

freely generated traced CDMU category SynWLPtrL defined as in Definition 4.2.10. Again, we

need to check that our semantic category has enough structure to interpret the extra traces.

Thanks to the choice of monotone functions, the semantic category for WLP is traced as well.

Proposition 4.4.7. MonFunc(K) is a traced monoidal category.

Proof. We define the trace as follows. For a morphism f : X × U → Y × U , let TrUX,Y (f) be

the function X → Y mapping x ∈ X to π2 ◦ f(x, ux), where ux = µu.π2 ◦ f(x, u). The proof is

similar to that for MonFunc(B) (Proposition 5.4.37), where essentially one replace B with the

semiring K with a compatible ordering.

The weighted immediate consequence operators — the weighted counterpart of consequence

operators for logic programming — is represented by the following weighted immediate conse-

quence diagram in the same favour as immediate consequence diagram TL.

Definition 4.4.8. The weighted immediate consequence diagram TwL is the following diagram

(as a morphism of the form [A1, . . . , An]→ [A1, . . . , An] in SyntrL ):

... σ1 σ2
...

ℓ1

ℓn

k1

kn

...
...

...
...

...
...

... φ1

...

φN
...

Definition 4.4.9. The weighted consequence diagram Cw
L is the following diagram (as a mor-

phism of the form [A1, . . . , An] → [A1, . . . , An] in SyntrL ), where TwL is the weighted immediate

consequence diagram from Definition 4.4.8.

An

A1...
...

TwL
An

A1

...

Note that this diagram is exactly the same as the consequence diagram for logic programs

(see Definition 4.2.15). This repeats the spirit of our functorial approach: the difference between

some essential semantic constructs of various logic programming paradigms lies only in the

semantic categories.

110



Example 4.4.10. We recall the program Psp about shortest path problem from Example 2.1.16,

based on the min-sum semiring MinPlus = ⟨N∪{+∞},min,+,+∞, 0⟩. We denote its under-

lying inference structure as Lsp. Its weighted immediate consequence diagram TwLsp
— restricted

to constants a and c — is as follows:

initial(a)

initial(c)

edge(a, a)

edge(a, c)

edge(c, a)

edge(c, c)

reachable(a)

reachable(c)

initial(a)

initial(c)

edge(a, a)

edge(a, c)

edge(c, a)

edge(c, c)

reachable(a)

reachable(c)

φ1

φ3

φ6

φ7

φ9

φ

φ

φ

φ

For instance, the green-highlighted diagram corresponds to the clause 0 :: reachable(a) ←
reachable(c), edge(c, a). in Psp.

Semantically, J KW = {(•,+∞)}, J KW = {((x1, x2), y) | min(x1, x2) = y};
r
TwPspinfStruct

z

W
is a function such that, for a state u with u(reachable(c)) = r and u(edge(c, a)) = s,r
TwLsp

z

W
(reachable(a)) = 0+r+s = r+s,

r
TwLsp

z

W
(initial(a)) = 0, and

r
TwLsp

z

W
(initial(c)) =

+∞.

As one can expect, these diagrams express the desired operators for WLP programs.

Proposition 4.4.11. The diagrams TwL and Cw
L express the weighted immediate consequence

operator and the weighted consequence operator, respectively, in the following sense:

JTwL KW = Tw
W JCw

L KW = Cw
W

Proof. The proof is similar to that for LP in Subsection 4.2. For weighted immediate conse-

quence operator, for each (a1, . . . , an) ∈ KA1×· · ·×KAk
, the j-th component of JTwL KW (a1, . . . , an)

is ∑
ψ=A←Ai1

,...,Aik
.∈W s.t. A=Aj

lab(ψ) · ai1 · · · · · aik
thus JTwL KW = Tw

W.

For the weighted consequence operator,

JCw
L KW (a1, . . . , an) =

r
Tr

[A1,...,An]
[A1,...,An],[A1,...,An]

(
[A1,...,An] ; TwL ; [A1,...,An]

)z
W

(a1, . . . , an)

= Jπ1 ◦ ( ; TwL ; )(a,ua)KW

where ua = µu.π2 ◦ J ; TwL ; KW (a,u). Thus

ua = µu.π2 ◦ J KW ◦ JTwL KW ◦ J KW (a,u)
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= µu. JTwL KW ◦ J KW (a,u)

= µu. JTwL KW (a + u) = µu.Tw
W(a + u)

= Cw
W(a)

This verifies that JCw
L KW = Cw

W.

As a special case, the canonical least model semantics of WLP programs can be recovered

by sending the trivial input to the weighted consequence operator.

Corollary 4.4.12. The following diagram expresses the least model semantics of WLP:

An

A1...
...

TwL
An

A1

...

(4.10)

Proof. Since JCw
L KW = Cw

W (Proposition 4.4.11), and J KW = {(•,0)}, the statement follows

immediately from the fact that the canonical semantics is exactly Cw
W(0, . . . ,0).

Example 4.4.13. Coming back to Example 4.4.10, one can calculate that the diagram (4.10)

for Psp is interpreted as the function mapping • ∈ 1 to the state where, for instance, initial(a) =

0, initial(c) = +∞, reachable(a) = 0, reachable(b) = 9. Indeed, the values for reachable(a),

reachable(b) and reachable(c) are exactly the shortest paths from the starting node a to node

a, b, c, respectively.

Comparing the current part with the diagrammatic presentation of semantics for LP (Sec-

tion 4.2.2) and PLP (Section 4.3.2), we notice that WLP is closer to the former, and more

specifically, to the special case of definite logic programming. This is clear from the similarity

of the (immediate) consequence operators, the selection of the appropriate semantic category

to interpret the traced diagrammatic language, and the statement about certain diagrams ex-

pressing the canonical semantics. It is mainly because both semantics have a straightforward

definition as the least point of certain monotone functions over a suitable semantic domain.

While the semantics for logic programs with PLP and PLP is not simply defined like that, here

are some potential directions for extending the current approach to involve these two cases.

For logic programs with negation, while the immediate consequence operator is not mono-

tone on the standard Boolean domain B, there is a benchmark semantics based on least-fixed

point construction called well-founded semantics [VGRS91b, Prz90]. Essentially one needs a

three-value domain instead of B, with an additional truth value called unknown, representing

that the truth value is not decided. In this setting, there is a monotone operator playing the

role of immediate consequence operator, and the well-founded semantics is the least fixed point

which intuitively only assigns truth values 1 and 0 to atoms that can be proved or disproved,

and leave other atoms as unknown. Though we are not going into any detail, we point out
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that one subtlety is that two different ordering structure is implicitly used in the well-founded

semantics construction.

For probabilistic logic programs, the canonical distribution semantics is not constructed

using certain fixed-point construction. It is something simpler: one randomly chooses the

clauses only once, which is different from the semantics of probabilistic while-loops, for in-

stance in Kozen [Koz83]. One potential extension is to invent a novel semantics in which the

probabilities of clauses are counted at every single usage, possibly via certain least-fixed point

construction. While the category of stochastic matrices Stoch(B) is not traced, one might

extend to the traced category of stochastic matrices of non-negative real numbers, of which

Stoch(B) is a subcategory. We leave these potential interesting development to future work.
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Chapter 5

An algebra for propositional logic

programs

In this section we present a sound and complete diagrammatic calculus to reason about equality

between propositional definite logic program. Recall the functorial semantics for (probabilistic,

weighted) logic programs from Chapter 4. While the separation of the syntactic categories

of string diagrams from the semantics helps to clarify the roles of syntactic construction and

semantics operations, one restriction is that one can only present certain constructs in dia-

grammatic form but not reason about them. For example, consider the two logic programs

P = {A ← ., B ← .} and Q = {A ← ., B ← A.}. While P and Q have the same Herbrand

semantics, yet this equivalence is not derivable simply from the diagrammatic representation

of their consequence diagrams (Definition 4.2.15):

CP =
A
B

A
B

CQ =
A
B

A
B

In fact the CDMU axioms for the string diagrams only capture very minimal properties of

their interpretations. For instance, under the interpretation J−KP : SynPLPL → Set(B) from

Definition 4.2.3, the semantic equation
q y

P =

s {

P
holds, since both are equal to

the function λ(x1, x2).(x1 ∨ x2, x1 ∨ x2) : B× B→ B× B. Yet = is not derivable

in the syntactic category: in fact the CDMU axioms do not claim any relation between the

comonoid structure ( , ) and monoid structure ( , ).

The goal is then to equip the diagrams with an algebraic theory, such that properties such as

the equivalence of programs can be solved using solely diagrammatic reasoning. In this section

we achieve the goal for propositional definite logic programs. In Section 5.1 we introduce the

target semantic objects and the diagrammatic calculus SATA (Satisfiability algebra). Next we

explore some properties of SATA (Section 5.2). We take a necessary detour to discuss matrix

diagrams in Section 5.3 before proving the completeness result in Section 5.4 and Section 5.5.
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Finally, we return to logic programs and exemplify how SATA enables to prove equivalence of

programs diagrammatically. One final remark on the notation. In the rest of this chapter we

will use a, b, . . . instead of capital letters to denote atoms.

5.1 SATA

In this subsection we introduce a diagrammatic calculus SATA to reason about monotone

relations over finite Boolean algebras (FBA) (Section 5.1.1). The name SATA refers to its

invention as a satisfiability algebra, proposed in Gu et al. [GPZ22] for picturing Boolean

satisfiability. Given the standard semantics of propositional definite logic programs as certain

least fixed points over the space of Boolean valuations, SATA can be used to encode such

semantics, and convert program equivalence into diagrammatic equality.

Our diagrammatic calculus is mainly inspired by the line of research on graphical linear

algebra (GLA) (Section 2.3.1). In particular, we adopt the same idea as in Piedeleu and

Zanasi [PZ21] to work in some categories of monotone relations to characterise least fixed point

semantics. So before diving into the calculus, we introduce the semantics and the corresponding

categories.

5.1.1 Monotone functions and monotone relations

As mentioned above, the semantic domain of interest is the category of monotone relations

between finite Boolean algebras. We first recall the notion of monotone relations, which can be

defined more generally on arbitrary preorders.

Definition 5.1.1. A monotone relation R between two preordered sets ⟨X,≤X⟩ and ⟨Y,≤Y ⟩
is a relation R ⊆ X × Y that satisfies the following monotonicity condition: if (x, y) ∈ R, then

for arbitrary x′ ∈ X and y′ ∈ Y , x′ ≤X x and y ≤Y y′ implies (x′, y′) ∈ R.

We would like to mention one useful intuition for monotone relations in terms of resource,

from [FS19]: by viewing X and Y as products and resources respectively, (x, y) ∈ R means

that y-many Y -resource is enough to produce x-many X-product, thus any Y -resource y′ larger

than y (namely y′ ≥ y) can produce any x′ many X-product less than x (namely x′ ≤ x), thus

(x′, y′) ∈ R.

Example 5.1.2. For any preordered sets ⟨X,≤X⟩ and ⟨Y,≤Y ⟩, the total relation R = X × Y
and the empty relation ∅ are always monotone.

Consider the set of natural numbers N with the standard ordering ≤. The relation R =

{(x, y) ∈ N × N | x ≤ 1, y ≥ 99} is a monotone relation, while S = {(x, y) ∈ N × N | x ≤
1, y is prime} is not monotone.

From a categorical point of view, preorders and monotone relations form a category: com-

position is relation composition, and the identity morphism id : ⟨X,≤X⟩ → ⟨X,≤X⟩ is simply
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the relation ≤X itself. We denote this category as MonRel, the category of monotone relations.

Moreover, similar to that Rel× with products and singleton sets form a SMC, MonRel has a

similar symmetric monoidal structure.

Definition 5.1.3 ([FS19]). MonRel together with the following structure form a symmetric

monoidal category:

• The tensor product ⊗ on objects is products of preordered sets; ⊗ on morphisms is

product of relations;

• The tensor unit is the singleton set {∗} together with the trivial (and only) preorder on

it {(∗, ∗)};

• The swapping natural transformation σ on ⟨X,≤X⟩ and ⟨Y,≤Y ⟩ is the monotone relation

σX,Y = {((x1, y1), (y2, x2)) | x1 ≤ x2, y1 ≤ y2, x1, x2 ∈ X, y1, y2 ∈ Y }.

MonRel is exactly the category of Boolean-profunctors in Fong and Spivak [FS19], a simpli-

fication of the (2-)category of profunctors where Boolean-values replace set-values. Moreover,

MonRel is a 2-category, where morphisms are poset-enriched by the inclusion relation ⊆: given

two MonRel-morphisms R, S : X 7→ Y R ⊆ S if whenever (x, y) ∈ R, (x, y) ∈ S as well.

To our purpose, monotone relations are important because they can be used to represent

monotone functions, in a similar fashion that one can use relations to encode functions as their

graphs.

Definition 5.1.4. Let f : X → Y be a monotone function between preordered sets ⟨X,≤X⟩ and

⟨Y,≤Y ⟩. A monotone relation R : X 7→ Y represents f if (x, y) ∈ R precisely when f(x) ≤ y.

It is straightforward to verify that, if a relation R represents some monotone function f ,

then R is monotone: suppose (x, y) ∈ R, then by definition f(x) ≤ y, so for arbitrary x′, y′

satisfying x′ ≤ x and y ≤ y′, f(x′) ≤ f(x) ≤ y ≤ y′, which implies that (x′, y′) ∈ R as well.

Example 5.1.5. Continuing 5.1.2, if preordered set ⟨Y,≤Y ⟩ has a least element ⊥Y , then the

total relation as a monotone relation represents the constant function x ∈ X 7→ ⊥Y .

In category theory language, we formalise this notion of ‘representation’ as a symmetric

monoidal functor from the category of monotone functions MonFun to MonRel.

Definition 5.1.6. The category of monotone function MonFun has preordered sets as objects,

and monotone functions as morphisms. Identity morphisms are identity functions, and mor-

phism composition is function composition.

MonFun together with products of preorders and functions form a SMC. Then the repre-

sentation of monotone functions as monotone relations can be defined formally as a symmetric

monoidal functor MonFun→ MonRel.
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Proposition 5.1.7. The functor R : MonFun→ MonRel defined below is a symmetric monoidal

functor:

• On objects, R(⟨X,≤X⟩) = ⟨X,≤X⟩, namely R is identity on objects.

• On morphisms, given a monotone function f : ⟨X,≤X⟩ → ⟨Y,≤Y ⟩, Rf is the monotone

relation generated by f : (x, y) ∈ R(f) iff f(x) ≤ y.

Proof. The proof consists of two parts. First, R is a functor. Second, R respects the SMC

structure.

For the functoriality of R, it suffices to verify that if R, S represent monotone functions

f : X → Y and g : Y → Z respectively, then R # S represents g ◦ f .

For the second part, it suffices to show that R(f × g) = R(f) × R(g), and R(σ) = σ′

(where sym and σ′ are the symmetric structure of MonFun and MonRel, respectively). For

example, to see that σ′ represents σ, σ(x, y) = (y, x) ((x, y), (y′, x′)) ∈ σ′ iff x ≤ x′ and y ≤ y′

iff σ(x, y) = (y, x) ≤ (y′, x′).

Unlike the case of functions and their representation as relations, in general such represen-

tation of monotone functions as monotone relations is not faithful: two distinct functions may

have the same relational representation. But when ordering is a partial order, such representa-

tion is faithful.

Example 5.1.8. To illustrate that such representation is not necessarily faithful for preordered

sets in general, consider the preordered (and not partially ordered) set depicted ⟨A,≤⟩ as below,

where an arrow x→ y means x ≤ y (with reflexive arrows omitted).

a
((
bhh

Let f and g be two functions A→ A such that f is identity on A, and g maps both a and b to

a. Then f and g are both monotone, yet they are represented by the same monotone relation

A× A, namely the total relation.

Proposition 5.1.9. Suppose ⟨X,≤X⟩ and ⟨Y,≤Y ⟩ are partially ordered sets, and f, g are both

monotone functions X → Y . If monotone relation R : X 7→ Y represents both f and g, then

f = g.

Proof. Assume that for some monotone functions f, g : X → Y , both of them are represented

by a monotone relation R, we show f = g. For an arbitrary x ∈ X, (x, f(x)) and (x, g(x)) are

both in R. (x, g(x)) ∈ R and R represents f imply that f(x) ≤ g(x). Similarly, (x, f(x)) ∈ R
and R represents g imply that g(x) ≤ f(x). Since ≤Y is a partial order, this entails that

f(x) = g(x). Then f(x) = g(x) for arbitrary x ∈ X means that f = g.

In categorical terms, Proposition 5.1.9 amounts to the following statement about functor

R.
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Proposition 5.1.10. Let MonFunpo (resp. MonRelpo) be the full subcategory of MonFun (resp.

MonRel) where objects are partially ordered sets. Then R : MonFunpo → MonRelpo is faithful.

The representation also preserves the ordering structure on monotone functions and mono-

tone relations, respectively. That is, R respects the 2-category structure on MonFunpo and

MonRelpo (contravariantly).

