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Abstract
E-scooter services have multiplied worldwide as a form of urban transport. Their use has 
grown so quickly that policymakers and researchers still need to understand their inter-
relation with other transport modes. At present, e-scooter services are primarily seen as 
a first-and-last-mile solution for public transport. However, we demonstrate that 50% of 
e-scooter trips are either substituting it or covering areas with little public transporta-
tion infrastructure. To this end, we have developed a novel data-driven methodology that 
autonomously classifies e-scooter trips according to their relation to public transit. Instead 
of predefined design criteria, the blind nature of our approach extracts the city’s intrinsic 
parameters from real data. We applied this methodology to Rome (Italy), and our findings 
reveal that e-scooters provide specific mobility solutions in areas with particular needs. 
Thus, we believe that the proposed methodology will contribute to the understanding of 
e-scooter services as part of shared urban mobility.
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Introduction

In recent years, the concept of micromobility, i.e. the type of shared mobility based on 
lightweight and unipersonal vehicles, has emerged as an important component of the 
transportation system in modern cities throughout the world (Clewlow 2019). Electric 
scooter (e-scooter) services have arisen as a novel and popular mode of travel, attract-
ing new companies and investments to the rapidly growing shared mobility market 
(Voytenko Palgan et al. 2021).

The popularity of the e-scooter phenomenon and its exponential expansion across 
urban streets has motivated contradictory reactions (EIT Urban Mobility 2020). On the 
one hand, supporters highlight the advantages of having an easy to ride and enjoyable 
new form of urban mobility that provides sustainability benefits, such as reduced carbon 
emissions and energy costs (Hollingsworth et al. 2019). On the other hand, critics com-
monly object to concerns such as the increase of accidents (Badeau et al. 2019; Yang 
et  al. 2020), parking issues on sidewalks and dedicated lanes (Fang et  al. 2018), lim-
ited availability outside downtown areas (Ciociola et al. 2020; Masoud et al. 2019), and 
restrictions on the number of passengers and goods (Gössling 2020).

Some of these disadvantages result from the rapid emergence of e-scooters and the 
lack of the appropriate policy guidelines and regulations required to ensure their proper 
integration into the existing urban transportation system (Shaheen and Cohen 2019). 
To fulfill this need, we must extend our current knowledge about the way e-scooters are 
being used and their interaction with other modes of transport. Our work contributes to 
this objective by providing insights about the different roles e-scooters play in relation 
to public transport.

E-scooter trips can only be categorized into four possible classes, acting as (i) com-
plementary, auxiliary on the (ii) first or (iii) last mile, or substitution (iv) to public 
transport. We could infer that an e-scooter has been used in connection with the public 
transport network if it was taken or left in the proximity of a station. The problem is 
defining proximity given that it depends on a set of complex factors including urban 
design, public transport network, or users’ behavior among others. Research in the field 
has opted for fixing a predefined maximum distance threshold to accept a connection 
between e-scooter trips and public transport. This methodology is arbitrary to some 
extent. To solve this issue, we have employed a blind spatial clustering technique to 
perform an autonomous classification of e-scooter trips. The term blind refers to the fact 
that we do not apply any a priori value for the maximum distance. Instead, we directly 
apply the clustering algorithm on real data to autonomously create clusters of trips with 
certain similarities. This way, the specific value of the maximum distance emerges from 
the data rather than being imposed. Consequently, our methodology may contribute to 
characterize the city’s behavior towards micromobility.

To this end, a data-driven approach is adopted to avoid potentially biased conclu-
sions resulting from surveys or simulations. We chose Rome (Italy) as an optimal test 
scenario given that it has a broad public transport network, and, at the same time, shared 
mobility systems have been accepted by citizens. In addition, the majority of e-scooter 
studies have focused on cities in the USA, such as Austin (Bai et al. 2021; Caspi et al. 
2020; Jiao and Bai 2020; Zuniga-Garcia and Machemehl 2020), Louisville (Hossein-
zadeh et al. 2021; Noland 2019; Reck et al. 2021a), Chicago (Tuli et al. 2021), Indian-
apolis (Mathew et  al. 2019), Washington (Hawa et  al. 2021; McKenzie 2019; Merlin 
et al. 2021; Younes et al. 2020), and Atlanta (Espinoza et al. 2019), including several 
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comparative analyses (Bai and Jiao 2020; Huo et al. 2021). Although cities outside the 
USA such as Zurich (Reck et al. 2021) or Singapore (Zhu et al. 2020) have been studied, 
little attention has been given to e-scooter use in other parts of the world. Our study in 
Rome contributes to fill up this gap.

Our study provides significant contributions to the scientific development in the field of 
shared mobility systems, including:

– An autonomous classification of e-scooter trips based on their interaction with the pub-
lic transportation system. For this purpose, we used a modeling framework based on 
clustering techniques using the distances between e-scooters’ origins and destinations 
and public transportation stations.

