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Dense sampling of ethnic groups within African
countries reveals fine-scale genetic structure and
extensive historical admixture
Nancy Bird1*, Louise Ormond1, Paschal Awah2, Elizabeth F. Caldwell3, Bruce Connell4,
Mohamed Elamin5, Faisal M. Fadlelmola6, Forka Leypey Matthew Fomine7, Saioa López8,
Scott MacEachern9, Yves Moñino10, Sam Morris11, Pieta Näsänen-Gilmore12,13,
Nana Kobina Nketsia V14, Krishna Veeramah15, Michael E. Weale16, David Zeitlyn17,
Mark G. Thomas1, Neil Bradman18, Garrett Hellenthal1

Previous studies have highlighted how African genomes have been shaped by a complex series of historical
events. Despite this, genome-wide data have only been obtained from a small proportion of present-day ethno-
linguistic groups. By analyzing new autosomal genetic variation data of 1333 individuals from over 150 ethnic
groups from Cameroon, Republic of the Congo, Ghana, Nigeria, and Sudan, we demonstrate a previously under-
appreciated fine-scale level of genetic structure within these countries, for example, correlating with historical
polities in western Cameroon. By comparing genetic variation patterns among populations, we infer that many
northern Cameroonian and Sudanese groups share genetic links with multiple geographically disparate popu-
lations, likely resulting from long-distance migrations. In Ghana and Nigeria, we infer signatures of intermixing
dated to over 2000 years ago, corresponding to reports of environmental transformations possibly related to
climate change. We also infer recent intermixing signals in multiple African populations, including Congolese,
that likely relate to the expansions of Bantu language–speaking peoples.
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INTRODUCTION
Since the advent of genome-wide genotyping and sequencing, the
number of studies analyzing African autosomal genomes has lagged
behind those of genomes from other continents, particularly
Europe (1, 2). This is despite the fact that African genomes
contain more genetic variation and often display a high degree of
genetic structure, relative to non-Africans (3). In recent years,
there have been multiple developments in genetic diversity research
in Africa, with studies providing autosomal data from almost every
country and all major linguistic phyla (4–6). These studies have
shown that genetic structure often correlates with geography and
linguistics at both broad (6) and fine scales (7), with some evidence
that cultural factors also have an impact (8, 9). In addition, studies of
African ancient DNA (aDNA) from multiple time periods and
within different archaeological contexts have revealed the presence

of deep population structure, some of which has been overlain by
more recent migrations (10–14).

Previous analyses of African genomes have shown that admix-
ture between geographically disparate populations plays an impor-
tant role in shaping patterns of genetic diversity (15). For example,
studies have inferred the presence ofWest Eurasian–related ancestry
in Northeast Africa [e.g., Sudan (16, 17) and Ethiopia (1, 8, 18, 19)],
gene flow across the Sahara [e.g., Republic of The Gambia and
Burkina Faso (20) and Chad (21)], and longitudinal migrations
below the Sahara [e.g., observed in the Fulani/Foulbe (22) and
Nilo-Saharan speakers (1)]. The expansion of Bantu language–
speaking peoples from the Cameroon/Nigeria border region
throughout much of sub-Saharan Africa beginning roughly
3500 years before present (B.P.) radically reshaped the genetic struc-
ture of the continent (5) and led to extensive admixture between
migrants and local populations (15, 23). Admixture at much more
local scales has also been inferred, often correlating with geograph-
ical proximity and shared cultural practices (8). Advances in the
precision of dating admixture events (24–27) have allowed inference
about the impact that past events, such as the formation of empires
(28), expansions (16), or migrations (23), may have had on the
genetic diversity of present-day African populations.

Despite these advances, studies of African genetic diversity are
often limited by sparse sampling of ethnic groups and/or geograph-
ic regions, reducing their ability to detect such fine-scale genetic
structure as has been reported in other continents [e.g., within
countries in Europe (29)]. There have been some recent advances
in the study of fine-scale structure in northeastern (8, 16), central
(23), and southern (7, 30) Africa, but many countries and regions
have gone understudied. An understanding of the level of genetic
structure within smaller regions may be essential for population
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stratification correction in large-scale genome-wide association
studies (GWAS) (7, 31). In addition, better estimation of patterns
of linkage disequilibrium (LD) in a region may improve methods
of imputation, fine-mapping, colocalization, and polygenic risk
scores that rely on this inference (32). Furthermore, groups in the
same region often have vastly different histories and signatures of
admixture (8, 21).Without dense sampling of groups, a comprehen-
sive understanding of the genetic history of a region is impossible.

Here, we analyze newly acquired genetic variation data at
510,615 single-nucleotide polymorphisms (SNPs) from 1387
people, with the majority of samples from five African countries:
Cameroon, Republic of the Congo, Ghana, Nigeria, and Sudan, as
well as 54 samples from three other countries (Table 1). The new
data include people from 166 distinct, self-reported ethnic groups,
comprising speakers of three of the four major language phyla in
Africa (Afro-Asiatic, Niger-Congo, and Nilo-Saharan), as well as
some putative language isolates in the South Kordofan region of
Sudan (see fig. S1 for maps of mean birthplace for each ethnic
group and text S1 for a brief description of ethnic groups and lan-
guages sampled in each country) (33, 34). Sampled individuals span
east to west across the African continent and occupy a wide variety
of environments, encompassing individuals from the Nile Valley
and the mountains of southern Sudan to inhabitants of the
Congo rainforest (Fig. 1 and data S1). Examples of previously
undersampled groups or regions in these data include dense sam-
pling of Afro-Asiatic Chadic speakers from northern Cameroon
(Fig. 1, box C), ethnic groups from the Grassfields region of Cam-
eroon (Fig. 1, box A), and ethnic groups from the South Kordofan
region of Sudan (Fig. 1, box B).

These data enable insights into the genetic history of peoples in
this region. For brevity, here, we focus on the following questions,
which are each detailed briefly below (with more information in
texts S1 and S2):

1) Does genetic structure vary with geography, language, and/or
ethnic group within each of Cameroon, Republic of the
Congo, Ghana, Nigeria, and Sudan, as has been observed
within other African countries (1, 7, 8)?

2) The Grassfields of Cameroon, broadly located in the Northwest
andWest regions (Fig. 1, box A), has a long and complex history
of multiple polities of different sizes (35). Does genetic structure
correlate with these historical polities?

3) Some of the Kordofanian languages, spoken in the South Kordo-
fan region of Sudan, have been placed within the Nilo-Saharan
language phylum (Fig. 1, box B triangles). Linguists have debated
the placement of other Kordofanian languages (Fig. 1, box B
squares), with some suggesting that they should be placed
within the phylum containing Niger-Congo speakers, while
others arguing that they are linguistic isolates (36). Do genetic
data distinguish between these two language categories?

4) The Arabic expansion into Africa began during the seventh
century CE in Egypt but did not reach other regions until later
(37). Do we find evidence of Arabic admixture in Sudan and
Cameroon, and can we date any such admixture?

5) The Kanem-Bornu empire, beginning in roughly 700 CE, was a
large trading polity spanning present-day northern Cameroon,
northern Nigeria, and Chad (38) (see text S2 for more informa-
tion). Is there evidence of admixture that is correlated with the
dates and trading networks of the empire in two ethnic groups
sampled in Cameroon: Kanuri and Kotoko, who were historical-
ly associated with it?

6) The Fulani are a pastoralist ethnic group who inhabit a large
segment of the Sahel belt from coastal West Africa to Sudan
and speak a language closely related to those spoken in
Senegal. Previous studies of Fulani from other countries have in-
ferred them to be admixed descendants of populations related to
Moroccans and West Africans (15, 20). Do sampled Fulani from
Cameroon show similar admixture signals to those previously
reported in genetic studies of Fulani from other countries?

7) Afro-Asiatic Chadic languages are spoken in Chad, northern
Cameroon, and northeastern Nigeria, although their closest rel-
ative within the Afro-Asiatic phyla is debated (Fig. 1, box C di-
amonds) (39). Previous studies of Chadic speakers using a small
number of loci have inferred large amounts of recent ancestry
related to Nilo-Saharan speakers (1). Can we replicate this signa-
ture of Nilo-Saharan–like ancestry in a set of 97 sampled Chadic-
speaking individuals analyzed here? Can we identify which
sampled Afro-Asiatic–speaking group they are most recently
related to?

8) The Bantu languages are hypothesized to have developed in the
Nigeria/Cameroon border region before peoples speaking the
languages expanded southward and eastward, beginning
roughly 3500 years ago (23, 40). There is debate over the route
of the expansion throughout sub-Saharan Africa, as well as the
number of expansions, with recent data from the Congo basin
suggesting multiple waves. Leveraging new dense sampling
from the proposed “cradle of the Bantu languages,” can we
provide details regarding the source, routes, and timing of the
expansions of Bantu-speaking peoples?

