
Articles
eBioMedicine
2023;91: 104553

Published Online xxx

https://doi.org/10.
1016/j.ebiom.2023.
104553
Multi-omics integrated circulating cell-free DNA genomic
signatures enhanced the diagnostic performance of early-
stage lung cancer and postoperative minimal residual disease
Yun Li,a,g Guanchao Jiang,a,g Wendy Wu,b,c,g Hao Yang,b,g Yichen Jin,d,g Manqi Wu,a Wenjie Liu,b Airong Yang,b Olga Chervova,e Sujie Zhang,a

Lu Zheng,b Xueying Zhang,b Fengxia Du,b Nnennaya Kanu,e,f Lin Wu,b,c,∗∗ Fan Yang,a,∗∗∗ Jun Wang,a,h and Kezhong Chena,i,∗

aThoracic Oncology Institute/Department of Thoracic Surgery, Peking University People’s Hospital, Peking University, Beijing, China
bBerry Oncology Corporation, Beijing, China
cFujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
dDepartment of Clinical Sciences, Peking University Health Science Center, Beijing, China
eUniversity College London Cancer Institute, University College London, 72 Huntley St, London, WC1E 6DD, UK
fCancer Research UK Lung Cancer Centre of Excellence, University College London, 72 Huntley St, London, WC1E 6DD, UK

Summary
Background Liquid biopsy is a promising non-invasive alternative for cancer screening and minimal residual disease
(MRD) detection, although there are some concerns regarding its clinical applications. We aimed to develop an
accurate detection platform based on liquid biopsy for both cancer screening and MRD detection in patients with
lung cancer (LC), which is also applicable to clinical use.

Methods We applied a modified whole-genome sequencing (WGS) -based High-performance Infrastructure For
MultIomics (HIFI) method for LC screening and postoperative MRD detection by combining the hyper-co-
methylated read approach and the circulating single-molecule amplification and resequencing technology
(cSMART2.0).

Findings For early screening of LC, the LC score model was constructed using the support vector machine, which
showed sensitivity (51.8%) at high specificity (96.3%) and achieved an AUC of 0.912 in the validation set prospectively
enrolled from multiple centers. The screening model achieved detection efficiency with an AUC of 0.906 in patients
with lung adenocarcinoma and outperformed other clinical models in solid nodule cohort. When applied the HIFI
model to real social population, a negative predictive value (NPV) of 99.92% was achieved in Chinese population.
Additionally, the MRD detection rate improved significantly by combining results from WGS and cSMART2.0, with
sensitivity of 73.7% at specificity of 97.3%.

Interpretation In conclusion, the HIFI method is promising for diagnosis and postoperative monitoring of LC.
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Research in context

Evidence before this study
Lung cancer is a severe disease jeopardizing people’s health.
Early diagnosis and postoperative MRD monitoring are crucial
procedures to elevate the overall survival for patients with
lung cancer. Liquid biopsy, a non-invasive and sensitive
detection method, has shown great potential in both fields of
lung cancer. However, a low density of circulating tumor DNA
in peripheral blood and interference from normal cells block
its way into clinical utility. Economic expense and turnaround
time are also critical issues to consider.

Added value of this study
We developed a low-pass WGS-based HIFI platform for both
early screening and MRD monitoring, which combined multi-

dimensional features with machine learning methods. HIFI
method exhibited higher accuracy than anterior classic
methods in both fields. The design of HIFI platform also
simplified detection procedure for convenience in real
applications.

Implications of all the available evidence
HIFI method was built for whole diagnosis-therapy process,
in pursuit of convenience and low expense when still
keeping its performance at a relative high level. In early
screening, it can perform as an auxiliary method for LDCT to
eliminate false positive rate. While in MRD detection, HIFI
showed great sensitivity in discerning patients with high risk
of recurrence.
Introduction
Lung cancer (LC) is the leading cause of cancer-related
mortality worldwide,1 among which non-small cell
lung cancer (NSCLC) accounts for ∼85% of the cases.2

The prognosis of LC is significantly correlated with the
stage at which it is diagnosed.3 Therefore, early
screening is an effective strategy to reduce the mortality
of LC patients. Low-dose computed tomography (LDCT)
is the most extensively recommended LC screening
method, which can reduce mortality by 20% among
high-risk patients.4 Although LDCT plays a vital role in
lung cancer early screening, an unsatisfactory false-
positive rate of 96.4% limits its potential in early
screening. Surgery is the major therapy for patients in
early stages. Although radical surgery cured most early-
stage NSCLC (stages I-IIIA) patients, approximately
10–50% of them experienced relapse after surgery,3

which was probably caused by indiscernible residual
cancer cells. Therefore, postoperative surveillance is
essential for early identification of patients with high
risk of recurrence and is indispensable for the admin-
istration of necessary adjuvant therapy. Thus, methods
with high accuracy are required to distinguish malig-
nant tumors from benign pulmonary nodules (PNs) and
to identify patients with high recurrence risk at an early
timepoint.

In recent years, circulating tumor DNA (ctDNA),
which refers to the fraction of the cell-free DNA in the
peripheral blood that is shed by tumor cells, has
emerged as a promising liquid biopsy biomarker for
non-invasive cancer screening and post-treatment sur-
veillance.5,6 We had previously reported that ctDNA was
significantly more sensitive to the early diagnosis of LC
than serum protein markers7 and have shown that
ctDNA detection could test postoperative MRD which is
significantly associated with the poor prognosis of LC
patients.8 With continuous improvements in technology,
the detection accuracy of ctDNA keeps improving.9,10

However, there are still several concerns regarding
clinical applications of ctDNA. Due to the cell-free DNA
(cfDNA) abundance of non-cancerous origin coupled
with its rapid metabolic rate, the concentration of ctDNA
is extremely low, especially in operable early-stage can-
cers.10 Very few methods meet the required sensitivity
currently; thus, the detection rate of stage I LC, especially
for adenocarcinoma, is unsatisfactory even with higher
sequencing depth.11 Similar issues exist in postoperative
MRD detection. Moreover, the clonal hematopoiesis of
indeterminate potential (CHIP), which increases with
age, is another common confounding factor interfering
with ctDNA mutation detection.12 To overcome these
technical barriers, many studies enhance sequencing
depth to increase the detection rate of ctDNA mutation
but the improvement is just passable.13 On the other
hand, WGS focuses on the genomics breadth instead of
depth, which captures abnormal signals from another
dimension.14 Our previous retrospective study suggested
that incorporating multi-omics features might provide a
more comprehensive view of the patients, systematically
reducing investigational bias and facilitating more ac-
curate cancer screening and MRD detection strategies.15

Therefore, a WGS-based approach integrating multiple
cancer genomic features may provide a solution to the
current challenges.

In this study, we investigated a low-pass WGS tech-
nology to acquire diverse genetic variation signatures of
cfDNA and developed a hyper-accurate method for
NSCLC detection, characterized by cfDNA genomic end
motifs,16,17 fragmentation,18 and Bincount.19,20 This HIFI
method was further applied to both LC screening and
postoperative MRD detection, combined with a hyper-
co-methylated read approach21 and modified cSMART
www.thelancet.com Vol 91 May, 2023
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2.0.22 Consequently, the HIFI method showed favorable
results for the diagnosis and treatment of LC.