– A study about micromobility in a European city, which complements the conclusions of 
previous research based in American cities.

– An analysis about how e-scooters fulfill the mobility needs of urban areas with specific 
requirements and characteristics, such as those with lower penetration of public trans-
port.

– A new e-scooter database containing extended information about e-scooter trips in the 
city of Rome. We developed software to retrieve detailed information about e-scooter 
journeys, including trajectories with high temporal resolution and the state of the vehi-
cle.

The remainder of the paper is structured as follows: Section  "Related Work " presents 
related work about e-scooter trip characteristics and the relationship between micromobil-
ity and modes of public transit. Next, Section  "Framework and methodology" describes 
the methodological framework we developed to study the relationship between e-scooters 
and public transport. Section "Empirical results: relationship between e-scooters and pub-
lic transport" presents the empirical results we obtained by applying an e-scooter trips data 
set to the developed methodology. Section  "Discussion" analyzes the spatial distribution 
of each type of trip and their statistical characteristics, comparing the results with related 
works. Finally, Section  "Conclusions" provides the conclusions and highlights future 
research to emerge from this research.

Related work

We first discuss existing research about factors influencing e-scooters’ use and the charac-
teristics of their users. The relationship between micromobility and public transit will be 
described in the second subsection.

E‑scooters’ trip characteristics and users

Detailed knowledge about how citizens use e-scooters is key for transportation planners 
and policymakers. However, given the recent provision of this type of mobility services, 
most of the current research is based on surveys in American cities to estimate their 
demand (Clewlow 2019). Survey results generally report that commuting and leisure are 
equal purposes for e-scooter trips in Baltimore (Baltimore City Department of Transporta-
tion 2019), Portland (Portland Bureau of Transportation 2019), and San Francisco (San 
Francisco Municipal Transportation Agency 2019). In addition, questionnaires reveal that, 
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on average, e-scooter users are young and college-educated men with incomes higher than 
the median of the area. Despite the global significance of these findings, they could be 
potentially biased due to their small sample size. Thus, mobility managers demand empiri-
cal studies based on real data to support their decision-making processes.

Research about shared e-scooter travel behavior has traditionally focused on modeling 
demand as the dependent variable, employing a set of explanatory variables from diverse 
multi-source data. These explanatory variables that can influence e-scooter usage can be 
categorized as trip-related (e.g., distance, time of day, destinations), external (e.g., built 
environment, land use, relationship with transit, weather) and internal (e.g., user socio-
demographics, attitudes) (Reck et al. 2021; Tuli et al. 2021). For the first set of factors, the 
temporal characteristics of e-scooters’ demand were analyzed in Washington (McKenzie 
2019) and Louisville (Noland 2019), confirming that they are mainly used for very short 
leisure journeys (usually less than a mile). From a temporal perspective, peaks during the 
afternoon are the most common (Mathew et al. 2019; Reck et al. 2021a) although some 
research has observed typical commuting behaviors (Caspi et al. 2020; McKenzie 2019). 
Regarding external factors, adverse weather conditions, such as precipitation or high wind 
speeds, have a negative impact on the demand for e-scooters (Noland 2019; Tuli et  al. 
2021), while warmer temperatures and better visibility are associated with high levels of 
usage (Younes et al. 2020). In addition, there are particular regions with greater demand, 
e.g., downtown areas and university campuses (Bai and Jiao 2020; Caspi et al. 2020; Hos-
seinzadeh et al. 2021; Jiao and Bai 2020; Mathew et al. 2019), business districts (Bai and 
Jiao 2020), and recreational or touristic neighborhoods (Merlin et al. 2021). These works 
show city-specific behaviors that are sometimes contradictory (Bai and Jiao 2020).

Beyond the general conclusions provided by this previous research, we are specifically 
interested in the interaction of e-scooter services and public transportation, as discussed in 
the next section.

Relationship between shared micromobility and public transport

Micromobility plays an important role in connecting with the existing public transit sys-
tem, acting as complementary (i.e., providing service to districts with little or no public 
transport), auxiliary (covering first and last-mile trips), or as a substitute (replacing public 
transport journeys) (Kong et al. 2020). Previous studies are inclined to treat micromobil-
ity as an auxiliary mode that facilitates the connection to public transport by providing a 
means to travel stretches beyond walking distance (Shaheen and Chan 2016; Smith and 
Schwieterman 2018; Lee et al. 2021). This role of micromobility has been observed dur-
ing the evaluation of e-scooter pilot programs in Portland (Portland Bureau of Transporta-
tion 2019) and San Francisco (San Francisco Municipal Transportation Agency 2019) and 
bicycle sharing systems in cities worldwide, such as Beijing (Zhao and Li 2017), Washing-
ton (Ma et al. 2015), Chicago (Faghih-Imani and Eluru 2015), Vienna (Leth et al. 2017; 
Shaheen and Chan 2016), and Helsinki (Jäppinen et al. 2013).

