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Placing a large mass in a large spatial superposition, such as a Schrödinger cat state, is a significant and
important challenge. In particular, the large spatial superposition [O(10–100) µm] of mesoscopic masses [m ∼
O(10−14–10−15) kg] makes it possible to test the quantum nature of gravity via entanglement in the laboratory.
To date, the proposed methods of achieving this spatial delocalization are to use wave-packet expansions or
quantum ancilla- (for example, spin-) dependent forces, all of whose efficacy reduces with mass. Thus increasing
the spatial splitting independently of the mass is an important open challenge. In this paper we present a method
of achieving a mass-independent enhancement of superposition via diamagnetic repulsion from current-carrying
wires. We analyze an example system which uses the Stern-Gerlach effect to creating a small initial splitting and
then apply our diamagnetic repulsion method to enhance the superposition size O(400–600) µm from an initial
modest split of the wave function. We provide an analytical and numerical analysis of our scheme.
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I. INTRODUCTION

Gravity is special as it is not yet evident whether gravity
is a classical or a quantum entity [1]. It is often thought
that any quantum gravitational effects will become important
only when we approach the Planck length or the timescale,
making it impossible to probe directly. Furthermore, cosmo-
logical data, such as perturbations in the cosmic microwave
background radiation [2] and the potential B modes for future
detection, may not help to settle this outstanding issue [3].
Both astrophysical and cosmological sources contain many
uncertainties [4].

Despite all these challenges, a tabletop experiment has re-
cently been proposed to explore the quantum origin of gravity
with the help of quantum superposition and quantum entan-
glement in the infrared [5–7] (see also [8,9]). The protocol
is known as the quantum gravity-induced entanglement of
masses (QGEM), which evidences both the quantum super-
position of geometries [10,11] and the exchange of virtual
gravitons [6], that is, spin-2 graviton exchange [7] (see also
[12]). Recently, a protocol has been created to entangle the
matter with that of the standard model photon in a gravita-
tional optomechanical setup [13] (see also [14]). This will
probe not only the light bending due to the gravitational in-
teraction but also the spin-2 nature of the graviton-mediated
entanglement [13]. Note that the entanglement is purely a
quantum observable, which measures the quantum correlation
in complementary bases, and has no classical analog whatso-
ever.

One of the key challenges towards realizing the QGEM
protocol experimentally is to create a large spatial super-
position δz ∼ O(10–100) µm for a large mass object [m ∼
O(10−14–10−15) kg] (for details see [5,15] and for a free-
falling setup see [5,16]). It is also well known that creating

a large superposition has many further fundamental appli-
cations; one can test the foundations of quantum mechanics
in the presence of gravity [17–21], a purely quantum gravi-
tational version of the equivalence principle [22], falsifying
spontaneous collapse mechanisms [19,20], placing a bound on
decoherence mechanisms [23–29], quantum sensors [16,30],
probing the physics of a fifth fundamental force and the axion
[31], and probing gravitational waves [30].

Atom interferometers are well known to create a large
baseline superposition [32–34], but at masses well below
what is required to test the quantum nature of gravity.
To date, macromolecules represent the heaviest masses
placed in a superposition of spatially distinct states [35,36].
There are physical schemes to obtain tiny superpositions of
large masses [37] or moderate-size (approximately 10 nm
to 1 µm) superpositions of approximately 10−19–10−17 kg
masses [24,25,38–49]. However, we require a large spa-
tial superposition of heavy [m ∼ O(10−17–10−14) kg] masses,
with the current likely scheme utilizing the Stern-Gerlach
effect [50–55]. In fact, a proof of principle experiment has
already been conduced using atoms, showing that such a
Stern-Gerlach interferometer for massive objects can indeed
be realized [53].

The crucial problem now is how to achieve a large spatial
separation for these larger mass particles. There are so far
only two realistic types of schemes to separate wave packets,
one using wave-packet expansions in conjunction with slits
or measurements [24,35,36,45–49] and the other using spin-
dependent forces [53–55]. However, both schemes inevitably
become progressively worse as the mass increases. This paper
presents a mass-independent experimental scheme to create a
large spatial superposition.