Methods
Study design and recruited participants
We performed a prospective observational study
involving multiple centers from Beijing and Fuzhou. A
total of 670 participants limited to NSCLC were enrolled
for constructing the lung cancer model and performing
validation tests during 2019–2022 (Fig. 1a). A discovery
cohort consisting of 145 NSCLC patients and 163
healthy control (HC) or participants with benign PNs
was used for lung cancer early screening model con-
struction. Then, the validation effect of this model was
then tested on an independent validation cohort
(N = 306) (Table S1). Sex was self-reported by partici-
pants and we assigned similar ratios of sex in both co-
horts. Detailed clinical information of these participants
is summarized in Table S2. For early screening tests of
lung cancer, 358 participants with malignant or benign
pulmonary nodules were taken from Peking University
People’s Hospital and Beijing HAIDIAN Hospital with
pathological analysis as gold standard and 297 in-
dividuals from different medical examination centers in
Beijing and Fuzhou as healthy control cases verified by
chest CT scan and a one-year follow-up. Sixteen samples
in the healthy control set were excluded due to recent
surgical resection and prior diagnosis of cancer. Twenty-
five individuals were excluded from the cohort due to
the poor sample quality or failed raw data QC (Fig. 1a).
The modified HIFI (High-performance Infrastructure
For MultIomics) method21 was used to distinguish lung
cancer patients from healthy/benign nodule individuals
using machine learning methods (Fig. 1b). To test the
monitoring ability of the lung cancer screening model in
the postoperative treatment effect of the patients, pa-
tients (N = 58) who underwent surgery and conducted
MRD detection experiments were enrolled. Post-
operative blood sample was drawn on the third day after
surgery before applying any adjuvant therapy. The low-
pass WGS sequencing method at a depth of 2.5× and
cSMART2.0 (the captured single-molecule amplification
and resequencing technology) assay were performed for
MRD detection21,22 (Fig. 1b right).

DNA isolation and quality inspection
Peripheral blood was collected from each participant
and stored in Streck Cell-Free DNA BCT tubes
(STRECK, USA). Plasma was purified by centrifugation
at 800g for 10 min at 4 ◦C. The plasma was centrifuged
again at 18,000 g for 10 min at room temperature to
remove any remaining cellular debris and stored
at −80 ◦C until DNA extraction. DNA was isolated from
the plasma using the Qiagen Circulating Nucleic Acid
Kit (Qiagen GmbH) and eluted in LoBind tubes
(Eppendorf AG). The concentration and quality of
cfDNA were assessed using the Bioanalyzer 2100
www.thelancet.com Vol 91 May, 2023
(Agilent Technologies). Isolated cfDNA was stored
at −20 ◦C until library preparation. The genomic DNA of
fresh frozen tissue was extracted using the DNeasy
Blood & Tissue Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions and was purified
by AxyPrep™ Mag Tissue-Blood genomic DNA Kit
(Axygen, America). The quantification of DNA was
measured by the Qubit dsDNA HS Assay Kit (Life
Technologies, Eugene, OR).

Low-pass WGS library construction
DNA (5 ng) of each sample was prepared for con-
structing the WGS library. DNA samples were subjected
to end repair/dA-tailing (5× ER/A-Tailing Enzyme Mix).
The dTTP-tailed adapters were ligated to both ends of
the repaired/dA-tailed DNA fragments using WGS
ligase and amplified by PCR. The PCR products from
each library were subsequently purified with an Agen-
court AMPure XP PCR Purification Kit (Beckman
Coulter, Brea, CA, USA), and each DNA library was
quantified by the KAPA Library Quantification Kit (Kapa
Biosystems, USA); the size was confirmed using a
Bioanalyzer 2100 (Agilent, USA). Equal amounts of
sequencing libraries were pooled and analyzed using the
Illumina NovaSeq 6000 platform. The FASTQ files were
processed using the Cutadapt software (https://github.
com/marcelm/cutadapt/) to remove the adaptor and
end sequence along with sequences below 50 bp. The
clean data were aligned to the human reference genome
GRCh37 using bwa-mem (https://github.com/lh3/bwa).
Duplicate reads were marked using Sambamba (https://
github.com/biod/sambamba/). The mapping rate,
duplicate rate, and genome coverage were calculated
using samtools. Reads with a mapping rate above 90%, a
duplicate rate below 25%, and coverage above 50%
passed the quality control. Low-quality reads, marked
duplicates, and sequences with no perfect match be-
tween reads 1 and 2 were subsequently removed after
being filtered further by samtools.

Genome characteristics
Three genomic features (Fragment, Motif, and Bin-
count) were determined through low-pass WGS detec-
tion to distinguish lung cancer patients from healthy/
benign individuals. The detailed filtering process of
different genome characteristics is described below.

Motif
The motif mode was built using Pysam (https://pysam.
readthedocs.io/en/latest/) to calculate the percentage of
4-mer 5′end. We identified 256 different types of 4-mer
5′end motifs and calculated their percentages without
considering chromosome Y and unidentifiable bases.16

The motif types were filtered as follows: the Wilcoxon
rank-sum test was performed to filter out the features of
the groups that were significantly different (p ≤ 0.05);
Random Forest (RF) was used for reducing the
3
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Fig. 1: Overview of the study design and the cohort of the participants. (a) The participants of the lung cancer early screening cohort. A
discovery cohort consisting of 145 lung cancer patients and 163 healthy control (HC) or participants with benign PNs was used for lung
cancer early screening model construction. The validation effect of this model was tested on an independent validation cohort (N = 306). (b)
Study design for the early detection and MRD monitoring of lung cancer. For the early screening of lung cancer, hyper-co-methylation
signatures and the genomic features detected by low-pass WGS were used for lung cancer screening model construction. And genomic
features detected by low-pass WGS features were combined with the ctDNA mutation results detected by cSMART2.0 methodology for MRD
monitoring. AAH, atypical adenomatous hyperplasia; BML, benign metastasizing leiomyoma; LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma.
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dimensionality of the 133 motifs left in the previous
step; finally, 73 motif types were left for further analysis.

Fragment
The fragmentation model was built by Pysam to calcu-
late the length of the insertion fragments and the ratio
of short/long fragments in different regions.23 The
entire genome was first excluded from the X, Y, and MT
chromosomes and then divided into the continuous
windows of 2M bases. The proportion of fragments in
each window and the ratio of shorter versus longer
fragments were calculated and produced 11,616 fea-
tures. 2× XP beads were used to recover fragments
above 100 bp during library construction. Wilcoxon
rank-sum test was performed to filter out the features of
the groups that were significantly different (p ≤ 0.05).
Then, Random Forest was used for reducing the di-
mensions with 1382 features left in the previous step,
based on the importance of the features, and finally, 357
areas were retained.