However, the precise interrelation between micromobility and public transportation is 
far richer and more complex; complementary, auxiliary, and substitute roles are not mutu-
ally exclusive, and vary from city to city and even among modes of public transport. Cur-
rently, several investigations have observed micromobility as an auxiliary mode of subways 
and railways (Jin et al. 2018; Zhang et al. 2019), whilst operating as a substitute for public 
buses (Campbell and Brakewood 2017; Yang et al. 2018; Luo et al. 2021; Zuniga-Garcia 
and Machemehl 2020; Nikiforiadis et al. 2021; Kopplin et al. 2021; Laa and Leth 2020). 
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In addition, modal substitution primarily occurs in densely populated urban cores (Mar-
tin and Shaheen 2014; Cao et al. 2021), while complementary and auxiliary effects were 
more frequent in districts with greater distances to public transport stations (Radzimski 
and Dzięcielski 2021; Shaheen and Chan 2016). On the other hand, other factors like the 
temporal components (e.g., weekday or weekend, time) and the type of user (frequent or 
occasional) are also key to identifying the particular role played by micromobility. Conse-
quently, we often find a mix of micromobility roles within a single city (Yan et al. 2021), 
and further research is required to precisely characterize the interactions between micro-
mobility and public transportation systems (Espinoza et al. 2019).

Our work focuses on solving the issue of classifying the interrelation between e-scooter 
services and public transportation, developing an algorithm that autonomously separates 
e-scooter trips into complementary, auxiliary, or substitute roles without a priori infor-
mation. To determine the role played by a micromobility trip, the majority of previous 
research relies on the distance between the origin or destination of the route and the cor-
responding closest station in the public transportation network. Such an approach requires 
fixing a set of predefined thresholds to separate the measured distances. However, there is 
no consensus about this matter. Instead of being treated as a design parameter of the clas-
sification algorithm, this predetermined distance may rather be considered as a feature of 
the specific city and transport system, and thus capable of representing the particular use of 
micromobility.

Framework and methodology

Public transport and e‑scooter service in Rome

The capital city of Rome is located in central Italy and is the largest city in the country, 
with a population of approximately 2.8 million residents according to the 2021 census. The 
city is a popular tourist destination, attracting millions of tourists every year. Rome has an 
extensive internal transportation system, although mobility is primarily based on private 
vehicles, which creates frequent congestions throughout the road network. Rome’s public 
transit system consists of subway, rail, bus, and tram services, connecting every location 
in the city (Cipriani et al. 2019). In particular, Rome’s subway includes three underground 
lines and 73 stations; its overground rail transport comprises the tram network, and seven 
suburban and urban train lines that connect the surrounding areas to the city; the bus net-
work has broad coverage (338 lines), but with low to medium frequency of service. The 
Mobility Agency of Rome1 is the municipal public transport agency in charge of providing 
information and services to the user. Public transit routes, stops, and real-time schedule 
data are publicly available in the open data section of the agency’s website and provided 
using the General Transit Feed Specification (GTFS) format. Through this open data por-
tal, we downloaded and processed the data necessary to obtain geographic locations (longi-
tudes and latitudes) of train and subway stops in the public transport network (Fig. 1)

The e-scooter sharing market in Italy is still in a pre-competitive stage, meaning that there 
are no nationwide regulations (Carrese et al. 2021). Between June 2019 and February 2020, 

1 https:// romam obili ta. it/ en

https://romamobilita.it/en
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Italy adopted and reformed its micromobility regulation, where e-scooters are considered as 
bikes in terms of circulation, with a maximum allowable speed of 20 km/h (reduced to 6 km/h 
in pedestrian areas). These laws were recently updated (November 2021) to introduce new 
rules: users are no longer allowed to travel or park on sidewalks in an attempt to clamp down 
on the "wild way" the scooters are being parked2. The first e-scooter sharing services started 
operating in major Italian cities in December 2019, but the service in Rome was launched 
in May 2020, coinciding with the start of the COVID-19 emergency (Carrese et al. 2021). 
Rome followed the adoption approaches of other Italian cities like Milan and Turin, setting up 
a maximum number of e-scooter sharing operators to guarantee competition between them. 
Eight licensed sharing companies are currently active in Rome: Dott, Lime, Bird, Wind, Link, 
Voi, Keri, and Helbiz, whose data will be used in this work. Helbiz provides good coverage 

Fig. 1  Subway, train and tram map of Rome. URL https:// www. atac. roma. it/ docs/ defau lt- source/ mappe- tpl/ 
mappa- metro-e- ferro vie- metro polit ane. pdf? sfvrsn= e1e83 890_ 16

2 https:// www. wante dinro me. com/ news/ italy- updat es- highw ay- code- with- new- rules- of- the- road. html

https://www.atac.roma.it/docs/default-source/mappe-tpl/mappa-metro-e-ferrovie-metropolitane.pdf?sfvrsn=e1e83890_16
https://www.atac.roma.it/docs/default-source/mappe-tpl/mappa-metro-e-ferrovie-metropolitane.pdf?sfvrsn=e1e83890_16
https://www.wantedinrome.com/news/italy-updates-highway-code-with-new-rules-of-the-road.html
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around the city, including the restricted access zone (RAZ) in Rome’s downtown, and pro-
vides an additional service to the southwest area compared to other operators.