There are already some very attractive experimental ideas
which have been proposed to create large superposition
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for masses in the range of m ∼ O(10−17–10−14) kg (see
Refs. [5,30,54–56]). References [54–56] considered the effect
of induced magnetic potential in the diamondlike crystal along
with the nitrogen-valence (NV) -centered potential. However,
it was also noticed that the diamagnetic term in the Hamil-
tonian inhibits the spatial superposition despite taking into
account that the coherence of the NV center can be maintained
for a long enough time [54,56]. This was mainly due to the
fact that the diamagnetic term creates a harmonic trap and
the particle tends to move towards the center of the potential,
therefore inhibiting the growth in the superposition size. This
issue was tackled by employing new dynamical techniques
such as catapulting the trajectory by assuming a nonlinear
profile for the magnetic field [55]. In the present paper we
explore the possibility of utilizing this unavoidable induced
diamagnetic effect to enhance the superposition size. In our
analysis we use the simple example model of a magnetic field
sourced by current-carrying wires.

Our aim is to enhance the superposition size using only
modest currents, but requires one simple assumption. We
assume that we have already created an initial spatial su-
perposition of the nanocrystal, as could be made using a
Stern-Gerlach setup (see [54–56]). In particular, we take
for demonstration the initial superposition size �z0 ∼ 1 µm
and present how this can be increased to a size of �z ∼
O(100–500) µm. We also assume that the interferometer setup
is one dimensional. In addition, once we create the superposi-
tion, we assume that the superposition can be closed using the
same splitting mechanism, i.e., by the Stern-Gerlach mech-
anism (see [55]). It is for this reason we present this as an
enhancement of a spatial superposition. We provide both ana-
lytical and numerical analyses. We take the modest currents to
be approximately O(1) A and restrict the example operating
time to be within approximately 0.1′s while still aiming to
maximize the superposition size.

The maximum size of the superposition does not depend on
the mass, thus making this an attractive scheme for creating a
macroscopic quantum superposition for any range of masses,
provided the initial small superposition is first created. We will
show that there are two possible configurations: one where
the trajectory is triangular and the other where the trajectory
traces its path after interacting with the wire with a closest
impact parameter, discussed below.

In our present analysis we assume that the nanocrystal is
not rotating. Recent work has analyzed the rotation of the
crystal in Refs. [57–59]. We will need revisit this issue sep-
arately once we fully analyze the largest superposition size
we can obtain. This is similar to the spin coherence problem
and will require a dedicated study. We will not discuss how to
close the superposition as it is possible to employ the Stern-
Gerlach technique to close the trajectory (see [55]). Another
generic issue is the phonon vibration causing the decoherence
(see [60]). We assume that the desired level of internal cooling
can be obtained to mitigate the phonon-induced decoherence.
Given that all these challenges can be tackled, we ask how
large a spatial superposition we can achieve via the diamag-
netic contribution.

The paper is organized as follows. In Sec. B we discuss the
setup with the Hamiltonian. In Sec. III we discuss diamagnetic

repulsion. In Sec. IV we provide the analytical understanding
of the interaction of the nanocrystal with the fixed wires. The
analysis is very similar to the central potential problem in
classical mechanics. In Sec. V we present and discuss our
numerical results. In Sec. VI we will conclude our paper with
a summary and discussion.

II. SETUP

The Hamiltonian of a diamond embedded in a spin in a
magnetic field is [56,61]

Ĥ = p̂2

2m
+ h̄DŜ

2 − χρm

2μ0
B2 − μ̂ · B, (1)

where μ̂ = −gμBŜ is the spin magnetic moment, g ≈ 2 is the
Landé g factor, μB = eh̄

2me
is the Bohr magneton, Ŝ is the spin

operator, p̂ is the momentum operator, B is the magnetic field,
and m, h̄, D, χρ , and μ0 are scalars representing the mass
of the diamond, the reduced Planck constant, NV zero-field
splitting, magnetic susceptibility, and vacuum permeability,
respectively. By applying the microwave pulse with an appro-
priate resonance frequency, the electron spin in the diamond
can be coupled with the nuclear spin and the spin–magnetic-
field interaction can be ignored [62]. We assume that this has
happened prior to the amplification of the superposition size.