Proposition 5.1.11. For arbitrary MonFunpo-morphisms f, g : X → Y , if f ≤ g, then R(f) ⊇
R(g).

Proof. Given two monotone functions f, g : X → Y satisfying f ≤ g, R(f) and R(g) are their

representing monotone relations, respectively. For any (x, y) ∈ R(g), by definition, g(x) ≤ y,

so f(x) ≤ g(x) ≤ y, which entails (x, y) ∈ R(f) as well.

Finally we are able to specify the semantics category that we are interested in. We use B
to denote the two-element Boolean algebra consisting of 0, 1 and 0 ≤ 1. It is a basic result in

universal algebra that B is the only nontrivial product irreducible finite Boolean algebra.

Theorem 5.1.12 ([Hun04]). Every finite Boolean algebra A is a finite product of B: there

exists k ∈ N such that A ∼= Bk.

Definition 5.1.13. The category of monotone relations over finite Boolean algebras MonRelB

is the full subcategory of MonRelpo whose objects are finite products of B, say Bn. Similarly, the

category of monotone functions over finite Boolean algebras MonFunB is the full subcategory of

MonFunpo whose objects are finite products of B.

5.1.2 Inequational theory SATA

In this subsection we present the diagrammatic calculus SATA that is sound and completeness

wrt the inclusion relation ⊆ in MonRelB. The syntax is a prop, freely generated by a signature

containing black and white generators.

Definition 5.1.14. The category Syn is the prop freely generated by the following ingredients:

• Objects: a single generating object 1;

• Morphisms: the following generating morphisms depicted as string diagrams, where we

adopt the convention to read from left to right, top to bottom:

(5.1)

The symmetric monoidal structure on Syn consists of the monoidal product ⊕, unit I,

and swapping σ, which we spell out now. We follow the convention in [Zan15] to denote the

monoidal product of 1⊕n of n copies of the generating object 1 simply by n. The monoidal
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product of two string diagrams is simply their juxtaposition, say c ⊕ d is
c

d
. The identity

morphism idn : n → n and swapping σm,n : m ⊕ n → n ⊕ m are depicted as string diagrams
n and

m

n
, respectively, and we omit 1 on the (co)domains. As a freely generated (strict)

SMC, Syn only satisfies the axioms of symmetric monoidal categories, depicted as equations

between string diagrams. In particular, the symmetric structure needs to satisfy the following

conditions, where c ranges over all Syn-morphisms:

= c = c (5.2)

We interpret Syn as FBAs and monotone relations between them, and following the functorial

semantics approach we define it formally as a functor between the syntax category Syn and the

semantics category MonRel.

Definition 5.1.15. We define the functor J·K : Syn→ MonRel as the (lax) symmetric monoidal

category freely generated obtained by mapping the generating objects 1 to B, and the generating

morphisms as follows:

J K = {(x, (y1, y2)) | x ≤ yi, and x, y1, y2 ∈ B} J K = {(x, •) | x ∈ B}
J K = {((x1, x2), y) | xi ≤ y, and x1, x2, y ∈ B} J K = {(•, x) | x ∈ B}
J K = {((x1, x2), y) | x1 ∧ x2 ≤ y, and x1, x2, y ∈ B} J K = {(•, 1)}
J K = {(x, (y1, y2)) | x ≤ y1 ∨ y2, and x, y1, y2 ∈ B} J K = {(0, •)}

It is helpful to spell out more details of the functor J·K in Definition 5.1.15. By ‘freely

generated’, functor J·K is well-defined using the free construction of the domain category Syn:

for each natural number n, JnK = Bn; J K = {(x, y) | x ≤ y and x, y ∈ B}; J K =

{((x1, x2), (y1, y2)) | x1 ≤ y2, x2 ≤ y1}; if JcK and JdK are already defined for some Syn-morphisms

c and d, then Jc ; dK := JcK # JdK (whenever composable) and Jc⊗ dK := JcK× JdK , where # and

× are the composition and products of relations, respectively.

Example 5.1.16. Take the diagram as an example. Its interpretation can be

compositionally computed as follows:

((x1, x2), (y1, y2)) ∈
t |

⇐⇒ ∃u1, u2, u3, u4 ∈ B : (x1, (u1, u2)) ∈ J K , ((u2, x2), u3) ∈ J K ,

((u1, u4), y1) ∈ J K , (u3, (u4, y2)) ∈ J K

⇐⇒ ∃u1, u2, u3, u4 ∈ B : x1 ≤ u1 ∨ u2, u2 ∨ x2 ≤ u3, u1 ∧ u4 ≤ y1, u3 ≤ u4 ∧ y2
⇐⇒ ∃u1, u2, u4 : x1 ≤ u1 ∨ u2, u2 ∨ x2 ≤ u4 ∧ y2, u1 ∧ u4 ≤ y1

⇐⇒ x2 ≤ y2

119



In general, for the interpretation J·K with a freely generated domain category, there is nothing

preventing two different Syn-morphisms to have the same semantics.

Example 5.1.17. Recall the diagram from Definition 5.1.16. Its interpretation is

the same as that of the simpler diagram .

The goal is then to provide an algebraic theory such that two diagrams have the same

interpretation under J·K precisely when they are equal in the theory. In other words, we aim

at a sound and complete theory wrt J·K. In our case, the semantics is essentially inequational

because diagrams are interpreted as relations and compared via inclusion between relations, so

we give an inequational theory SATA in Figure 5.2.

= = =

= =

= =

= = =

=

=

(A1) (A2) (A3) (A4)

(A5) (A6) (A7) (A8)

(A9) (A10) (A11)

(A12)

=

=

(A13) (A14)

= = =

= = =

= =

(B1) (B2) (B3) (B4)

(B5) (B7)(B6) (B8)

=

=

(B10)(B9)

=

=

=

= =

=
(C1) (C2) (C3) (C4)

(C5) (C6)

=

=
(C7) (C8)

≤ ≤

≤ ≤ ≤≤

≤≤

≤≤ ≤ ≤

(D1) (D2) (D3) (D4)
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(D9) (D10) (D11) (D12)

Figure 5.1: The equational theory SATA

Theorem 5.1.18. For any Syn-morphisms c, d : m→ n, JcK ⊆ JdK if and only if c ≤SATA d.

In the remainder of this section, we shall often omit the subscription SATA in ≤SATA (resp.

=SATA) and simply write c ≤ d (resp. c = d) when no confusion arises. Also, we take ≤SATA to
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be primary, and regard c =SATA d as abbreviation of c ≤SATA d and d ≤SATA c, or equivalently,

≤SATA is a partial ordering. Using category theory language, such soundness and completeness

result as Theorem 5.1.18 can be neatly stated as an isomorphism between a syntactic category

and a semantic category: while the semantic category is MonRelB, the syntactic category is Syn

quotiented by the inequational theory SATA, thus also a poset-enriched category.

Definition 5.1.19. SATA is the poset-enriched (2-)category whose components are:

• 0-objects: objects of Syn;

• 1-objects: morphisms of Syn quotiented by equations derivable from SATA;

• 2-objects: given two 1-objects c, d : m→ n, there is a 2-object c→ d if and only if c ≤ d

is derivable from SATA.

In short, it is a poset-enriched category quotiented by some inequational theory. Theo-

rem 5.1.18 can then be restated as the following isomorphism of 2-categories, whose proof we

leave to Section 5.5.

Theorem 5.1.20. SATA ∼= MonRelB

Before moving forward to the technical development, let us provide some intuition and

explanation of the SATA-axioms. While they share many properties with GLA, SATA has

some crucial differences due to its inequational nature.

Block A axioms. (A1)-(A4) state that and form a commutative comonoid: (A1)

says is associative so, in algebraic terms, brackets are unnecessary; (A2)-(A3) say is

the unit for ; (A4) says is commutativity so the order of wires on the right port of

does not matter. Similarly, (A5)-(A8) state that ( , ) forms a commutative monoid.

The associativity axiom (A1) for justifies introducing the following generalised n-ary

operations n as syntactic sugar.

Definition 5.1.21. The Syn-morphism n : n→ 0 is defined inductively on natural number

n as follows:

• 0 = ; 1 = ; 2 == ;

• For n ≥ 2, if n is defined, then n+1 = n .

A similar definition works for the syntactic sugar n standing for ‘n cocopies’, and later

for n and n . (A9)-(A12) state that ( , , , ) forms a bimonoid (also

called a bialgebra) [Lac04]. (A13) says this bimonoid degenerates or is idempotent. (A14) uses

a syntax sugar that will be soon introduced in Definition 5.1.22. Basically it says that a ‘void’

feedback does not has any effect, thus simply an identity morphism.
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We would also like to point out that the •-structure does not form a Frobenius structure,

as is common for copy and cocopy structure in GLA and its close relatives. Technically, that

( , ) forms a bimonoid means that it cannot be Frobenius, because being bimonoid and

Frobenius at the same time entails that the theory would be inconsistent, in the sense that all

morphisms of the same type are equal:

= =
(A11)

=

Semantically, we can work out the semantics of the diagrams in an Frobenius equation like (B9)

and (B10), and convince ourselves of their difference:

r z
= {((x1, x2), (y1, y2)) | ∃u : x1 ≤ y1 ∧ u, u ∨ x2 ≤ y2}

q y
= {((x1, x2), (y1, y2)) | ∃v : x1 ∨ x2 ≤ v, v ≤ y1 ∧ y2}
= {((x1, x2), (y1, y2)) | x1 ∨ x2 ≤ y1 ∧ y2}

r z
= {((x1, x2), (y1, y2)) | ∃w : x1 ∨ v ≤ y1, x2 ≤ v ∧ y2}

For instance, ((0, 1), (0, 1)) is in
r z

but not in
q y

nor
r z

; symmetrically,

((1, 0), (1, 0)) is in
r z

but not in
q y

nor
r z

.

Block B axioms. (B1)-(B10) state that ( , , , ) forms a commutative Frobenius

algebra [CW87]. A first important consequence is that this structure makes SATA a compact

closed category [KL80], a category in which one can interpret fixed-points or iteration [Has12].

Definition 5.1.22. The cup and cap are defined as the diagrams and , respec-

tively.

The cup and cap satisfy the ‘snake’ equations thus consist a compact closed structure, whose

(simple) proof we present below for integrity. The snake equation intuitively says that one can

pull straight any bent wire.

Proposition 5.1.23. The following ‘snake equations’ hold for our definition of cup and cap:

= =

Proof. Below we only prove one of the equations, as the other one is completely symmetric.

= =
(B10)

=

Note that axiom (A14) uses the syntactic sugar and , namely its lhs is .
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Moreover, Frobenius algebras greatly reduce the mental load in keeping track of differ-

ent ways of composing , , , , since (B9)-(B10) intuitively says that diagrams are

equivalent up to topological connectedness. This is formally stated as the spider theorem —

see e.g. [HV19, Theorem 5.21].

Proposition 5.1.24 (Spider theorem). If ( , , , ) forms a commutative Frobenius

structure, then any connected string diagram made out of , , , , ,

, using composition and the monoidal product, is equal to the following normal form

(5.3)

Here the word ‘connected’ refers to the diagram as a undirected graph: a diagram is con-

nected if there exists at least one path between any two white nodes in the diagram.

In our axiomatic theory, we can simplify the normal form of Proposition 5.1.24 even fur-

ther to get rid of those in (5.3). Making crucial use of axiom (A14), we can derive

= (5.2.5) (see Corollary 5.2.5). Note it is unusual for a Frobenius algebra to

satisfy (5.2.5) as those that have appeared in the literature satisfy a version of (5.2.5) with

the rhs set to the identity (e.g. [Zan15]) or to (e.g. [CK10]). Thanks to the spider

theorem and equation (∗), we can see any simply connected composition of white monoids and

comonoids as a single node, whose only relevant structure is its number of dangling wires on

the left and on the right. The normal form guarantees that we can unambiguously depict any

such morphism m→ n as a spider with m wires on the left and n on the right: m n. With

this syntactic sugar, the axioms of the Frobenius structure , , , can be concisely

expressed via the following spider fusion scheme.

Proposition 5.1.25. The following axiom scheme is equivalent to (B1)-(B10),

=
m2

m1

n2

n1

m1 +m2 − 1 n1 + n2 − 1

n2

n1

m2

m1

=

where := := := , and m1 +m2, n1 + n2 ≥ 1.

Block C axioms. (C1)-(C4) and (C5)-(C8) state that ( , , , ) and ( , , , )

also form two bimonoids, respectively. Semantically, these hold when the underlying poset is

a lattice, namely it has binary meets and joins. They also imply that SATA contains Mat B
as a monoidal subcategory, the category of Boolean matrices with the direct sum as monoidal

product (cf. Section 5.3).

Block D axioms. The D axioms spell out a number of adjunctions in the 2-categorical sense

[JY21]. The situation can be summarised by the following six adjunctions:

⊣ ⊣ ⊣ ⊣ ⊣ ⊣
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The adjunctions ⊣ and ⊣ give the defining inequations of cartesian bicate-

gories [CW87].

To understand where the other adjunctions come from, it is helpful to adopt a semantic

perspective. For example, recall that J K = {((x1, x2), y) | x1 ∧ x2 ≤ y} and J K =

{(x, (y1, y2)) | x ≤ y1, x ≤ y2} = {(x, (y1, y2)) | x ≤ y1 ∧ y2}. Thus, one can see the adjunction

⊣ as arising from the duality between the two different ways of turning the monotone

function ∧ : B2 → B into a monotone relation (by placing it on either side of the ≤ symbol in

the corresponding set comprehension).

Semantically, they guarantee that the underlying poset B is a lattice, i.e., has binary meets

and joins. Together with the Frobenius axioms (B9)-(B10), they imply that B is a complemented

distributive lattice, in other words, a Boolean algebra.

5.2 Some useful results in SATA

In this subsection we list a few useful (in)equations derivable from the axioms in SATA. While

most of them will be used for proving completeness (Section 5.4, Section 5.5), some of them

are handy and highlight the difference between SATA and GLA.

First we point out that for some of the inequalities in block D of Figure 5.1, their converse

also hold thus are indeed equalities. We list and prove all of them below.

Proposition 5.2.1. The converse inequalities to (D2), (D5), and (D10) are derivable, thus:

= (D2’) = (D5’) = (D10’)

Proof. For (D2) we can derive the converse inequality as follows: ≥(D3)
=

(A2);(B6)

. The converse inequality of (D10) is essentially reflecting each diagram in the above proof,

where one replaces (D3) by (D7) and applys unitality (A6) of , and counitality (B2) of

, .

For (D5), ≤ =
(D8)

.

Next we have a look at how black/white monoids (resp. comonoids) interact with white/black

units (resp. counits).

Proposition 5.2.2. = = = =

Proof. We only prove the first two equations, and the other two follow from a similar proof by

reflecting all the diagrams in the proof (note that all the axioms in SATA has its mirror-image

counterpart).

For the first equation,

≥(D11)
=

(A11)
=

(C8)

≤(D8)
=

(A3)
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For the second equation,

≤(D8)
=

(C5) ≤(D7)

≥(D11)
=

(B3)

Moreover, Proposition 5.2.2 entails that and ‘disconnect’ -structure.

Proposition 5.2.3. For any diagram c : m → n freely composed of , , , , if c

is connected, then the following equations hold whenever the numbers involved are all natural

numbers:

c
m−1

n = m−1 n c
n−1

m = m n−1 (5.4)

Proof. For simplicity we prove the first equation only; the second follows from a proof that

essentially reflects all the diagrams in the proof below. We prove by induction on the structure

of diagram c. For the base case, we have: = for c = ; = for c = by

Proposition 5.2.2;
(C5)
= for c = ; trivial for c = ; not applicable to c = .

For the induction step, we show that parallel and sequential composition preserve this

property. For
c

d
, this diagram is not connected unless (at least) one of c and d is , in which

case the statement holds trivially via induction hypothesis. For c d , suppose in addition

that they have types c : k → m and d : m → n, then c d
k−1 n−1

m = k m n (A12)
= k n ,

thus also holds for c ; d.

The next proposition deals with an important case in the completeness proof (Section 5.5)

in which one may have ‘loops’ (i.e. non-terminating process) when rewriting a diagram into

normal form.

Proposition 5.2.4.

= (loop)

Proof.

≤ = = (5.5)

Crucially we need (A14) for the second inequality:

= ≥ = =
(A14)

(5.6)
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In fact, (loop) is equivalent to (A14) given all the SATA axioms except (A14):

= = =
(C4), (C8)(loop)

Apart from its importance in the completeness proof, we also need (loop) to prove the following

property of the Forbenius structure in SATA.

Corollary 5.2.5.

=

Proof. = = =
(loop) (A12)(A3),(A7)

Proposition 5.2.6. The following distributivity equation holds:

=
(dst1)

Proof.