Methodology: autonomous classification of trips

The purpose of this work is to construct an unsupervised method to extract whether e-scooters 
interact with the existing public transit network as a complementary (filling the gaps of public 
transport), auxiliary (connecting to the public transport network at the origin or the destina-
tion), or substitute (replacing public transport) mode. To this end, we will study the distance 
between the origin and destination of e-scooter trips and the closest train or subway station, 
following the usual approach outlined in the literature we described in Section "Related Work 
". In the absence of precise information about the actual role each micromobility trip played, 
this minimum distance is the best approach researchers can take in order to infer the underly-
ing interaction with public transport. Even considering potential errors in the absolute number 
of connections, they still be valid in relative terms, thus acting as metrics to compare different 
scenarios and monitor the evolution of the roles micromobility plays in association with public 
transport. However, instead of using a predefined and arbitrary threshold to determine this 
measure of closeness as other works in the field do, we developed a methodology based on a 
clustering approach that allows the autonomous or blind classification of trips.

Clustering is a complex task that entails a set of challenges (Jain and Dubes 1988), thus 
being one of the major issues in machine learning. It has many applications arising from dif-
ferent disciplines, including Smart Mobility (Vinagre Díaz et al. 2020). Clustering involves 
partitioning a given data set into subsets based on the closeness or similarity among the data 
(Peng and Xia 2005). Typically, the similarities among entities in a data set are measured by a 
specific proximity function, which can be calculated in many ways, each of which results in a 
different clustering algorithm. Most clustering algorithms belong to one of two classes: hier-
archical clustering or partitioning. The hierarchical approach produces a nested series of parti-
tions, consisting of clusters either disjointed or included one into the other. These algorithms 
begin by considering every entity as a cluster, and then proceed by successively merging clus-
ters using an objective function until a stopping criterion is reached. In contrast, partitioning 
methods assume a given number of clusters to be found and then look for the optimal partition 
based on an error function. The most commonly used approach among these methods is the 
well-known K-means (Jain and Dubes 1988), which is capable of providing the same level 
of performance as other hierarchical algorithms and DBSCAN (Ester et al. 1996) at a much 
lower computational cost.

Euclidean distances from each entity to its assigned cluster center are the most broadly 
used criterion in clustering (Peng and Xia 2005). However, more specific metrics could better 
fit certain applications. For example, if the variable of interest is a geographical distance (as in 
our case), the Manhattan distance is a more appropriate candidate. The Manhattan distance is 
a metric in which the distance between two points is calculated as the sum of the absolute dif-
ferences of their Cartesian coordinates. In other words, it is a measure of the distance in a grid 
layout, where diagonal “movements” are not allowed. Its name comes from the grid layout of 
Manhattan’s streets.

Formally, consider a general data set S with n samples in a d-dimensional space, denoted 
by:

S =
{
s1, s2,… , sn

}
, si ∈ ℝ

d.
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The task of K-means is to assign each of the n samples in S to k disjoint clusters Sj , with 

centroids cj, j = 1,… , k and S =
k⋃

j=1

Sj , such that a clustering criterion is optimized. There-

fore, K-means solves an optimization problem, selecting the specific partition 
S
p =

{
S
p

1
, S

p

2
,… , S

p

k

}
 of the complete data set S , which minimizes an error function e(Sp).

In our case, samples are 2-dimensional vectors v = (v1, v2) ∈ ℝ
2 , whose components 

take the value of the distance from the origin ( v1 ) and the destination ( v2 ) of the e-scooter 
trip to the closest subway or train station. In addition, we define an error function, based on 
the Manhattan distance, calculated for each partition Sp as:

where |Sp
j
| is the number of samples in subset Sp

j
∈ S

p , with centroid cj , sij is the i-th sample 
in Sp

j
 , and ||sij − cj|| denotes the Manhattan distance between each sample in the subset and 

its centroid. Note that the Manhattan distance calculates the distance between two samples 
by aggregating the pairwise absolute difference between each variable, while Euclidean 
distance aggregates the squared differences.

Therefore, our methodology can be described as the following bi-level programming 
problem:

that we solve using a K-means algorithm:

– INPUT: data set S with n samples; k number of clusters.
– OUTPUT: partition Sp =

{
S
p

1
, S

p

2
,… , S

p

k

}
 . 

1. Choose k cluster centroids cj(j = 1, ..., k) randomly generated in a domain containing 
all n samples.

2. Assign each sample to the closest cluster centroid, creating partition Sp.
3. Recompute the cluster centroids using the current cluster memberships.
4. Calculate the error function e(Sp).
5. If a convergence criterion is met, stop; otherwise go to step 2.
6. Return output Sp.