To address these questions, we analyzed these data together with
published resources containing genetic variation data of individuals
from 287 present-day worldwide populations (4, 6, 8, 11, 12, 41–45)
and from 20 high-coverage ancient African individuals (10, 12, 13),
including a Later Stone Age individual from the Shum Laka rock
shelter in western Cameroon (data S2 and fig. S2). For each
sampled individual with newly reported genetic variation data, in-
formation about their self-reported ethnic group, birthplace, first
and second language, and that of their parents, maternal grand-
mother, and paternal grandfather was documented, with both re-
corded grandparents sharing the same ethnic group and

Table 1. Number of samples from each country in the newly reported
dataset after quality control.

Country Number of samples

Cameroon 484

Republic of the Congo 114

Ghana 211

Nigeria 291

Sudan 233

Mozambique 11

South Africa 35

Zimbabwe 8
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Fig. 1. Location of samples from Cameroon, Republic of the Congo, Ghana, Nigeria, and Sudan. White symbol outline indicates the sample has been previously
published (8, 12, 41, 43). For newly reported samples, individuals are plotted using the mean birthplace of the individual’s maternal grandmother and paternal grand-
father (n = 1333; see Materials and Methods). Symbol size represents the number of individuals sampled with mean birthplace at that location, and symbol shape rep-
resents the individual’s first language family. Kordofanian speakers (square) are only found in southern Sudan (box B). Cameroonians have been separated into northern
Cameroon (dark red) and southern Cameroon (lighter red) based on the individual’s birthplace and genetic clustering results (Fig. 3). Squares (A, B, and C) indicate some
of the regions mentioned in the main questions that we address.

Fig. 2. Haplotype-based PCA using patterns of recent ancestor sharing among individuals. (A) PC1 versus PC2. (B) PC1 versus PC3. Samples newly reported in this
study are indicated by symbols with a black outline, previously published samples have a white outline (4, 6, 8, 12, 41–44), and language family is represented by symbol
shape. Some outlying populations (Cameroonian Baka, Bakola, Bedzan, and Fulani) are labeled.
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birthplace in the majority of cases (80%). This acts to mitigate the
impact of recent migration or admixture on inferences about pop-
ulation structure and ancestry, ameliorating a major potential con-
founder when addressing the questions above (29). We note that
when we mention “ancestry” related to a particular identifier (e.g.,
a geographic region or linguistic group), we are referring to genetic

variation patterns that match those of sampled individuals with that
identifier, a shorthand that we use for convenience.

RESULTS
Genetic structure is associated with geography, language,
and ethnic group
We used multiple different methods to analyze genetic structure
within the dataset (see flowchart in fig. S3). To visualize the main
axes of genetic diversity, we initially performed a principal compo-
nents analysis (PCA) (46) on patterns of inferred recent ancestor
sharing among individuals (47). Specifically, for each of the 5253
individuals, we first used the haplotype-based program Chromo-
Painter (47) to infer the genome-wide proportion of DNA for
which each individual shares a most recent ancestor with sampled
people from each of 260 worldwide populations (fig. S1 and text S3).
We then performed a PCA on these inferred proportions across the
1333 of these individuals fromCameroon, Ghana, Nigeria, Republic
of the Congo, and Sudan, incorporating data from a selection of
other African groups and Saudi Arabians for comparison (Fig. 2).
We additionally performed the more commonly used PCA of geno-
type data using smartPCA (fig. S4, A and B) but observed a stronger
correlation between genetics and geography (r = 0.84 versus
r = 0.59) when applying Procrustes superimposition to the haplo-
type-based analysis (figs. S4, C and D, and S5), as has been reported
previously (8, 31). We also applied the clustering algorithm AD-
MIXTURE (48) to highlight broad genetic patterns (fig. S6).

The first PC forms a cline from Saudi Arabians to West African
Niger-Congo speakers, (Fig. 2). Most West African Niger-Congo
speakers included in this analysis lie along the second PC in a
manner mirroring geography, from Sierra Leoneans (top left) to
Congolese (Fig. 2A), although the Cameroonian Fulani are a
notable outlier, reflecting ADMIXTURE results at K = 8 (fig. S6).
Rainforest hunter-gatherers from Cameroon (Baka, Bakola, and
Bedzan) also cluster separately from other Cameroonians and Con-
golese (bottom left of Fig. 2A, pink in ADMIXTURE at K = 4), as do
South African and Kenyan Bantu language speakers. On PC3, Nilo-
Saharan– and Kordofanian-speaking Sudanese cluster tightly to-
gether near the Nilo-Saharan–speaking Ethiopian Nuer (bottom
right of Fig. 2B), with most Arabic-speaking Sudanese spreading
along PC3 toward Saudi Arabians (top right of Fig. 2B). Afro-
Asiatic– and Nilo-Saharan–speaking northern Cameroonians are
at an intermediate position between Nilo-Saharan–speaking Suda-
nese and West Africans.

We then calculated the genetic distance between pairs of (i)
ethnic groups, (ii) linguistic groups, and (iii) individuals with birth-
places separated by different distances, to understand how genetics
correlates with each of these factors. We measured genetic distance
using both the fixation index (Fst) (fig. S7) and a haplotype-based
measure, total variation distance (TVD), where we calculated signif-
icance using a permutation test to account for differences in sample
size (see Materials and Methods, fig. S8, and text S3) (29). When
using both Fst and haplotype-based analyses, ethnic groups from
the same country are often more genetically similar to each other
than they are to any groups from another country, including close
neighbors. For example, the six southeastern Nigerian groups are
genetically distinguishable from all groups fromwestern Cameroon,
despite living in proximity. Within some regions, specifically
Ghana, Northwest and West Cameroon, and southern Sudan,

Fig. 3. fineSTRUCTURE dendrograms showing the inferred relatedness
between clusters of individuals in the dataset. Individuals from Cameroon, Re-
public of the Congo, Ghana, and Nigeria (A) and Sudan (B) were left to cluster
freely, while individuals from other populations were merged into superindivid-
uals who each correspond to group labels (see Materials and Methods). For
clarity, some branches have been condensed (see more detailed dendrograms
in figs. S12 and S13). Ancient individuals are shown with a brown label. The 18
final supergroups used for admixture analysis are highlighted with different
label colors, and the sample sizes of these clusters are shown in brackets. The clus-
ters shown in Fig. 4 are those on the branches labeled as Ghana (Fig. 4A), Camer-
oon Northern Bantoid and Cameroon Grassfields (Fig. 4D), Sudan Nilo-Saharan,
and Sudan Kordofanian (Fig. 4C). The branches within the Ghana supergroup
that correspond to different geographic regions in Fig. 4A have been labeled.
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ethnic groups are typically significantly genetically different from
each other (fig. S8).

When examining genetic distance between language phyla
within Cameroon (fig. S9A), Nilo-Saharan and Afro-Asiatic speak-
ers are typically genetically distinguishable from Niger-Congo
speakers, consistent with the PCA (Fig. 2). Within Cameroonian
Niger-Congo speakers, Narrow Bantu, Grassfields, and Northern
Bantoid speakers are all distinguishable, as are the North-Central
Atlantic–speaking Fulani. Similarly, Nilo-Saharan–, Kordofanian–,
and Afro-Asiatic–speaking groups in Sudan are distinguishable (fig.
S9B). In each country, there is a negative relationship between
genetic similarity (calculated as 1 − TVD) and geographic distance
(fig. S10). However, there is a large variation in correlation strength
across countries, with R2 = 0.10 in Nigeria and R2 = 0.96 in southern
Cameroon. Individuals from Cameroon and Sudan showed the
greatest reduction in genetic similarity with distance, which re-
mained even after only comparing people belonging to the same
ethnic group (fig. S10B). However, in Sudan, we observed a
weaker correlation between genetic similarity and distance when
analyzing only Sudanese that were sampled along the Nile River
(see text S1 and fig. S11). These correlations can be influenced by
isolation by distance or differential admixture (explored below) or a
combination of the two.

We next used fineSTRUCTURE (29) to group the individuals
into clusters (see Materials and Methods) and infer a dendrogram
of genetic relatedness among them (Fig. 3, figs. S12 and S13, and
data S3). Matching PCA results (fig. S4C), individuals from
Ghana show clear structure by geography, with an initial split
(i.e., higher in the fineSTRUCTURE-inferred dendrogram) divid-
ing northern and southern samples, respectively, followed by
splits between eastern and western Ghanaians in both the north
and south (Figs. 3 and 4A). In Nigeria, southwestern ethnic
groups (Yoruba and Esan) cluster more closely to Ghanaians than

to southeastern Nigerians on the fineSTRUCTURE dendrogram.
No clear splits related to ethnic group or geography are inferred
among southeastern Nigerians in this sample. Similarly, in the Re-
public of the Congo, there is limited genetic structure, although the
Yombe form a distinct cluster. Northern Cameroonians cluster on
one branch with populations from Chad and the Central African
Republic, apart from the Fulani who cluster on a branch with
coastal West Africans. While certain northern Cameroonian
ethnic groups, such as the Arabe, Kanuri, and Kotoko form their
own distinct clusters, all others ethnic fall into two large clusters.
However, we caution that sample size can have an impact on fineS-
TRUCTURE inferences, in that the larger the sample size the more
likely it is to detect any genetic structure present.