Let us first consider the magnetic field generated by a
current-carrying wire

B = μ0I × er

2πr
, (2)

where I is the current carried by a straight wire, r is the
vertical distance from the wire to a point in space, and er is
the unit vector corresponding to the distance r. At this point,
the potential energy of the diamond in the magnetic field is
given by

U = −χρm

2μ0
B2 = 1

2
mα

I2

r2
, (3)

where α = −χρμ0

4π2 . Combining Eqs. (3) and (2), the accelera-
tion of the diamond can be obtained as

adia = − 1

m
∇U = α

I2

r3
er . (4)

It can be seen from Eq. (4) that the acceleration caused by
the diamagnetic effect [the third term in Eq. (1)] is mass
independent. This means we can get the desired acceleration
of a diamagnetic object by setting an appropriate distance
between the object and the wire and an appropriate current
flowing through the wire regardless of the mass of the object.
This property provides the possibility of obtaining a large
superposition size for a massive object. We will use the tra-
jectory of a classical wave packet to represent the expectation
value of the position of the wave packet.

III. DIAMAGNETIC REPULSION

The scheme of increasing the superposition size by dia-
magnetic repulsion is mainly divided into three steps.
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FIG. 1. Experimental scheme to create mass-independent superposition via diamagnetic repulsion. The wave packet comes out of the
Stern-Gerlach interferometer at the moment τ0 with an initial velocity v0 parallel to the x axis (polar axis) and enters the magnetic field
generated by the current-carrying wire. The purple points (circles) represent straight wires perpendicular to the x-z plane. The wire at the
origin is called the splitting wire. The wire above the z = 0 axis is called the top wire and the wire below it is called the bottom wire. The
blue and orange solid lines represent the wave-packet trajectory in stage I and the black dashed lines represent the wave-packet trajectory in
stage II . The purple arrows indicate the direction of motion of the wave packet in stage I and the black arrows indicate the direction of motion
of the wave packet in stage II . Shown are (a) the triangular trajectory and (b) the inverse trajectory as well as (b) and (d) enlarged images of
them, respectively, close to the splitting wire. The sign h in (a) is the distance from the top wire to the bottom edge of the triangle. The sign
b in (b) is the impact parameter. The initial splitting between two wave packets �z0 = 2b. The sign θs is the scattering angle. To simplify the
calculation, we set τ0 = 0.

(i) First, we create a small, initial spatial splitting between
the two wave packets, potentially using a Stern-Gerlach appa-
ratus.

(ii) Then a microwave pulse is used to map the electron
spin state to the nuclear spin state, thus allowing us to ignore
the spin–magnetic-field interaction.

(iii) Finally, the wave packets enter the magnetic field
generated by the current-carrying wires and are further sep-
arated under the diamagnetic repulsion, thus achieving a large
superposition size.

The first and second steps are the initial state of the system
that we assume. The following analysis is focused on the third
step, that is, how to use diamagnetic repulsion to enhance
the superposition state. The motion of the wave packet in the
magnetic field can be divided into two stages (see Fig. 1).

Stage I . The wave packet is incident parallel to the x axis
with an initial velocity v0 and its trajectory is deflected by
the action of the diamagnetic repulsion. Then the wave packet
moves towards the top (bottom) wire until the distance from

the x axis reaches a maximum. The spatial distance between
the two wave packets also reaches a maximum.

Stage II . The wave-packet trajectory is deflected again near
the top (bottom) wire and then returns to its initial position.
There are two kinds of trajectories that can go back to their
initial positions, the triangle trajectory and the inverse trajec-
tory. For the triangular trajectory, the wave packet returns to
its initial position in the second stage by the shortest path [see
Fig. 1(a)]. For the inverse trajectory, the wave packet returns
to its initial position in the second stage along the path it took
in the first stage [see Fig. 1(c)].

IV. ANALYTICAL RESULTS

In the first stage, the motion of a wave packet in the
magnetic field can be viewed as the scattering process of a
diamagnetic particle in the magnetic field and then solved
analytically using polar coordinates. Since the acceleration of
the particle is in the radial direction, the equation of motion

032212-3



ZHOU, MARSHMAN, BOSE, AND MAZUMDAR PHYSICAL REVIEW A 107, 032212 (2023)

can be written as

d2r

dt2
− r

(
dθ

dt

)2

= α
I2

r3
, (5)

where the pole is located at the center of the splitting wire and
the polar axis is in the x-axis direction. In this case, θ is the
polar angle. The angular momentum of the particle

L = |L| = mr2 dθ

dt
. (6)

By using d/dt = (L/mr2)(d/dθ ) and noting that the angular
moment is conserved, the initial moment is given by