= =

= =

(C5)

(5.7)

Proposition 5.2.7. The following general bialgebra equation holds for all natural numbers k, n.

n k = n k

n

nk
...

k

k n (5.8)

Proof. For readability, in the rest of the proof we will not use the dashed wires but instead use
... and natural numbers to intuitively express that ‘there are k duplicates of certain pattern’.

We prove by induction on n, and leave k arbitrary. When n = 0 and n = 1, we have

0 k = k
... k

0

0k

k
...
...

...= 0 1 k = k
... k

1

1k

k
...
...

...= 1...k=

When n = 2, we make an induction on k. The base case for k = 0, 1 are exactly the same as

the previous proof for n = 0, 1. For k = 2, this is exactly the bialgebra axiom. Now suppose it
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holds for k ≥ 2, and we consider k + 1:

k+1 = k =
(IH)

k

k

k
...
...

... =

k−1

k−1
...

...

...
=

k − 1
k+1

k+1

k+1
...
...

...

We continue with the induction proof on n. Suppose equation (5.8) holds for n, then for

n+ 1,

n+1 k = n k =
IH

n
... k

n

nk

k
...
...

... =
n−1

n−1

k...k

k

n−1
...

k

n−1

n−1

k...k

k

n−1
...

=

k

k

k
...
...

...

= n+1
... k

n+1

n+1k

k
...
...

...

Proposition 5.2.8. The following bialgebra equation between and (resp. and

) holds for arbitrary natural numbers k, n

n k = n
... k

n

nk

k
...
...

... n k = n
... k

n

nk

k
...
...

... (5.9)

Proof. The proof is the same as that for Proposition 5.2.7. Note that there only properties of

( , ) forms a bimonoid is used, which also holds for ( , ) and ( , ), see

the B and C axioms in Figure (5.1).

The next statement is a diagrammatic counterpart of x1 ≤ y & x1 ∧ x2 ≤ y ⇐⇒ x1 ≤ y,

or equivalently, x1 ∧ x2 ≤ x1.

Proposition 5.2.9. =

Proof. We prove the two inequalities. On one hand,

≤ = =

On the other hand,

= = =

≥ = =
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Dually, the following statement diagrammatically expresses that x1 ≤ x1 ∨ x2.

Proposition 5.2.10. =

Proof. We prove the two inequations separately. On one hand,

(D8)

≤ (A7)
=

(D2’)
=

On the other hand,
(D3)

≥ (B7),(A10),(A3)
=

Proposition 5.2.11. =

Proof.
(A9)
=

(A1),(A5)
=

(A13)
=

(A9)
=

Proposition 5.2.12. ≤

Proof. ≤ = =
(C4), (C8)

Proposition 5.2.13. =

Proof.
(A9)
=

(A1)
=

Prop.5.2.10
=

(A2)
=

5.3 Matrix diagrams

In this subsection we take a necessary detour to Boolean matrices and matrix diagrams. Matrix

diagrams are fundamental components of graphical linear algebra (see Section 2.3.1). In a

nutshell, they are diagrams that encode matrices, and the axioms for (the generators in) matrix

diagrams guarantee that such expression is full and faithful, thus called a presentation.

In our case, the theory SATA and the interpretation of diagrams under J·K are essentially

inequational, so the connection between the diagrams and the semantic objects is non-standard,

and deserves further exploration. In a nutshell, SATA is expressive enough to express all mono-

tone relations between finite Boolean algebras, and the latter is the appropriate context to study

semantics for propositional definite logic programs. Even though technically such connection

between the diagrammatic language SATA and monotone relations can be established without

introducing other concepts, in order to make the intuition clearer, we use Boolean matrices

as the bridge between (the ( , )-fragment of) SATA and those monotone relations that

represent monotone functions.
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Example 5.3.1. Before entering the technical development, we provide some intuition of ma-

trix diagrams and their connection with Boolean matrices in our framework. In SATA, the

2 × 3 Boolean matrix A =

(
0 1 1

0 1 0

)
will be represented diagrammatically as the following

diagram dA : 3→ 2, say:

= (5.10)

This is because semantically, matrix A represents the coefficients of a set of inequalities whose

set of solution is exactly the interpretation of dA:

JdAK = {((x1, x2, x3), (y1, y2)) | x2 ∧ x3 ≤ y1 & x2 ≤ y2, x1, x2, x3, y1, y2 ∈ B}

= {((x1, x2, x3), (y1, y2)) | A

x1x2
x3

 ≤ (y1
y2

)
}

Moreover, taking a closer look at the left-hand-side of (5.10), we notice a syntactic corre-

spondence between the highlighted part of the diagram and the entries of matrix A: Aij = 1

precisely when the j-th wire on the left port is connected with the i-th wire on the right port

via ; Aij = 0 precisely if the j-th wire on the left port is disconnected with the i-th

wire on the right port via . For instance, the highlighted part in corre-

sponds to A23 = 0. The next step is then to make a formal account of such intuitive notion

of (dis)connection and the correspondence between the diagrammatic components and matrix

entries, resulting in Definition 5.3.5, Proposition 5.3.11.

What underlies matrix diagrams is commutative bimonoid structure. Indeed there are three

commutative bimonoid structures in SATA, which we refer to as ( , ), ( , ), and

( , ). From a syntactic point of view, the bimonoid axioms entail that the monoid

structure always ‘traverses through’ the comonoid structure. For example, (C6) says that when

meets , the can pass through the from left to right by duplicating both

and , and then connect in a certain way. Formally, this means that diagrams in a bimonoidal

structure always have a canonical form such that the comonoid structure appear before the

monoid structure. We call such canonical form matrix diagrams (see Definition 5.3.2). Below

we state the definition and properties of matrix diagrams for the bimonoid structure ( , )

since it will be explicitly used in the completeness proof in Section 5.4 and Section 5.5. The

similar results for ( , ) and ( , ) can be obtained by replacing and in

the following definitions and proofs with the chosen (co)monoid structures. While they do not

play an important role in the completeness proof, we list the essential details in Remark 5.3.13.
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Definition 5.3.2. A Syn-morphism d is a matrix diagram if it factorises as follows:

...
...

... (5.11)

In words, a matrix diagram d is the composite of two parts d = d1 ; d2, where d1 contains

only and , while d2 is solely composed of and .

Proposition 5.3.3. Every diagram composed of , , , is equivalent to a

matrix diagram.

Proof. This is a standard result, for example Bonchi et al. [BSZ17].

From a semantic point of view, under the interpretation J·K, matrix diagrams denote relations

that are the satisfying assignments of finite sets of inequalities (over Boolean variables) of the

form x1∧· · ·∧xk ≤ y. Equivalently, in standard logic terms, matrix diagrams denote finite sets

of Horn clauses, i.e. clauses with at most one positive (unnegated) literal. More specifically,

for each Horn clause ¬x1 ∨ · · · ∨ ¬xk ∨ y, the negated literals ¬x1, . . . ,¬xk correspond to a

subset of the left wires, while the only positive literal y corresponds to the right wire to which

those left wires are connected. For this reason, matrix diagrams can be thought of as matrices

with Boolean coefficients: each row encodes the negative literals of a Horn clause through its

coefficients.

We formalise this idea by explaining how every Boolean matrix is represented by a matrix

diagram, and vice versa. For this we need to formalise the intuitive notion of ‘being connected’,

as mentioned in Example 5.3.1. While the notion of ‘(dis)connected’ is fairly intuitive, for

a formal and concise definition we find it handful to introduce the canonical form of matrix

diagrams.

Definition 5.3.4. A canonical matrix diagram d : m→ n is a matrix diagram of the following

form:

...m

m

... nσ

δ11

m

n

n

δm1

δ1n

δmn

...

...

(5.12)

where each δij is either or , for i = 1, . . . ,m and j = 1, . . . , n; σ contains suitably

many that move the j-th right wire of the i-th n to the i-th left wire of the j-th m .

Definition 5.3.5. Let d : m → n be a canonical matrix diagram as in Definition 5.3.4. The

i-th wire on the left port and the j-th wire on the right port are connected if δij = . Two
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wires on the left port, say the i-th and the i′-th one, are connected if they are connected to a

same wire on the right, namely if there exists j ∈ {1, . . . , n} such that δij = δi′j = .

Definition 5.3.6. Recall the diagram from Example 5.3.1, which is indeed

a matrix diagram of canonical form. Here for instance, the second wire on the left port is

connected to the first wire on the right port, namely δ21 = ; the third wire on the left port

is not connected to the second wire on the right port, thus δ23 = .

Although Definition 5.3.5 only considers connectedness in canonical matrix diagram, it

generalises to all matrix diagrams by observing that every matrix diagram is equivalent to a

canonical one.

Corollary 5.3.7. Any diagram formed only of the generators , , , is equal to a

canonical matrix diagram.

Proof. It follows from Proposition 5.3.3 and the unital axioms (A2), (A3), (B6), (B7), which

enable one to construct those δij accordingly.

Example 5.3.8. The following leftmost matrix diagram is equivalent to a canonical matrix

diagram on the right hand side:

=

δ11

δ21

δ12

δ22

δ13

δ23

= (5.13)

In particular, the grey diagram is the σ in Definition 5.3.4; δ21 = δ13 = δ23 = , while the

rest δij’s are all .

Now we have formalised the concepts necessary for establishing the connection between

Boolean matrices and matrix diagrams from Example 5.3.1. Let us state this correspondence

for general matrix diagram and Boolean-value matrices. Note that this is can be seen as

a purely syntactic correspondence result as neither the statement nor the proof require any

semantic interpretation of the diagrams.

Lemma 5.3.9. There is a 1-1 correspondence between matrix diagrams (up to SATA-equivalence)

and Boolean matrices.

Proof. The symmetric monoidal category Mat B of matrices with Boolean coefficients and the

direct sum as monoidal product has a well-known complete axiomatisation: the theory of a
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commutative and idempotent bimonoid. This result can be found in Zanasi [Zan15, Proposi-

tion 3.9], where a complete axiomatisation of the symmetric monoidal category of matrices over

a principal ideal domain (again with the direct sum as monoidal product) is provided. However

the proof there does not make any use of additive inverses and can be adapted without changes

to the case of an arbitrary semiring, like the Booleans (see Piedeleu [Pie18] for more details).

In the case of SATA, the equations defining a commutative and idempotent bimonoid

( , ) are given by axioms (A1)-(A4), (B5)-(B8), (C1)-(C4), and (D2’) from Proposi-

tion 5.2.1. We follow the convention in [Zan15] and denote this category of SMC which is freely

generated by , , , and then quotiented by the theory of commutative and idem-

potent bimonoid as HA•◦B , the category of Hopf algebra (Definition 2.3.2), whose superscript

indicate that it is generated by a •-comonoid and a ◦-monoid. The statement of the lemma

then amounts to the isomorphism between categories HA•◦B ∼= Mat B. Then following Zanasi

[Zan15], HA•◦B presents Mat B, and the isomorphism HA•◦B ∼= Mat B is witnessed by the functor

SHA•◦
B

, defined inductively on the free structure of HA•◦B as follows:

SHA•◦
B

( ) =

(
1

1

)
SHA•◦

B
( ) = ¡

SHA•◦
B

( ) =
(

1 1
)

SHA•◦
B

( ) = !

where ¡ and ! are the universal map given by the final and initial objects in Mat B, respectively.

As for the swapping morphism , one has SHA•◦
B

( ) =

(
0 1

1 0

)

Example 5.3.10. It is helpful to see how the functor SHA•◦
B

in the previous proof works on

matrix diagrams, and that it fits the intuition about the translation between matrix diagrams

and Boolean matrices.

Consider the matrix diagram dA from Example 5.3.1. Applying SHA•◦
B

to dA, we have:

SHA•◦
B

( )
= SHA•◦

B

( )
; SHA•◦

B

( )
; SHA•◦

B

( )
= (SHA•◦

B
( )⊗ SHA•◦

B
( )) ◦ (SHA•◦

B
( )⊗ SHA•◦

B
( ))◦

(SHA•◦
B

( )⊗ SHA•◦
B

( )⊗ SHA•◦
B

( ))

=

(
1 1 0

0 0 1

)1 0 0

0 0 1

0 1 0


0 1 0

0 1 0

0 0 1


=

(
0 1 1

0 1 0

)
= A

To our purpose, this 1-1 correspondence between matrix diagrams and Boolean matrices is

an essential step in showing the completeness result of matrix diagrams.
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Proposition 5.3.11 (Matrix completeness). Let c, d : m→ n be two diagrams formed only of

the generators , , , . We have JcK = JdK iff c =SATA d.

Proof. The ‘if’ direction is straightforward, indeed follows from the soundness of J·K.
The ‘only if’ direction amounts to saying that the functor J·K restricted to HAB

•◦ is faithful.

The proof strategy can be summarised by the following diagram:

HA•◦B
J·K

33

SHA•◦B //Mat B I //MonFunB
R //MonRelB (5.14)

In words, we divide the task of proving the faithfulness of J·K into showing that the three

functors are all faithful.

First, the functor SHA•◦
B

from Lemma 5.3.9 is indeed an isomorphism. Second, the functor R
representing monotone function over Booleans as monotone relations is also faithful. Third, we

show that that Mat B embeds faithfully in MonFunB through the following functor I, defined

inductively on the free structure of Mat B:

• on objects, I(n) := Bn for arbitrary natural number n;

• on morphisms, given a n ×m Boolean matrix A, I(A) : Bm → Bn maps (b1, . . . , bm) to

(c1, . . . , cn) where ci = (Ai1 ∧ b1) ∧ · · · ∧ (Aim ∧ bm).

In other words, I(A) is a monotone function whose j-th component I(A)j (for j = 1, . . . , n) is

given by I(A)j(b) = bi1 ∧ · · · ∧ bik where {i1, . . . , ik} is the set of indices in the i-th row of A

which are equal to 1. For instance, I maps the matrix A =

(
0 1 1

0 1 0

)
from Example 5.3.1 to

the function λ(x1x2x3).(x2 ∧ x3, x3). Clearly, any two matrices that define the same monotone

function are equal, thus I is faithful.

Finally we need to verify that (5.14) commutes. This can be shown inductively on the

structure of HAB
•◦. For the inductive base, it holds for all generating morphisms:

• (R◦I◦SHA•◦
B

)( ) = (R◦I)(

(
1

1

)
) = R(λx.(x, x)) = {(x, (y1, y2) | x ≤ y1, y2)} = J K

• (R ◦ I ◦ SHA•◦
B

)( ) = (R ◦ I)(¡) = R(λx.•) = {(x, •) | x ∈ B} = J K

• (R◦I ◦SHA•◦
B

)( ) = (R◦I)(
(

1 1
)

) = R(λ(x1, x2).x1∧x2) = {((x1, x2), y) | x1∧x2 ≤
y} = J K

• (R ◦ I ◦ SHA•◦
B

)( ) = (R ◦ I)(!) = R(• 7→ 1) = {(•, 1)} = J K

For the induction step, the statement follows by noticing that SHA•◦
B
, I,R, J·K are all SMC

functors.

Now, since J·K can be decomposed as the sequential composition of three faithful functors,

the functor J·K itself is also faithful. This means that for any c, d, if JcK = JdK then c =SATA d.
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Below is a handy result describing the semantic connection between matrix diagrams and

their corresponding Boolean matrices.

Proposition 5.3.12. Given an arbitrary matrix diagram d : m → n and suppose its corre-

sponding Boolean matrix is A ( i.e. SHA•◦
B

(d) = A). Then for all x1, . . . , xm, y1, . . . , yn ∈ B,

(x,y) ∈ JdK ⇐⇒ A


x1
...

xm

 ≤

y1
...

yn


where the Boolean matrix multiplication is under ⟨B,∨,∧⟩.

Proof. Without loss of generality we assume that d is a canonical matrix diagram, and follow

the notation from Definition 5.3.4. Suppose for each j ∈ {1, . . . , n}, {ij1, . . . , ijrj} is the set of all

the indices i ∈ {1, . . . ,m} such that Aji = 1. Then by construction, ij1, . . . , i
j
rj

are also exactly

the indices i such that δij = .

For arbitrary x1, . . . , xm, y1, . . . , yn ∈ B, (x,y) ∈ JdK if and only if xij1
∧ · · · ∧ xijrj ≤ yj for

all j ∈ {1, . . . , n}. This is exactly saying that for the i-th row Ai of A, Ai (x1, . . . , xm)⊤ ≤ yj,

for all j = 1, . . . , n. Thus it is equivalent to A(x1, . . . , xm)⊤ ≤ (y1, . . . , yn)⊤.

Proposition 5.3.11 will greatly simplify our reasoning in the proof of completeness (Subsec-

tion 5.4). In light of Proposition 5.3.11, we will assume — wherever it is convenient — that

we can always rewrite any diagram formed of , , , to its equivalent (canonical)

matrix form, while keeping the semantics unchanged. This often means that we can be as lax

as necessary when identifying diagrams modulo the (co)associativity of or and the

(co)unitality of ( , ) and ( , ).