Fine-scale genetic structure correlates with ethnic group in
the Grassfields of Cameroon
Southern Cameroonians form three main genetic clusters that are
broadly, but not completely, defined by language group: Northern
Bantoid speakers, Grassfields speakers, and Narrow Bantu speakers
(Fig. 3 and fig. S12). Exceptions include the Yamba who speak a
Grassfields language but cluster with Northern Bantoid speakers,
some of the Mbo who speak a Narrow Bantu language but cluster
with Grassfields speakers, and some of the Bamileke who speak a
Grassfields language but cluster with Narrow Bantu speakers.
Notably, within Northern Bantoid and Grassfields speakers, fineS-
TRUCTURE distinguished ethnic groups living <20 km from each
other (Fig. 4D). In contrast, Narrow Bantu speakers show almost no
genetic structure associated with ethnic group, consistent with our
TVD analysis (fig. S8). The high-coverage Later Stone Age individ-
ual from the Shum Laka rockshelter in Cameroon (dated 8000 years
B.P.) clusters on the same branch as the Biaka from the Central
African Republic and the Baka, Bakola, and Bedzan fromCameroon
in the fineSTRUCTURE dendrogram (Fig. 3). This fits with

Fig. 4. Fine-scale genetic structure is associated with geographic region and ethnic group. (A) Ghana, (C) the South Kordofan region of Sudan, and (D) southern and
western Cameroon, where colors depict genetic cluster inferred with fineSTRUCTURE (fig. S12). Symbols indicate each individual’s ethnic group. (B) Adapted from Fig. 1
and highlighting the location of each of the other panels. In Ghana, genetic structure corresponds with geographic region, while, in the other two regions, clusters are
also strongly associated with ethnic group. In (C) and (D), very fine-scale structure is observed, with some clusters less than 20 km apart from each other. Sample locations
are slightly jittered to avoid overlap.
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previous findings that genetic variation patterns in this ancient in-
dividual are more similar to those of present-day rainforest hunter-
gatherers than those of Narrow Bantu and Grassfields language
speakers from the Grassfields of Cameroon (12).

Nilo-Saharan and Kordofanian speakers from the south
Kordofan region of Sudan are genetically distinct
Nilo-Saharan speakers and Kordofanian speakers from the South
Kordofan region of Sudan form separate clusters, on a branch
with other clusters containing Sudanese Arabic speakers and
Nilo-Saharan speakers from Ethiopia (Fig. 3). Clusters in the
South Kordofan region display a notable correspondence with

Fig. 5. Inferred admixture event(s) and recent ancestor
sharing. (A) Inferred admixture dates using fastGLOBE-
TROTTER (circle), MALDER (triangle), and MOSAIC (square)
and 95% confidence intervals (defined as the union of
confidence intervals for all three methods) for each super-
group, except Sudan Kordofanian and Sudan Nilo-Saharan.
For each confidence interval separately, see fig. S16. Events
inferred by only one method with confidence intervals not
within three generations of those of the other methods are
shown with a dashed line. The dates of historical events oc-
curring at the same time and in the same region as each
admixture event are shown as transparent boxes, legend at
right. Point and error bar color corresponds with arrows in (B).
The black open rectangles span the confidence intervals in-
ferred by fastGLOBETROTTER for the Cameroon North
supergroup, and the confidence intervals inferred byMOSAIC
and fastGLOBETROTTER for the Sudanese clustering near
Fulani supergroup, both discussed below. (B) Map with
arrows indicating potential waves of migration related to in-
ferred admixture events, with color and number of arrow
denoting admixture category shown in (A). (C) Description of
each supergroup’s genetic variation patterns as mixtures of
those in the reference populations given at the top [colors
corresponding to those on map in (B)], inferred by SOURCE-
FIND. Ethiopian Afro-Asiatic–speaking clusters and Nilo-
Saharan–speaking clusters have been grouped for ease of
visualization (see data S6).
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self-described ethnic affiliation and language (Fig. 4C), except for
the Keiga and Korongo who cluster together (fig. S13). However,
we infer a relatively low correlation with geography (Procrustes
Pearson correlation = 0.25; fig. S5H).

Sudanese outside of the South Kordofan region were divided
into four major clusters. First, one ethnic group, the Beni-Amer,
forms their own cluster. Another group of individuals from a
variety of different ethnic groups cluster on the same branch as
the Fulani from Cameroon. The remaining individuals are then
divided into two main genetic clusters that show very little corre-
spondence to ethnic group or geography but, instead, exhibit differ-
ing amounts of inferred admixture related to non-Africans
(see below).

Defining groups for identity-by-descent sharing, recent
shared ancestry, and admixture analyses
We defined 101 “clusters” containing individuals from Cameroon,
Republic of the Congo, Ghana, Nigeria, and Sudan, where individ-
uals in each group have the same self-reported ethnicity and cluster
together using fineSTRUCTURE (figs. S12 and S13 and data S4). To
explore relative degrees of genetic homogeneity among groups,
which may be indicative of relative degrees of isolation, we used
hap-ibd (49) to calculate the total length of identity-by-descent
(IBD) segments shared between each pair of individuals within
each cluster. The mean inferred genome-wide IBD sharing varied
from <3 to 241 cM among clusters, with the highest value observed
in the Fulani (fig. S14). High values were also seen in some other
Cameroonian and Sudanese clusters.

We used SOURCEFIND (50) to infer how individuals from each
of the 101 clusters relate genetically to 226 reference populations
(fig. S15). We inferred that the majority of genetic variation in in-
dividuals from Republic of the Congo, Ghana, Nigeria, and south-
ern Cameroon is recently related to West African and Bantu-
speaking groups, while genetic variation patterns in individuals
from northern Cameroon and Sudan are best described as mixtures
of those in East Africans, West Africans, and North Africans. We
used these SOURCEFIND results along with higher levels of the fi-
neSTRUCTURE dendrogram to merge the 101 clusters into 18 “su-
pergroups” who cluster together and show similar inferred
relatedness to these 227 reference populations (see Fig. 3 for super-
groups and sample sizes, fig. S3 for flowchart, and data S5). Using
these larger groups of individuals increases our power to detect and
date admixture events.

We then applied three separate methods: MALDER (26), fast-
GLOBETROTTER (27), and MOSAIC (25) to infer admixture sep-
arately in each of the 18 supergroups (see Materials and Methods)
assuming a pulse model. For this analysis, groups from Cameroon,
Republic of the Congo, Ghana, Nigeria, and Sudan were not used as
potential surrogates for admixture sources, as doing so can mask
signals of admixture shared among these populations. Admixture
was inferred by at least one method in all supergroups and inferred
with two or more methods in 12 of the supergroups. Date estimates
ranged from 2650 BCE to 1800 CE (Fig. 5 and data S6), with over-
lapping confidence intervals for at least two of the three methods in
10 cases (fig. S16). We note that admixture events between popula-
tions who are more genetically divergent will be easier to detect.
Since our supergroup sample sizes vary widely, our power to
detect and date admixture events and, thus, our confidence intervals
will also vary. Likewise, for some admixture events, the dataset may

lack suitable reference proxy populations, which will also have an
effect on power. Therefore, we treat dates with larger confidence in-
tervals or discrepancies between methods with caution.

Inferring admixture in northern Cameroonians
In non-Kotoko Chadic-speaking Cameroonians (the “Cameroon
North” supergroup), fastGLOBETROTTER inferred a multiway ad-
mixture event between sources related to (i) coastal West Africans,
(ii) East Africans, (iii) Bantu speakers, and (iv) populations from
Chad, dated to 710 CE (10 BCE to 840 CE). This date overlaps
with that inferred by MALDER but with more precise confidence
intervals. In contrast, for the Chadic-speaking Kotoko, as well as
the Nilo-Saharan–speaking Kanuri, we inferred more recent
(point estimates post-1000 CE) multiway admixture using all
three methods. The inferred admixture events for these two
groups involve a West African–like and an East African–like
source, as well as a third source related to North African, Levantine,
and Arabian groups, with dates overlapping the Kanem-Bornu
empire (700 to 1890 CE; Fig. 6). MALDER additionally inferred
an older admixture event in the Kotoko.

In the Fulani, we inferred admixture dated to 670 to 1190 CE
between a source related to Morocco Berbers and a source related
to populations in the Fulani’s assumed homeland of The Gambia
and Senegal using MOSAIC and MALDER. FastGLOBETROTTER
inferred similar sources of admixture but with multiple dates of
1800 CE (1510 to 1850 CE) and 680 BCE (2090 BCE to 130 CE).
Furthermore, both fastGLOBETROTTER and MOSAIC inferred
these Cameroonian Fulani to best represent one of the sources of
an admixture event dated to 1650 to 1800 CE in a group of Sudanese
(“Sudanese clustering near Fulani” group in Fig. 5, fig. S13, and data
S7), with the other source inferred to be northern Cameroon–like.