This methodology was implemented in the Matlab programming language. The obtained 
results will be presented and discussed in Section ""4.

e(Sp) =

k∑

j=1

|Sp
j
|∑

i=1

||sij − cj|| ,

min
ci ,...,ck

n∑

i=1

min
{
||sij − c1||, ..., ||sij − ck||

}
,
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Empirical results: relationship between e‑scooters and public transport

E‑scooter trips data set

Using the described methodology, we assigned each e-scooter trip to a specific class 
depending on how it relates to the public transport system. Given the data-driven nature 
of our approach, we built a new e-scooter database for Rome (Italy) and developed a cus-
tomized Python code that interacts with the Helbiz API3. Every 10 seconds, this software 
collects information about each scooter: its vehicle identifier, the longitude and latitude 
coordinates of its position, and four boolean flags. The latter allow an inference about its 
state: in use, parked, or out of service. The process ran during February 2021 (28 days) and 
collected around 624 million records. In total, 25 186 e-scooter trips were found.

Data filtering

To guarantee data quality, we first filter out records that may result from the inherent limi-
tations of GPS technology or other sources of error in the acquisition process, which could 
eventually compromise the feasibility of a precise spatio-temporal analysis. Related liter-
ature in the field focuses on eliminating outliers by applying filters to traveled distance, 
duration, and speed. We chose the filtering criteria in (Zou et  al. 2020), thus accepting 
trips with a traveled distance between 100 m and 20 kilometers, a time duration between 
30 seconds and 125 minutes, and an average speed below 25 km/h, which is just above the 
maximum speed allowed.

Fig. 2  Main origins and destinations of e-scooter trips in Rome

3 https:// api. helbiz. com

https://api.helbiz.com


 Transportation

1 3

This cleaning process resulted in a robust data set of 23 690 valid trips. Less than 6% of 
the original user trips ( 1 496 ) were removed, the majority of which were due to not exceed-
ing the lower distance boundary. During the period of study, 2 559 different Helbiz e-scoot-
ers were in operation, which indicates that this operator has a significant fleet size.

The origins (blue) and destinations (red) of the resulting valid trips are depicted in 
Fig. 2, where the size of the circles indicates the volume of trips starting or ending at that 
location.

Empirical implementation and results

As described in Sect. "Methodology: autonomous classification of trips", our objective is to 
classify e-scooter trips as a complementary, auxiliary, or a substitute mode of transport in 
relation to the public transport system. In this regard, our analysis focuses on subway and 
railway systems for several reasons. First, previous literature confirms that travelers often 
use shared micromobility options to connect with primarily rail services rather than buses 
(Moinse et al. 2022; Martens 2004; Martin and Shaheen 2014), except for suburban areas 
with a low bus coverage (Luo et al. 2021), which fall outside of the scope of this study. 
Second, in those areas where e-scooters and buses coexist, the former often substitutes the 
latter given that they provide a more flexible mode of transport to cover similar typical trip 
distances (Campbell and Brakewood 2017). Third, the bus network in Rome is geographi-
cally extensive, with an extremely high number of stops throughout the city, which would 
significantly increase the probability of finding a bus stop close to the origin or destina-
tion of every e-scooter trip; subsequently, all the trips would erroneously be classified as 
auxiliary. Therefore, our method studies the distance between the origin and destination 
of e-scooter trips and the closest train or subway station, following the usual approach in 
the literature. However, instead of using a pre-determined and arbitrary threshold to deter-
mine this measure of closeness, we will use the clustering methodology described in Sect. 
"Methodology: autonomous classification of trips" to empirically discover the boundaries 
between classes, thus achieving an autonomous classification of trips.

Fig. 3  Scatter plot (left) and density plot (right) of minimum distances from the origin and destination of 
e-scooter trips to a railway or subway station
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This empirical approach consists of two phases. In the first phase, for each e-scooter 
trip, we calculate the minimum distance from its origin and its destination to every geo-
graphical location of subway and railway stations in the public network. Figure 3 shows 
the scatter plot (left) and the density plot (right) of the minimum distances from the origin 
(x-axis) and the destination (y-axis) of e-scooter trips to the closest railway or subway sta-
tion; therefore, each point represents one of the 23 690 e-scooter trips in the data set S . In 
addition, we can observe in Fig. 4 the statistical distributions of these distances from origin 
(top) and destination (bottom) to the closest public transport station. Recent approaches 
in the field such as (Kong et al. 2020), (Lv et al. 2021), or (Yan et al. 2021), apply a fixed 
threshold to the minimum distance, which varies from 400 to 600 m and aims at reflect-
ing the comfortable walking distance for users. This range of distances includes the high-
est frequencies in Fig. 4, which suggests the actual existence of an underlying connection 
between e-scooter trips and public transport that depends on this minimum distance. How-
ever, the graph does not show a definite value for this minimum distance, which will in 
addition have a significant effect on the results of the study as we will discuss in Sect. 
"Discussion".