Bincount
The entire genome was first excluded from the X, Y, and
MT chromosomes and then divided into the consecutive
windows of 2M bases. The Feature Counts software
(http://subread.sourceforge.net/) was used to count the
number of fragments in each window.19 To eliminate
the bias caused by the size of the library, the formula
used for normalization was:

BinCounti =

log( Fragmenti ∗ 109

TotalMappedFragments ∗WindowLengthi
+ 1, 10)

Here, “i” represents the ith window; “Fragmenti”
represents the number of fragments compared to the ith
window; “TotalMappedFragments” represents the total
number of fragments of the sample excluding X, Y, and
MT chromosomes; “WindowLengthi” represents the
length of the ith window (2 × 105 in this case). The
Wilcoxon rank-sum test was performed to filter out the
features of the groups that were significantly different
(p ≤ 0.05). Random Forest was used for reducing the
dimensionality of 603 features left in the previous step;
finally, 336 areas were retained.

Bisulfite-sequencing library construction
Approximately 5–20 ng of cfDNA was taken from each
participant for constructing the bisulfite-sequencing
library. The DNA samples were subjected to bisulfite
conversion using EZ-96 DNA methylation-lightning
MagPrep (Zymo Research, D5047) following the
manufacturer’s protocol. Then, the converted cfDNA
was ligated with adaptors and amplified using the Hieff
NGS® Methyl-seq ssDNA Library Prep Kit for Illumina
(Yeasen) following the manufacturer’s protocol. The
www.thelancet.com Vol 91 May, 2023
libraries were hybridized and captured using the Twist
Fast Hybridization and Wash Kit and a Twist panel
with a customized design. After being purified by
Agencourt AMPure XP beads (Beckman Coulter,
USA), the libraries were quantified by the KAPA Li-
brary Quantification Kit (Kapa Biosystems, USA);
finally, the size was confirmed using a Bioanalyzer
2100 (Agilent, USA). Equal amounts of sequencing li-
braries were pooled. Then, the libraries with an average
coverage of 200× were analyzed using the Illumina
NovaSeq 6000 platform by performing 2 × 150 bp
paired-end sequencing.

Characterizing bisulfite markers
The FASTQ files were processed using Cutadapt
(https://github.com/marcelm/cutadapt/) to acquire clean
data by removing the adaptor or poly-tail and end
sequence, along with sequences below 50 bp. The raw
data of methylation were aligned to the human refer-
ence hg19 from the 1000 Genomes Phase 3 resources
with decoy and patch sequences using the BSMAP
(https://code.google.com/archive/p/bsmap/) alignment
module. The mapped reads were split by top/bottom
strand using bamtools (https://github.com/pezmaster
31/bamtools) to remove duplicates, and then these
strands were re-merged. The BSMAP aligner included a
tag in the BAM file (ZS), which indicated the top/bot-
tom strand and the forward/reverse read. This tag was
used to split the BAM file containing the mapped reads.
Several paired-end reads overlapped when 150 bp
paired-end reads were used. As there was a chance of
incorrect counting of the converted/non-converted Cs in
the overlapping regions twice while evaluating percent
methylation, bamUtil clipOverlap (https://github.com/
statgen/bamUtil) was used to prevent such a bias, and
BisMark (https://github.com/FelixKrueger/Bismark)
was used to determine read-level cytosine methylation
states. Each captured area was considered as a unit to
count the methylation status of each CpG site of all
reads in the area.24

We defined methylated haplotype diversity (MHD)
for each candidate region which was used to calculate
the fraction of haplotype of all possible lengths that were
fully methylated in each read.

MHD= 1
N

x ∑N
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑m
j=1

hij

∑L
k=1

ki

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Here, “N” indicates the total number of reads in the

candidate region; “m” indicates the total number of hap-
lotypes in the ith read, which contains continuous meth-
ylated CpGs; “hij

” indicates the jth haplotype in the ith
read; “L” indicates the total number of CpGs (including
methylated and un-methylated loci) in the ith read.
5
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Co-methylation model
construction
The reference data of
genomic methylation

w

characteristics of lung cancer were obtained from TCGA
database, in-house MeDIP cfDNA, GEO RRBS/WGBS,
and other published data.25–27 It generated 757 regions of
interest (ROIs) containing ∼30K CpG sites for lung
cancer-specific methylation characteristics of cfDNA
(Fig. S1). Then, these methylation CpG sites were
clustered in the development set (145 LC, 163 benign/
HC individuals) for differentially methylated region
(DMR) identification, and 378 were verified. The reads
with at least three methylated sites within a sliding
window of five CpGs or at least two methylated sites
within a sliding window of three or four CpGs were
extracted for co-methylated reads.

This step was repeated continuously along all the
reads to ensure that consistently enhanced methylation
signals were obtained. All obtained CpG clusters were
regarded as the methylated haplotypes of the whole
training cohort. The lung cancer-specific methylated
haplotypes were selected using Fisher’s exact test and
were significantly enriched in LC individuals compared
to HC/benign individuals (p < 5.00E-02). Each of the
development sets generated a vector according to the
specific methylated haplotypes, and a co-methylation
classifier was constructed when applying these vectors
to the extreme gradient boosting (XGBoost) classifier,
after comparison among adaptive boosting (AdaBoost),
Gaussian process, K-nearest neighbor (KNN), RF, sup-
port vector machine (SVM) and XGBoost (Fig. S2a).

The modified HIFI method for lung cancer screening
In our previous investigation, the HIFI method showed
a strong diagnostic value in differentiating hepatocellu-
lar carcinoma (HCC) from liver cirrhosis.21 Here, we
modified the HIFI method for the early detection of
lung cancer, which integrated four genomic features:
motif, fragment, Bincount, and co-methylation model. A
co-methylation model was initially constructed by ma-
chine learning to distinguish LC individuals from HC/
benign individuals in the training cohort. Three
distinctive genomic features (Motif/Fragment/Bin-
count) were detected through low-pass WGS technology
and selected for constructing the lung cancer detection
model. To obtain the best diagnostic performance, we
constructed logistic regression models using the pre-
dictive score of the four individual models as input
features to integrate the outcome of each model based
on training and validation datasets to establish the signal
for detecting cancer.