Inferred admixture from Arab-like sources in Cameroon
and Sudan spanning 2000 years
Four supergroups from Cameroon and Sudan show evidence of ad-
mixture from Arabian/Levantine-related sources (red events in
Fig. 5A). In Arabs from Cameroon and in clusters of Sudanese
living along the Nile, pulses of admixture from a Saudi Arabian–
like source are dated to ~1340 to 1720 CE. In some Nile-based Su-
danese, fastGLOBETROTTER infers an additional older admixture
event dated to 640 CE (160 to 800 CE), also from a source related to
present-day Saudi Arabians and consistent with continuous gene
flow from the Arabian Peninsula over a long period. In contrast, in-
ferred Arabic-related admixture in the Beni-Amer involves an
African source more closely related to Somalis and dates to 680 to
1130 CE with MOSAIC and fastGLOBETROTTER and 170 BCE to
580 CE inMALDER. No Arabic-related admixture is inferred in the
two clusters from the South Kordofan region of Sudan using
MOSAIC and fastGLOBETROTTER. MALDER infers old admix-
ture in both these supergroups, although with large confidence in-
tervals (4590 BCE to 990 CE).

Admixture in southern Cameroonians, Ghanaians,
Nigerians, and Congolese correlates with the initial
expansion of Bantu-speaking peoples
FastGLOBETROTTER inferred similar admixture events in the
history of Narrow Bantu speakers and Grassfields speakers from
Cameroon, Nigerians, and Ghanaians, between sources related to
coastal West Africans and speakers of Bantu languages. MALDER
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also inferred admixture between two African populations in North-
ern Bantoid speakers and Grassfields speakers from Cameroon with
confidence intervals overlapping these events, while MOSAIC in-
ferred no admixture in these supergroups (Fig. 5A and fig. S16).
FastGLOBETROTTER’s inferred point estimate dates are more
recent for the more western supergroups, Ghana and Nigeria
West (450 and 200 BCE, respectively) and older for Nigeria East,
Cameroon Grassfields, and Cameroon Narrow Bantu (1420, 980,
and 820 BCE, respectively), although 95% confidence intervals
overlap for all dates (see fig. S17 for coancestry curves).

In Congolese, fastGLOBETROTTER inferred evidence of multi-
ple admixture pulses, at 560 BCE (1790 to 320 BCE) and 1260 CE
(950 to 1710 CE), each between sources related to Bantu language–
speaking peoples and rainforest hunter-gatherers (Biaka-like). Both
MALDER and MOSAIC replicate the more recent event, with these
approaches not capable of detecting multiple admixture events in-
volving the same sources (25, 26).

Admixture in Bantu-speaking peoples consistent with
multiple waves of expansion and a “late split” route
Linguistic evidence indicates that the expansion of Bantu-speaking
peoples originated in the Cameroon/Nigeria border region (40, 51),
suggesting that genomes from this region are likely good proxies for
ancestry related to Bantu language speakers in other populations.
To investigate this, we ran SOURCEFIND (50) on 14 present-day
populations and 4 ancient individuals previously reported to have
genetic variation related to present-day Bantu language speakers
(Fig. 7 and Materials and Methods) (7, 10, 13, 15). We used 270
other sampled populations with ≥4 individuals in the dataset as po-
tential surrogates to admixing sources, including the 8 Bantu lan-
guage–speaking Cameroonian groups and 262 non–Bantu
language–speaking groups (data S4). These non–Bantu languages-
peakers contain Southern Bantoid speakers from Cameroon and
Nigeria, the language family from which Bantu languages originat-
ed (52). In all 18 present-day and ancient groups, SOURCEFIND
inferred the non-Bantu Southern Bantoid language–speaking Ba-
mileke (specifically the Bamileke North cluster) from western Cam-
eroon to best reflect genetic variation patterns related to Bantu
language speakers (Fig. 7).

As before, we used three methods, fastGLOBETROTTER (27),
MALDER (26), and MOSAIC (25) to date admixture between the
Cameroon-like source and local source in the 13 present-day pop-
ulations (excluding the Republic of the Congo that was analyzed
earlier) and 4 ancient individuals previously reported to have
genetic variation related to present-day Bantu language speakers
(fig. S18 and data S8). Admixture between a West African-like
source and a source related to a geographically proximate popula-
tion was inferred in ≥2 methods for 11 present-day groups, 10 of
which had overlapping confidence intervals for inferred admixture
dates in at least two methods. In many of these events, MOSAIC
inferred a date more recent than that inferred byMALDER and fast-
GLOBETROTTER, as has previously been reported (7). Multiple
waves of admixture were inferred by fastGLOBETROTTER in
three groups, with one event inferred to be older than 0 CE in
each case. Of the more recent admixture events and those where
one date was inferred, date point estimates ranged from 170 BCE
to 1630 CE. Consistent with SOURCEFIND inference, fastGLOBE-
TROTTER and MOSAIC reported the Bamileke to be the best rep-
resentative source for Bantu speaking–related admixing source in
the majority of groups.

We next investigated the route of the expansion of Bantu-speak-
ing peoples. Mimicking previous approaches that tested for evi-
dence of a late split of Bantu language speakers into Southern and
Eastern branches during the expansion (5, 15, 23, 30), we reran fast-
GLOBETROTTER using (i) only Cameroonian and Congolese
Bantu language speakers or (ii) all Bantu language speakers as po-
tential surrogates for Bantu-speaking-related ancestry (fig. S19).
Congolese groups were favored over Cameroonians as surrogates
in all Bantu language–speaking target populations in analysis (i),

Fig. 6. Inferred admixture in the Kotoko and Kanuri correlates with the
Kanem-Bornu empire (700 to 1890 CE). MOSAIC results for the Kotoko (A)
and Kanuri (B) indicate admixture between southern and western African (red),
eastern African (red and green), and North African/Levantine/Arabian (blue and
purple) related sources. Size of point indicates the percentage contribution of
that population to the inferred genetic makeup of the admixing source. The
mean birthplace of sampled Kotoko and Kanuri is shown with a star. (C) Inferred
dates of admixture using all three methods (shape and color) are shown in the
bottom panel, with 95% confidence intervals. These inferred dates of admixture
correspond closely with the span of the Kanem-Bornu empire, both during the
early phase when the center was located in southwestern Chad (light blue on
the timeline) and the later phase when the center was located in northeastern
Nigeria (dark blue on the timeline) (38). The Kotoko and the Kanuri ethnic
groups were both associated with the empire, which was involved in trade
between different regions of Africa.
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and Bantu language–speaking groups from Malawi and Mozam-
biquewere favored as surrogates in Southern and Eastern Bantu lan-
guage–speaking groups in analysis (ii) (fig. S19). These observations
are consistent with previous results supporting a late split model,
whereby Bantu language–speaking peoples initially migrated
south through the Republic of the Congo [and possibly further
south to Angola (23)]. This was followed by an eastward migration,
potentially as far as Malawi and Mozambique, before the split into
Eastern and Southern branches.

Archaeological evidence has recently provided support for a
population collapse at ~600 CE in the Congo basin, followed by a
secondary spread event roughly 800 years later (53, 54). To assess
genetic signatures of this, we used GONE (55) and IBDNe (56) to
infer recent changes in effective population size (Ne) in Republic of
the Congo. We found evidence of a small population expansion

beginning roughly 60 generations ago or earlier using both
methods and evidence of a recent (20 generations ago) decrease, fol-
lowed by continued expansion using IBDNe. There was no indica-
tion of an older population collapse (fig. S20). However, we assessed
the power to identify such a collapse by applying GONE and IBDNe
to several simulations that mimic the proposed changes in effective
population size from archaeological data (see Materials and
Methods, fig. S21, and text S4). Our results show that an “expan-
sion-bottleneck-expansion” scenario would be very difficult to dis-
tinguish from a single recent expansion using our genotype array
data and current methods, and therefore, our data do not appear
well suited to test this hypothesis using these techniques. In addi-
tion, given admixture can cause an increased effective population
size inference (55), it likely will be difficult to disentangle inferred

Fig. 7. Cameroonian-related genetic variation in Africa-wide populations as a result of the expansions of Bantu-speaking peoples. For 4 ancient individuals from
South Africa and Kenya (enclosed by a white border) and 14 present-day populations, pies give the SOURCEFIND-inferred proportions that best describe the genetic
variation patterns in each group as a mixture of those in the surrogate populations. In all cases, the highest proportion related to Cameroonian populations was spec-
ifically matched to the Bamileke. Arrows depict the hypothesized route of the expansion of Bantu-speaking peoples based on these data (see below). Ethiopian Afro-
Asiatic–speaking clusters, Nilo-Saharan–speaking clusters, and non-African clusters have been grouped for ease of visualization (see data S8).
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admixture in the populations from the Republic of the Congo from
population size changes.

DISCUSSION
Here, we present analyses of newly reported genome-wide autoso-
mal variation data from 1387 individuals, the majority sampled
from Cameroon, Republic of the Congo, Ghana, Nigeria, and
Sudan. These data can be used to explore an array of hypotheses,
such as those based on available anthropological and archaeological
records. Below, we leverage genetic data in relation to each of the
questions listed in Introduction. While we relate some of these
genetic signatures to historical events, we note that it is not possible
to determine the exact cause of historical intermixing. This is espe-
cially truewhen the confidence intervals around an inferred date are
large. Instead, we provide possible explanations based on overlap-
ping dates, populations, and geographic regions.