In the second phase, we apply the blind clustering algorithm described in Sect. "Meth-
odology: autonomous classification of trips" to this 2-D data set to classify e-scooter trips 
depending on their relationship with the existing public transit network. In order to reflect 
the roles of micromobility related to public transport, researchers in the field choose a pre-
defined number of clusters depending on their specific study. Some works use 2 classes 
that correspond to two specific behaviors: competition (class A), or supplementary (class 
B) (Leth et al. 2017); or whether shared mobility integrates (class A) or not (class B) with 
public transport (Gössling 2020). Other authors use 3 classes to reflect competition (class 
A), supplementary (class B), and auxiliary (class C) purposes, with no detail about auxil-
iary trips for the first and last mile (Kong et al. 2020). In our case, we select 4 classes to 
represent all four possible behaviors: (1) complementary, auxiliary (2) at origin or (3) at 
destination; and (4) substitute.

Fig. 4  Distributions of minimum distances from trip origin and destination to subway and railway stations
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Consequently, we fix the number of clusters k = 4 of our method. This decision was val-
idated using the Caliński-Harabasz (CH) Index (Caliński and Harabasz 1974), specifically 
tailored for situations in which ground truth labels are unknown as in our case study. The 
CH Index measures the cohesion and separation of clusters. Clustering methods reaching 
high values of the CH Index are proved to be capable of creating dense and well separated 
clusters. The results of this test are shown in Fig. 5, where we confirm that the best candi-
date is k = 4.

Fig. 5  Calinski-Harabasz Index for evaluating cohesion and separation of clustering results depending on 
the number of classes

Fig. 6  Result of the autonomous classification of e-scooter trips in Rome
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Figure 6 shows the result of our autonomous classification of e-scooter trips applied 
to the data set collected in Rome. This method is capable of autonomously partitioning 
the original data set into sensible and explicable clusters. Thus, complementary trips 
(green cluster) are characterized by having both an origin and destination far away 
from a railway or subway station; in this case, the e-scooters are used to complement 
public transport, providing mobility services to areas with low coverage of the public 
network. Auxiliary trips are characterized by serving as a connection to public trans-
port either at the origin (magenta cluster) or the destination (red cluster). Finally, sub-
stitute trips (blue cluster) are those where the traveler preferred to use an e-scooter 
instead of a viable journey on public transport, thus showing both origin and destina-
tion close to a railway or subway station.

In the next section we discuss these results and compare them to other related 
approaches.

Discussion

The classification of e-scooter trips serves as the basis for a deeper analysis on the use 
of this form of transport as part of the overall mobility in the city. In general, the results 
show that the e-scooter services in Rome are simultaneously competing with and sup-
porting public transport given that the corresponding substitute and auxiliary clusters 
account for almost 90% of the total trips. Despite e-scooter services providing a popular 
solution to accessing last-mile public transport, this indicates that more than 50% of 
the trips are not related to this auxiliary purpose. This finding reveals the importance 
of e-scooter services as substitutions for and complementary to public transport, thus 
calling into question the conclusion of previous works that restrict their use to first and 
last-mile support.

Patterns on the distance measurements

First, it is necessary to examine the distance measurements that relate e-scooter trips and 
public transport stations. The density plot in Fig. 3 shows the presence of vertical and hori-
zontal sets of trips. Trips falling in one of these sets share a common distance to a pub-
lic transport station, either from its origin (vertical) or destination (horizontal). This sug-
gests that each e-scooter trip started or ended at a relevant point of interest that generates 
a high demand, located at the corresponding distance from its closest public station. We 
checked this hypothesis by analyzing these specific sets of trips. As an illustrative example, 
let us concentrate on the horizontal line approximately at 1.3 kilometers on the y-axis. The 
majority of the destinations of the e-scooter trips in that set are close to a park, Tenuta di 
Tormarancia (marked as A in Fig. 8), which is 1.3 kilometers away from its closest subway 
station, Marconi (marked as B in Fig. 8). These trips started almost anywhere in the city, 
but they all shared a common destination, the park, which is at that specific distance from 
its closest public transport station.

Furthermore, the distribution presents a diagonal symmetry. This shows that users fre-
quently use e-scooters for round trips, where the destination of the outbound journey coin-
cides with the origin of the return journey, thus generating two symmetric trips. This is 
typical commuting behavior.
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Finally, a diagonal for distances below 1 km is also observed. This feature suggests 
short and circular e-scooter trips that started and ended at roughly the same location. Given 
the availability of trajectory information in the data set we constructed, we confirmed 
this hypothesis by analyzing their detailed path. Short and circular trips are also typical 
e-scooter user behavior for leisure purposes.