L = mv0b, (7)

where v0 is the initial velocity (parallel to the polar axis direc-
tion) and b is the vertical distance of the initial position with
respect to the polar axis and is called the impact parameter.
Substituting Eq. (7) into Eq. (5), we obtain

d2u

dθ2
= −ku, (8)

where u = 1/r and

k = 1 + α
I2

v2
0b2

. (9)

The solution to Eq. (8) is given by

u = C cos(
√

kθ − θ0), (10)

where C and θ0 are constants determined by the initial con-
ditions. We will solve for C in Appendix A. Assuming that a
particle is incident parallel to the polar axis from infinity and
scattered to infinity. When the particle is incident at infinity,
θ = π , and u = 0 we have

√
kπ − θ0 = π

2
. (11)

Rearranging Eq. (11), we get

θ0 = (√
k − 1

2

)
π. (12)

Here we have taken into account the half period [−π/2, π/2]
of the cosine function. When the particle is scattered to infin-
ity, θ = θs, and u = 0 we have

√
kθs − θ0 = −π

2
. (13)

With a bit of rearrangement of Eq. (13) and by combining
Eq. (12) we obtain

θs =
(

1 − 1√
k

)
π, (14)

which is the scattering angle of the particle. The scattering
angle determines the projection of the particle trajectory along
the z axis, which is the superposition size we are able to
achieve in the experiment.

Next we study what conditions need to be satisfied for
the scattering angle to maximize the superposition size. We
assume that the collision between the particle and the wire
is an elastic collision. Since the mass of the particle is much
smaller than the mass of the wire, which we also assume is

clamped to avoid decoherence, the velocity of the particle
before and after the collision can be considered unchanged.

In the experimental scheme, the particle has two elastic
collisions with the wire. Since the particle is incident from
infinity and then returns to infinity, the time for the particle
colliding with the wire and thus the change in velocity can
be ignored compared to the total time of motion, and the
magnitude of the speed of the particle can be treated as a
constant. We consider the particle incident parallel to the x
axis with an initial velocity v0. The initial position of the
particle is (−x0, b) and the value of x0 is large enough to allow
the particle to be approximated as being infinite with respect
to the magnetic field generated by the wire.

We set the total time of motion of the particle to be τ .
After time τ the particle returns to its initial position and
the trajectory length is v0τ . The trajectory of the particle can
be approximated as a triangle with base of length x0 [see
Fig. 1(a)]. The problem now becomes where to locate the
vertex of the triangle so that the distance h from the vertex
to the base takes its maximum value when the sum of the
two sides of the triangle is fixed at v0τ − x0. In fact, we are
describing the definition of an ellipse. The two focuses of this
ellipse are (−x0, b) and (0, b) and the length of the major axis
is (v0τ − x0)/2. When the vertex of the triangle is located at
the minor axis of this ellipse, the superposition size achieves
its maximum value. In this case, the scattering angle θs [see
Fig. 1(b)] of the particle at the splitting wire satisfies

cosθs = − x0

v0τ − x0
. (15)

The negative sign on the right-hand side of Eq. (15) indicates
that the particle is incident from the negative x-axis direction.
The length of the minor axis

h = v0τ − x0

2
sinθs

= v0τ − x0

2

√
1 − cos2θs

= 1
2

√
v2

0τ
2 − 2v0x0τ . (16)

By combining the symmetry of the incident trajectories of
the two wave packets, the largest superposition size for the
triangle trajectory can be written as

�ZmaxT = 2h =
√

v2
0τ

2 − 2v0x0τ . (17)

Letting the scattering angle in Eq. (14) equal the reflection
angle in Eq. (15), combined with Eq. (9), we obtain the re-
lationship between the current and the impact parameter and
other physical quantities when the superposition size takes its
maximum value

I

b
= v0√

α

√
π2arccos−2

(
x0

v0τ − x0

)
− 1. (18)

Another way to return the particle to its initial position is
to follow along its original path. We set the same initial
conditions and the velocity as for the triangular trajectory. In
the case of the inverse trajectory, the superposition size takes
a maximum value when the reflection angle of the particle
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reflected by the splitting wire is θs = π/2 and then we have

�ZmaxR = v0τ − 2x0. (19)

We can see that Eqs. (17) and (19) do not include
the impact parameter b. This is because we have assumed
that the initial splitting between the wave packets is much less
than the superposition size we are going to achieve, so the
contribution of the impact parameter to the final superposition
size can be ignored. Further, if we are given enough time τ

then, provided v0τ � x0 � b, both Eqs. (17) and (19) can be
approximated in the compact form

�ZmaxR ≈ v0τ. (20)

This simplicity hides the required relationships between the
scattering angle, impact parameter, and current. However,
it does highlight clearly that the achievable maximum su-
perposition size is determined by the initial conditions and
coherence time, not the particle mass.