Genetics is correlated with geography, self-reported
ethnicity, and language within each of Cameroon, Republic
of the Congo, Ghana, Nigeria, and Sudan
Leveraging a densely sampled dataset of West and Central Africans
and Sudanese, we infer a previously underappreciated degree of
fine-scale genetic structure in African populations. We observe
the clustering of individuals by country (Fig. 2 and fig. S8) and by
geography and/or ethnicity within Cameroon, Ghana, and Sudan
(Fig. 4). Genetics often correlates with major linguistic phyla (e.g.,
Niger-Congo versus Afro-Asiatic in Cameroon and Nilo-Saharan
versus Afro-Asiatic in Sudan) and sometimes with smaller linguis-
tics groupings, for example, among different Bantoid language
speakers in Cameroon (fig. S9) (1). Some of these genetic differenc-
es, such as those within the Congo basin, have previously been dif-
ficult to capture (5). The genetic structure that we infer is often
more detectable when using haplotype-based techniques (figs. S4
and S5), supporting recent work indicating how haplotypes can
better describe fine-scale structure (8, 9). This may have implica-
tions when properly adjusting for stratification in large-scale
GWAS (31).

Perhaps unexpectedly, ethnic groups in southeastern Nigeria
and western Cameroon cluster largely by country of origin,
despite the border only existing since 1913 CE and with little con-
sideration given to the distribution of ethnic groups during its cre-
ation (57, 58). This suggests that our sampled groups were isolated
from one another before the formation of this border, perhaps due
to older structure between subgroups now present on either side.
This structure could result from the topographical barriers that
the border tends to follow (57). However, none of the sampled
ethnic groups included individuals from both countries, and so
we note that there may be cases, not well represented by the
sample collection here, where groups on either side of the border
are more genetically similar.

In notable contrast to these observed associations between ge-
netics, ethnicity, and geography, genetic variation patterns among
Sudanese belonging to Arabic and Nubian ethnic groups sampled
along the Nile using a transect approach show almost no correspon-
dence with ethnicity (fig. S8), and only a subtle isolation by distance
relationship (fig. S11). In contrast, a previous study that sampled
each Sudanese population from a single location found Arabic
and Nubian groups to be genetically distinguishable (16). This is

consistent with the Nile acting to promote intermixing among
groups in Sudan, e.g., as a corridor of gene flow, as has previously
been suggested using mitochondrial DNA data (59). Almost all
Arabic, Beja, and Nubian individuals fall into two genetic clusters
whose main difference is their proportion of genetic variation pat-
terns inferred to be recently related to Arabian groups (48% versus
12%) (Fig. 5C, Nile1 versus Nile2), with less such inferred Arabian-
related ancestry in Beja and Nubian individuals, on average.

Does genetic structure correlate with historical polities in
the Grassfields of Cameroon?
Figure 4D demonstrates fine-scale structure in southern and
western Cameroon, including in the Grassfields. The Grassfields
region of Cameroon (broadly both the Northwest and West
regions) is home to ethnic groups with a range of histories and pol-
ities, from those who at the end of the 19th century had large,
unified kingdoms (known as fondoms) such as the Bamun (60) to
smaller ethnic groups consisting of only a few villages (e.g., the
Aghem; text S2) (61, 62). We inferred notable fine-scale structure
among Grassfields individuals, with most ethnic groups constitut-
ing their own genetic cluster, even those where sampled individuals
reside within 20 km of each other (Fig. 4D). We believe that this
structure is a result of isolation between groups rather than differ-
ential admixture, because we infer that all of these groups are sim-
ilarly genetically related to non-Grassfields populations (fig. S15).
We caution that we may have limited power to detect genuine ad-
mixture differences among them if we have not included good
enough proxies to (unknown) contributing ancestral sources, al-
though we have included 154 sampled African groups as surrogates.

We found two key exceptions where ethnic group does not cor-
respond with genetic cluster. First, the Nso’ and Wimbum cluster
together despite speaking different branches of Grassfields languag-
es and living 70 km apart. The Nso’ formed a large, unified kingdom
in precolonial times and had influence over nearby ethnic groups,
possibly facilitating gene flow (63). Another ethnic group, the Noni,
live within 20 km of the Nso’ but do not cluster with them. Although
the Noni were governed at times by the Nso’ Kingdom, they main-
tained a separate identity and attempted to establish independence
in both colonial and postcolonial times, which may have limited
gene flow between the two groups (63, 64). The second exception
is in those who self-identify as Tikar, who fall into two separate
genetic clusters. In particular, all self-identified Tikar who report
speaking Tikar and live in the Adamawa region cluster among
other Northern Bantoid speakers. In contrast, self-identified Tikar
who do not report speaking Tikar and live in the Grassfields cluster
with other Grassfields ethnic groups (35).

Of the sampled Grassfields ethnic groups, the Bamun and the
Bamileke have the lowest inferred within-group IBD sharing (fig.
S14). The Kingdom of Bamun was reported to be the largest in
the Grassfields and known for both fighting and trading with neigh-
boring ethnic groups (60, 65). These interactions may have acted to
reduce genetic isolation/endogamy in the Bamun. In general, these
results suggest that different political structures in the Grassfields
region of Cameroon do not correspond with similar genetic signa-
tures. It is also important to consider colonial history when inter-
preting patterns of genetic variation in the Grassfields. For example,
the Bamileke label was given to several smaller fondoms by the
Germans during the colonial period (62), and this may explain
their relatively high genetic diversity compared to nearby ethnic
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groups that have not had such broad colonial labels imposed upon
them (figs. S8 and S14).

Do we detect structure between Kordofanian speakers and
Nilo-Saharan speakers in southern Sudan?
In contrast to the lack of genetic structure observed among Suda-
nese sampled along the Nile, we inferred very fine-scale structure
among individuals sampled in the Nuba mountains of South Kor-
dofan, which correlates with ethnolinguistic group (Fig. 4C). This
region has been described as a historic refuge due to its inaccessible
nature (66). Ethnologue (34) places the South Kordofan languages
into two macrophyla; Niger-Congo (Kordofanian) and Nilo-
Saharan, although with controversy over classifications and
several languages often categorized as isolates (33, 36). We inferred
groups classified as Kordofanian to be genetically distinct from
groups classified as Nilo-Saharan, with the latter showing a
greater genetic affinity to sampled Nilo-Saharan speakers from
Ethiopia (Fig. 2 and fig. S9B). These differences remain after miti-
gating recent endogamy effects (text S3), indicating perhaps some
ancient structure between Kordofanian and Nilo-Saharan speakers
correlating with speaking languages from different macrophyla. We
also infer a relatively low correlation between genetics and geogra-
phy in this region (fig. S5H), although this is likely a result of rela-
tively isolated groups (e.g., Acheron) distorting the PCs. Replicating
previous reports (16), we inferred no evidence of Arabian-related
admixture in South Kordofan after the Arabic expansion into
Sudan (see below), again consistent with the mountains’ role as a
refuge (67).

Can we date admixture as a result of the Arabic expansion
into Africa?
We inferred multiple waves of admixture in Sudanese related to
Arabian-like sources. In contrast to other sampled Sudanese
ethnic groups, the Beni-Amer, a coastal Beja ethnic group, exhibit
a greater inferred proportion of genetic variation related to Ethio-
pian Afro-Asiatic groups (Fig. 5C) and an older wave of admixture
from a source related to Saudi Arabians and Yemenis dated to the
first millennium CE. The Kingdom of Aksum extended across
northern Ethiopia, coastal Sudan, and Yemen during this period
and was known to trade with the Arabian Peninsula, providing a
potential explanation for the inferred gene flow, although other in-
teractions unrelated to the empire could also explain this signal (text
S2) (68). This admixture event has been reported previously, along
with additional non-African admixture dated to an earlier period in
the Beni-Amer (16), which we may not infer here because of
masking by more recent signals (69).

We inferred admixture in two other Sudanese clusters that pri-
marily contain Nile inhabitants, dated to 1340 to 1730 CE between
sources related to (i) present-day Arabians and (ii) East African
Nilo-Saharan speakers. The inferred admixture date and sources,
consistent with previous findings (16, 21), may reflect the collapse
of the Kingdom of Makuria over this period, which allowed Arabic
groups to expand down the Nile into Sudan (70). In one of these
clusters, we replicate previous reports (16) of an older pulse of ad-
mixture between similar sources, dated to 640 CE (160 to 800 CE),
indicating a possible wave of migration into Sudan that predates or
coincides with the seventh century Arabic expansion (67). Last, we
inferred Arab-like admixture in Arabs from the Far North region of
Cameroon dated to the 16th century, overlapping with reported

migrations of Arabic groups into the Lake Chad area from the
mid-14th century onward (37, 70).