Remark 5.3.13. As we have mentioned at the beginning of this subsection, the equational

theory of Fig. 5.1 contains three commutative and idempotent bimonoids: ( , ) (as we

have already explained), ( , ) and ( , ). Unsurprisingly, completeness results

similar to Proposition 5.3.11 also hold for ( , ) and ( , ) matrix diagrams, which

can be proved using the same line of thoughts as the proof for Proposition 5.3.11 by modifying

(5.14). We give the sketch below.

( , )-matrix diagrams. The equations of commutative idempotent bimonoids consist

of (A1)-(A13). We define the category HA••B as the freely generated SMC quotiented by the

theory of commutative idempotent bimonoid. Then we have a similar decomposition of the

functor J·K restricted to HA••B :

HA••B
J·K

33

SHA••B //Mat B J //MonFunB
R //MonRelB (5.15)
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Here SHA••
B

is inductively defined as follows, and witnesses the isomorphism HA••B ∼= Mat B:

SHA••
B

( ) =

(
1

1

)
SHA••

B
( ) = ¡

SHA••
B

( ) =
(

1 1
)

SHA••
B

( ) = !

Moreover, J is defined as:

• on objects, J (n) = Bn;

• on morphisms, given a n ×m Boolean matrix A, J (A) : Bm → Bn maps (b1, . . . , bm) to

(c1, . . . , cn) where each ci = (Ai1 ∧ b1) ∨ · · · ∨ (Aim ∧ bm).

( , )-matrix diagrams. In this case we can no longer factorise J·K throughR : MonFunB →
MonRelB. Instead we have the following decomposition

HA◦•B
J·K

44

SHA◦•B //Mat B K //MonRelB (5.16)

Here SHA◦•
B

is inductively defined as follows, and witnesses the isomorphism HA◦•B ∼= Mat B:

SHA◦•
B

( ) =

(
1

1

)
SHA◦•

B
( ) = ¡

SHA◦•
B

( ) =
(

1 1
)

SHA◦•
B

( ) = !

K maps a Boolean matrix to a monotone relation:

• on objects, K(n) = Bn for arbitrary n ∈ N;

• on morphisms, given a n ×m Boolean matrix A, K(A) : Bm 7→ Bn consists of all (b, c)

such that for each i ∈ {1, . . . ,m}, bi ≤ ci1∨· · ·∨cik where i1, . . . , ik are all the row indices

in the i-th column of A that has entry 1.

Example 5.3.14. Again, consider the matrix A =

(
0 1 1

0 1 0

)
from Example 5.3.1, and the

monotone relation K(A) consists of all ((b1, b2, b3), (c1, c2)) satisfying: b1 ≤ 0, b2 ≤ c1 ∨ c2,
b3 ≤ c1. This is exactly the interpretation of the following diagram under J·K, which are the

( , ) (canonical) matrix diagrams corresponding to A:

=

Another useful fact for the completeness proof is that, when certain wires are not connected,

a matrix diagram can be decomposed into smaller pieces of matrix diagrams. This fact will be
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later used in the proof of the completeness of SATA. In particular it makes the induction step

there pass through. We state and prove below only the result for ( , ) matrix diagrams.

Proposition 5.3.15. Let d : m + 2 → n be a matrix diagram (where m,n ∈ N). If two wires

on the left port are not connected, say the first and second wires, then d can be decomposed as

follows, where d0, d1, d2 are also matrix diagrams:

d
m

n = d1
m

k0d0

d2

k1
ℓ0

ℓ1

n0

n1

n2

(5.17)

Proof. In this proof we will use curly brackets and natural numbers k to indicate that certain

pattern appears k many times.

Without loss of generality we assume that d is a canonical matrix diagram. While one can

prove directly on d for arbitrary m,n, to avoid messing up the wires we present here a proof by

induction on n ∈ N. If n = 0, then (5.17) is trivial: d is equivalent to the parallel composition

of m+ 2-many .

Suppose (5.17) works for arbitrary matrix diagram of type m+ 2→ n, we show that it also

holds for canonical matrix diagram d : m + 2 → n + 1. Since top two wires on the left port

are not connected, wlog we assume that δ0n = and δ0n = (the case where both are

is simpler). Then d can be decomposed as follows, where the three green highlighted

(matrix) diagrams work respectively as d0, d1, d2 in the rhs of (5.17):

...m

m

...σ

δ11

m

n+1

n+1

δm+2,1

δ1,n+1

δm+2,n+1

...

...

n+1

n+1

n+ 1 =
...m

m

... nσ

δ11

m

n

n

δm+2,1

δ1,n

δm+2,n

...

...

n

n

δ1,n+

δm+2,n+1

...

δ2,n+1

δ3,n+1
...
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(IH)
=

...m

c0

c1

δ1,n+1

δm+2,n+1

...

δ2,n+1

δ3,n+1
...

c2

k0

k1
ℓ0

ℓ1

n0

n1

n2

=
...m

c0

c1

δm+2,n+1

...
δ3,n+1

...

c2

k0

k1
ℓ0
ℓ1

n0

n1

n2

=

...m

c0

c1

δm+2,n+1

...
δ3,n+1...

c2

k0

k1

ℓ0
ℓ1

n0

n1

n2

This finishes the induction step.

5.4 Soundness and completeness for monotone Boolean

functions

Before proving the completeness result for SATA and MonRelB, we first provide some taste of

the calculus by showing the completeness for a simpler system (indeed a subsystem of SATA).

We first look at the semantics. We will consider the functional fragment of MonRelB, namely

those monotone relations that are representations of some monotone functions.

Definition 5.4.1. Let MonRFB be the poset-enriched subcategory of MonRelB whose morphisms

are monotone relations that are generated by some monotone functions.

Equivalently, MonRFB is the image of the embedding functor R : MonFunB → MonRelB. A

morphism of type Bm 7→ Bn in MonRFB is a monotone relation R ⊆ Bm × Bn generated by

some monotone function f : Bm → Bn, namely R = R(f). MonRFB remains as a poset-enriched

category, whose poset structure on morphisms is ⊆.

Remark 5.4.2. MonRFB is a proper subcategory of MonRelB because not every monotone

relation is generated by a monotone function. For example, consider R := {(x, (y1, y2)) | x ≤
y1 ∨ y2}. R is a monotone relation B 7→ B2, but there is no monotone function f : B→ B2 such

that R = R(f): for there are two minimal elements (y1, y2) in B2 such that (1, (y1, y2)) ∈ R,

namely (0, 1) and (1, 0). Indeed R is the interpretation J K, and we shall soon see that it

is not part of the category of string diagrams presenting (monotone relations generated by)

monotone functions.

On the diagrammatic side, we consider the syntax category as the one freely generated by

all the ingredients for Syn but and . Formally the syntax category Synfunc is defined

as follows.

Definition 5.4.3. The category Synfunc is the symmetric monoidal category freely generated

by the following components:

137



• Objects: a single generating object 1;

• Morphisms: the following generating string diagrams

Remark 5.4.4. This explains why in Remark 5.3.13, our construction for the functor J·K
restricted to ( , ) matrix diagram does not factorise through R : MonFunB → MonRelB.

It is helpful to identity which monotone functions generate the interpretations of the gen-

erators of Synfunc (as monotone relations).

R(λx.(x, x)) = J K R(λx.•) = J K

R(λx1x2.x1 ∨ x2) = J K R(0) = J K

R(λx1x2.x1 ∧ x2) = J K R(1) = J K

The inequation theory SATAfunc is the fragment of SATA that only involves (in)equalities

about the generating morphisms of Synfunc, plus the axioms stating the interaction between

and . For convenience we list them in Figure 5.2 and keep the same index of the

axioms as in Figure 5.1. We quotient Synfunc by the inequational theory SATAfunc, which again

= = =

= =

=

= = =

=

=

(A1) (A2) (A3) (A4)

(A5) (A6) (A7) (A8)

(A9) (A10) (A11)

(A12)

=

=

(A13)

= = =
(B5) (B7)(B6) (B8)

=

= = =
(C1) (C2) (C3) (C4)

=

≤ ≤ ≤≤

≤≤ ≤ ≤

(D1) (D2) (D3) (D4)

(D8)(D5) (D6) (D7)

=
(dst1)

Figure 5.2: SATAfunc

results in a poset-enriched category, called SATAfunc. The central theorem of this subsection

is then the following soundness and completeness result, establishing the isomorphism between

two poset-enriched categories.

Theorem 5.4.5. SATAfunc ∼= MonRFB.
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Theorem 5.4.5 amounts to showing that there is a full and faithful functor F : SATAfunc →
MonRFB that is also bijective on objects. We have a natural candidate of this F , namely the

interpretation J·K (see Definition 5.1.15) restricted to SATAfunc and MonRFB, which we still

denote as J·K with a bit abuse of notation. First, that J·K is a symmetric monoidal functor

follows directly from the soundness for SATA and MonRelB (see Proposition ??). Next, it is

immediate that J·K is bijective on objects: J·K maps object n in the syntax category SATAfunc

to object Bn in the semantics category MonRFB, for every natural number n.

The only remaining and nontrivial task is to show that J·K is full and faithful. By the

definition of SATAfunc as a freely generated category quotiented by certain inequational theory,

these two conditions of J·K boil down to the following properties:

• fullness means that for every relational representation R(f) of some monotone function

f : Bm → Bn, there exists a SATAfunc-morphism d such that JdK = R(f) (Proposi-

tion 5.4.23);

• faithfulness says that for two SATAfunc-morphisms c and d, if JcK ⊆ JdK, then c ≤SATAfunc d

(Proposition 5.4.25).

In the following two subsections, we will prove fullness first, which shall shed some light on the

pre-normal form and normal form that will be crucial in the followup faithfulness proof. One

simple observation that will simplify the proof setting is that, since MonFunB is a cartesian

category, so each monotone function f : Bm → Bn can be decomposed as an n-tuple (f1, . . . , fn)

where each fi is of type Bm → B, and R(f) = (R(f1), . . . ,R(fn)). Thus it suffices to restrict

ourselves to n = 1, and show that for every monotone function f : Bm → B, there exists

d : m→ 1 such that JdK = R(f).

Let us fix a monotone function f : Bm → B. We note that f is uniquely determined by

f−1(0): for an arbitrary b ∈ Bm, f(b) = 0 if b ∈ f−1(0), and f(b) = 1 otherwise. Moreover,

f−1(0) is always a downward closed subset of Bm: if f(b) = 0 and b′ ≤ b, then by monotonicity

of f , f(b′) ≤ f(b) = 0, thus f(x′) = 0. In fact there is a one-one correspondence between

monotone functions Bm → B and downward closed subsets of Bm. To further exploit this

observation, we will introduce the notion of ¬-clauses.

5.4.1 ¬-clauses and sets of ¬-clauses
In this subsection we fix a finite set of variables Var = {x1, . . . , xm}, unless otherwise specified

(such as in some examples).

Definition 5.4.6. A ¬-clause over Var is a finite subset {xi1 , . . . , xik} of Var . A set of ¬-
clauses over Var is a finite set of ¬-clauses.

Definition 5.4.7. A ¬-clause assignment (or simply assignment) is a mapping v : Var → B.

An assignment v satisfies a ¬-clause σ = {xi1 , · · · , xik} if v(¬xi1) ∨ · · · ∨ v(¬xi1) = 1, or
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equivalently, v(xi1) ∧ · · · ∧ v(xi1) = 0. The set of satisfying assignments for σ is the set of all

assignments satisfying σ, denoted as Sat(σ). An assignment satisfies a set of ¬-clauses Σ if it

satisfies all ¬-clauses in Σ. The set of satisfying assignments for Σ is the set of all assignments

that satisfies Σ, denoted as Sat(Σ).

One immediate observation is that, the set of satisfying assignments for a set of ¬-clauses

is simply the intersection of the set of satisfying assignments for every ¬-clause in this system,

namely Sat(Σ) =
⋂
σ∈Σ Sat(σ).

Convention 5.4.8. For convenience, we will write an assignment v : {x1, . . . , xm} → B by a

tuple (v(x1), . . . ,v(xm)) in Bm, or sometimes even just by a string v(x1) · · ·v(xm).

We denote v(xi1) ∧ · · · ∧ v(xi1) by σ(v), thus the condition of an assignment v satisfying a

¬-clause σ can be concisely expressed as σ(v) = 0.

We use the terminology ‘¬-clause’ due to its close connection with the standard notion

of clauses in logic. Recall from standard logic textbooks that a clause φ is a set of literals

{l1, . . . , lk}, and a satisfying assignment for φ is a Boolean assignments for atoms appearing in

φ that validates φ when viewed as a disjunction, namely l1 ∨ · · · ∨ lk has truth value 1. Our

notion of ¬-clauses and their satisfaction is the dual: a ¬-clause can be seen as a conjunction

of its components, and satisfaction means that the conjunction has truth value 0.

Example 5.4.9. Let Var = {x1, x2, x3}. Consider two ¬-clauses σ := {x1, x2} and γ := {x1, x3}
be two ¬-clauses, and a set of ¬-clauses Σ := {{x3}, {x1, x2}, {x1, x2, x3}}. We define the

assignment v1 to be v1(x1) = v1(x3) = 0, v1(x2) = 1; or equivalently, we follow Convention 5.4.8

and write v1 = 010. By definition, v1 satisfies σ and Σ (i.e. v1 ∈ Sat(σ), Sat(Σ)), but not

γ (i.e. v1 ̸∈ Sat(γ)). The set of satisfying assignments of Σ, namely Sat(Σ), consists of v1

together with other two assignments v2 = 100 and v3 = 000.

Similar to the fact that two different set of equations may have the same set of solutions,

two sets of ¬-clauses may also share the same set of satisfying assignments. However one key

observation for the latter case is that it can happen only in a naive way: one set of ¬-clauses

is contained in the other as a subset of ¬-clauses. This entails that for a given set of solutions,

there is always a smallest set of ¬-clauses whose set of solutions is this set.

Definition 5.4.10. A set of ¬-clauses Σ is minimal if for any Γ ⊂ Σ, Sat(Σ) ⊂ Sat(Γ).

In other words, a set of ¬-clauses Σ is minimal if it does not have any ‘redundant’ ¬-clause,

dropping which has no impact on the set of satisfying assignments.

Example 5.4.11. Recall Example 5.4.9, Σ is not minimal because its proper subset {{x3}, {x1, x2}}
has the same set of satisfying assignments as Σ. In other words, the ¬-clause {x1, x2, x3} is

redundant given either {x3} or {x1, x2}.

The next three results tell us that minimal sets of ¬-clauses are unique, thus smallest.

140



Lemma 5.4.12. Consider a set of ¬-clauses Σ of the form {{y11, . . . , y1k1}, . . . {ym1 , . . . , ymkm}}
and a ¬-clause γ = {x1, . . . , xn}. If Sat(Σ) ⊆ Sat(γ), then there exists some i ∈ {1, . . . ,m}
such that {yi1, . . . , yiki} ⊆ {x1, . . . , xn}.

Proof. We prove this by contradiction. Suppose the lemma does not hold, then for each i ∈
{1, . . . ,m}, {yi1, . . . , yiki} ̸⊆ {x1, . . . , xn}, so there exists some yipi such that yipi ̸∈ {x1, . . . , xn}.
Consider the assignment v such that v(yipi) = 0 for all i ∈ {1, . . . ,m}, and v(z) = 1 for all

the other variables. Then v satisfies Σ: for each i, v(yi1) ∧ · · · ∧ v(yipi) ∧ · · · ∧ v(yiki) = 0.

However, v does not satisfy γ because {y1p1 , . . . , ympm} ∩ {x1, . . . , xn} = ∅ and v(xj) = 1 for all

j ∈ {1, . . . , n}, thus a contradiction.

Proposition 5.4.13. If two sets of ¬-clauses Σ and Γ satisfy Sat(Σ) = Sat(Γ), then Σ = Γ.

Proof. Since the satisfying assignments of Σ form a subset of those of Γ, they are also a subset

of the satisfying assignments of every γ ∈ Γ. By Lemma 5.4.12, for every γ ∈ Γ there exists a

σ ∈ Σ such that σ ⊆ γ. Using a similar argument, since the satisfying assignments of Γ form a

subset of those of Σ, for every σ ∈ Σ there exists a γ ∈ Γ such that γ ⊆ σ.

Now starting with an arbitrary γ ∈ Γ, there exists some σ ∈ Σ such that σ ⊆ γ. For this σ

there again exists some γ′ ∈ Γ such that γ′ ⊆ σ. So γ′ ⊆ γ, and for a minimal set of ¬-clauses

this means γ = γ′: otherwise we could drop γ′ and get a smaller set than Γ with the same

satisfying assignments. Then γ ⊆ σ ⊆ γ′ and γ = γ′ imply γ = σ = γ′, which means that γ

is in Σ as well. Since this holds for arbitrary γ ∈ Γ, we know that Γ ⊆ Σ. Applying a similar

argument for Σ, we know that Σ ⊆ Γ. Therefore we can conclude that Σ = Γ.