By setting the scattering angle in Eq. (14) equal to π/2,
we can again obtain the relationship between the current and
impact parameter and other physical quantities

I

b
= v0

√
3

α
. (21)

To avoid particle collisions with the wire, we need to find the
distance of the closest approach d of the particle trajectory to
the pole and use this distance as an upper limit on the radius
of the wire.

Let us first consider the closest distance d0 between the
particle and the wire when the particle is incident in the
direction of the polar axis. From the conservation of energy,
we have

1

2
mv2

0 = 1

2
mα

I2

d2
0

. (22)

By rearranging Eq. (22) we get

d2
0 = α

I2

v2
0

. (23)

This can then be updated to account for a particle incident
parallel to the polar axis with an impact parameter b. When
the particle is nearest to the wire, we have the conservation of
energy. Here we have only three of the four variables b, v, d ,
and I which are independent. The impact parameter b can be
determined using the variables v, d , and I ,

1

2
mv2

0 = 1

2
mv2 + 1

2
mα

I2

d2
, (24)

where v is the velocity of the particle at its nearest point to
the wire and d is the distance of the particle trajectory closest
to the wire. By combining Eqs. (23) and (24) and simplifying
the equation, we obtain(

v

v0

)2

= 1 −
(

d0

d

)2

. (25)

Using the conservation of momentum, we can find the impact
parameter b in terms of d , v, and v0,

L = mv0b = mvd, (26)

and we have (
v

v0

)2

=
(

b

d

)2

. (27)

Substituting Eq. (27) into Eq. (25), we get

d =
√

b2 + d2
0 . (28)

Equation (28) is consistent with our intuition that the nearest
distance between the particle and the wire increases with
increasing impact parameter and current and decreases with
increasing initial velocity. As the initial velocity approaches
infinity, d0 approaches 0 and the distance d approaches the
impact parameter b.

V. NUMERICAL RESULTS

In this section we solve the wave-packet trajectory numer-
ically using the equation of motion (4). We take into account
that the initial conditions satisfy Eq. (18) or (21) to obtain
the triangular trajectory or the inverse trajectory. All the three
wires are switched on during the movement of the wave pack-
ets.

We assume the initial spatial splitting between the two
wave packets �z0 = 1 µm (b = 0.5 µm) and the initial veloc-
ity v0 = 0.01 m/s, which is parallel to the x axis, as shown in
Figs. 1(a) and 1(c). Both of these initial conditions could po-
tentially be achieved in a nanocrystal with a mass of 10−15 kg
by using the Stern-Gerlach apparatus with a magnetic-field
gradient of 104 T/m [55]. In this paper we focus on how to
use the diamagnetic repulsion to further increase the spatial
separation between wave packets.

A. Numerical result for the triangular trajectory

We set the current through the splitting wire according to
Eq. (18) and then place the top and bottom wires at the minor
axis of the ellipse and adjust the current through the wire so
that the trajectory of the wave packet forms a triangle back
to its initial position. The numerical result of the triangular
trajectory is shown in Fig. 1(a). The wave packets are incident
from the initial position (−300,±0.5) and the motion time
τ = 0.1 s. The coordinates of the top and bottom wires are
(−150,±316.5). The current through the splitting wire is
0.925 273 A and the current through the top (bottom) wire is
1.57 A. In this case we obtain a maximum superposition size
of around 628 µm. Substituting these initial conditions into
Eq. (17) gives a superposition size of around 632 µm. These
two results are close. This indicates that our assumption of a
constant motion of the wave packet and a negligible contribu-
tion of the impact parameter b to the final superposition size
is reasonable.

The closest distance from the triangular trajectory to the
splitting wire is 1.392 66 µm and the closest distance to the
top (bottom) wire is 2.299 29 µm. By using Eq. (28) we can
calculate the closest distance from the wave-packet trajectory
to the splitting wire to be 1.392 69 µm, which agrees well with
the numerical results.