The LC score model construction
For lung cancer detection, a machine learning method
of SVM was selected as classifier with the highest area
under the curve (AUC) of
0.945 among AdaBoost, Ga-
ussian process, KNN, RF,
SVM and XGBoost (Fig. S2b).
SVM was implemented to construct individual genomic
feature-based models28 based on three parameters: (1) C:
Penalty coefficient; (2) Kernel function; and (3) Gamma.
For the training dataset, 10-fold cross-validation was
used to determine the best combination of parameters.
The cutoff value was set at the point with the best
diagnostic accuracy in the validation set. To obtain the
best diagnostic model,29 we constructed logistic regres-
sion models using the predictive score of the four in-
dividual models as input features to integrate the
outcome of each model based on the discovery and
validation datasets. The probability of lung cancer in a
patient was calculated as:

Pr (LC) = exp (Z)/(1+ exp (Z))
MRD detection and postoperative monitoring
Genomic DNA was isolated from frozen fresh tumor
samples and quantified using the Bioanalyzer 2100
(Agilent Technologies). WGS was performed using the
purified DNA. The ctDNA of the post-treatment plasma
samples was prepared as previously described, and
plasma DNA was prepared for constructing the WGS
library. We conducted a series of experiments on the
input amount and sequencing depth of ctDNA, the re-
sults showed that better detection sensitivity and accu-
racy can be obtained when the input amount was 30 ng
and the sequencing depth was 35,000×. DNA
sequencing was performed by a sensitive assay termed
cSMART2.0 (the captured single-molecule amplification
and resequencing technology) (Berry Oncology, Fuzhou,
China) with a 218 hotspot genes panel (Table S6). The
detailed steps of cSMART2.0 refer to the published
paper.22,30,31

Machine learning
Each classifier (SVM/Random Forest/Logistic Regres-
sion) was implemented in python with the scikit-learn
(1.0.1, https://scikit-learn.org/stable/) library. Using
the processed input data to quantify the group data from
two sets, the machine learning classification model was
constructed by random forest, and the optimal threshold
was evaluated by the receiver operator characteristic
(ROC) curve.

Sample size estimation
The required sample size for each non-diseased and
diseased group was defined by:

N =Z2
α
2
V(ÂUC)
d2
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Here, α is calculated as follows, with ϕ−1 considered
as the inverse of standard cumulative normal distribution
(assuming the pre-determined value of AUC = 0.912)32:

α=ϕ−1(0.912)×1.414
V(ÂUC) can be evaluated as follows:

V(ÂUC) = (0.0099 × e−α22 )×(6α2 + 16)
To estimate AUC with 95% confidence, the degree of

precision of estimate was 0.05, and the required sample
size was obtained by inserting V(ÂUC) and d = 0.05 in
Eq (1). Thus, the required sample size for each group in
the validation cohort is 95.

AUC confidence interval
To confirm the obtained results of the LC score per-
formance obtained via bootstrapping, we explicitly
calculated the margin of error for AUC, using Hanley
and McNeil (1982) method.33

In brief, (1 −α)⋅100% confidence interval for AUC
could be derived from standard normal distribution as
AUC±zα/2⋅SE(AUC), where zα/2 denotes a quantile of
normal distribution, SE(AUC) is standard error, which
could be calculated as:

SE(AUC) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
AUC(1−AUC)+(n1−1)(q1−AUC2)+(n2−1)(q2−AUC2)

n1n2

√
c

where n1 and n2 are simple sizes for control and case
groups respectively, and q1 and q2 are defined as:

q1 = AUC

2−AUC
, q1 = 2⋅AUC2

1+AUC
.

Substituting our data into theses formulae results in
SE(AUC) = 0.0168969, then for α = 0.05 zα/2 ≈ 1.96
and the confidence interval would be:

[AUC − zα/2 ⋅ SE(AUC),AUC+ zα/2 ⋅ SE(AUC)]

= [0.8788821, 0.9451179],

which is very close to the results obtained by the boot-
strapping i.e. [0.880, 0.942].

Evaluating the benefit to the population
It is a good practice to optimize the discovered bio-
markers for sensitivity or specificity based on their
www.thelancet.com Vol 91 May, 2023
intended clinical application. For tests where a positive
biomarker result leads to an action, while a negative
biomarker result is associated with the standard of care
for the population, the formula reads:

sensitivity

1−specificity
≥ 1−prevalence

prevalence
⋅
harm

benefit

Here, harm/benefit indicates the ratio of the net
harm of a false-positive test result to the net benefit of a
true-positive test result.34 In our case, with 0.15% prev-
alence, sensitivity 0.518 and specificity of 0.963, we
found that harm

benefit ≤ 0.02103155, or about 1:48, which
could be interpreted as unnecessary clinical actions (e.g.
lung X-ray or CT scan) on 48 of control subjects testing
positive should be tolerated to benefit one case subject
testing positive.

Statistics
After model construction, the optimal threshold was
evaluated by the ROC curve. The Youden index was
used to select the optimal threshold for improving the
sensitivity and specificity of tumor detection.

Ethics statement
All procedures were approved by the Medical Ethics
Committee (2019PHB058-02) of the Peking University
People’s Hospital and registered on Clinical ClinicalTrails.
gov (NCT04558255). Informed consent was obtained from
all enrolled participants prior to participation.

Data deposition and materials sharing
The data that support the findings of this study have
been deposited into CNGB Sequence Archive (CNSA) of
China National GeneBank DataBase (CNGBdb) with
accession number CNP0003151.

Role of the funding source
The funder took no role in study design, data collection,
data analyses, interpretation, or writing of report.

Results
The overview of the design and the participants
In this study, the HIFI method21 was used to distin-
guish lung cancer patients from healthy/benign nodule
individuals and filter out postoperative patients with
high risk of recurrence, mainly based on three genomic
features (motif/fragment/Bincount) which had shown
their privilege in previous studies.17–20 In order to ach-
ieve better detection efficiency, HIFI score was further
integrated with co-methylation features and ctDNA
mutations respectively, in order to construct the LC
screening model and MRD monitoring model (Fig. 1b).
Patient demographics and clinical information are
shown in Table S1. A total of 614 individuals from
7
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multiple centers were included according to our inclu-
sion and exclusion criteria. Initially, we performed
detection on the discovery cohort (training set, N = 308)
with 145 NSCLC patients and 163 healthy control (HC)
or participants with benign PNs (Fig. 1a) (Table S2).
The LC score, lung cancer screening model, was con-
structed by co-methylation patterns based on the HIFI
method platform with machine learning classifiers. The
validation cohort (test set, N = 306) was obtained from
the subsequent prospective samples, which comprised
143 NSCLC patients and 163 HC/Benign. Specifically,
stage I cancer individuals comprised 80.7% in the dis-
covery set, and 81.1% in a single-blind cohort of vali-
dation set (Table S1). The HIFI method was also used
to monitor patients after surgery and evaluate their
postoperative effects status using WGS combined with
cSMART2.0 methodology in a subset cohort containing
58 postoperative individuals. In sum, we applied the
HIFI method in the whole diagnosis-treatment pro-
cedure of LC.