So far we studied enough properties of sets of ¬-clauses to make the connection with mono-

tone functions of type Bm → B, or equivalently with downward closed subsets of Bm.

Corollary 5.4.14. For every downward closed subset A ⊆ Bm, there is a unique minimal set

of ¬-clauses Σ such that Sat(Σ) = A.

Proof. We first show the existence of such a set of ¬-clauses, and then it follows from Proposi-

tion 5.4.13 that there is a unique minimal one.

Note that each b ∈ A can be seen as an assignment b : Var → B such that b(i) = 0 if and

only if the i-th component of b is 0. Let Γ consists of all ¬-clauses σ such that σ(b) for all

b ∈ A viewed as assignments. Then by construction every b ∈ A satisfies Γ. Now given an

assignment v ∈ Sat(Γ), we show that v ∈ A as well, thus Sat(Γ) = A. Suppose not, then A
being downward closed means that there is no u ∈ A such that v ≤ u. Equivalently, for each

u ∈ A, v ̸≤ u. Since ≤ is defined pointwise on Bm, this means that for each u ∈ A, there

exists iu ∈ {1, . . . ,m} such that v(iu) ̸≤ u(iu), which can only be the case that v(iu) = 1

and u(iu) = 0. Consider the ¬-clauses γ := {xiu | u ∈ A} picked as above. On one hand,

each u ∈ A satisfies γ because u(xiu) = 0, so γ ∈ Γ. On the other hand, v(γ) = 1 because

v(xiu) = 1 for all u ∈ A, thus v does not satisfy γ. But this means σ is a ¬-clause in Γ not

satisfied by u, contradiction with the assumption that u ∈ Sat(Γ).
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Finally we point out the connection between sets of ¬-clauses and matrix diagrams in

Definition 5.3.2. This is not hard to see given Corollary 5.4.14 and the semantics of matrix

diagrams as monotone relations generated by monotone functions.

Definition 5.4.15. Let Σ = {σ1, . . . , σn} be a set of set of ¬-clauses over Var . We define the

matrix diagram generated by Σ to be matΣ : m → n such that its entries δmatΣij is if xi

appears in σj, and is otherwise.

The matrix diagrams generated by a set of ¬-clauses satisfies the following semantic prop-

erty.

Proposition 5.4.16. Following the notation from Definition 5.4.15, for arbitrary b ∈ Bm,
there exists a ∈ Bn such that for each i = 1, . . . , n, a(i) = 0 and (b, a) ∈ JmatΣK if and only if

b satisfies σi.

Proof. Spelling out the semantics of matΣ, (b, a) ∈ JmatΣK means that b(σi) ≤ a(i), for all

i = 1, . . . , n. Thus if a(i) = 0, then b(σi) ≤ a(i) = 0 implies b(σi) satisfies σi. The other

direction of the reasoning also holds.

Intuitively, ( , ) matrix diagram corresponds to the conjunctive reading of ¬-clauses:

the ( , ) make copies of the variables because each variable may appear several times in

a set of ¬-clauses; the ( , ) part perform conjunctions, one for each ¬-clause.

5.4.2 Fullness

Now we use ¬-clauses as a bridge for proving fullness (as well as faithfulness in the next

subsection) of J·K : SATAfunc → MonRFB. In a nutshell, starting from a monotone func-

tion f : Bm → B, one construct a set of ¬-clauses Σf (Definition 5.4.17), which then induces

a SATAfunc morphism df (Definition 5.4.19). Both steps ‘preserve’ the semantics (Proposi-

tion 5.4.18, Proposition 5.4.21), thus the interpretation of df is exactly the monotone relation

representing f (i.e. JdfK = R(f)).

Definition 5.4.17. Let f : Bm → B be a monotone function. Γf is defined as the unique

minimal set of ¬-clauses over Var = {x1, . . . , xm} such that Sat(Γf ) = f−1(0).

Such Γf is well-defined because of Corollary 5.4.14 and that f−1(0) is always a downward

closed set for a monotone f . Moreover, f can be explicitly expressed (up to extensional equiv-

alence) as the conjunction of ¬-clauses in Γf .

Proposition 5.4.18. Following the notation from Definition 5.4.17, suppose Γf = {σ1, . . . , σk},
where each σi = {xi1 , . . . , xiℓi}, then

f = λx1 . . . xm.

k∨
i=1

(xi1 ∧ · · · ∧ xiℓi )
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Proof. Since both functions can take value only in B, the statement amounts to showing that,

for arbitrary b ∈ Bm, f(b) = 0 if and only if
∨k
i=1(bi1 ∧ · · · ∧ biℓi ) = 0.

Suppose f(b) = 0. Since Sat(Γf ) = f−1(0), this implies b satisfies Γf , in the sense that for

each σi ∈ Γf , bi1 ∧· · ·∧ biℓi = 0. So
∨k
i=1(bi1 ∧· · ·∧ biℓi ) = 0. The inverse of the above reasoning

is also true, which means that
∨k
i=1(bi1 ∧ · · · ∧ biℓi ) = 0 implies f(b) = 0.

Next the monotone function λx1 . . . xm.
∨k
i=1(xi1 ∧ · · · ∧ xiℓi ) can be represented diagram-

matically.

Definition 5.4.19. Let Σ be a set of ¬-clauses over Var = {x1, . . . , xm} of size n. We define

dfuncΣ as the SATAfunc-morphism of type m → 1 composed as matΣ ; n , where matΣ is

the matrix diagram whose entries δmatΣij are defined as follows:

δmatΣij =

 if xi appears in σj

otherwise

Lemma 5.4.20. For arbitrary v : Var → B,

v ∈ Sat(Σ) if and only if ((v(x1), . . . ,v(xm)), 0) ∈ JdΣK

Proof. We continue the notation in Definition 5.4.19, and suppose further that Σ is {σ1, . . . , σn}
where each σi is of the form {xi1 , . . . , xiki}.

(v, 0) ∈ JdΣK ⇐⇒ ∃u ∈ Bn : (v,u) ∈ JmatΣK , (u, 0) ∈
r
n

z

⇐⇒ (v, 0n) ∈ JmatΣK

⇐⇒ ∀i ∈ {1, . . . , n} : v(xi1) ∧ · · · ∧ v(xiki ) ≤ 0

⇐⇒ v ∈ Sat(Σ)

Proposition 5.4.21. dfuncΓf
represents f , namely

r
dfuncΓf

z
= R(f).

Proof. Immediate from Proposition 5.4.18 and Lemma 5.4.20.

On one hand, if (b1, . . . , bm, 0) ∈
r
dfuncΓf

z
, then by Lemma 5.4.20, (b1, . . . , bm) ∈ Sat(Γf ).

By Proposition 5.4.18, f(b1, . . . , bm) = 0, thus (b1, . . . , bm, 0) ∈ Rf .

On the other hand, given (b1, . . . , bm, 0) ∈ Rf , f(b1, . . . , bm) ≤ 0 namely f(b1, . . . , bm) = 0.

By Definition 5.4.17, (b1, . . . , bm) ∈ Sat(Γf ), and Lemma 5.4.20 implies that (b1, . . . , bm, 0) ∈r
dfuncΓf

z
.

Example 5.4.22. Let Var = {x1, x2, x3}, and monotone function f : B3 → B map 111, 011, 101

to 1, and map other elements in B3 to 0. In other words, f(b1b2b3) = (b1 ∧ b3) ∨ (b2 ∧ b3). The

downward closed subset f−1(0) generates the minimal sets of ¬-clauses Σf = {x1 ∧ x3 =
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0, x2 ∧ x3 = 0}. Thus by Definition 5.4.19, Σf gives rise to the diagram dΣf
= , whose

interpretation
q
dΣf

y
is exactly the monotone relation R(f) representing f :

((x1, x2, x3), y) ∈
q
dΣf

y
⇐⇒ ∃u1, u2, v1, v2 ∈ B : x3 ≤ u1, u2;x1 ∧ u1 ≤ v1;x2 ∧ u2 ≤ v2; v1 ∧ v2 ≤ y

⇐⇒ ∃v1, v2 ∈ B : x1 ∧ x3 ≤ v1;x2 ∧ x3 ≤ v2; v1 ∧ v2 ≤ y

⇐⇒ x1 ∧ x3 ≤ y & x2 ∧ x3 ≤ y

⇐⇒ (x1 ∧ x3) ∨ (x2 ∧ x3) ≤ y

⇐⇒ f(x1x2x3) ≤ y

⇐⇒ ((x1, x2, x3), y) ∈ R(f)

Now we are ready to prove fullness of J·K : SATAfunc → MonRFB.

Proposition 5.4.23 (Fullness). For every monotone function f : Bm → B, there exists a

Synfunc-morphism d : m→ 1 such that JdK = R(f).

Proof. The strategy is as follows: starting from f , the pre-image f−1(0) forms a downward-

closed subset of Bm, thus the set of satisfying assignments of some set of ¬-clauses, and it

generates a morphism d with the desired semantics.

Now we fill in the details of every single step. Let Σf be the unique minimal set of ¬-

clauses such that Sat(Σf ) = f−1(0), as in Definition 5.4.17. Then Σf determines a diagram

dΣf
: m → 1 as in Definition 5.4.19, which satisfies that for each valuation v : Var → B,

v ∈ Sat(Σf ) if and only if ((v(x1), . . . ,v(xm)), 0) ∈
q
dΣf

y
. We show that

q
dΣf

y
= R(f). For

arbitrary (b, a) ∈ Bm×B, if a = 1, then (b, 1) is always in both
q
dΣf

y
and R(f). So it suffices

to consider the case of a = 0:

(b, 0) ∈
q
dΣf

y
⇐⇒ b ∈ Sat(Σf )

⇐⇒ b ∈ f−1(0)

⇐⇒ f(b) = 0

⇐⇒ (b, 0) ∈ R(f)

Therefore this dΣf
is a morphism d that satisfies the desired property.

While the fullness for arbitrary monotone functions f : Bm → Bn follows immediately from

Proposition 5.4.23, it is helpful to make explicit the morphism d whose interpretation is the

given f . In Proposition 5.4.24, we fix a monotone f : Bm → Bn. We know that f = (f1, . . . , fn)

where each fi : Bm → B is monotone. The idea is simple: we make m copies of the input and

send each copy to one of those di.

Proposition 5.4.24. Let di be dΣfi
, then the diagram d : m → n defined as below satisfies
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JdK = R(f):

n

n

d1

dn

din (5.18)

Proof. According to Proposition 5.4.23, each di satisfies that JdiK = R(fi), then for arbitrary

b ∈ Bm and a ∈ Bn,

(b, a) ∈ JdK ⇐⇒ ∀i ∈ {1, . . . ,m}, ∃ci ∈ Bm : b ≤ ci, (ci, a) ∈ JdiK

⇐⇒ ∀i ∈ {1, . . . ,m}, ∃ci ∈ Bm : b ≤ ci, (ci, ai) ∈ R(fi)

⇐⇒ ∀i ∈ {1, . . . ,m}, ∃ci ∈ Bm : b ≤ ci, fi(c
i) ≤ ai

⇐⇒ ∀i ∈ {1, . . . ,m} : fi(b) ≤ ai

⇐⇒ f(b) ≤ a

⇐⇒ (b, a) ∈ R(f)

This means JdK = R(d).

5.4.3 Faithfulness

While the proof of fullness only uses limited properties of system SATAfunc (in fact only the

property of matrix diagrams), for faithfulness we need the full power of SATAfunc to show that

every inequation in MonRFB is deducible in the inequational theory SATAfunc. The central

result of this subsection is stated as follows.

Proposition 5.4.25 (Faithfulness). For arbitrary Synfunc-morphism c, d : m→ n, if JcK ⊆ JdK,
then c ≤SATAfunc d.

Equivalently, faithfulness means that, if JcK = R(f) and JdK = R(g) for some monotone

functions f, g : Bm → Bn such that f ≥ g, then c ≤SATAfunc d. We adopt a so-called normal

form proof strategy, which is prevalent in many work on diagrammatic calculus. The proof

consists of two steps: first we show that every SATAfunc-morphism has a canonical form in

which generators appear in a certain order; second we prove that from every semantic object

(monotone functions in this case) we can ‘read off’ a diagrammatic representative called normal

form, which can be easily derivable from canonical form diagrams.

Before entering the normal form proof, we observe that we can reduce the above faithful-

ness involving inequalities (Proposition 5.4.25) into one that only involves equalities (Propo-

sition 5.4.35), using the following lemma that links an inequality with an equality using the

( , ) structure in our language.

Lemma 5.4.26. For arbitrary SATAfunc-morphisms c, d : m→ n,
c

d
= c implies c ≤ d.
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Proof. Suppose
c

d
= c, then

c =
c

d
≤ c

d
≤ d

The last step uses the fact that cm n ≤ , provable via a simple induction on the structure

of diagram c.

Intuitively this amounts to saying that in a lattice, x ∧ y ⇐⇒ x ∧ y = x. The other

direction of this statement is also true, namely we have
c

d
= c if and only if c ≤ d. For

our proof of faithfulness however, only one direction (the easier one) is necessary.

Now we come to the normal form proof. As suggested by the form of the diagrams for

the diagram generated by sets of ¬-clauses dΣ from Definition 5.4.19, we propose the following

canonical form to specify the order of generators in diagrams.

Definition 5.4.27. A SATAfunc-morphism d : m→ n is of canonical form if it has the following

structure:

...
...

...
... (5.19)

Each grey block represents a diagram that is formed solely of the generators in the block,

possibly including some permutation of diagrams via .

Lemma 5.4.28. Every SATAfunc-morphism d : m→ n is equal to one of canonical form.

Proof. We prove by induction on the free construction of Synfunc diagrams. For the induction

basis, every generator already exists in the canonical form (5.19).

For the induction step, it suffices to show that canonical form diagrams are closed under

both parallel and sequential compositions, up to equivalence in SATAfunc. The case for parallel

composition is immediate. As for sequential composition, it suffices to prove the following

claim:

Claim 5.4.29. If c1 is a ( , ) diagram and c2 is a ( , ) matrix diagram, then there

exist a ( , ) matrix diagram d1 and a ( , ) diagram such that c1 ; c2 = d1 ; d2.
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Given this claim, the original statement follows via the following reasoning:

...
...

...

...
...

...
...

...
...

...

...
...

...
...

...
...

...

⇓

⇓

Claim 5.4.29

Prop. 5.3.11

In words, given two canonical form diagrams (colored in blue and green, respectively), we first

apply Claim 5.4.29 to change the order of the last blue block and the first two blue block and

get the grey blocks. Then matrix completeness says the concatenation of two matrix diagrams

(i.e. the first four blocks) is equal to a matrix diagram (i.e. the first two yellow blocks). The

result is a diagram in canonical normal form. The proof of Claim 5.4.29 adopts an induction

proof, relying essentially on axioms (A9)-(A12) and (dst1).

Now, given a monotone function f : Bm → Bn, from Proposition 5.4.24 we know that there

exists a SATAfunc-morphism d : m → n such that JdK = R(f). Such diagrams as created in

Definition 5.4.19 are always of canonical form by construction: each of them is formed of a

( , ) matrix diagram followed by multiple . However, similar to that two different

sets of ¬-clauses may have the same set of solutions, two such canonical form diagrams may

look different but have the same interpretation. To pick out a representative diagram for

each semantic object, we introduce normal form diagrams. Intuitively normal form diagrams

correspond to the minimal sets of ¬-clauses. Before giving the formal definition, it is helpful

to see an example of a canonical diagram which is not of normal form.

Example 5.4.30. We consider the following diagram d1 : 3→ 1:

(5.20)

One can read off the function f1 : B3 → B from d1 as f1 ≡ λx1x2x3.(x1 ∧ x2) ∨ (x1 ∧ x2 ∧ x3),
in the sense that Jd1K = R(f1). Observe that in the expression of f1, the ¬-clause x1 ∧ x2 ∧ x3
(i.e. {x1, x2, x3}) is redundant given the ¬-clause x1 ∧ x2.

Definition 5.4.31. A canonical form diagram d : m → 1 is of normal form if, suppose A is

the representing k ×m-matrix of the ( , )-matrix part of d, then there are no distinct

rows i, j in A such that Aiℓ ≤ Ajℓ for all ℓ = 1, . . . , k. A canonical form diagram d : m → n is
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of normal form if d is composed as follows where each di : m→ 1 is of normal form

n

n

d1

dn

din (5.21)

Using the intuition above for normal form diagrams and minimal sets of ¬-clauses, we can

equivalently say that a canonical diagram d : m → 1 is of normal form if d = dΣ for some

minimal set of ¬-clauses Σ over {x1, . . . , xm}.

Remark 5.4.32. One may note that the diagram (5.21) in defining normal form diagrams with

codomains ≥ 1 is exactly the same as diagram (5.18). This should not be surprising: both use

the same mechanism to connect multiple diagrams of type m→ 1 into a single diagram of type

m→ n while maintaining certain properties.