If the minimum distance from the wave-packet trajectory
to the wire is considered to be the maximum radius of the
wire, the minimum current density ρcurrent required for the
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experiment is around 0.15 A µm−2. In the laboratory, current
densities of O(100–101) A µm−2 can be achieved using carbon
nanotubes and graphene [63–65]. The magnetic field expe-
rienced by the wave packet when the triangular trajectory is
closest to the wire is around 0.13 T.

B. Numerical results for the inverse trajectory

The numerical analysis of the inverse trajectory is almost
the same as that of the triangular trajectory section. Here we
set the current through the splitting wire according to Eq. (21),
place the top and bottom wires on the x = −0.5 µm axis, and
adjust the current through the wire so that the trajectory of
the wave packet returns to its initial position along its original
path.

The numerical result of the inverse trajectory is shown in
Fig. 1(c). The wave packets are also incident from the initial
position (−300,±0.5) and the motion time τ = 0.1 s. The
coordinates of the top and bottom wires are (−0.5,±200).
The current through the splitting wire is 0.616 467 A and the
current through the top (bottom) wire is 0.008 23 A. In this
case we obtain a maximum superposition size of 399.977 µm,
which is very close to the result of 400 µm calculated by
Eq. (19). The closest distance from the inverse trajectory to
the splitting wire is 0.999 996 µm and the closest distance
to the top (bottom) wire is 0.011 561 7 µm. Following the
same discussion as for the triangular trajectory, the minimum
current density required for the inverse trajectory scheme is
around 19.6 A µm−2. The magnetic field experienced by the
wave packet when the inverse trajectory is closest to the wire
is around 0.14 T.

Compared to the triangular trajectory, the superposition
size achieved by the inverse trajectory is smaller (400 µm vs
628 µm in our case) with the same motion time. The advantage
of the inverse trajectory is that when the wave packet returns
to its initial position, the velocity of the wave packet is of the
same magnitude as that of the initial velocity and in the op-
posite direction. This means that we can close the trajectories
of the wave packets by using an inverse process of creating
an initial splitting between the wave packets, for example, via
the Stern-Gerlach apparatus. This also helps recover the spin
coherence [55].

C. Scaling of superposition size

The most important factor affecting the superposition size
is the initial velocity of the wave packet with respect to
the wire. According to Eqs. (17) and (19), we can obtain
the change in superposition size with initial velocity for the
triangular trajectory and the inverse trajectory, as shown in
Fig. 2. The superposition sizes that can be achieved for both
trajectories are of the same order of magnitude and increase
linearly with initial velocity. On the other hand, the larger
initial velocity means that we need a larger current density to
deflect the trajectory to form a triangular or inverse trajectory.

Combining Eqs. (23) and (28) gives the current density

ρcurrent = I

πd2
= 1

b

C1,2v
2
0

π
(
v2

0 + αC2
1,2

) , (29)

FIG. 2. Size of the superposition and the required current density
with regard to the initial velocity. The upper red solid line and
black dashed line correspond to the superposition size that can be
achieved for the triangular trajectory and the inverse trajectory for
different initial velocities, respectively. The lower blue solid line
and black dashed line correspond to the current density required to
form a triangular trajectory and an inverse trajectory for different
initial velocities, respectively. Here we have set the impact parameter
b = 0.5 µm, the initial coordinate −x0 = −300 µm, and the motion
time τ = 0.1 s.

where C1 = I/b corresponds to the triangular trajectory [see
Eq. (18)] and C2 = I/b corresponds to the inverse trajectory
[see Eq. (21)]. Figure 2 also shows the change in current
density with initial velocity. We can see that when the initial
velocity is large enough, the current density corresponding
to the triangular trajectory and the inverse trajectory changes
linearly with the initial velocity and the curves almost co-
incide. If we consider that the initial velocity and motion
time of the wave packet are determined, then C1 and C2 are
constants and the current density is inversely proportional to
the initial splitting between wave packets, that is, for smaller
initial splitting, we need larger current density to achieve the
same superposition size.

