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We study a four-component polariton system in the optical parametric oscillator regime consisting of
exciton, photon, signal, and idler modes across the Berezinskii-Kosterlitz-Thouless (BKT) transition. We
show that all four components share the same BKT critical point, and algebraic decay of spatial coherence
with the same critical exponent. However, while the collective excitations in different components are
strongly locked, both close to and far from criticality, the spontaneous creation of topological defects in the
vicinity of the phase transition is found to be largely independent of the intercomponent mode locking, and
instead strongly dependent on the density within a given mode. This peculiar characteristic allows us to
reveal a novel state of matter, characterized by configurations of topological defects proliferating on top of a
superfluid with algebraic decay of coherence, observation of which is demonstrated to be within reach of
current experiments.
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The study of nonequilibrium phase transitions in driven-
dissipative quantum systems became of particular interest
in recent years due to the unprecedented experimental
progress in realizing quantum fluids of light. In two
dimensions, the onset of order is described by the cel-
ebrated Berezinskii-Kosterlitz-Thouless (BKT) mechanism
[1,2], where the quasicondensate phase energy is mini-
mized by the pairing of topological defects with opposite
charge. Such a phenomenon has been investigated in a wide
class of conservative systems, from 4He [3] to ultracold
atoms [4], and in different types of confinements [5]. In the
context of driven-dissipative polariton fluids [6,7], numeri-
cal studies of incoherently driven [8,9], as well as coher-
ently driven systems in the optical parametric regime
(OPO) regime [10], have predicted a nonequilibrium-type
BKT phase transition, recently confirmed in an experiment
[11]. Recently, the BKT physics has been theoretically
investigated in lattices of nonequilibrium photon conden-
sates [12]. Finally, the presence of further qualitative
corrections to the standard BKT picture introduced by
higher-order phase fluctuations treated within the Kardar-
Parisi-Zhang framework [13] has been proposed [14–16].
The polariton fluids are, however, intrinsically multi-

component. They consist of excitonic, photonic and, in the
case of the OPO regime, the signal, idler, and pump modes.
Within the OPO picture, the polariton coherence has been
previously studied theoretically [17–22] and experimen-
tally [23,24]. At a mean-field level the sum of the signal
and idler phases is locked to the spatially coherent pump
phase [7]. However, by including fluctuations, such a phase

locking does not hold or is weak, especially in the vicinity
of the critical point [10]. Despite that, the investigations to
date were limited to the signal mode of the photonic
component [10] only, while the interplay of critical features
in different components is yet unrevealed. Therefore,
questions regarding the multicomponent nature of the
phase transition remain open: (i) How does the spatial
coherence differ in the different modes, and how does this
affect the BKT phase transition? (ii) How are topological
defects in distinct components correlated?
In this Letter, we investigate numerically the OPO

thresholds showing that the nonequilibrium BKT transition
occurs simultaneously (for the same pump strength) in all
four components (photonic, excitonic, signal, and idler)
despite marked differences in the density of the different
components, Moreover, we demonstrate that coherence is
characterized by the same algebraic power-law exponent,
indicating a strong phase locking between collective
excitations in all modes. Interestingly, such a phase locking
takes place also in the vicinity of the critical point, where
strong phase fluctuations are expected to modify the mean-
field picture [10]. In contrast, we discover that, unlike the
collective excitations (the sound modes), the topological
defects (the vortices) in different components are not
strongly correlated close to the phase transition, where
the density of the fluid is small, nor further from the
transition for the component with the weakest density, i.e.,
the photonic idler mode. Remarkably, the photonic idler
component is found to possess an algebraic order, charac-
teristic of two-dimensional superfluids, in the presence of
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multivortex configurations. This is possible only due to the
coupling of the low-density idler mode to higher density
components. To our knowledge, such a peculiar state has
never been seen before. This raises questions about the
importance of the interplay between sound modes and
vortices in superfluid phase transitions.
System and theoretical modeling.—We use stochastic

simulations based on the truncated Wigner approxima-
tion [19]. Our method considers the full two-dimensional
multimode polariton field, which includes fluctuations in
both density and phase, represented by complex number
fields ψmðr;tÞ, where m¼X;C denotes the single excitonic
and photonic component, respectively, and with r ¼ ðx; yÞ.
The stochastic differential equations for trajectories of these
fields takes the following form [7,10,19] (ℏ ¼ 1):

id
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In this notation, the Hamiltonian operator