Fig. 7  Spatial distribution of substitution trips: origins (left) and destinations (right). A: Termini; B: Fla-
minio; C: Colosseo; D: San Giovanni; E: Furio Camillo; F: Roma Trastevere; G: Quattro Venti

Fig. 8  Spatial distribution of complementary trips: origins (left) and destinations (right). A: Via Attilio 
Ambrosini; B: Via Crostoforo Colombo; C: Trastevere
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Spatial distribution of trips by their class

The classification of e-scooter trips allows us to perform a spatial analysis of this type of 
micromobility to understand which type of service e-scooters provide to different areas 
of the city. The set of figures comprising Figs. 7– 10 show the spatial distribution of the 
origins (left) and destinations (right) of e-scooter trips operating as a substitute, comple-
mentary, or auxiliary at origin or destination, respectively. A general observation of these 
figures indicates that there are specific uses of e-scooters in specific areas of the city, which 
provides a more complete picture for both urban and transport planners and micromobility 
operators.

Fig. 9  Spatial distribution of auxiliary trips at origin: origins (left) and destinations (right). A: Historical 
downtown; B: Termini; C: San Giovanni

Fig. 10  Spatial distribution of auxiliary trips at destination: origins (left) and destinations (right)
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E-scooters are mainly used as a substitute transport mode in four sections of the pub-
lic transport network (all stations are marked on Fig. 7): subway line A connecting Ter-
mini (place A) with Flaminio (place B), subway line B connecting Termini with Colos-
seo (place C), subway line A connecting San Giovanni (place D) with Furio Camillo 
(place E), and railway connecting Roma Trastevere (place F) with Quattro Venti (place 
G). The first three sections include some of the most frequently used subway stations 
in Rome; consequently, our results show that e-scooters are accepted by users as an 
optimal transport mode to avoid crowded environments. There is only a railway link 
between Roma Trastevere and Quattro Venti with a low frequency of trains and an aver-
age waiting time of 15 minutes; users prefer to take the e-scooter to cover the distance 
in less than 4 minutes rather than waiting for a train to arrive.

On the other hand, complementary e-scooter trips are distributed throughout the 
areas in the city with lower access to public transport. As observed in Fig. 8 the shaded 
areas cover urban zones that are distant from the railway and subway networks. This is 
significant in the surroundings of Via Attilio Ambrosini (place A) and the Trastevere 
(place C). The former is a residential area, full of small shops, banks, and local trade, 
where neighborhoods benefit from the flexibility of e-scooters for their mobility. The 
latter is a lively area of Rome, with restaurants and bars that require good transport 
connections to the rest of the city.

Finally, the spatial distribution of auxiliary e-scooter trips presents symmetrical 
behavior observed in the left graph of Fig. 9 and the right graph in Fig. 10. This means 
that e-scooter services in these areas cover the user needs for the first and last mile of 
public transport journeys. In addition, the symmetry we observe fits with commuter 
trips that merge public transport and micromobility. This type of behavior is mostly 
seen in the historical downtown (place A) and some of the main transport hubs in 
Rome such as Termini (place B) or San Giovanni (place C).

Table 1  Statistical 
characterization for basic features 
in every e-scooter trip class

Distance (m)

All trips 2 053.0 ± 1 633.0 [100.1 18 268.1]

Auxiliary at origin 2 235.9 ± 1 663.9 [101.6 17 694.7]

Auxiliary at destination 2 336.0 ± 1 687.8 [105.1 18 268.1]

Complementary 1 964.9 ± 1 620.1 [100.1 16 714.3]

Substitute 1 777.6 ± 1 530.1 [100.6 13 999.2]

Duration (s)
All trips 688.8 ± 719.8 [30 7 491]

Auxiliary at origin 730.0 ± 727.6 [30 7 380]

Auxiliary at destination 747.1 ± 695.4 [31 7 231]

Complementary 705.6 ± 765.0 [30 7 431]

Substitute 614.6 ± 703.1 [30 7 491]

Speed (km/h)
All trips 12.11 ± 4.21 [0.05 23.18]

Auxiliary at origin 12.39 ± 4.18 [0.08 23.18]

Auxiliary at destination 12.58 ± 4.05 [0.37 22.69]

Complementary 11.49 ± 4.38 [0.05 22.66]

Substitute 11.86 ± 4.19 [0.06 22.86]
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Statistical analysis of each class of trip

Table 1 shows the statistical characterization for traveled distance, duration, and speed 
of trips belonging to each class regarding their relationship with public transport. For 
each magnitude, we indicate mean, standard deviation minimum and maximum values. 
Overall, mean values for each class are similar across all groups, with no significant 
differences. This prevents these features from being used as direct classifiers of trips. 
These results show that complementary trips are the slowest, while substitution trips 
are the shortest in duration and traveled distance. Both findings are plausible: com-
plementary trips provide a mobility service in areas with a low penetration of public 
transport and also include leisure journeys that are expected to have a lower speed. 
Substitute trips mainly occur for short distances, where e-scooters are able to compen-
sate for waiting times at public transport stations.