Genomic alteration features of lung cancer patients
Ultra-low-pass whole-genome sequencing (average
sequence depth is 2.5×) of plasma cfDNA was used to
distinguish genomic features of lung cancer patients
from healthy control, which covers plasma DNA end
motifs, fragment, and Bincount. We selected these three
vectors to construct models for the following reasons. In
the generation of plasma DNA, the cleavage of DNA was
not random, but with preferred tendencies. Such
preferred ends of several nucleotides called motif were
observed in several cancers, including hepatocellular
carcinoma and lung cancer.17 It was believed genome
alterations had an influence on global aberrations on
DNA endonucleases and type-specific chromatin acces-
sibility also contributed to DNA fragmentation, both of
which explained the distinctiveness of the landscape of
plasma DNA motifs.17,35 Fragmentation was a sensitive
vector that depicted the dimension of fracture size in
plasma DNA. Genomic profiles in patients with cancers
were more cluttered than healthy people, while the same
scenario applied to fragmentation profiles, for the frag-
ment’s strong correlation to nucleosomal DNA and
nucleosome distances. Multi-centered results had vali-
dated the practicability of fragmentation profiles in pan-
cancers including lung cancer.18 Bincount was another
indicator to present the characters of plasma DNA
fragments which focused on quantifying tumor ge-
nomic instability, exhibiting great detection ability in
colorectal cancer and bladder cancer.19,20

To determine the differences in fragment size and
coverage in a position-dependent manner across the
genome, we mapped the fragments to their genomic
origin and evaluated fragment lengths covering the
whole genome in windows of 2 Mb, which performed
first-class sensitivity in low-coverage sequencing.36 The
proportion of fragments 20–150 bp long was counted in
each window, and particular fragments proportion of
different sizes was calculated to optimize the criterion of
fragmentation, which was reported as an optimal clas-
sification standard.23 Fragments of cfDNA in plasma are
typically 166 bp in size, which was marked with a dotted
line in Fig. 2a. We observed an enrichment shift of
cfDNA fragment sizes in this line between lung cancer
patients and healthy control (p < 0.05, Wilcoxon rank
sum test). The lung cancer ctDNA were more frag-
mented than non-mutant cfDNA, with the maximum
enrichment in 100–150 bp, as well as enrichment in the
size ratio of 20–150 bp vs 160–180 bp (Fig. 2b).
Genomic instability occurs in most cancers and can be
quantified by higher normalized read counts in specific
regions.37 We divided the entire genome into windows
of 2M bases and calculated the logarithm of the FPKM
(Fragments per Kilobase Million) value of the read count
in each window. The Bincount differences between LC
and HC/benign were evaluated by the Mann–Whitney
U test, and the scores of LC patients were higher than
that of HC/benign individuals in certain regions
(Fig. 2c). The plasma DNA end motifs were identified
using the first four nucleotide sequences (i.e., 4-mer) on
each 5′ end of the plasma DNA fragment after align-
ment to the reference genome. Each end motif had 44 or
256 features.16 The Mann–Whitney U test was per-
formed to cluster the different DNA end motif features
between the LC and HC/benign individuals. Among
these, the top eight motifs were significantly different
between the two groups (Fig. 2d). When applying the
5 mC classifier model to retrieve the validation cohort,
the classification could roughly distinguish LC in-
dividuals from HC/benign individuals. The heat map of
the methylation model might be applied to different
clinical subgroups, including consolidation tumor ratio
(CTR), nodule type, and histological diagnosis (Fig. 2e).

The evaluation performance of the HIFI method in
lung cancer early screening model
To evaluate the diagnostic performance for lung cancer
identification, a weighted diagnostic model was con-
structed using a machine learning method that took all
individual genomic features (hypo-methylation, motif,
fragment, and Bincount) into account. Methylation had
great potential in early screening and were proved to be
of the priorities among cfDNA characters in cancer early
detection, so we also brought methylation into early
screening model as an indicator to improve model’s
stability.38 Support vector machine (SVM) was used to
classify the best vectors of HIFI platform. When
applying this LC score model to retrieve the validation
cohort (LC = 143, HC/benign = 163), the principal
component analysis (PCA) classification could also
roughly distinguish LC patients from HC/benign in-
dividuals (Fig. S3). The privilege of SVM was further
validated with the highest AUC of 0.945 among adaptive
boosting (AdaBoost), Gaussian process, K nearest
www.thelancet.com Vol 91 May, 2023
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Fig. 2: Multiple genomic feature alteration and methylation clustering. (a) Fragment size distributions between the LC patients from HC/
benign ones. (b) The density distribution of six specific fragment lengths between the LC patients from HC/benign ones. (c) The evaluation of
genome-wide cfDNA stability characteristics by Bincount, and analyses of healthy cfDNA (top), benign (middle), and lung cancer (bottom)
Bincount profiles based on chromosome 7. (d) Statistical results of cfDNA genomic end motif differences between the LC patients from HC/
benign ones. The top eight end motifs were significantly different between the LC patients from HC/benign ones. (e) Heat map classification of
LC patients and HC/benign participants using co-methylation features. To all data in Fig. 2, n = 614, p-value were computed with Wilcoxon rank
sum test. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; p > 0.05 was considered not significant (ns). NC, negative control. AAH,
atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; LUSC,
lung squamous cell carcinoma; LUAD, lung adenocarcinoma; CTR, consolidation tumor ratio, representing the value from 0% to 100%. pGGO,
pure ground-class opacity; mGGO, mixed ground-glass opacity.
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Fig. 3: The diagnostic performance of the LC score model in lung cancer patients. (a) The obtained scores of all participants in the validation
cohort (n = 306) when evaluated by LC score model. The cutoff value of the LC score was set as 0.38. Upper: clinical characteristics of lung
cancer patients. (b) ROC curves and associated AUC values in the validation cohort (n = 306) when evaluated by different genomic feature
models. (c) ROC curves and associated AUC values for lung adenocarcinoma patients (n = 288). (d) ROC curves and associated AUC values for
solid nodule patients (n = 57) when evaluated by LC, VA, Mayo, and PKU models. (e) The obtained sensitivity of different clinical stages in the
validation cohort when evaluated by LC score model and protein biomarker model at the specificity of 96.3%.
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neighbor (KNN), random forest (RF), SVM and extreme
gradient boosting (XGBoost) (Fig. S2b). This model was
used to assess the genomic features for each one in the
validation cohort and provide an independent score (LC
score). The score ranged from 0 to 1. A large proportion
of the lung cancer patients had a high score, and almost
all healthy people had lower scores (Fig. 3a and Fig. S4).
The detection performance of these classifier models
was measured by the ROC curve based on the inde-
pendent validation dataset. The fragmentation model
www.thelancet.com Vol 91 May, 2023
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achieved an AUC value of 0.831 (95% CI: 0.765–0.866)
(Fig. 3b). When all Bincount features were taken for
machine learning using the weight generated by the
SVM, the ROC analyses for the detection of patients
with lung cancer showed an AUC value of 0.759 (95%
CI: 0.705–0.810). To efficiently and accurately identify
lung cancer patients, a motif classifier was constructed
using SVM to retrieve these motifs, where the magni-
tude of each end motif was considered. The resulting
motif classifier model showed a detection ability with an
AUC of 0.815 (95% CI: 0.770–0.859) (Fig. 3b). The
methylation model achieved an AUC of 0.826 (95% CI:
0.778–0.868) (Fig. 3b). In this study, five serum protein
biomarkers (CEA, CYFRA21-1, NSE, CA-199, CA-125)
were also measured for clinical cancer detection
(Table S3), and a multivariate predictive model based on
SVM was constructed and tested on the validation
cohort with bootstrapping AUC (95% CI) of 0.700
(0.642–0.756) (Fig. 3b). Collectively, all four genomic
features (hypo-methylation, end motif, fragment, and
Bincount) showed better diagnostic characteristics than
clinically used protein biomarkers for distinguishing LC
individuals from HC/benign ones.