Ĥ0 ¼

0
B@− ∇2

2mX
þ gXjψXj2− − iκX ΩR=2

ΩR=2 − ∇2

2mC
− iκC

1
CA; ð2Þ

is written in terms of the Rabi splitting ΩR, the
exciton-exciton interaction strength gX, the exciton
and photon mass, mX and mC, respectively and the
damping rates κm. Here, we consider a homogene-
ous monochromatic continuous-wave pump Fðr; tÞ ¼
fp expfiðkp · r − ωptÞg with momentum kp, strength
fp, and frequency ωp, resonant with the bare lower-
polariton dispersion, so that, as shown in Fig. 1(a),
polaritons undergo parametric scattering into the signal
and idler states [18] for a certain range of pump strengths
fp. dWm are independent white complex Gaussian
noise terms, with zero mean and local corre-
lations in time and space: hdWmðr; tÞdW�

m0 ðr; tÞi ¼
2δm;m0δr;r0dt=dV, and hdWmðr; tÞdWm0 ðr; tÞi ¼ 0, where
dV is the cell area of the numerical grid. The reduced
Wigner density reads jψXj2− ¼ ðjψXj2 − 1=dVÞ. Physical
observables can be calculated by appropriate averages
over stochastic realizations.
For the numerics, we have considered specific system

parameters, relevant for current experiments:ΩR ¼ 4.4 meV,
mC ¼ 2.3 × 10−5 m0, where m0 denotes the electron mass,
κm ¼ 0.1 meV, and gX ¼ 2 × 10−3 meV μm2. We have
ignored the exciton dispersion as mX ≫ mC. Equations (1)
are numerically implemented on a N2 grid with N ¼ 256
points and length L ¼ N × a, where a ¼ 0.87 μm is the
uniformgrid spacing.Thepump is injected at finitemomentum
kp ¼ ðkp; 0Þ in the x direction, with kp ¼ 1.6 μm−1.

We evolve the stochastic equations (1) in a two-
dimensional geometry with periodic boundary conditions
until the steady state. While mean-field wave functions are
used as initial conditions, the Wiener noise terms are
adiabatically switched on along the dynamics. In driven-
dissipative systems, the parameter that controls the phase
transition is the pumping strength fp, which determines the
particle density. As explained in Ref. [25], once the steady
state is achieved, for each m component a filtering process
allows us to extract the different fields ψm;nðr; tÞ, and the
momenta km;n at which they are peaked in the momentum
distribution, where n ¼ s; p; i labels the signal, pump, and
idler mode, respectively. We ascertain that at a given pump
value, the set of modes n have the same momentum
structure in both components m [25]. In Fig. 1(b) we plot
the behavior of the extracted momenta kx for the photonic
component, where kC;n ¼ ðkx; 0Þ, as a function of the
pump strength, for each mode n. Note that the OPO
quasiordered phase possesses two different thresholds,
easily distinguishable from Fig. 1; we extract a lower
threshold (LT) at fp ¼ 1.419 and an upper threshold (UT)
at fp ¼ 5.149. The ordered phase lies within the two
thresholds. Further details on the filtering process, the
resulting steady-state diagram, character, and identification
of the critical points are reported in Ref. [25].
As discussed earlier, at the mean-field level the sum of

the OPO signal and idler phases is locked to that of the
external pump F. In the next sections we show how
fluctuations can alter such phase locking [10], and its
implications on the observation of unconventional order in
a multicomponent phase transition.
Onset of multicomponent order.—We proceed by inves-

tigating the nonequilibrium phase diagram of our multi-
component system. As in previous works [8,10,26],