What was the impact of the Kanem-Bornu empire on the
genetics of the northern Cameroonian populations
associated with it?
In both the Chadic-speaking Kotoko and the Nilo-Saharan–speak-
ing Kanuri, we inferred admixture events, dated to 960 to 1690 CE
in the former and 820 to 1760 CE in the latter, involving three dis-
tinct sources related to present-day East Africans, West/Bantu lan-
guage–speaking southern Africans, and North Africans/
Levantines/Arabians, respectively (Fig. 6). The inferred dates
overlap the Kanem-Bornu empire, which was present in northern
Cameroon at the time. The empire was based in Kanem, east of
Lake Chad, from 700 CE. In the late 1300s, the center of the
empire shifted to Borno in northeastern Nigeria and continued
there until the late 1800s. It is during this later period that local
Chadic-speaking populations, culturally and linguistically related
the Kotoko, were assimilated into the Nilo-Saharan–speaking
empire and the Kanuri emerged as an ethnic group (38). This
may explain why two approaches infer admixture dates in the
Kotoko during the later stage of the empire (Fig. 6). In the
Kanuri, MOSAIC infers multiple admixture events within the
date span of the empire, one during the early stage or the empire
and one during the later stage, perhaps reflecting more continuous
mixture over a longer period. The empire is known for its trade links
between North, West, and East Africa (71), which plausibly facili-
tated the intermixing of peoples from these regions. However, we
note that our confidence intervals span a long time period and
gene flow into northern Cameroon at this time may be associated
with long-distance interactions unrelated to the empire.

Can we date admixture in the history of the Fulani in
northern Cameroon?
We inferred similar admixture sources in Fulani sampled from the
Far North and Adamawa regions of Cameroon as have been report-
ed in studies of Fulani from other countries (15, 20, 22), with one
source related to Morocco Berbers contributing ~12% and the re-
maining DNA contributed by a source related to Gambians and
Senegalese (Fig. 5C). Admixture between sources related to
Morocco Berbers and Gambians was dated to 670 to 1190 CE
using MALDER and MOSAIC in these Cameroonian Fulani,
which is more recent than some previous estimates of admixture
dated to ~200 CE in Fulani sampled from Gambia, Burkina Faso,
Niger, and Chad (15, 20, 22). FastGLOBETROTTER inferred mul-
tiple dates of admixture, with the older event between similar
sources as above dated to 700 BCE, although with very large confi-
dence intervals. It is possible that the very recent mixing that fast-
GLOBETROTTER infers pushed back its date inference for the
older event, as has been demonstrated before (24). Trans-Saharan
trade and migration routes have linked North and West Africa for
thousands of years and may have facilitated the inferred gene flow
(15, 72). We also infer a larger amount of IBD sharing within the
Fulani cluster (fig. S14), potentially as a result of the ethnic
group’s historical endogamous practices (20).

We inferred admixture between a Fulani-like source and a north-
ern Cameroonian-like source dated to 1650 to 1800 CE in several
Sudanese individuals (Sudanese clustering near Fulani in Figs. 3
and 5 and data S7). Since the non-Fulani source is more closely
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related to Cameroonians than Sudanese, it indicates that the admix-
ture likely took place further west than Sudan. The inferred confi-
dence interval overlaps with a historically attested period of
increased interaction between Fulani, Hausa, and other Chadic-
speaking populations in northern Nigeria and Cameroon, which
culminated in the Fulani jihad of Usman dan Fodio, and the estab-
lishment and expansion of the multiethnic Sokoto Caliphate (73).
Some descendants of this mixture may have subsequently migrated
to Sudan, although there are several other possible explanations, in-
cluding admixture within Sudan between groups who had migrated
east at an earlier point.

Which Afro-Asiatic–speaking population is most closely
related genetically to Afro-Asiatic Chadic speakers in
northern Cameroon?
In a supergroup containing 11 of 14 Afro-Asiatic Chadic-speaking
ethnic groups from northern Cameroon (Cameroon North super-
group; Fig. 3), we inferred admixture dated to 710 CE (10 BCE to
840 CE) between multiple sources represented by present-day
coastal West Africans, Bantu-speaking groups, and Nilo-Saharan
speakers from Ethiopia and Chad (Fig. 5). Since the admixture in-
volves multiple ancestral sources, the direction of the migration
event is difficult to deduce. While too recent to be related to the
initial migration of Chadic speakers into Cameroon around 6000
to 2000 BCE (21, 39), similar dates and sources of admixture have
been reported for the Niger-Congo–speaking Berom of northern
Nigeria (5). Together, these results suggest a little characterized
mixture event in northern Cameroon and northern Nigeria
during the first millennium that involved sources genetically
related to East Africans and West Africans. The period corresponds
with archaeological evidence for a marked increase in the presence
of exotic grave goods and, thus, trade with external sources in the
region (74). Consistent with previous reports, in Chadic speakers,
we find evidence of large amounts of genetic variation recently
related to Nilo-Saharan speakers from Cameroon and Chad,
making the closest Afro-Asiatic–speaking relatives of the former
language family difficult to discern. Sampled Nilo-Saharan and
Chadic speakers within northern Cameroon appear genetically in-
distinguishable using our approaches (fig. S9A).

What was the impact of the expansion of Bantu-speaking
peoples on modern-day African populations?
Given the dense sampling of individuals from the “cradle of the
Bantu languages” in and around the Nigeria/Cameroon border
region (40, 51), we explored which sampled Cameroonian and Ni-
gerian groups were most representative of ancestry related to Bantu
language–speaking groups across Africa. There is controversy over
the early splits in the Bantu language phylum, such that proto-
Bantu is likely to be paraphyletic within the wider Southern
Bantoid phylum and, thus, the distinction between Bantu and
non-Bantu Southern Bantoid is debated in some cases (75). Consis-
tent with this, approaches using SOURCEFIND, fastGLOBETROT-
TER, and MOSAIC inferred that Bantu language–speaking
components in all populations are most closely related to the
non-Bantu Southern Bantoid–speaking Bamileke, even compared
to Bantu language–speaking populations from Cameroon (Fig. 7).
However, this may be a result of the low within-group IBD-sharing
in the Bamileke (fig. S14) consistent with less recent endogamy,
which potentially makes the population a better ancestry surrogate.

We emphasize that this result does not imply that the Bamileke were
the source of the expansion, as it is likely that the genetic structure of
the region was not the same ~4000 years ago at the beginning of the
expansion of the Bantu languages as it is now.

In Bantu language–speaking groups where a single date of ad-
mixture is inferred, including in three ancient (530 to 310 years
B.P.) individuals from South Africa, events involved a Bantu lan-
guage–speaking-like source, and a local source. Date point estimates
ranged from 170 BCE to 1630 CE (fig. S18 and data S7), in line with
those inferred in previous studies (4, 5, 7, 15, 23, 30). Our inferred
dates for when Bantu language speakers admixed with local popu-
lations are often more recent than when archaeological and linguis-
tic evidence suggests that they first arrived in a region (76). This
could be explained by long isolation of Bantu language speakers
after their initial migration and/or multiple “spread over spread”
migrations along similar routes and involving similar sources ob-
scuring the original admixture event (53, 54, 77). Consistent with
the latter, in new data from Bantu language speakers in the Republic
of the Congo, we find evidence of multiple admixture events, dated
to 560 BCE and 1260 CE, that both involve sources related to
present-day Bantu language speakers and rainforest hunter-gather-
ers (Fig. 5, A and B). The older date is consistent with the initial
stage of the expansion of Bantu language–speaking peoples into
the Congo rainforest at ~800 BCE (78) and matches previous ad-
mixture inference in groups from the Democratic Republic of the
Congo (5). Admixture similar to the inferred recent event has
also been reported previously in groups from Gabon and Angola
and could represent a secondary “spread” event (23, 53). Consistent
with the “spread over spread” theory, we also find evidence of mul-
tiple admixture dates between a Bantu language–speaking source
and a local source in the South African Zulu, Kenyan Bantu lan-
guage speakers, and Ugandan Bantu language speakers, with the
older date overlapping the period Bantu language speakers first mi-
grated into these regions (fig. S18). These three clusters have the
largest sample sizes among Bantu-speaking groups, increasing our
power to detect these older events.

In Ghanaians, Nigerians, and the three supergroups from south-
ern Cameroon, fastGLOBETROTTER and, in some cases,
MALDER inferred admixture events between West African-like
and Bantu speaking–like sources, with large confidence intervals,
but point estimates indicating a date earlier than 200 BCE (figs.
S16 and S17). Although these events were not replicated using all
methods, similar admixture signals with overlapping confidence in-
tervals have previously been reported for Ghanaians and Nigerian
Yoruba (28, 79). These results may reflect mixing between neigh-
boring groups in West Africa around the time of the early stages
of the expansion of Bantu language–speaking peoples. There is
mounting evidence that this early migration stage was a response
to climate-induced savannah expansion in central Cameroon
(4000 to 3500 years B.P.) and later in the core of the Central
African forest block at 2500 years B.P. (78). Although paleoclimate
data from further west are limited for this time, an abrupt drying
spell is evidenced by the sudden drop in the level of Lake Bosumtwi,
Ghana, at ~3200 years B.P. (80, 81). Thus, climate change may have
similarly instigated a period of increased migration and mixing
between groups at the periphery of the rainforest extending to
Ghana. Future studies, withmoreWest African populations, includ-
ing those from Togo, Benin, and further west could help to examine
this signal further.
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Overall, our results highlight the extra insight that can be gained
from interpreting genetics within the context of archaeological, lin-
guistic, and historical data. Examples of this include understanding
the potential historical influences on genetic structure in the Grass-
fields of Cameroon and investigating the timings of the Arabic ex-
pansion into Africa. Of course, each group has its own unique
history; we hope that the novel data resource published here will
enable future hypothesis-driven analyses of the >150 ethnolinguis-
tic groups.