The LC score model, which integrated all the
above four genomic features, has an excellent per-
formance on the training set (Fig. S5a), and also
shown an AUC value of 0.912 (95% CI: 0.880–0.942)
on the validation set (Fig. 3b). Similar detection
capability was seen for lung adenocarcinoma and
squamous patients, which is the most common type
of lung cancer (Figs. 3c and S4). As to patients with
different clinical stages (stage I, II, III, and IV), the
LC score model still showed the best screening
performance than other single feature models
(Fig. S5). When concerning the diagnostic perfor-
mance for solid nodules, the LC score model showed
superior detection efficiency than Mayo,39 PKU,40 and
VA models,41 and achieved an AUC of 0.950 (95%
CI: 0.880–0.995) (Fig. 3d). Protein biomarkers were
known as the important biochemical indicators for
early screening of lung cancer. From the comparison
of the detected sensitivity for lung cancer patients in
the validation set, the LC model showed excellent
performance in different clinical stages than protein
biomarkers, especially in the early clinical stages
(Fig. 3e), manifesting its practical value in clinical
use. The performance of the screening model was
also assessed in different clinical subgroups of lung
cancer patients. The LC scores did not show differ-
ence for different nodule location subtypes (LU, LI,
RU, RM, RI) and sex (Fig. S6a and g). Lung solid
nodules are more severity types than GGO, and
these patients got much higher LC scores (Fig. S6b,
p < 0.01, Wilcoxon rank sum test). The LC scores
significantly increased with the development of the
clinical stage (Fig. S6c, p < 0.0001, Wilcoxon rank
sum test). Different immune infiltration situations
www.thelancet.com Vol 91 May, 2023
and volume represent different developmental stages
of the tumor, and the patients with advanced tumor
volume and invasive adenocarcinoma of lung cancer
showed significantly higher LC scores (Fig. S6d, e
and f, p < 0.05, Wilcoxon rank sum test).

In order to verify whether the coverage was enough
for HIFI methods and further explore the limit of low-
pass WGS, we checked the outcome of 2.5×, 2×, 1.5×,
1×, 0.5× genome coverage in training set and validation
set independently (Fig. S7). The AUC was relatively
stable even at 1× coverage, proving the veracity of 2.5×
coverage we conducted in this research and providing a
possibility to reduce the coverage with non-inferior
outcome.

Evaluation of the HIFI method in patients with
GGO
Ground-glass Opacity (GGO) was a kind of radiologic
appearance, which always linked to pre-invasive and
indolent tumors.42 It shed lower level of ctDNA and
caused ambiguous result in lung cancer screening.10

The efficiency of the LC score model was also evalu-
ated in 49 patients who were identified as ground-glass
opacity by clinical imaging diagnosis and clinical
characters of these cases were present in Table S4.
Mutations of these patients were also captured from
blood samples and resected tissue based on
cSMART2.0 assay. Mutation profiles of tumor tissue
and plasma samples in these patients were shown in
Fig. 4a. In tumor-naïve methods, we used blood test
results as the only criteria, while the tumor-informed
methods also took sequences of tissue samples into
consideration to make a malignant differentiation. The
majority of patients were detected with tumor tissue
mutations positive while plasma samples were negative
(TpBn). Only a few tissue-positive patients were judged
as plasma mutations positive (TpBp). Different detec-
tion sensitivity was achieved among these three
methods, it was 14.3% by the tumor-naïve method and
16.3% by the tumor-informed plasma mutation detec-
tion method, while it was 75.5% when these patients
were evaluated by the LC score model (Fig. 4b). These
results confirmed that the LC score model also
demonstrated superior diagnostic efficiency in the very
early lung cancer stage. The LC score model showed
different detection performances among different
subtypes of GGO samples, with mixed GGO (mGGO)
patients showing significantly higher LC scores than
pure GGO (pGGO) patients (Fig. 4c, p < 0.0005, Wil-
coxon rank sum test). The acquired LC score showed a
positive correlation with cfDNA concentration and
CTR of solid nodules (Fig. 4d and e).