FIG. 1. Polariton OPO regime. (a) Typical spectrum of the
system within the OPO window showing signal, pump, and idler
modes on the lower polariton branch. (b) Signal, pump, and idler
momentum kx as a function of the pump strength fp, exhibiting a
double threshold. The ordered (disordered) phase lies in the pump
range within (outside) a lower (solid green line) and an upper
(solid orange line) critical point.
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we calculate the average number of vortices (Fig. 2) and
spatial correlation functions (Fig. 3) in the steady state
close to the lower (LT) and upper (UT) phase transitions.
We note that in other works, driven-dissipative phase
transitions have been investigated by analyzing the
excitation spectrum [22] or the fluid current-current
response [27,28]. We see that, for all components, while
in the disordered phases, below (above) the LT (UT), the
total vortices number is large and almost constant. When
the pump strength passes the critical point, the number of
topological defects abruptly decrease. This is in agreement
with previous results [26]: in the late dynamics, the system
approaches a steady-state number of vortices, which
becomes lower as one goes deeper into the ordered phase.
While we observe an abrupt change in the steady-state

number of vortices at the same pump power for all
components, we note that they host a different number
of vortices at a given pump power—the intercomponent
phase locking is not perfect in the vortex channel beyond
the mean-field level. In particular, the photonic idler mode
contains a number of topological defects which is, in the
ordered phase, orders of magnitude larger than in the case
of the other components. This can be understood by noting
the difference in the particle densities [reported in Fig. 1(b)
of Ref. [25] ]: at small densities, characteristic of the
photonic idler, critical fluctuations are relatively stronger
and the creation of random vortex-antivortex pairs is more
effective as compared to other higher density components.
Such a behavior is in line with the observations in
Refs. [8,9].

The first order spatial correlation function in an isotropic
system at a given time t, reads

gð1ÞðrÞ ¼ hψ�
sðrþRÞψ sðRÞiR;Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ�

sðRÞψ sðRÞiR;N hψ�
sðrþRÞψ sðrþRÞiR;N

p ;

ð3Þ

where the average h� � �i is performed over the spatial
positionR and a large numberN of stochastic realizations.
Our numerics show that all components exhibit a phase
transition from exponential to power-law decay of corre-
lations at the same pump power, similarly to the abrupt
decrease of the number of topological defects analyzed in
Fig. 2. Such a transition point has been quantitatively
estimated by comparing different fitting functions and
choosing the best fit, as in the methods reported in
Refs. [8,10]. In Fig. 3 we plot gð1ÞðrÞ (3) at the critical
pump powers for the LT (a) and UT (b). Although the four
modes contain very different numbers of vortices, we
extract (within error bars) the same algebraic exponents,
characterizing the long-range decay of gð1ÞðrÞ (3).

FIG. 2. Vortices near the OPO thresholds. Top: averaged
number of vortices in all four components, around the (a) lower
and (b) upper thresholds. The quasicondensate phase is shown as
a shaded colored area. Bottom: Vortex-antivortex (V-AV) corre-
lations at the upper threshold for the photonic component in the
signal (c) and the idler (d) modes. FIG. 3. Intercomponents phase locking. First order spatial

correlation function along the x direction at the lower flowth ¼
1.419 (a) and the upper fupth ¼ 5.149 (b) threshold. The power-law
exponents α (insets) show long-range phase locking between
collective modes in different components. (c) Enlarged view of
the real-space phase-profiles at the lower threshold. Note, the
presence (absence) of vortex configurations in the photonic idler
(signal), while away from the vortices the phase still exhibits
correlation between the two components.
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A detailed discussion of the difference between short- and
long-range correlations is reported in Ref. [25], where we
discuss how, in the photonic-idler component, coherence at
small distances is destroyed by the presence of vortices but
recovered at long distances by the strong intercomponent
phase locking.
Motivated by the unusual observation of a high density