We have provided evidence for both isolation effects and exten-
sive mixture between groups. This genetic heterogeneity reinforces
how the current sparse sampling of groups from these regions
misses large swathes of the obtainable genetic variation and ances-
tral information, even among geographically proximate popula-
tions. Future GWAS that include people with African-related
ancestry must consider how these populations may have very differ-
ent frequencies of pharmacologically relevant alleles (4, 5, 7, 82),
necessitating dense sampling that considers geography, linguistics,
and ethnicity.

MATERIALS AND METHODS
Samples
DNA samples from 1510 individuals from Cameroon, Republic of
the Congo, Ghana, Mozambique, Nigeria, South Africa, Sudan, and
Zimbabwe, 1387 for whom new autosomal genetic variation data
are reported here following quality control, were collected from
1997 to 2006 on several field trips, the majority organized by Neil
Bradman. All study participants whose genetic variation data are
newly reported in this study gave informed consent to use their
data to investigate the genetic histories of human populations and
to describe patterns of genetic variation within and among human
populations. Local permissions were obtained for sample collec-
tions from Cameroon (approval from the Ministry of Higher Edu-
cation and Scientific Research, permits 0188/MINREST/B00/D00/
D10/ D12 and 317/MINREST/B00/D00/D10 and University of
Yaoundé I), Republic of The Congo (Ministère De La Santé Et De
La Population), and Sudan (approval from the Secretary General of
the Sudan Medical Council). For the other samples local permis-
sions were obtained through consultation with heads of villages
and communities, since no official national or local procedures
existed at the time of collection. Typing of the sample collections
was approved by the U.K. ethics committee London Bentham
REC (formally the Joint UCL/UCLH Committees on the Ethics of
Human Research: Committee A and Alpha, REC reference number
99/0196, Chief Investigator MGT). The analyses reported in this
manuscript were approved by UCL REC (project IDs: 5188/001
and 5188/002).

DNA was collected in the form of buccal swab samples. All
donors were anonymous and over the age of 18. For each
sampled individual excluding individuals from Mozambique and
Zimbabwe, we recorded self-reported information about the indi-
vidual’s, their parents, their paternal grandfather’s birthplace, and
their maternal grandmother’s birthplace, ethnic group, and first
and second language (data S1 and fig. S1). Two of the individuals
sampled in South Africa had a birthplace in Senegal. All newly re-
ported DNA samples were genotyped using the Affymetrix Human
Origins SNP array, which targets 627,421 SNPs. We merged these
data with previously published Human Origins or genome-wide

datasets, totaling 4267 individuals, including both Africans and
non-Africans (Table 2, fig. S2, and data S2) (4, 6, 8, 11, 12, 41–
45). We also merged 20 high-coverage (>1× average coverage)
ancient individuals from Africa (data S2) (10, 12, 13). The newly
reported samples could also be integrated with other recently re-
leased data fromWest and East Africa (16, 23); we exclude these da-
tasets here due to reduced SNP overlap among arrays (<52,000
SNPs) likely reducing power when using haplotype-based
approaches.

Data processing
We downloaded the ancient samples from the European Nucleotide
Archive website (www.ebi.ac.uk/ena) and used PicardTools to
check for correct format and metadata. We used ATLAS with the
“pmd” flag to estimate postmortem damage. We recalibrated each
BAM file by running ATLAS with “recal,” using the ultra-conserved
non-coding elements (UCNE) fromUCNEbase (https://ccg.epfl.ch/
UCNEbase/) (Table 3). Maximum likelihood genotype calls and
phred-scaled genotype likelihood scores were generated for each po-
sition using ATLAS with “call” (83). To ensure that strands were
consistent with 1000 Genomes across present-day and ancient data-
sets, we used Conform-GT (https://faculty.washington.edu/
browning/conform-gt.html). We merged the data, re-estimated ge-
notypes, and imputedmissingness using Beagle 4.1 (84) with “mod-
elscale = 2.” We used vcf2gprobs, gprobsmetrics, and filterlines
(https://faculty.washington.edu/browning/beagle_utilities/utilities.
html) to remove SNPs with an imputation accuracy of less than 0.98.
Last, we phased all samples using shapeit4 (85) with “--pbwt-depth
16” and their provided genetic maps.

We identified putatively related individuals using PLINK v1.9
(86) by first pruning for LD using “--indep-pairwise 50 10 0.1”
and then using “--genome” to infer pairwise PI_HAT values. Fol-
lowing López et al. (8), we identified individuals with outlying
PI_HAT values relative to other members of the same group label
instead of using the same fixed PI_HAT threshold value for all pop-
ulations. This prevented us from removing too many individuals
from populations with relatively low diversity. As in López et al.
(8), we found all pairings of individuals from populations (i,k)
that had PI_HAT > 0.15 and PI_HAT > min(Xi + 3*max{0.02,Si},
Yi + 3*max{0.02,Di}, Xk + 3*max{0.02,Sk}, Yk + 3*max{0.02,Dk}),
where {Xi, Yi, Si, Di} are the {mean, median, standard deviation,
median-absolute-deviation}, respectively, of pairwise PI_HAT
values among individuals from population i. For populations with
≤2 sampled individuals, the standard deviation and median-abso-
lute-deviations are undefined or 0; therefore, in these cases, we
added to the list any pairings with PI_HAT > 0.15 that contained
≥1 person from that population. Using a stepwise greedy approach,
we then selected individuals from this list that were in themost pairs
to be excluded from further analysis, continuing until at least one
individual had been removed from every pair. This removed 515
of our individuals, and all remaining PI_HAT values were below
0.24. We then applied a PI_HAT threshold of 0.18 to any pairs of
African individuals, leading to three more individuals being
removed. Fifty-three of the individuals in our newly published
samples were duplicates, sometimes with inconsistent ethnolinguis-
tic and/or birthplace information. In these cases, we randomly
chose one individual from the pair (removing 26 individuals) but
excluded the individual from any later analyses involving ethnic
group or birthplace information. Overall, quality control steps
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resulted in the removal of 544 individuals (421 of which were from
the previously published dataset). After quality controls, we were
left with a dataset of 5253 individuals, 1387 of which are newly pub-
lished here, typed at 510,615 autosomal SNPs.

For individuals from Mozambique and Zimbabwe, no informa-
tion about birthplace was available. Of all other newly published in-
dividuals, most reported having grandparents from the same ethnic
group. Exceptions are 23 individuals who reported grandparents of
different ethnic groups and 58 individuals with missing or
unknown information for at least one grandparent, although all
but one of these 58 individuals had matching reported ethnic
group information for all other relatives recorded. In addition,
samples were selected such that, in 1159 of the 1445 samples with
background information (including previously published samples),
maternal grandmother’s and paternal grandfather ’s birthplace
matched. These two steps should help reduce effects of recent move-
ment or ethnic group-switching, analogous to Leslie et al. (29). The
23 samples with grandparents of different ethnic groups were
removed from any analyses comparing genetics with self-reported
ethnic group. If an individual’s maternal grandmother and paternal
grandfather had a different birthplace, the individuals’ geographic
location was calculated as themean of the grandparent’s birthplaces,
using the Haversine function from the R package geosphere. If
grandparent birthplace information was missing, then parental in-
formation was used instead. When there was no available informa-
tion about relative’s birthplace or the individual’s grandparents
lived further than 150 km apart, the individual’s own birthplace
was used, and these samples were excluded from later analyses in-
volving birthplace (114 individuals excluded, see below). Individu-
als typed for this paper were classified into 166 ethnic groups based
on self-reported information. Data S1 contains newly reported
sampled individuals whose genetic data passed quality controls,
and Fig. 1 shows the geographic locations of each sample from
Cameroon, Republic of Congo, Ghana, Nigeria, and Sudan,
grouped by location.

Languages were classified using Glottolog (33) for all countries
except Sudan, where Ethnologue (34) was used. This is because we

inferred genetic differentiation between languages from the South
Kordofan region in Sudan classified as Nilo-Saharan and Kordofa-
nian in Ethnologue (see below). This level of classification is not in-
cluded in Glottolog, as it is more disputed. For our genetic
comparisons of people from different language classifications (fig.
S9), the level of language classification was chosen for each country
such that the largest amount of diversity was captured while main-
taining a reasonable sample size (≥5 individuals) and ensuringmost
language classifications contained multiple ethnic groups. This was
impossible in some cases in Sudan and Nigeria, where there were
several linguistic groups that only contained one ethnic group.