Comparison with related approaches

In this paper we have developed a new approach for analyzing the interactions between 
e-scooters and existing public transit using a blind clustering method. Most of the previ-
ous work about this issue examined the problem using predefined design criteria. For 
these works, the key factor is whether the e-scooter trip starts or ends inside or outside 
a certain coverage area surrounding the public transport station. They delimit this area 
using a predefined radius that represents the walking distance users would accept to get 
to the public transport. Nevertheless, there is no consensus among the scientific com-
munity about the specific value to assign to this radius: 400 m in (Kong et  al. 2020), 
600 m in (Lv et al. 2021), a quarter mile in (Yan et al. 2021), etc. There is no robust 
basis to select one value or another as it depends on people’s perception or preferences. 
In addition, a particular distance value that could fit the characteristics of a city could, 
however, be invalid for another. The major problem in this regard is that the direct clas-
sification of e-scooter trips depends on the value of this radius, and, subsequently, the 
conclusions that may be extracted from the corresponding results. In order to overcome 
this issue, we have developed a methodology that does not need to define any a priori 
parameter to analyze the relationship between e-scooter and public transit, and which 
classifies trips autonomously, deriving any required information from the original data.

To compare our results with other methodologies, we developed and applied an ana-
lytical approach adapted from the work of (Kong et  al. 2020) to our data set, which 
infers the substituting or complementary relationship between bike-sharing systems and 

Table 2  Trip classification percentage comparing our clustering method with other analytical method based 
on different predefined parameters

Method Substitution trips Complementary trips Auxiliary trips
Blind clustering 35.84% 15.23% 48.93%

AnalyticalR = 500 m 30.06% 26.59% 39.35%

AnalyticalR = 300 m 11.73% 49.84% 38.43%

AnalyticalR = 200 m 4.75% 63.32% 31.92%

AnalyticalR = 100 m 2.17% 77.47% 20.36%
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public transit based on distance thresholds. We define the transit coverage using some 
predefined values of the radius, from R = 100 m to R = 500 m, with the aim of evaluat-
ing the influence of this parameter. The distribution of trips among the three different 
categories (substitute, complementary, and auxiliary) is compared among each approach 
and illustrated in Table 2.

If 500 m is used as the radius, the number of trips belonging to each class is similar 
to our clustering results. This indicates our methodology is capable of autonomously 
determining this value, intrinsic to each city, without imposing any artificially prede-
fined threshold (Fig.  6). However, the percentage of trips in each category resulting 
from the analytical method using, for example an a priori radius R = 100 m, are com-
pletely different. The majority of trips are classified as complementary because such 
a short radius makes it difficult to find trips that start or end near the public transport 
stations. This comparison highlights the risk of using an inappropriate radius to classify 
micromobility trips in regards to their interaction with public transport.

Conclusions

E-scooter services have recently attracted attention due to the rapid increase of this 
novel mode of mobility. However, transportation planners and policymakers need to 
know the exact impact of e-scooter services on their transport systems in order to effi-
ciently integrate them into urban mobility. The former require precise information in 
order to optimize the service from a temporal (schedules) and spatial (design of network 
of stations and routes) perspective (Oeschger et al. 2020). The latter must adapt the cur-
rent policies and create new regulation in several areas such as fares (Lee et al. 2021), 
safety, traffic, and urban design (Bozzi and Aguilera 2021). Our study contributes to this 
topic with a data-driven methodology that can generate knowledge about the specific 
role played by e-scooters in association with public transport.

To this end, we collated a new e-scooter database in Rome, with some relevant novel-
ties with respect to other data sets employed in previous research. We designed a novel 
modeling framework based on clustering techniques and Manhattan distances to autono-
mously classify e-scooter trips according to their relation to public transport. This blind 
methodology avoids the need for any predefined design criteria or a priori artificial 
selection of parameters as used in other research. In addition, its autonomous nature 
allows it to extract the city’s intrinsic behavior in regards to the distance users accept 
walking to access public transport.

Our analysis reveals that the majority of the e-scooter trips in Rome are connected 
with subway or railway stations, which suggests the existence of both competing and 
supporting effects in Rome. We have also compared the spatial distributions of different 
trip types showing that e-scooters adopt different roles in different areas of the city. We 
believe that this novel methodology and the conclusions of this research have significant 
implications for transportation researchers, policymakers, and transit agencies regard-
ing the design and management of e-scooter systems and their interaction with public 
transit.

These promising results offer several opportunities to further extend this strand of work. 
We plan to extend this study to other operators and international cities to perform com-
parative analyses between them. Second, we will also expand the temporal extension of the 
original data set to look for seasonal effects. Third, given that the collected data contains 
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valuable information about e-scooter trajectories, we plan to evolve the traditional analy-
ses based on origin and destination to actual paths to identify e-scooter routes throughout 
the city. Finally, we also aim to study the utilization of the e-scooters fleet to quantify the 
viability of this service from an operating perspective (González et al. 2021) .
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