of defects in the algebraic phase of the photonic idler, even
far from the critical point, we investigate further their
spatial distributions. An example of a single realization of
the photonic signal and photonic idler phases is shown in
Fig. 3(c). In the conventional BKT transition, away from
the critical point on the quasiordered side, vortices are
expected to be either fully paired or absent. On the contrary,
the real space vortex configurations in the photonic idler,
especially close to the upper threshold, show presence of
multivortex configurations even at pump powers deep in
the ordered phase (see Figs. S9-S10 and discussion in
Ref. [25]). This visual observation is corroborated by the
vortex-antivortex space correlations, reported in Figs. 2(c)
and 2(d) and discussed in more detail in the next section.
Vortex correlations and pairing in a single compo-

nent.—In order to gain a better understanding of correla-
tions between vortices in different components, as well as
the pairing of vortices and antivortices known to underly
the BKT phase transition, we proceed by computing
various vortex correlation functions. We define the spatial
number correlators between vortex-vortex/antivortex-
antivortex (hereafter denoted as V-V), and vortex-
antivortex/antivortex-vortex (V-AV) as:

ηð1ÞfV∶αβγ;α0β0γ0gðrÞ ¼
hnαβγV ðr; tÞnα0β0γ0V ðrþR; tÞiR;Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hNαβγ
V iN hNα0β0γ0

V iN
q ; ð4Þ

where nVðrÞ and hNVi are the spatial distribution and
average number of vortices with components α ∈
fVrtx;AntVg; β ∈ fSig; Idlg and γ ∈ fPh;Exg.
Let us first focus on V-AV correlations. An example is

shown in panel (c) and (d) of Fig. 2, where the 3D surfaces
show the correlator (4) as a function of the relative distance
r as the pump power is varied across the phase transition.
The threshold point is indicated as a dashed red curve on
top of the 3D surface. In all cases, the correlator assumes a
double peak structure with a minimum at the origin
indicating V-AV attraction leading to annihilation events.
In the disordered phase, characterized by a high number of
free vortices, we find that V-AV correlations asymptotically
approach a finite (nonzero) value as r → ∞, indicating
presence of vortices, whose binding nature is undeter-
mined. In the ordered phase of the photonic signal
[Fig. 2(c)], V-AV correlations plateau to a null value,
indicating that on average only one tightly bound V-AV
pair is left in the system. On the other hand, the ordered
phase of the photonic idler [Fig. 2(d)], in agreement with

Fig. 2(a), still contains a large number of vortices as the
correlator plateaus to a smaller but finite value. By visually
inspecting the spatial distribution of vortices in Figs. S9-
S10 of Ref. [25], we find multivortex configurations. Note,
that this ensemble of vortices is mainly composed of vortex
pairs; interestingly, however, we also find indication of the
presence of rare free vortices. Furthermore, in Figs. S5-S6
of Ref. [25] we investigate and compare V-AV correlations
in different components. We find that all components
exhibit the same pairing crossover from a “randomly
distributed” disordered phase to a “single-pair” ordered
phase, except for the photonic idler. For pump strengths
both above LT and below UT, we find a nonzero
plateau indicating presence of a high number of vortices.
The UT case is depicted in Fig. 2(d).
We also compute V-V correlations, which are shown and

discussed in Figs. S2 and S4 of Ref. [25]. Similarly to the
V-AV case, for all components other than the idler, we find
a finite-valued plateau at large distances (many vortices),
which crossovers to zero (single-pair) as one approaches
the ordered phase. Close to the origin the autocorrelations
drop to zero, indicating that vortices repel each other.
Again, similarly to the V-AV, the V-V correlations
also show that the photonic-idler component, even deep
in the ordered phase, still shows a (lower than the one
in the disordered phase, but still noticeable) finite-valued
plateau.
Correlations between vortices in different compo-

nents.—Considering the processes underlying the sym-
metry-breaking mechanism of parametric regimes—
corresponding to an opposite rotation of the phases of
the signal and idler components—it is expected that
vortices in different modes would be “position locked”
while possessing opposite circulation [19]. Vice versa,
when considering vortices in the same mode (signal or
idler) but different component (excitonic and photonic), the
locking would take place between two vortices with same
sign circulation. Following this reasoning, it is straightfor-
ward to choose the V-AV (V-V) correlations to quantify
same-component (same-mode) vortex locking.
First, let us discuss the former case: signal-idler V-AV