Furthermore, when adjusted to a population (Chi-
nese population, aged 20–80 years) with a low inci-
dence of 0.15%,43 the LC score model, with sensitivity
of 51.8% and the specificity of 96.3%, acquired a very
high NPV of 99.9%. Hence, it might be used as a
11
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Fig. 4: The evaluation performance of the LC model in patients with lung ground-glass opacity (GGO). (a) Mutation profiles of tumor and
plasma. Upper column chart: LC score of each patient; Middle block diagram: clinical information of patients; Lower block diagram: the gene list
with mutant frequency ≥4% in these patients. The mutant frequency of HDAC2 and NSD1 was 2%, but they were detected in both tumor tissue
and plasma. Asterisk indicates mutations detected in the tumor tissue and plasma. (b) The detected positive sensitivity by different methods
(n = 49). TpBp, both tissue and plasma were mutation-positive; TpBn, tissue was positive while blood was negative; TnBn, both tissue and
blood were mutation-negative. (c) The sample LC score differences between mGGO from pGGO (n = 49, Wilcoxon rank sum test). (d) Cor-
relation between the LC score and the cfDNA concentration (n = 49, Spearman’s rank correlation rho). (e) Correlation between the LC score and
the proportion of solid nodules (n = 49, Spearman’s rank correlation rho).
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population-based LC preliminary screening tool to
minimize the risk of radiation exposure and reduce
patients’ unnecessary concerns. Additionally, a trade-
off value was calculated that showed a harm/benefit
value below 0.02103155, approximately 1:48 (the for-
mula is presented in the section on methods).34 These
results indicated that with this model we can recognize
one lung cancer patients at a maximum cost of 48
participants’ healthy or with benign nodules falsely
categorized into positive. The results above predicted a
beneficial clinical application of the HIFI method in
lung cancer early screening.
Multi-omics integration in postoperative residual
disease monitoring
The detection of trace tumor mutation information in
plasma remains a major technical challenge in assessing
the risk of recurrence in patients after surgery. The HIFI
method was thus used to evaluate the postoperative MRD
status of lung cancer patients combined with mutation
panel detection. The clinical information of these
patients is listed in Table S5. An advanced targeted next-
generation sequencing assay cSMART2.0, which speci-
alized in capturing genomic characters under low ctDNA
density, was applied for ctDNA mutation’s detection.22,44
www.thelancet.com Vol 91 May, 2023
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Fig. 5: Comparisons of ctDNA and ctDNA combined with WGS detection in lung cancer postoperative MRD monitoring. (a) Study design
of the postoperative MRD monitoring. (b) The positive rate of ctDNA detection in patients before and after the operation. The left shows only
ctDNA signals and the right shows ctDNA detection combined with WGS (ctDNA + WGS) results. Left: 52.1% (24/46) and 19.6% (11/56). Right:
71.4% (30/42) and 28.6% (16/56). (c) The statistical of patients’ recurrence-free survival (RFS). The above figure showed samples detected only
by ctDNA mutation and the bottom was evaluated result by ctDNA + WGS (n = 56, log-rank test). (d) The statistical result for the staging of
MRD-positive samples after the operation. Left: the number of MRD-positive patients. ctDNA (n = 10), ctDNA + WGS (n = 14). Right: the ratio
of MRD-positive patients. (e) Confusion matrices showing the ctDNA and ctDNA + WGS detection for recurrence prediction in the postoperative
population. (f) The mutation detection on tumor recurrence patients after operative (n = 19 patients), using ctDNA (gray) and WGS (blue)
methods. Bar plots were used to calculate mutation signature of in the postoperative patient plasma. The bar graph on the left was the VAF of
the patient’s postoperative plasma ctDNA detection, the right was the LC score when detected by WGS. Black dot indicating it was mutation
positive.
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A 218-hotspot-gene panel (Table S6) was used for post-
operative plasma monitoring (Fig. 5a right) after exami-
nation of specific tumor mutational sequencing of these
patients from resected tissue. For all patients, when only
ctDNAmolecules were detected using cSMART2.0 assay,
the mutation-positive rate of the preoperative and post-
operative specimens was 52.1% (24/46) and 19.6% (11/
56), respectively (Table S7). When it was evaluated by
single-nucleotide variants detection combined with
WGS-based HIFI method (ctDNA + WGS) in most of
these patients, the mutation-positive rate of pre-
operation and post-operation patients increased to
71.4% (30/42) and 28.6% (16/56), respectively (Fig. 5b).
For 21 patients, who were detected as VAF-positive
before the surgery, their mutation profiles were
compared between ctDNA and HIFI detection (Fig. S8).
The results of the recurrence-free survival (RFS) were
evaluated in the postoperative population. The recur-
rence ratio for MRD-positive patients was 7.60 folds
(95% CI: 1.3–8.8, p = 9.00E-03, log-rank test) of ctDNA-
negative patients when only detected by the ctDNA mu-
tation panel, and increased to 16.25 folds (95% CI,
4.4–35.3, p < 1.00E-04, log-rank test) of MRD-negative
samples when detected by ctDNA + WGS (Fig. 5c).
There were also some sensitivity differences when the
clinical stage of these patients was taken into account.
For all MRD-positive patients, the ratio of stage I patients
was 10.0% (1 patient) when detected only by ctDNA
mutation, while it was 21.0% (4 patients) when WGS-
based HIFI method was added (Fig. 5d). The recur-
rence prediction of these patients was also evaluated by
these two methods. When the detection was only per-
formed by ctDNAmutation, the accuracy of the predicted
recurrence was 82.1% with a sensitivity of 52.6% at the
specificity of 97.3% (10 of 19 patients recurred and 1
patient was false-positive) (Fig. 5e). When it was detected
by ctDNA + WGS, the accuracy of the predicted recur-
rence was 89.3% with a sensitivity of 73.7% at the spec-
ificity of 97.3% (14 of 19 patients recurred and 1 patient
was false-positive). Among stage I patients, ctDNA mu-
tation only detected 1 in 7 patients whomet recurrence in
the following 30 months, while ctDNA + WGS strategy
had more advantages with an elevated sensitivity of
57.14%. For mutation-positive detection of patients with
clinical recurrence, WGS method could improve the ac-
curacy of MRD detection in postoperative risk assess-
ment of patients, especially for very early-stage lung
cancer (patients No. 5, 6 and 7. Fig. 5f).

Discussion
Liquid biopsy manifests application prospects in many
fields of lung cancer as previously reported,11 whereas
most studies that perform liquid biopsy focus either on
cancer screening or MRD detection. MRDetect is the
limited methods that run through the whole process of
diagnosis-therapy pattern, based on single-nucleotide
variation and copy number variation under a coverage
depth of 35×.14 In order to probe the characters of
ctDNA in other dimensions and make it more suitable
for clinical use, we constructed the WGS-based HIFI
platform based on several genomic fragment features,
accompanied with epigenetic signatures and other mu-
tation information to detect early-stage cancers and
discern postoperative patients with high risk of recur-
rence. We selected one top-class indicator in each field
adding to HIFI method (motif, fragment and Bin-
count).38,45,46 For LC screening, the LC score model was
constructed using the SVM and XGBoost method based
on the HIFI method and the hyper-co-methylated read
approach. The LC score model had excellent screening
performance in the validation set and achieved an AUC
of 0.912. Subsequently, we incorporated the HIFI
method with the cSMART 2.0 detection platform to
improve its effectiveness in lung cancer MRD detection,
which showed high accuracy in MRD monitoring.8,47

Consequently, the MRD detection achieved a speci-
ficity of 97.3% with the accuracy of 89.3%, and the
detection rate had better detection efficiency over tradi-
tional ctDNA mutation methods.

Our technical approach has overcome challenges that
are commonly encountered in the applications of liquid
biopsy. Low fraction of ctDNA is a major limiting factor
for LC screening, and it is also challenging for MRD
detection as a result of low tumor load.5,48,49 CHIP is
another common confounding factor that influences the
analysis of ctDNA mutation and contributes to false-
positive results.12 WGS, which enables effective integ-
ration across orthogonal data dimensions, can overcome
these problems and perform accurate and sensitive
ctDNA detection, allowing clinical application in various
types of tumors.14,21 Several studies have elucidated the
molecular characteristics of ctDNA, including fragment
sizes, nucleosome protection and accessibility, seque-
nce motif of end-points, and genome instability.17,50,51

Whereupon, we developed HIFI method for whole
diagnosis-therapy procedure based on fragmentation,
motif and Bincount. cfDNA fragmentation is a non-
random process. The most abundant plasma DNA is
166 bp long, and fragmentation end-points show re-
lationships with nucleosome organization.21,52 As cfDNA
fragmentation can comprehensively represent both
genomic and chromatin characteristics, it can be used as
a genomic feature for many tumor-derived changes.18,53

Plasma DNA preferred ends contain information on
the tissue of origin, which is because these genomic
locations are preferentially cleaved when plasma DNA is
generated.16,17,54 Genome instability might cause ge-
nomic abnormalities, which can be used as a prognostic
predictor of lung cancer.37,55 Data on reads of different
sizes from cfDNA can reflect alterations in the physio-
logical state between tumor and non-tumor derived cell
populations.17,52,56 So, specific genomic features of
www.thelancet.com Vol 91 May, 2023
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cfDNA detected by WGS can provide more precise in-
formation about tumor cell populations.52,57