Example 5.4.33. We continue Example 5.4.30. The representing matrix A1 of diagram d1 in

(5.20) is A1 =

(
1 1 0

1 1 1

)
, which fails the condition in Definition 5.4.31 because A1ℓ ≤ A2ℓ for

each ℓ ∈ {1, 2, 3}. The following diagram d2 is of normal form:

(5.22)

and it has the same semantics as d1, namely Jd1K = Jd2K. Looking at their corresponding

functions, d2 represents the function f2 ≡ λx1x2x3.x1∧x2, which basically drops the redundant

¬-clause in f1 (see Example 5.4.30). Moreover, we can prove the equivalence of d1 and d2 in

SATAfunc. We massage d1 to get

= = (5.23)

Then we prove the above diagram equals d2 by showing the two inequalities separately. On one

hand,

≤ = =

On the other hand,

= = =

≥ = =
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So we can conclude that = .

As hinted by the previous example, we have a diagrammatic counterpart of dropping re-

dundant ¬-clauses.

Lemma 5.4.34. For arbitrary natural numbers m,n,

n
m

=
n

n
n

m

Proof.

m

n

n
n =

m
n =

m
n(Prop. 5.2.9)

Semantically, the above lemma says (x1∧· · ·∧xn)∨(x1∧· · ·∧xn∧u1∧· · ·∧um) = x1∧· · ·∧xn.

Then we show the faithfulness that involves only equalities (but not inequalities in general).

Proposition 5.4.35. For arbitrary SATAfunc-morphisms c, d : m → n, if JcK = JdK, then

c =SATAfunc d.

Proof. We start with an arbitrary d : m → 1, and show that it is equivalent to a normal form

diagram e : m → 1. Denote the monotone function represented by JdK as f : Bm → B. First,

by Lemma 5.4.28, without loss of generality we can assume that d is of canonical form already,

say as follows (so dmat is the matrix diagram part):

...
...m k = dmat ; k

Then the matrix diagram dmat : m→ k represents a k ×m Boolean matrix, say D (see Defini-

tion ??).

We now massage D into a matrix that satisfies the condition for normal form diagram in

Definition 5.4.31. Suppose D is does not satisfy that condition, namely there are two distinct

rows i, i′ in D such that Diℓ ≤ Di′ℓ for all ℓ = 1, . . . , k, then we let A′ be the same matrix as

D except for the i′ row: Di′ℓ = 0 for all ℓ = 1, . . . , k. Then we continue to check if D′ satisfies

that condition of matrix in Definition 5.4.31. Since D has finitely many rows, this procedure

terminates in finitely many steps, and the resulting matrix, which we denote by D̂, satisfies

that there are no two distinct rows i and i′ such that D̂iℓ ≤ D̂i′ℓ for all i = 1, . . . , k. Let d̂mat

be the ( , ) matrix diagram for D̂ (see Proposition 5.3.11), and d̂ = d̂mat ; k . By

its construction, d̂ is of normal form, and we claim that
r
d̂
z

= JdK and d̂ =SATAfunc d. By the

soundness, it suffices to prove the syntactic equation. By the correspondence between Boolean
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matrices and ( , ) matrix diagrams, in the procedure above to turn D into D̂, each step

that rewrites a row i′ satisfying that there is some other row i with Diℓ ≤ Di′ℓ for all ℓ = 1, . . . , k

into a row of 0’s corresponds to the following transformation diagrammatically:

n
m

⇝
n

n
n

m

While the resulting matrix diagrams are not equal, Lemma 5.4.34 says that the resulting canon-

ical diagrams are equal, therefore d =SATAfunc d̂.

Now given canonical diagrams c, d : m → 1 satisfying JcK = JdK, and assume that their

matrix diagrams correspond to Boolean matrices C and D, respectively. Then applying the

aforementioned transformation to C and D respectively will result in two matrices Ĉ and D̂.

The entries of these matrices correspond to the least sets of ¬-clauses whose solution sets are

{a ∈ Bm | (a, 0) ∈ JcK} and {b ∈ Bm | (a, 0) ∈ JdK}, respectively. But since JcK = JdK, this

means that Ĉ and D̂ are equivalent up to permutations of their rows. This means that their

corresponding matrix diagrams, ĉ and d̂, are equal. Therefore c = ĉ = d̂ = d.

Finally the faithfulness for inequalities follows from the following simple line of reasoning,

using all the results we have established so far.

Proof of Proposition 5.4.25. Let c, d : m→ n be two SATAfunc-morphisms such that JcK ⊆ JdK.

Then we can calculate

s
c

d

{
= JcK as follows. For arbitrary a ∈ Bm and b ∈ Bn,

(a,b) ∈
s

c

d

{
⇐⇒ ∃c1, c2 ∈ Bm,∃d1,d2 ∈ Bn : (a, (c1, c2) ∈ J K), ((d1,d2),b) ∈ J K ,

(c1,d1) ∈ JcK , (c2,d2) ∈ JdK

⇐⇒ ∃c1, c2 ∈ Bm,∃d1,d2 ∈ Bn : a ≤ c1, a ≤ c2,d1 ≤ b,d2 ≤ b,

(c1,d1) ∈ JcK , (c2,d2) ∈ JdK

⇐⇒ (a,b) ∈ JcK , (a,b) ∈ JcK

⇐⇒ (a,b) ∈ JcK

By Proposition 5.4.35, this entails
c

d
= c, therefore c ≤ d by Lemma 5.4.26.

5.4.4 MonFunB as a traced monoidal category

As a detour, we mention that MonRFB itself is already enough to interpret feedback, by showing

that MonRFB is a traced monoidal category (see Definition 2.3.7) whose trace captures the least

fixed point construction.
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Definition 5.4.36. For an arbitrary MonRFB-morphism R : X × U → Y × U , we define

TrUX,Y (R) : X → Y to be

TrUX,Y (R) = {(x, y) ∈ X × Y | ∃u, u′ ∈ U : u′ ≤ u & ((x, u), (y, u′)) ∈ R}

We need to verify Definition 5.4.36 is legitimate in the sense that TrUX,Y (R) is also a mono-

tone relation, given that R is monotone. So for arbitrary (x, y) ∈ TrUX,Y (R), x′ ≤ x and

y ≤ y′, by definition there exists u, u′ ∈ U such that u′ ≤ u and ((x, u), (y, u′)) ∈ R. Since

(x′, u) ≤ (x, u) and (y, u′) ≤ (y′, u′), R being a monotone relation implies that ((x′, u), (y′, u′))

is also in R, thus (x′, y′) ∈ TrUX,Y (R).

Proposition 5.4.37. The category MonFunc(B) is traced.

Proof. While we provided a direct proof in Proposition 5.4.37, here we show a simpler proof

relying on the fact that MonRelB is compact closed, thus having a canonical traced structure.

We show that there is a faithful functor R : MonFunc(B) → MonRelB, which moreover maps

the family of functions Tr in MonFunc(B) (defined below) to the canonical traced structure in

MonRelB. The axioms of traced monoidal categories hold for MonFunc(B) because their images

hold in MonRelB, and that R is faithful.

Recall that the candidate of traces in MonFunc(B) is defined for arbitrary f : X×U → Y ×U
as

TrUX,Y (x) = (π1 ◦ f)(x, ux) (5.24)

where ux is the least fixed point of λu.(π2 ◦ f)(x, u). In other words, ux is the smallest u ∈ U
satisfying f(x, u) = (y, u) for some y ∈ Y , and its existence is guaranteed by the monotonicity

of f on the complete lattices Bn (n ∈ N).

Then we show that R(TrUX,Y (f)) = R(f)
X Y

U , where R(f)
X Y

U is the diagrammatic

presentation of the morphism (idX ⊗ cupU) ; Rf ; (idY ⊗ capU) in MonRelB.

(x, y) ∈ R(f)
X Y

U

⇐⇒ ∃u1, u2, v1, v2 ∈ U : 1 ≤ v1 ∧ v2, v2 ≤ u2, u1 ∧ u2 ≤ 0, ((x, v1), (y, u1)) ∈ R(f)

(See R(f)
x y

u1

u2

v1

v2

for an illustration.)

⇐⇒ ∃u1, v1 ∈ U : u1 ≤ v1 & ((x, v1), (y, u1)) ∈ R(f)

⇐⇒ ∃u, v ∈ U : u ≤ v & f(x, v) ≤ (y, u)

⇐⇒ ∃v ∈ U : f(x, v) ≤ (y, v)

⇐⇒ ∃v ∈ U : f(x, µu.π2 ◦ f(x, u)) ≤ f(x, v) ≤ (y, v)

⇐⇒ TrUX,Y (f)(x) ≤ y
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⇐⇒ (x, y) ∈ R(TrUX,Y (f))

Since the traced proposed for MonFunB are indeed represented by the canonical traces in

MonRelB via a faithful functor, we can conclude that MonRelB is also traced.

One open question is a sound and complete axiomatisation of MonFunB as a traced monoidal

category. Such an axiomatisation is sufficient for some application of SATA, for instance the

equivalence of definite propositional logic programs.

5.5 Soundness and Completeness of monotone Boolean

relations

Now we turn to our main subject of interest, monotone relations over finite Boolean algebras.

In particular, we devote this section to the following isomorphism between two poset-enriched

categories.

Theorem 5.5.1. SATA ∼= MonRelB

Spelling it out, Theorem 5.5.1 amounts to the following theorem, stated in a more logical

fashion.

Theorem 5.5.2. For arbitrary SATA-morphisms c and d, c ≤SATA d if and only if JcK ⊆ JdK.

In other words, we show that the equational theory SATA is a complete axiomatisation of

monotone relations over (finite) Boolean algebras.

The ‘only if’ direction of Theorem 5.5.21 is the soundness part. It is straightforward as

we simply need to show that each axiom is a valid semantic (in)equality. We take (C2) as an

example, and omit the rest which are straightforward.

s {

={((x1, x2), (y1, y2)) ∈ B4 | ∃z1, z2, z3, z4 ∈ B : x1 ≤ z1 ∧ z2, x2 ≤ z3 ∧ z4, z1 ∧ z3 ≤ y1, z2 ∧ z4 ≤ y2}
={((x1, x2), (y1, y2)) ∈ B4 | ∃z3, z4 ∈ B : x2 ≤ z3 ∧ z4, x1 ∧ z3 ≤ y1, x1 ∧ z4 ≤ y2}
={((x1, x2), (y1, y2)) ∈ B4 | ∃z3, z4 ∈ B : x1 ∧ x2 ≤ y1, x1 ∧ x2 ≤ y2}
={((x1, x2), (y1, y2)) ∈ B4 | x1 ∧ x2 ≤ y1 ∧ y2}
=

q y

We now focus on the ‘if’ direction, namely the completeness. Before the technical develop-

ments, we provide a roadmap of the proof. We first show that we can make two simplifying

assumptions: (1) the completeness statement about inequalities/inclusions can be reduced to
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one that involves only equalities (Lemma 5.5.3); (2) We simplify the problem further by show-

ing that we can restrict the proof of completeness to diagrams of the type m→ 0 without loss

of generality (Lemma 5.5.4).

To prove completeness for m → 0 diagrams, we again adopt a normal form argument,

similar to that used in Section 5.4.3. Yet of course we need a different normal form this time.

The structure of the normal form argument for SATA is as follows.

• First, we show that every diagram is equal in SATA to one in traced canonical form

(Lemma 5.5.5), a form that restricts the order in which generators can appear, yet allowing

certain loops to connect wires on the right to wires on the left.

• Next, we give a procedure to rewrite any traced canonical form diagram into one in

pre-normal form, using equations of SATA (Lemma 5.5.8). Intuitively, pre-normal form

diagrams represent a set of ¬-clauses.

• Each downward closed subset is the set of satisfying assignment for a minimal set of

¬-clauses (Lemma 5.5.15). The diagrammatic counterpart of this minimal set of clauses

is our chosen normal form for each equivalence class of diagrams (Definition 5.5.13). We

show that every diagram in pre-normal form is equal to one in normal form (Lemma 5.5.19).

• Finally, since every semantic object has a canonical diagrammatic representative – a

normal form diagram – completeness follows from the fact that two diagrams having the

same semantics have the same normal form (Proposition 5.5.15).

As explained above, we first show the two results that simplify the completeness reasoning.

The completeness for equalities is enough to derive that for inequalities.

Lemma 5.5.3. For arbitrary SATA-morphisms c, d, (i) if
c

d
= c, then c ≤ d and (ii)

if JcK ⊆ JdK then

s
c

d

{
= JcK.

Proof. The proof is similar to that for SATAfunc-morphisms (Lemma 5.4.26). In particular,

neither (i) nor (ii) use specific property of the extra component .

In addition, we can restrict the completeness proof to diagrams with codomain 0. This is

the consequence of axioms (B9)-(B10) which endow { , , , } with the structure of

a Frobenius algebra and SATA with the structure of a compact closed category, allowing us to

move wires from the left to the right and vice-versa.

Lemma 5.5.4. For arbitrary natural numbers m,n, Syn[m,n] ∼= Syn[m+ n, 0].

Proof. Towards the isomorphism, we define two functions p : Syn[m,n] → Syn[m + n, 0] and

q : Syn[m+ n, 0]→ Syn[m,n], and prove that they are inverses to each other.

153



Given arbitrary d : m → n and e : m + n → 0, we define p(d) to be d
nm

, and q(e) to be

e
n

m

. Then one can show that q ◦ p and p ◦ q are identity functions, using the compact closed

structure:

(q ◦ p)(d) = q
(

d
nm
)

= d
m n

(snake)
= d

nm

(p ◦ q)(e) = p

(
e
n

m
)

=
e

m

n = e
n

m

This shows that p and q witness the bijection between Syn[m,n] and Syn[m+ n, 0].

In view of Lemma 5.5.4, we can simplify the completeness as follows. Given two arbitrary

diagram c, d : m → n, we can bend their wires on the right port and get two diagrams c′, d′

of type m + n → 0. Then c = d if and only if c′ = d′, thus completeness between arbitrary

diagrams boils down to on between diagrams of type k → 0 for arbitrary k ∈ N.

5.5.1 Traced canonical form

In order to rewrite diagrams m → 0 into pre-normal form, we introduce first the notion of

traced canonical form for arbitrary diagrams m → n, which are then bent into diagrams with

codomains 0.

Lemma 5.5.5. Every Syn-morphism d : m→ n has the following traced canonical form:

...
...

...
...

... (5.25)

Proof. We prove by induction on the structure of d. All the base cases (for generators) are

obvious because every generator appears in (5.25). For the induction step we need to show

that if c and d are two morphisms in traced canonical form, then their parallel and sequential

compositions are also of traced-canonical form. For parallel composition this is obvious, and

we focus on the case of sequential composition. Suppose the types c : k0 → k1 and d : k1 → k2,
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then c ; d is:

c1 c2 c3 c4
k0

ℓ1

d1 d2 d3 d4
k1k1

=

c1 c2 c3 c4k0

ℓ1

k1

d1 d2 d3 d4

ℓ2

k1k1

ℓ2

= c1 c2 c3 c4
k1

d1 d2 d3 d4

k0

k2

(5.26)

thus again of traced canonical form.

By bending the right wires of a diagram in traced canonical form to the left, with the

mapping Syn[m,n] → Syn[0, n + m] provided by Lemma 5.5.4, any diagram n → 0 is of the

following existential canonical form. We will need the following notation of oriented boxes,

which is important to keep track of when ‘sliding’ along the traces (see [Sel10]).

Definition 5.5.6 (Oriented box). The oriented box notation d encode the rotation of

diagram d : m → n. In particular, d denotes the diagram of type n → m resulted from

rotating d by 180◦.

Sometimes d is also referred to as the transpose of d [CK18]. For instance, let

d = , then d = .

Proposition 5.5.7. Every diagram of type k → 0 is equal to one in the following existential

canonical form:

...
...

...
... (5.27)

Proof. We pick arbitrary natural numbers m,n satisfying k = m+n. Given arbitrary morphism

d : k → 0, we apply function q : Syn[m+n, 0]→ Syn[m,n] from Lemma 5.5.4, and get q(d) : m→
n. By Lemma 5.5.5, q(d) is of traced canonical form, say as follows, where each ei is freely

generated by the generators in the i-th blue box in (5.25).

m ne1 e2 e3 e4 (5.28)

Then we can retrieve d by bending the wires on the right port again, namely as d = p(q(d)),
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which is equivalent to

m ne1 e2 e3 e4
n

=

m e1 e2
n

e3e4

=
m e1 e2

n
e3e4

and the last diagram is of existential canonical form (5.27).

The name existential canonical form comes from a resemblance between this form and

quantified boolean formulas in prenex form, with the behaving as the existential quantifiers

in this analogy. In the next part, we show how to remove the and obtain pre-normal form

diagrams. That proof can be thought of as the diagrammatic counterpart of a quantifier

elimination procedure.

5.5.2 Pre-normal form

In this subsection, we show that every diagram is equivalent to one of pre-normal form, that

is, can be factorised as below:

...
...