correlations are shown in Figs. 4(a) and 4(b) for the
photonic and excitonic components, respectively. Here,
vortex locking is easily quantified by how smooth (or
peaked) the V-AV correlation profiles are across the
transition: while a homogeneous profile along the r axis
would indicate a similar probability of finding the Vor AV
partner everywhere, a peaked distribution would rather
show that it is more probable to find such objects in the
same position. Results shown in Figs. 4(a) and 4(b) reveal
that this intermode spatial pairing mechanism takes place
only for the excitonic fraction, but not for the photonic one.
A similar analysis is carried out for investigating the

single-mode vortex-coupling between the excitonic and
photonic components. The V-V correlator is shown in
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Fig. 4(c) for the signal and in Fig. 4(d) for the idler modes.
The results reveal a strongly peaked distribution for the
signal case, while the idler mode shows a smooth profile.
We conclude that the spatial vortex locking between
components and/or modes is always strong apart from
the cases with a photonic-idler mode; this is a further
confirmation of a weak vortex-locking mechanism obse-
rved for the photonic-idler component.
Vortex-antivortex correlation anisotropy.—Finally, we

discuss the presence of anisotropic features in the pairing
mechanism, which we observe in the vortex correlation
analysis discussed above. Let us focus on the signal mode
in the photonic component near the two thresholds.
Figure 5 shows the V-AV correlation function in the
photonic signal across the LT, along two orthogonal
directions x, y. Here we see that the correlations are
different along the two directions especially at short

distances, pointing to anisotropic vortex antivortex inter-
actions. At large distances, however, the correlations decay
to the same offset, which is proportional to the overall
vortex density. Moreover, the dominant pairing direction
switches across the BKT phase transition. Near the UT,
vortex correlations are instead isotropic (see Fig. S6 in
Ref. [25]). To explain this behavior, we consider the
possibility for the V-AV pairs to feel anisotropic forces,
possibly inherited from the anisotropic pump, which is
injected in the x direction. We proceed by checking the
diffusion coefficients of the quantum fluid, which can be
extracted by mapping the exciton-polariton model to the
Kardar-Parisi-Zhang (KPZ) equation [13] for the phase.
Recent works suggest that the 2D KPZ behavior could be
observed in the OPO in a narrow pump-strength range in
the middle of the quasiordered phase [16,29]. Note, that
analytical estimates for the vortex-vortex interactions in this
problem exist only for the isotropic case [30] allowing only
approximate analysis. The results obtained are not con-
clusive (see a detailed discussion in Ref. [25]), leaving
this as an exciting open question to be addressed in
future works.
Conclusions.—In this Letter, we have investigated

theoretically the multicomponent BKT phase transition
of a two-dimensional driven-dissipative bosonic system in
the OPO regime. Clear signatures of the transition from a
disordered to an ordered state are inferred by computing
the first order coherence, the number of vortices, and
vortex correlations. We find that the critical point occurs at
the same pump power with the same exponent of the
algebraic decay of the first order spatial coherence
function for all components. However, collective phase
fluctuations (the sound modes) and the vortices are found
to behave quite differently: while collective excitations are
locked across all components, vortices are not perfectly
spatially correlated, especially those involving the pho-
tonic idler at the upper threshold. This results in a new
phase, where an algebraically ordered state exists in the
presence of multivortex configurations, composed of
V-AV pairs and occasionally free vortices. Such a peculiar
phase is, to our knowledge, unique in the realm of
condensed matter systems, and sets the basis for a novel
form of superfluidity, where a low density quantum fluid
is populated by topological defects, but remains in the
algebraically ordered phase due to locking of the collec-
tive excitation channel to other higher density compo-
nents. Our numerical findings lie in an experimentally
accessible parameter window, which makes this new state
experimentally verifiable. We believe our work will
encourage further theoretical investigations in the direc-
tion of universal phenomena and turbulence in nonequili-
brium multicomponent quantum systems.
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