D. Comparing schemes for creating spatial superposition

Here we briefly compare the different schemes for cre-
ating the spatial superposition. The larger the mass and
size of the superposition state and the longer the coher-
ence time, the more likely it is to induce decoherence due
to thermal radiation, gas collisions, and other noise, e.g.,
fluctuations in electromagnetic fields and phonon excitations
[5,6,15,23–25,66–68]. Different combinations of (a) small
mass (approximately 10−25 kg, 87Rb), large superposition size
(approximately 54 cm), and short coherence time (approxi-
mately 2 s) [69]; (b) small mass (approximately 10−25 kg,
133Cs), small superposition size (approximately 4 µm), and
long coherence time (approximately 20 s) [70]; and (c)
large mass (approximately 10−23 kg, oligoporphyrins), small
superposition size (approximately 100 nm), and short coher-
ence time (approximately 8 ms) [71] have been implemented
in the laboratory recently. However, the methods of light-
pulse and matter-wave diffraction used in schemes (a)–(c)
are difficult to apply to larger masses of superposition states
(e.g., 10−17–10−14 kg) on account of internal heating and too
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short de Broglie wavelengths [66]. In Ref. [53] a full-loop
Stern-Gerlach interferometer was realized using magnetic-
field–spin coupling for a mass of approximately 10−25 kg
(87Rb), a superposition size of approximately 2 µm, and
a coherence time of approximately 4 ms. The advantage
of this method is that it can potentially be used to cre-
ate large spatial superposition (1–10 µm) with large masses
(10−17–10−14 kg) [53–55]. However, since the effect of us-
ing magnetic-field–spin coupling to separate wave packets is
inversely proportional to mass, this limits the superposition
size that can be achieved for macroscopic superposition. Our
solution is to increase a small superposition size (e.g., 1 µm)
to the order of 102 µm by mass-independent diamagnetic re-
pulsion effects [Eq. (4)]. We note that recently there have
been some novel ideas to enhance entanglement signals as
well, for example, by coupling a small-mass two-level system
to a massive mediator oscillator to amplify the entanglement
phase [72] or by the amplified-weak-value phenomenon in
two-setting Einstein-Podolsky-Rosen steering to increase the
sensitivity to weak entanglement signals [73]. Interestingly, in
principle, our scheme can be combined with those in [72,73]
to significantly improve the sensitivity of the detection of
entangled signals.

VI. CONCLUSION AND DISCUSSION

In this paper we proposed a mass-independent scheme to
obtain large spatial superposition. We analytically and nu-
merically studied two possible trajectories, which we call the
triangular trajectory and the inverse trajectory. We found that
given an initial spatial splitting �z0 = 1 µm, an initial veloc-
ity v0 = 0.01 m/s, and total time τ = 0.1 s, the maximum
superposition size achievable with the triangular trajectory is
632 µm and that for the inverse trajectory is 400 µm. This rep-
resents a 400–632 times enhancement on the initial splitting
and is completely independent of the mass used.

For both the triangular and the inverse trajectories, we
chose to require the wave packets to return approximately
to their initial positions. In principle, however, as long as
the spatial separation between the wave packets is less than
or equal to the initial splitting, we can likely recombine the
trajectories of the two wave packets coherently via the Stern-
Gerlach setup (see [55]).

It may not be necessary to accelerate the nanocrystal to
the desired initial velocity by the Stern-Gerlach apparatus.
We could, for example, consider the nanocrystal falling in
a gravitational field while the wires remain stationary in the
gravitational field. Since the gravitational acceleration is about
9.8 m/s2, we can easily achieve a large relative velocity
between the nanocrystal and the wire and thus realize the
same scattering process. Details of this construction are left
for future work.

In addition, further considerations will be required, de-
pending on the method of generating the initial splitting and
final interference. For example, a high-precision controlled
magnetic field is needed to finally recover spin coherence
[74] if using a Stern-Gerlach interferometer. While not con-
sidered in great detail here, this spin coherence has been
studied elsewhere [75–79]. Indeed, spin coherence times have
been gradually improving (approaching 1 s [75,76], even 30 s

FIG. 3. Comparison of the analytical and numerical trajectories
of the particle in the magnetic field. The blue solid line is the
analytical trajectory and the black dot-dashed line is the numerical
trajectory. Trajectories 1, 2, and 3 correspond to impact parameters
of 0.5, 3, and 6 µm, respectively. These three trajectories correspond
to particles with an initial velocity of 0.01 m/s. The splitting wire is
located at the origin and the current through the wire is 2 A.