... (5.29)

Notice that existential canonical form diagrams (5.27) are close to being in pre-normal form:

they are pre-normal form diagrams possibly pre-composed with multiple . Thus, to prove

that every diagram is equal to one in pre-normal form, it suffices to develop a method to

eliminate these from existential canonical form diagrams, while keeping the pre-normal

form structure unchanged. We then explore their close connection with certain Boolean clauses,

a key tool in completeness proof. The equational theory allows us to rewrite any diagram to

pre-normal form.

Lemma 5.5.8 (Pre-normal form). Every diagram m→ 0 is equal to one of pre-normal form.

We first have a closer look at pre-normal form diagrams. The first two blocks in (5.29) are

matrix diagrams, and they totally determine the pre-normal form diagrams because the last

block only contains suitably many so that the resulting diagram has codomain 0. So we

refer to the representing matrix of the matrix diagram part of a pre-normal form diagram d

simply as the representing matrix of d. Also, Proposition 5.3.11 allows us to identify any two

diagrams formed of , , , that represent the same matrix. Thus, given a Boolean

matrix A, we can define a unique (up to equality in SATA) pre-normal form diagram with

representing matrix A, the result of postcomposing suitably many to the unique matrix

diagram (up to equality in SATA) that represents matrix A.
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Again, in reasoning about pre-normal forms we will use sets of ¬-clauses. We fix a finite set

of variables Var = {x1, . . . , xm}. Recall that a ¬-clause is a finite set of variables {xi1 , · · · , xik},
whose satisfying assignments are all the Boolean valuations v such that v(xi1)∧· · ·∧· · ·v(xik) =

0. To the purpose of the current subsection, such a ¬-clause is intended to represent the diagram

k , as the semantics given by {xi1 , · · · , xik |xi1 ∧ · · · ∧xik ≤ 0} is exactly the set of satisfying

assignments of this set of ¬-clauses.

We explain the connection between pre-normal form diagrams and sets of ¬-clauses below.

To summarise, there is a one-one correspondence up to certain equality.

From pre-normal form to ¬-clauses. Given some pre-normal form diagram d : m→ 0, we

define claused to be the set of ¬-clauses over m variables (say x1, . . . , xm) as follows. Each row

r of the representing matrix A of d generates a ¬-clause φ such that xi ∈ φ if and only if the

i-th element r[i] = 1, and claused is the set of all ¬-clauses generated by the rows of A. The

diagram d and the set of ¬-clauses claused are semantically equivalent in the following sense.

Proposition 5.5.9. Let d : m→ 0 be a pre-normal form diagram. Then JdK is exactly the set

of all satisfying assignments of claused.

Proof. Suppose A is the representing matrix of (the matrix diagram part of) d. Note that JdK

is exactly those (x1, . . . , xm) such that A

( x1
...
xm

)
≤ 0. But spelling out the matrix multiplication

is exactly the set of ¬-clauses claused.

Example 5.5.10. Consider the following pre-normal form diagram d. It generates the set of

¬-clauses claused = {{x1, x2}, {x1, x3}, {}}. The semantics of d is JdK = ∅, which is exactly the

set of all satisfying assignments of claused.

d =

From ¬-clauses to pre-normal form. Conversely, given a set of ¬-clauses Φ over Var , we

can define a diagram diagΦ : m→ 0 in pre-normal form. Assume that |Φ| = n, and we list the

¬-clauses in Φ using lexicographical order as φ1, . . . , φn (for instance, {x1, x3} appears before

{x2}). Then diagΦ is defined as the pre-normal form diagram whose representing Boolean

matrix A (of size n × m) is given by Aij = 1 precisely if xj ∈ φi. Again, Φ and diagΦ are

semantically equivalent in the following sense.

Lemma 5.5.11. For Φ a set of ¬-clauses over Var, JdiagΦK is exactly the set of satisfying

assignments of Φ.

Proof. We continue the notation from the paragraph above. A tuple (x1, . . . , xm) ∈ Bm is in

JdiagΦK precisely when A

( x1
...
xm

)
≤ 0, where A is the Boolean matrix representing diagΦ. By

the definition of A as Aij = 1 if and only if xj ∈ φi, this entails (Ai1 ∧ x1) ∧ · · · ∧ (Aim ∧ xm)
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is equivalent to φi. So A

( x1
...
xm

)
≤ 0 if and only if φi(x1, . . . , xm) ≤ 0, for i = 1, . . . , n. In other

words, A

( x1
...
xm

)
≤ 0 if and only if (x1, . . . , xm) satisfyies Φ.

Example 5.5.12. Let Var = {x1, x2, x3}, and consider the following two sets of ¬-clauses:

Γ = {{x1}, {x2, x3}}
Φ = {{x1}, {x1, x2}, {x2, x3}}

They have the same set of satisfying assignments A = {000, 010, 001}; their associated pre-

normal form diagrams are

diagΓ = diagΦ =

which verify JdiagΓK = JdiagΦK = A. Moreover, Φ contains the ‘redundant’ ¬-clause {x1, x2}
because the clause {x1} already implies that {x1, x2} is satisfied (if ¬x1 = 1, then ¬x1∨¬x2 = 0),

while Γ contains no such redundancies. Indeed Γ is the smallest set of ¬-clauses whose set of

satisfying assignments is A, and we shall see that such diagΓ is in normal form.

Now we are ready to prove Lemma 5.5.8

Proof. By now, Proposition 5.5.7 establishes that every diagram d : m → 0 is equivalent to

some existential canonical form diagram d′, and such d′ differs from pre-normal form only in

that it may possibly be pre-composed with multiple cups, namely . So in order to show that

every morphism of type m→ 0 is equal to some pre-normal form diagram, it suffices to prove

that all existential canonical form diagrams can be transformed to pre-normal form diagrams

by eliminating those pre-composed one by one.

Formally, we prove by induction on the number of in existential canonical form dia-

grams. We denote the number of in diagram d by # (d). Let d : m→ 0 be for existential

canonical form. For the base case, if # (d) = 0, then d is already of pre-normal form.

For the induction step, suppose # (d) = n + 1, and we have the induction hypothesis

(IH): for all existential canonical form morphisms e with # (e) ≤ n, there exists a pre-

normal form diagram e′ such that e = e′. Below we eliminate the first from the top, such

that for the resulting diagram one can simply apply IH. Without loss of generality we suppose

d is of the following form, where k1, k2, k, n are natural numbers.

c

m

k
k2

k1

n

In particular, we assume that this presentation ‘exhausts’ all on the right-hand-side of the
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top : for each wire of the k1 + k2 wires, there is no post-composed with them. This is

always possible because c is a matrix diagram. Before moving on we solve one simple side case.

If (at least) one of k1 and k2 is 0, then the top can be eliminated easily. For instance, if

k2 = 0, then

c

m

k
0

k1

n

= c

m

k

n
=

k1
c

m

k

n

k1

So below we assume that k1, k2 ≥ 1. In this case, we claim that such d is always equivalent to

a diagram on the right-hand-side of (5.30), where c′ is some matrix diagram:

m

n

k1

k′

k2

...k1
...k2

c′
...
...
k2

k1
=c

m

k
k2

k1

n

=d (5.30)

To prove this claim, the key is to study whether those k1 wires and k2 wires (on the right ports

of the ) are connected with each other.

First, suppose that one of the k1 wires and one of the k2 wires are connected (as inputs to

the matrix diagram c, see Definition 5.3.5). Without loss of generality we assume the top wires

in each are connected. Then d is equivalent to

c′

m′
n

k1−1

k′k2−1

This means that there is a loop in the diagram, which is highlighted yellow as below. As a

consequence, we can ‘delete’ these two connected wires without affecting the other (k1 − 1) +

(k2 − 1) wires, and the resulting diagram is also of pre-normal form.

c′

m′
n

k1−1

k′k2−1
=

c′

m′
n

k1−1

k′k2−1
=

c′

m′
n

k1−1

k′k2−1

= c′

m′
n

k1−1

k′k2−1 = c′

m′
n

k1−1

k′k2−1 = c′′

m′
n

k1−1

k′k2−1

(A3), (A6)

Prop. 5.2.4 (C4)

One can repeat this procedure until there are no two wires from the k1 and k2 wires respectively
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that are connected. Then the resulting diagram, by Proposition 5.3.15, can be decomposed as

c0
m

k

k2

k1

n

c1

c2

i1

i2

j1
j2

(5.31)

where c0, c1, c2 are all matrix diagrams, and c1, c2 consist only of and (namely no ,

, nor ).

Next, we consider if two of the ki wires are connected, for one of i = 1, 2. Without loss of

generality, suppose two wires among the k1 wires are connected, then indeed these two wires

are ‘redundant’ in the sense that the diagram is equivalent to one which has only k1− 1 copies:

k1 c1 i1 =
k1−2 c′1 ℓ1

i1
=

k1−2 c′1 ℓ1

i1
= k1−1 c′1

i1

where the second step holds by Proposition 5.2.1, which proves in particular that (D2) can be

strengthened to an equality. One can repeat this procedure until either ki < 2, or any two

wires in the ki wires are not connected, for i = 1, 2. In both cases the c1 and c2 boxes can be

‘opened’:

c0
m

k

k2

k1

n

c1

c2

i1

i2

j1
j2

=

m

n

k1

k′

k2

...k1
...k2

c0

...

...
k2

k1

...k1

...k2

So far we have proved (5.30), and we are now ready to eliminate the top , using Propo-

sition 5.2.7 and Frobenius equations:

m′

n

k1

k′

k2

...k1
...k2

c′′
...
...
k2

k1
...k2

...k1

=

m′

n

k1

k′

k2
...k1

...k2

c′′
...
...
k2

k1

...k2

...k2

...k1
Prop. 5.2.7

=

m′

n

k2

k′

k1 ...k1

...k2

c′′
...
...
k2

k1

...k2
k1 k2

...k2

...k1

...k2
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=

m′

n
k2

k′

k1 ...

...k2

c′′

...

...k2

...
k1

k2

...k2

...

k1

k2

k2

k2

...k2

k1×k2
(B9),(B10)

=
m′

n k2

k′

...

...

...k2

k2

...

k1
k2

k2
k1

k1

k1×k2c′′

Note that the last diagram is of existential canonical form because the green part is a matrix

diagram, whose composition with the matrix diagram c′′ is again equivalent to a matrix diagram,

by matrix completeness (Proposition 5.3.11). Moreover, it now has only n-many leftmost ;

thus, by the induction hypothesis it is equivalent to a pre-normal form diagram.

5.5.3 Normal form and completeness

Recall that for completeness we need to select one representative diagram – in normal form

– for each semantic object. Similar to the completeness proof of monotone functions over B
(Subsection 5.4), we use sets of ¬-clauses as an intermediate step and choose such representative

to be the least set of ¬-clauses among those with a given downward closed subset of Bm as

their sets of satisfying assignments. The existence of such least set of ¬-clauses is guaranteed

by Corollary 5.4.14. The proof is outlined as follows:

pre-normal form diagram d : m→ 0

=⇒ JdK ⊆ Bm is downward closed

=⇒ there is a least set of ¬-clauses whose set of solutions is JdK

=⇒ normal form diagram d′ that corresponds to the least set of ¬-clauses

=⇒ d′ = d

The normal form diagrams are defined as the diagrammatic counterpart of minimal sets of

¬-clauses.

Definition 5.5.13. Suppose d : m→ 0 is a pre-normal form diagram with representing matrix

D. We say d is of normal form if there are no two distinct rows i, j of D such that Aik ≤ Ajk

for all k = 1, . . . ,m.

Note that swapping two rows in the representing matrix D of diagram d does not change

claused (the set of ¬-clauses generated by d), so what we really care about is normal form

diagrams up to permutation of the rows of their representing matrices. Let d and e be two

normal form diagrams with representing n×m matrices D and E, respectively. We say d and e

are equivalent up to commutativity if D is E with its rows permuted: there is some permutation

τ : {1, . . . , n} → {1, . . . , n} such that Di− = Eτ(i)− for all i ∈ {1, . . . , n}.
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Example 5.5.14. Consider the following pre-normal form diagrams:

c = d = e =

Diagram c is not of normal form because it represents the Boolean matrix C =

(
1 1 0

1 1 1

)
which satisfies C1k ≤ C2k for all k = 1, 2, 3. D and E are both of normal form, representing

matrices

(
1 1 0

0 1 1

)
and

(
0 1 1

1 1 0

)
respectively, thus d and e equivalent up to commutativity.

The next result state the connection between the three key concepts in the completeness

proof.

Proposition 5.5.15. There is a 1-1 correspondence between the following three sets:

1. downward closed subsets of Bm;

2. minimal sets of ¬-clauses over Var = {x1, . . . , xm};

3. normal form diagrams of type m→ 0, modulo equivalence up to commutativity.

Proof. (1) ∼= (2): It suffices to define two functions between (1) and (2) which are injective and

inverses to each other. Note that a subset of Bm is downward closed if and only if it is the set

of satisfying assignments to some set of ¬-clauses (Lemma 5.5.16). Starting from a downward

closed subset A ⊆ Bm, one have a least set of ¬-clauses whose set of satisfying assignments is

A (Corollary 5.4.14). Inversely, every set of ¬-clauses uniquely determines a downward closed

subset of Bm, namely the set of its satisfying assignments. It follows immediately that these

two functions are inverses to each other.

(2) ∼= (3): We notice that when restricted to minimal sets of ¬-clauses (resp. normal form

diagrams), the images of diag(·) (resp. clause(·)) are normal form diagrams (resp. minimal sets

of ¬-clause). Moreover, two normal form diagrams have the same diag(·)-image precisely when

they are equivalent up to commutativity. Thus diag(·) and clause(·) witness the isomorphism.

Lemma 5.5.16. A subset of BVar is downward closed if and only if it is the satisfying assign-

ment of some set of ¬-clauses over Var.

Proof. The ‘if’ direction is straightforward. A clause {xp1 , . . . , xpki} represents the formula

xp1 ∧ · · · ∧ xpki = 0 or, equivalently, ¬xp1 ∨ · · · ∨ ¬xpki = 1. It is clear that the set of satisfying

assignments of such a clause is downward closed.

For the ‘only if’ direction, let S be a downward closed subset of BVar . Let Γ be the set

of all clauses whose set of satisfying assignments contain S (note that this may be the set

containing the empty clause if S is empty). Then clearly, all s ∈ S satisfy Γ. Suppose that

there exists some t /∈ S which also satisfy Γ. Then write φ = {i1, . . . , ip} ⊆ {1, . . . ,m} for the
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set of components ik at which there exists sk ∈ S such that sk(ik) = 0 = ¬t(ik) (note that

there is at least one such component, otherwise t would be in S). By construction, elements

of S satisfy φ while t does not. This implies that φ must be in Γ, so t should satisfy φ too, a

contradiction.

Having established the connection between semantic objects and normal form diagrams,

we show that indeed every Syn-morphism is equal to one in normal form. Crucially we need

the following lemma to turn a pre-normal form into one of normal form. This diagrammatic

operation corresponds to removing redundant clauses in a set of ¬-clauses: if some ¬-clause σ

is strictly larger than another γ, then one can drop σ from Σ and the resulting set of ¬-clauses

has the same set of satisfying assignments with the original Σ.

Lemma 5.5.17. For arbitrary natural numbers m,n,

n
m=

m
m

n

n
n

Proof.

=

m
m

n
=

m
m

n
= =m

m m
m

m

n

n
n

n n

Here the first step uses Proposition 5.2.8; the second and third steps use Proposition 5.2.2.

Example 5.5.18. Recall the two diagrams diagΓ and diagΦ from Example 5.5.12, and we note

that diagΦ is in normal form while diagΓ is not. We can apply Lemma 5.5.17 (to the grey block,

instantiated with m = n = 1) to rewrite diagΓ (on the lhs) into the normal form diagram diagΦ

(on the rhs):

=

Lemma 5.5.19 (Normal form). Every diagram d : m → 0 is equal to a diagram in normal

form.

Proof. Given a pre-normal form diagram d : m → 0 which is not in normal form. By Defini-

tion 5.5.13, this means that in the n×m Boolean matrix D represented by d, there exist two

rows i and j such that Dik ≤ Djk for all k = 1, . . . ,m. Diagrammatically, this means that there

is the same pattern as on the lhs of Lemma 5.5.17: there exists some (i.e. the i-th one) such

that all the input wires that are connected with this is also connected with some other

(i.e. the j-th one). In this case, we apply Lemma 5.5.17 (from left to right) and turn diagram

d into a pre-normal form diagram e, whose representing matrix E is of type (n− 1)×m, and

it is exactly D but without the i-th row.
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Since D is finite, such pattern disobeying the definition of normal form can only happen

finitely many times, each can be solved by the above procedure. The resulting diagram is of

normal form and equivalent to the original diagram d.

Finally we are ready to prove the completeness part of Theorem 5.5.21. We start with

the following completeness statement (involving only equalities), which follows from Proposi-

tion 5.5.15 and Lemma 5.5.19.