In clinical practice, it is difficult to confirm the pres-
ence of lung cancer before an invasive procedure, espe-
cially in early stages.58 The opinion of the examining
physician plays a crucial role in distinguishing malignant
lung nodules from benign ones.59 To reduce subjective
bias, some of the clinical guidelines favor objective data-
based math models for replacing equivocal subjective
judgments for the diagnosis of lung cancer. Examples of
thesemodels include theMayomodel,39 which focuses on
out-patients, and the Brock model60 for wide screening.
Liquid biopsy is a sensitive, non-invasive methods to
improve accuracy from another aspect. Metabolomics is
also a sensitive biomarker for cancer early detection,61 but
significant batch effects are revealed in former studies,
which has no unified improvement standard.62 As a
result, we only take features from ctDNA into account
during LC model construction. The HIFI method is
encouraging for the diagnosis of patients with suspicious
lung nodules due to the following reasons: a) Compared
to the existing mainstream early-detection math models,
the LC score model exhibited higher accuracy, especially
in the solid nodule cohort (with an AUC of 0.950, Fig. 3d)
that outperformed other models. Its performance in early
detection even had comparable efficiency with a new
PKU-Mmachine-learning model.63 b) The result of liquid
biopsy is likewise an objective reference for physicians to
consider, avoiding erratic personal biases. c) Many mo-
dels require multitudinous clinical parameters like
smoking history and family history.39,60,63 This informa-
tionmight be hard to obtain under certain circumstances,
while the LC score model does not need information on
such parameters, and thus, is more convenient for clin-
ical application. In modulation of Chinese population, LC
score reached a preferable NPV, which freed plenty
healthy individuals from radiation exposure and liberated
them from anxiety during the follow-up procedure.
Acting as an assistant means to LDCT, it was potential to
make up for the high false positive rate from traditional
LDCT, bringing real benefits.

Traditional ctDNA mutation assays and methylation
detection methods that cover more loci cannot effi-
ciently detect LC at a very early stage64 owing to low
levels of ctDNA and few available DNA fragments in a
typical plasma sample.13 In recent years, the pathological
composition spectrum of LC has changed, and the
proportion of adenocarcinoma cases has increased.
Detecting patients with stage I lung adenocarcinoma
has always remained a major challenge during early
screening.5,10,11 Although recent studies had developed a
targeted-methylation method with favorable efficiency
for multi-cancer early detection, its availability on early
stage lung cancer still needed further exploration.65 The
patients in our study mainly had lung adenocarcinoma
(89.2%), mostly in stage I (80.9%). The LC score model
achieved significant improvement in sensitivity at the
www.thelancet.com Vol 91 May, 2023
same level of specificity, compared with traditional
protein biomarkers, especially in stage I patients of the
validation set, which allowed more patients with early-
stage LC to be identified. Additionally, most sub-solid
nodules, particularly pure GGOs, were very early-stage
LC with a low tumor burden,66,67 which is difficult for
ctDNA mutation detection. To further test our model in
very early-stage cancer, we compared the LC score with a
traditional tumor-informed approach in two indepen-
dent GGO cohorts. Along with other necessary clinical
data, the LC score model achieved a sensitivity of about
80.0%, while mutation detection only had a sensitivity of
≤20%, outperforming tumor-naïve and tumor-informed
methods. These results suggested that the LC score
model exhibited a robust performance in GGO, and is
more sensitive than traditional methods, indicating a
breakthrough in the diagnosis of very early-stage LC.

LC score is a convenient and non-invasive detection
method, suitable for large population screening.
Although liquid biopsy dramatically improves the
sensitivity of early detection, the huge economic finan-
cial outlay is one of the major impediments on its way
to clinical application. On the basis of ensuring mo-
del performance, we adopted relatively cheap and
convenient detection method for model construction.
The average coverage of WGS in HIFI method is as low
as 2.5×, which realized authentic low coverage
sequencing without extra time cost on both models. By
adding the WGS section, the expense added by a few
dozen dollars and the total cost price was close to that of
a clinical comprehensive tumor marker detection.
Furthermore, our research checked the detection effi-
ciency of lower coverage and the result indicated the
potential of 1× coverage in HIFI model, which might
further shrink the budget by approximately 60%. The
requirement for universal population screening is not
only money-and-time-saving but also harmless. Low-
pass WGS only needs a low volume of plasma (2 mL)
to complete the test, much less than other liquid biopsy
programs, which reduces the harm to a minimum.

Our MRD detection model also has improvements in
clinical applications. The effect of adjuvant chemo-
therapy is unsatisfactory, with only a 4% survival benefit
at 5 years.68 A major clinical significance of MRD
detection is that it can identify patients at high risk of
recurrence and guide precision therapy. MRD detection
strategies can be roughly classified into tumor-informed
and tumor-agnostic. Personalized whole exome
sequencing-based tumor-informed panel owns better
efficiency in distinguishing low-concentrated ctDNA in
plasma, but cost more time and expense for individu-
alized panel. While, the tumor-agnostic one has conve-
nient detection testing cycle, independent of tumor
tissue, at the cost of sensitivity and specificity.69,70 Our
MRD model is constructed on the basis of WGS and
cSMART2.0, which combines the best of both strategies.
First, the use of WGS and tumor-agnostic panel
15
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simplifies workflow of current personalized tumor-
informed MRD detection method, by eliminating the
need for designing panels, spacing a large amount of
time and money from panel design. Second, the com-
bination of HIFI and mutation detection on cSMART2.0
significantly improves detection ability. MRD moni-
toring is also confronting the challenge on low con-
centration of ctDNA. cSMART2.0 is state of the art in
ctDNA mutation detection with its unique inverse
primer pairs and specially optimized capture process
especially in ultra-low ctDNA frequency which has
shown its preponderance in previous studies.22,71 But the
result is still ungratified as its sensitivity in MRD
detection is merely 52.6%. When WGS-based HIFI
result is added for MRD detection, the sensitivity got
significant improvement without prominent declination
on specificity and found the proportion of patients with
stage I LC who were MRD-positive increased consider-
ably accompanied with corresponding shorter RFS. Our
MRD model not only economizes time and expense
from intricate panel designing, but also possesses high
MRD detection efficiency.

However, the limitations of our study must be re-
cognized. Firstly, the HIFI method constructed a multi-
dimensional LC screening model by integrating cfDNA
end motifs, fragment, and Bincount information, while
the application of various machine learning methods
may make the model highly complex and thus lead to
over-fitting. Therefore, its wider range of applications
performance needs to be evaluated in further indepen-
dent test sets. Secondly, for pGGO, we have not done a
detailed performance evaluation to verify whether the
HIFI model has sufficient efficacy in the differential
diagnosis of benign and malignant pGGOs. Finally, the
enrolled patients inevitably involved some selection bias,
the accuracy of this model need to be validated in a
cohort that involving larger and more diverse
populations.

In conclusion, the application of non-invasive liquid
biopsy will increase with improvement of sequencing
technology, and multi-omics analysis could improve the
detection accuracy of cancer signals. Furthermore, as a
simple and effective strategy, low-pass WGS and tumor-
agnostic cSMART 2.0 have considerable clinical pros-
pects than precedent studies. OurWGS-based integrative
multi-dimensional analytical models and the HIFI met-
hod demonstrated the effectiveness for LC screening and
postoperative surveillance. The HIFI method could serve
as an auxiliary method to significantly reduce the false-
positive rate and improve the accuracy of LDCT-based
LC screening due to its sufficiently high specificity.
Additionally, MRD detection based on liquid biopsy
might be routinely used for longitudinal monitoring to
reduce radiation exposure and allow timely treatment.
Our HIFI method opens a new avenue for whole
diagnosis-therapy process.
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