[77,78]); adapting these to nanocrystals remains an open prob-
lem, but there are no fundamental constraints [79]. The spatial
coherence times can be made 100 s (see [5,15,16]). There are
other very important challenges, achieving pressures, temper-
atures, distances from other sources, and fluctuations [15]. In
addition to these, we will need to ensure that we can close
the interferometer loop [74]. This requires the position, the
momentum, and the spin direction to be aligned (see [59]).
Furthermore, we will need to analyze the spin coherence
including the rotation of the nanocrystal if the NV center is
not at the center of the nanocrystal [59] and the excitations
of the phonons [60]. However, such considerations are left
for further study. Indeed, given this diamagnetic enhancement
does not itself require any spin-based manipulation, there may
be other, simpler candidate systems for creating (and closing)
the initial small spatial splitting which does not concern itself
with such issues. However, it will likely require similar efforts
to ensure coherent interference is possible.
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APPENDIX A: SOLVING AMPLITUDE C

To solve for the constant C in Eq. (10), we consider a point
on the incident trajectory which is at a distance b from the
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(a) (b)

FIG. 4. Relation between the deviation in the final trajectory and the uncertainty of the initial (a) position and (b) velocity. The blue and
orange dashed lines correspond to the inverse trajectories. The blue and orange solid lines correspond to the triangular trajectories. We have
set θs = 3π/4, b = 0.5 µm, and L = 300 µm.

polar axis and satisfies
√

kbu � 1. Then we have

u = C cos{
√

k[π − arcsin(bu)] − θ0}
≈ C cos[

√
k(π − bu) − θ0]

= C cos(
√

kπ − θ0)cos(
√

kbu)

+ C sin(
√

kπ − θ0)sin(
√

kbu)

= C sin(
√

kbu)

≈ C
√

kbu, (A1)

where the relation
√

kπ − θ0 = π/2 is used. The constant C
can be obtained by solving Eq. (A1), which is

C = 1√
kb

. (A2)

Combining Eqs. (8), (12), and (A3), we can finally obtain the
analytical trajectory of the particle as

r =
√

kb

cos
[√

kθ − (√
k − 1

2

)
π

] . (A3)

We can solve the trajectory of the particle numerically using
Eq. (4) and then compare it with the analytical solution in
Eq. (A3), as shown in Fig. 3. The analytical results fit well
with the numerical results.

APPENDIX B: UNCERTAINTIES IN THE PARAMETERS

Here we briefly discuss the effect of uncertainties in the
initial position and velocity on the accuracy of the final posi-
tion. Using the expression for the scattering angle, Eq. (14),
to differentiate the impact parameter and initial velocity gives

�θsi = −A
�b0

b
(B1)

and

�θsv = −A
�v0

v0
, (B2)

where

A = k − 1

k3/2
π. (B3)

The expression for k is given by Eq. (9).
To simplify the discussion, we assume that the impact

parameter is b, the scattering angle is 3π/4 for each scattering,
and the distance from the initial position to the wire and from
the splitting wire to the top (bottom) wire is L. With the
help of Eqs. (B1) and (B2) we can solve the deviation in the
trajectories, when the wave packet returns to its initial position

|�bfin1| = An �b0

bn
Ln (B4)

and

|�bfin2| = An �v0

v0bn−1
Ln. (B5)

Here �bfin1 and �bfin2 are trajectory deviations caused by
inaccuracies in the initial position and initial velocity, respec-
tively. The superscript n represents the number of scatterings
between the diamond and the wire; n = 2 for the triangu-
lar trajectory and n = 3 for the inverse trajectory. The final
trajectory deviation with the initial position and the velocity
uncertainty is shown in Fig. 4. For the same initial position or
velocity uncertainty, the deviation of the inverse trajectory at
the final position is approximately three orders of magnitude
greater than the deviation of the triangular trajectory (we have
fixed L = 300 µm).

It is worth noting that the uncertainty in the initial position
and the velocity here is not the width of the position and
momentum of the wave packet. The uncertainty here refers
to the environmental perturbation of the wave packet position
and momentum, which can be much smaller than the position
and momentum width of the wave packet. For example, Mar-
galit et al. used Stern-Gerlach interferometry to separate 87Rb
atoms and eventually recover spin coherence by precisely
controlling the current and pulse timing [52]. The condition
for recovering spin coherence is that the classical uncertainties
in position and momentum are much smaller than the quantum
uncertainties [74].
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