Lemma 5.5.20. For any diagrams c, d : m→ n, if JcK = JdK, then c = d.

Proof. Given Lemma 5.5.4 it suffices to prove this statement for morphisms with codomains 0.

Let c, d : m→ 0 be two diagrams satisfying JcK = JdK = A, for some downward closed subset A

of BVar where Var = {x1, . . . , xm}. By Proposition 5.5.15, A is the set of satisfying assignments

of some minimal set of clauses, say Γ. By Lemma 5.5.19, c and d are equivalent to some normal

form diagrams, say ĉ and d̂, respectively. Moreover, ĉ and d̂ verify clauseĉ = claused̂ = σ.

Note that every set of ¬-clauses corresponds to a diagram in pre-normal form; when this set

of ¬-clauses is minimal, the corresponding diagram is in normal form, by Proposition 5.5.15.

Now ĉ and d̂ are both normal form diagrams interpreted as A, so they are both the normal

form diagram uniquely determined by Γ, up to SATA equality. This means that ĉ = d̂, thus

c = ĉ = d̂ = d.

Now we are ready to prove completeness.

Theorem 5.5.21. For arbitrary SATA-morphisms c and d, c ≤SATA d if and only if JcK ⊆ JdK.

Proof. We assume that JcK ⊆ JdK. By Lemma 5.5.3(ii),
r

c

d

z
= JcK. By Lemma 5.5.20,

this implies
c

d
= c, thus c ≤ d according to Lemma 5.5.3 (i).

5.6 Application: propositional definite logic programs

So far we have established the theory SATA that presents monotone relations over finite Boolean

algebras. In this subsection we show its application in propositional definite logic programs.

Note the two restrictions here to the propositional and definite case, which corresponds to the

finiteness and monotonicity in our theory.

We show how to represent two important operators — immediate consequence operator and

consequence operator — for logic programs diagrammatically using SATA. In particular, the

axiomatisation SATA enables one to reason about the (in)equivalence between such operators

of two logic programs.

Let us fix a set At of atoms and a propositional definite logic program L over At .

We first consider immediate consequence operator. The key observation is the intuitive

reading of clause b1, . . . , bk → a as b1 ∧ · · · ∧ bk ≤ a, thus representable as the diagram k .
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Definition 5.6.1. The immediate consequence diagram TL for program L is an n → n mor-

phism defined as follows, where the i-th wire on the left and right ports stands for atom ai,

respectively, for i = 1, . . . , n.

...
... σ1 σ2

τ1 τ2 τ3

...

ℓ1

ℓn

m1

mq

k1

kn

...
...

...
...

...
...

(5.32)

The two blue blocks τ1 and τ3 consist respectively of copiers and cocopiers : ki and ℓi

are the numbers of appearance of atom ai in all the bodies and heads of L-clauses, respectively.

The yellow block τ2 is the parallel composition of , where q is the number of clauses in

L, and for each clause ψj, mj is the size of body(ψj). The grey blocks σ1 and σ2 consist of

appropriately many that change the wire orders to match the domains and codomains of

the blue and yellow blocks. In particular, the i-th wire on the left port (resp. on the right port)

is connected to the j-th if ai ∈ body(ψj) (resp. ai = head(ψ)).

Note that the interpretation JTLK is not exactly the operator TL: the former is a monotone

relation while the latter is a monotone function. Nevertheless we recall that a monotone relation

R ⊆ X × Y represents a monotone function f : X → Y if for arbitrary x ∈ X and y ∈ Y ,

(x, y) ∈ R if and only if f(x) ≤ y. Crucially, if monotone relations R and S represent monotone

functions f and g respectively, then f = g if and only if R = S.

Proposition 5.6.2. The monotone relation JTLK represents the operator TL.

Proof. We show that for arbitrary interpretations I, J on At , (I,J ) ∈ JTLK if and only if

TL(I) ≤ J . We start from the left-hand-side and use the notation from Definition 5.6.1,

(I,J ) ∈ JTLK

⇐⇒ ∃K1 ∈ Bℓ1 , . . . ,Kn ∈ Bℓn : (I, (K1, . . . ,Kn)) ∈ Jτ1 ; σ1 ; τ2 ; σ2K , (K1, . . . ,Kn),J ) ∈ Jτ3K

⇐⇒ ∃K1, . . . ,Kn : (I, (K1, . . . ,Kn)) ∈ Jτ1 ; σ1 ; τ2 ; σ2K ,Ki(ji) ≤ J (i) for ∀i = 1, . . . , n, ji = 1, . . . , ℓi

⇐⇒ for each L-clause ψ ≡ ai1 , . . . , air → ais , I(i1) ∧ · · · ∧ I(ir) ≤ J (is)

⇐⇒ for each L-clause ψ ≡ ai1 , . . . , air → ais , if I(i1) = · · · = I(ir) = 1, then J (is) = 1

⇐⇒ TL(I) ≤ J

Therefore the monotone relation JTLK represents the monotone function TL.

Based on this, we can compositionally represent the consequence operator TL as TL plus

some feedback loops that play the role of least fixed point.

Definition 5.6.3. The consequence diagram for program L is a Syn-morphism CL : n → n
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defined on the right, where TL is the immediate consequence diagram from Definition 5.6.1.

TL

Proposition 5.6.4. The monotone relation JCLK represents the operator CL.

Proof. We show that for arbitrary interpretations I,J on At , (I,J ) ∈ JCLK if and only if

CL(I) ≤ J .

TL

I J
K1

K3

K4K5

K6 K2 (5.33)

By the definition of the interpretation J·K, (I,J ) ∈ JCLK if and only if there exist Ki for

i = 1, . . . , 6 such that: I,K6 ≤ K1; K1 ≤ K2,J ; (K2,K3) ∈ JTLK; K3 ∧ K4 ≤ 0; K5 ≤ K4;

1 ≤ K5 ∨ K6. See (5.33) for an illustration of these Ki. We can simplify this condition by a

sequence of equivalent conditions on I,J and those Ki:

I,K6 ≤ K2,J ; (K2,K3) ∈ JTLK ;K3 ∧ K4 ≤ 0;K5 ≤ K4;1 ≤ K5 ∨ K6

⇐⇒ I,K6 ≤ K2,J ; (K2,K3) ∈ JTLK ;K3 ≤ K6

⇐⇒ I,K3 ≤ K2,J ; (K2,K3) ∈ JTLK

⇐⇒ I,K3 ≤ K2,J ;TL(K2) ≤ K3

⇐⇒ I,TL(K2) ≤ K2,J

That is to say, (I,J ) ∈ JCLK if and only if there exists K such that I,TL(K) ≤ K,J . We claim

that this is equivalent to that J ≥ µU.I ∨TL(U), where µU.F (U) denotes the least fixed point

of a monotone function F on some complete lattice. On one hand, if J ≥ µU.I ∨TL(U), then

let K be µU.I ∨TL(U). By the definition of fixed points, I ∨TL(K) = K, we know that I ≤ K
and TL(K) ≤ K. So I,TL(K) ≤ J as well. On the other hand, suppose there exists K such

that I,TL(K) ≤ K,J , then this is equivalent to I∨TL(K) ≤ K,J . I∨TL(K) ≤ K means that

K is a pre-fixed point for I ∨ TL(−) : BAt → BAt , which, by Knaster-Tarski theorem, entails

µU.I ∨TL(U) ≤ K. Therefore, using the fact that TL is monotone, we have

J ≥ I ∨TL(K) ≥ I ∨TL(µU.I ∨TL(U)) = µU.I ∨TL(U) (5.34)

Now note that µU.I ∨ TL(U) is exactly CL(I) (Lemma ??), so we have (I,J ) ∈ JCLK if and

only if CL(I) ≤ J , which means that JCLK represents the consequence operator CL.

Example 5.6.5. Consider the program P = {→ a; b→ d; c→ d; c, d→ b} over At = {a, b, c, d}.
Its least Herbrand model MH

P is {a}. The immediate consequence operator TP maps, for

instance, {c} to {a, d}. The consequence operator CP maps, for instance, {c} to {a, b, c, d}.
Now let us turn to its diagrammatic counterpart. Its immediate consequence diagram TP is
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given below left, coloured as in Definition 5.6.1.

Now we are ready to present the two main results for logic programs. First, SATA provides

a diagrammatic calculus to compute CL, in particular to calculate the least Herbrand model

as C∅. One can represent an interpretation I ∈ BAt as a diagram dI := dI1 ⊗ · · · ⊗ dIn of type

0→ n, where each dIi = if I(i) = 0, and dIi = if I(i) = 1.

Theorem 5.6.6. CL(I) = J if and only if dI ; CL = dJ .

Proof. By Theorem 5.5.21, dI ; CL = dJ if and only if
q
dI ; CL

y
=

q
dJ

y
. Since

q
dI

y
and JCLK

represent I and CL respectively,
q
dI ; CL

y
=

q
dI

y
# JCLK represents CL(I), by the composi-

tionality of representations. Then
q
dI ; CL

y
=

q
dJ

y
is equivalent to CL(I) = J .

Example 5.6.7. Continue Example 5.6.5. Let I = {b, c}, then CL(I) = {a, b, c, d}, which we

denote as J . I is represented by the diagram , and

dI ; CL = =
(A2),(A3)

=

(C1)
=

(B6)
=

Prop. 5.2.2,(C4)
=

(C1)
=

The resulting diagram represents J .

Second, we can turn the problem of the (in)equivalence of two logic programs into prov-

ing whether their consequence operator diagrams are equivalent. By Proposition 5.6.4 and

Theorem 5.5.21, we have:

Theorem 5.6.8. Given two logic programs L1 and L2 on At, CL1 ≥ CL2 as monotone functions

BAt → BAt if and only if CL1 ≤SATA CL2.

Proof. Suppose CL1 ≥ CL2 , namely CL1(a) ≥ CL2(a) for all a ∈ At . This is is equiv-

alent to saying that R(CL1) ⊆ R(CL2). Proposition 5.6.4 says that JCLK = RCL, thus

JCL1K = R(CL1) ⊆ R(CL2) = JCL2K. Then completeness (Theorem 5.5.21) entails CL1 ≤ CL2 .

The reverse of the above reasoning also holds, where we only need soundness rather than

completeness.

167



It is worth observing that the completeness proof (see Section 5.5.3) is essentially an algo-

rithm that rewrites an arbitrary Syn-morphism into a normal form diagram (Definition 5.5.13).

This means that the procedure described in Theorem 5.6.8 to establish (in)equivalence of logic

programs in terms of consequence operators is decidable. We illustrate such procedure with an

example.

Example 5.6.9. Recall P from Example 5.6.5, and consider another program Q = {→ a; a, b→
d; c→ b.}. We claim that P and Q are equivalent with respect to consequence operator, namely

CP = CQ, and we show this by proving the equivalence CP = CQ of their consequence diagrams.

On one hand,

CQ = =
(A2),(A6)

=

Prop. 5.2.2
=

(C1)
=

(B6)
=

= =

On the other hand,

CP = =
(A2),(A6)

=

Prop. 5.2.2
= =

(A5)
=

Prop. 5.2.13
= =

(A5)
=

Prop. 5.2.11
=

Thus CP = CQ, which entails CP = CQ by Theorem 5.5.21.

As a remark we mention another possibility of defining the semantics to interpret Syn in
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the category Rel of relations, say via a functor ⟨·⟩ : Syn→ Rel, where:

⟨ ⟩ = {(x, (x, x)) | x ∈ B} ⟨ ⟩ = {((x1, x2), y) | x1 ∨ x2 = y ∈ B}
⟨ ⟩ = {(x, (y1, y2)) | x = y1 ∧ y2} ⟨ ⟩ = {((x1, x2), y) | x1 ∧ x2 = y}

Under this semantics, the immediate consequence diagram TL has the correct semantics as

{(I,J ) | TL(I) = J }. However, CL — an intuitive candidate to represent consequence op-

erators — is not interpreted as {(I,J ) | CL(I) = J }. In particular, the trivial program

L = {a → a} has CL = , and ⟨CL⟩ = {(x, y) | x, y ∈ B, x ≤ y} ̸= {(x, x) | x ∈ B} = CL.

Looking for an appropriate diagrammatic language and interpretation in Rel is important to the

purpose of generalising the current result to logic programs with negation and their semantics,

because their immediate consequence operators are not monotone in general. Such an interpre-

tation together with the least fixed point constructions in some canonical semantics for general

logic programs seems to imply that diagram similar to CP would represent the semantics. We

leave exploration of this idea to future work.
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Chapter 6

Further directions

In this thesis we have explored coalgebraic and algebraic semantics for logic programming and

its quantitative variants. Crucially, the study aims at a uniform framework such that the

semantics of those variants can be captured in a modular way. Admittedly, this thesis is a first

step towards a full story of these logic programming paradigms in terms of category theory,

and there are a few future directions.

Bialgebraic semantics. First there is an immediate story following the two topics of this the-

sis. Given the coalgebraic and algebraic treatment of logic programming, one natural question

is about their interaction. To the best of our knowledge, such interaction for LP is encoded

as a bialgebraic semantics for definite logic programs [BZ15], where the algebraic and coalge-

braic characterisation of a system interact via a distributive law [Kli11]. To explore a similar

approach for PLP and WLP, the first technical challenge would be to find the appropriate

functors to encode the algebraic and coalgebraic types of the programs, such that there exists

a suitable distributive law. This problem is non-trivial for distribution monads and multiset

functors [Var03, VW06, Jac21]. We are not devoted to this problem in the thesis and leave

it for future work, since our algebraic semantics is defined in terms of functors, and it is not

immediate to see how it interacts with the coalgebraic semantics.

First-order case. One immediate next step is to extend the algebraic approach using functo-

rial semantics to logic programs with variables. Admittedly, as far as we know, most application

of PLP and WLP using variables are function-free: there is no function symbol in the signa-

ture, thus the Herbrand base is finite given a finite signature. Existing work on diagrammatic

Lawvere theory could be a starting point for dealing with variables in the logic [BSZ18].

Diagrammatic PLP and WLP. Concerning the diagrammatic calculus, one immediate next

step is to generalise the current calculus for definite logic programs to probabilistic and weighted

case. For the former, we are already exploring a diagrammatic calculus based on SATA, whose

arrows m → n are finite distributions of arrows m → n in SATA. We believe such categorical

construction is a better approximation of the distribution semantics for PLP.

For the latter, one may start with looking at some specific semiring structure, in particular

the min-plus semiring for shortest path problems. We suggest a diagrammatic calculus with

170



, , and (together with their transposes), standing for copy, sum, and minimise.

If we obtain such a complete calculus, one gain is that there is no need for extra specification

of shortest path problems apart from the pictures: one can encode a given weighted directed

graph using the diagrammatic language, and calculate the weight of the shortest path diagram-

matically.

Answer set programming. Answer set programming (ASP) is logic programming based on

so-called stable model semantics, dealing with clauses with negations [Lif19]. As an immedi-

ate consequence, the semantics of a program may consists of multiple stable models, thus the

name ‘answer set’. One interesting question is whether such stable model semantics could be

captured functorially by choosing a suitable semantic category. Turning to its probabilistic

variant probabilistic answer set programming (PASP) [CM20], since ASP programs have mul-

tiple models in general, the probability assigned to atoms in a PASP program is imprecise.

To the best of our knowledge there is no published categorical treatment of such imprecise

probabilities [ACDCT14]. In particular, it is worth exploring whether notions such as condi-

tional probabilities and marginalisation in imprecise probability theory fits into the synthetic

statistics framework [Fri20].

Inductive logic programming. Inductive logic programming (ILP) is a learning paradigm

using logic programs as the underlying tools. To put it simple, given a logic program L as

background knowledge together with sets of atoms representing positive and negative samples,

the task is to learn a program extending L such that it admits all positive samples and rejects

all negative ones [MDR94]. One interesting question is whether such learning can be phrased

at the diagrammatic level. The topic of learning has attracted much attention in the applied

category theory society, including string diagrammatic framework for neural networks [FST19,

FS19, XM21], gradient descent [CGG+22], supervised learning [FJ19], etc. In particular, we

wonder whether a learner in ILP can be captured as certain lense [FJ19]. A derivative research

question is to phrase automata learning [Ang87, vHSS17] in string diagram terms, based on the

complete diagrammatic calculus for nodeterministic finite automata [PZ21]. Such a uniform

high-level treatment of learning in logic programming and automata shall shed light on the

similarity between these two fields of research.
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Zanasi. Diagrammatic algebra: from linear to concurrent systems. Proceedings of

the ACM on Programming Languages, 3(POPL):1–28, 2019.

[BMR01] Roberto Bruni, Ugo Montanari, and Francesca Rossi. An interactive semantics

of logic programming. Theory and Practice of Logic Programming, 1(6):647–690,

2001.

172



[BSdV04] Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of probabilistic

system types. Theor. Comput. Sci., 327(1-2):3–22, 2004.
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