Fst, ADMIXTURE, and smartPCA
We first filtered sites to remove those in LD using PLINK v1.9 (86)
and the tag “--indep-pairwise 50 10 0.1” as above. We then calculat-
edWeir and Cockerham weighted Fst between populations or coun-
tries using PLINK v2 and the --fst tag. We used ADMIXTURE
v1.3.0 (48) to cluster newly genotyped individuals, including a
range of reference populations. We used K with values from two
to nine and default parameters. The lowest cv error was at K = 7.
Last, we calculated PCAs using smartPCA (46) and the options
lsqproject, newshrink, and no outlier removal iterations.

Plotting maps
We used the ggmap package with the get_map function in R to plot
the maps in Figs. 1, 4, and 6, with the source set as “google” and the
maptype as “terrain.” All other maps were plotted using map_data
from the ggplot package.

Procrustes analysis
Procrustes analyses were carried out using the vegan package in R,
with the options truemean = TRUE and scale = TRUE (87). Corre-
lation and sum of squares was calculated with the protest function
and the options scores = “sites” and permutations = 999.

Applying chromosome painting to all groups
We used ChromoPainter (47) to investigate patterns of haplotype
sharing in our dataset. We formed (“painted”) the two phased hap-
loids of each (target) individual in the dataset as a mosaic of DNA
segments matched to other sampled individuals. Following previ-
ous studies (8, 9), we calculated the switch parameter, Ne (“-n”)
and the mutation parameter, θ (“-M”) using 10 iterations (“-i 10”)
of the ChromoPainter Expectation-Maximization (E-M) algorithm,
painting only chromosomes 1, 4, 15, and 22 of every 10 of the 5253
individuals for computational efficiency.We ran two separate Chro-
moPainter analysis, “Internal” and “External,” described in text S3.
Unless otherwise noted, results reported here use the Internal anal-
ysis, which painted each target individual against all other sampled
individuals (using the -a parameter).

We then ran PCAs on the “chunkcounts.out” file output by
ChromoPainter under the External analysis (Fig. 2) and the Internal
analysis (figs. S4 and S5), using different subsets of samples. Follow-
ing Lawson et al. (47), the matrix was first normalized by setting the
diagonal (which is zero as an individual cannot be painted by them-
selves) to the average of each row and then subtracting the row
means from the matrix. PCs were then calculated using the
prcomp function in R.

Table 2. Datasets merged in with the newly reported samples (fig. S2
for map and data S2).

Reference Number of samples

Byrska-Bishop et al. (43) 240

Fan et al. (6) 47

Gurdasani et al. (4) 356

Lazaridis et al. (41) 1537

Lipson et al. (12) 58

López et al. (45) 69

López et al. (8) 1143

Malaria Genomic Epidemiology Network (44) 359

Prendergast et al. (13) 15

Schlebusch et al. (10) 4

Skoglund et al. (11) 34

Zheng-Bradley et al. (42) 4
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Inferring genetic similarity between individuals using the
painting profile
The painting profiles from ChromoPainter can be used to measure
genetic distance between any two recipient individuals. In particu-
lar, the “total variation distance” (TVij) between individual i and in-
dividual j is calculated as the sum of the absolute difference in chunk
lengths that i and j copy from each donor or group of donors (9, 29).
Specifically, if f i

k is the total proportion of genome-wide DNA that
individual i is inferred to match to individuals from group k

TVDij ¼ 0:5
XK

k¼1
j f i

k � f j
kj ð1Þ

Here, the groups, k ∈ [1,…,], are 354 genetically homogenous raw
fineSTRUCTURE clusters (see below; data S3). The value is stan-
dardized on a scale of 0 to 1 and presented throughout as a
measure of similarity (1 − TVDij). The similarity within a group
(here, we use self-reported ethnic group or language classification)
is the mean similarity across all pairings of individuals from the

same group. Correspondingly, the similarity between two groups
is the mean similarity across all pairings of individuals that come
from different groups (figs. S8 and S9).

To assign significance to these genetic distances between groups,
we used the following permutation tests used in López et al. (8).
Group A can be defined as being genetically distinguishable from
group B if the mean intragroup genetic similarity (G) in A is signifi-
cantly (P < 0.001) higher than the mean intergroup similarity
between A and B; that is, when an individual is, on average, more
similar to a member of their own group than to a member of the
other group. Larger groups are more likely to have sampled a
greater amount of genetic diversity. This sample size effect can
occur irrespective of the actual diversity contained within the
group; a large sample from a homogenous group could appear
more diverse than a small sample from a heterogeneous group.
To mitigate this effect, when comparing two groups, A and B, the
following procedure was repeated for 100,000 permutations. The
group with the larger sample size is first downsampled such that
the two groups have the same n = min (na, nb), where na is the

Table 3. Software used in the analysis, with a brief description and nondefault parameters used.

Software Description Parameters Reference

ATLAS Genotype calling for aDNA samples pmd,
recal

Link et al. (83)

Plink 1.9 Inferring relatedness, to remove closely related individuals, plus other
quality control (e.g., pruning SNPs)

Chang et al. (86)

Beagle Merging data, re-estimating genotypes, and imputing missing sites Browning and
Browning (84).

Shapeit4 Phasing Delaneau et al. (85).

smartPCA Calculating PCs lsqproject, newshrink Patterson et al. (46).

ADMIXTURE Clustering each individual into 1 or more of K “ancestry components,”
illustrating patterns of genetic variation in the dataset

Alexander and
Lange (48)

ChromoPainter Along the genome, inferring which haploids in set of “donor” individuals
share ancestors most recently with a target individual

Values specified below Lawson et al. (47).

fineSTRUCTURE Clustering individuals into genetically similar groups and estimating a
dendrogram of relatedness between clusters

Clustering: -X ▬Y -y 3000000
-z 10000

Lawson et al. (47).

Tree-building: -x 100000 -m T -t
1000000 -T 1 -k 2

Hap-IBD Inferring position and length of IBD segments >2 cM between pairs of
individuals

merge-ibd-gaps gap = 0.6
discord = 1

Zhou et al. (49).

SOURCEFIND Inferring genetic variation patterns of a target group’s individuals as a
mixture of those of other sampled populations, reflecting recent

ancestry sharing

self.copy.ind: 0 Chacón-Duque
et al. (50)num.surrogates: 8

exp.num.surrogates: 4

MALDER Inferring and dating admixture events in a population Loh et al. (26)

fastGLOBETROTTER Inferring and dating admixture events in a population Wangkumhang
et al. (27)

MOSAIC Inferring and dating admixture events in a population Salter-Townshend and
Myers (25)

IBDNe Inferring historical effective population size filtersamples = true Browning and
Browning (56)

GONE Inferring historical effective population size PHASE = 2 Santiago et al. (55)

msprime Simulating ancestral histories with given changes in effective
population size

See text S4 Baumdicker et al. (90)
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number of sampled individuals from group A. A permuted test
group C is created with n

2 individuals randomly sampled without re-
placement from each of A and B. If n is odd, ðn� 1Þ2 individuals are
sampled, and an extra individual is added randomly from either
A or B such that C has n individuals. Having an equal number of
individuals from groups A and B in the test group prevents the over-
representation of either A or B increasing the mean similarity of the
test group C. We made 100,000 separate C groups and found the
proportion of times that the mean similarity among individuals in
group C was greater than that of individuals in group A and (sepa-
rately) individuals in group B. We use this proportion as a measure
of significance, testing whether individuals from group A (respec-
tively B) are no more genetically similar than a combined popula-
tion of individuals from A and B. If A is significant, B will not
necessarily be significant because of differences in intragroup sim-
ilarity. For example, group A could be very homogenous, and thus,
introducing individuals from group B always decreases the average
similarity. However, if group B has high diversity, then some indi-
viduals from within group B are less similar to each other than they
are to individuals in group A. Hence, an asymmetrical score can
provide extra information about the relative diversity of each
group. Permutation test results are shown in fig. S8, where black
dots indicate a significance of 0.01, and gray dots indicate one of
0.001 (no multiple-testing correction was done here.)

For comparisons between language groups (fig. S9), an addition-
al correction step is needed to remove ethnic group effects. High
similarity between ethnic groups can inflate the similarity within
language groups and thus drive any differences seen. The permuta-
tion test is run as before, except individuals from the same ethnic
group are not considered in the similarity score for a language or for
similarity scores during permutations. We note that this step will
cause discrepancies in the number of pairwise comparisons in
groups A, B, and C. However, group C will retain the same
number of pairwise comparisons between language groups (as no
ethnic groups speak multiple languages). Since, sometimes, a per-
mutation randomly picks all individuals from the same ethnic
group, permutations are repeated such that 100,000 group As and
Bs, each containing at least two ethnic groups, are created for each
language group comparison. If a language group consists of just one
ethnic group, then permutation tests cannot be run.

Testing the association between geographic and genetic
distance
We used the distm function with the haversine formula from the R
package geosphere to calculate the distance (in kilometers) between
each pair of individuals in the dataset from Cameroon, Republic of
the Congo, Ghana, Nigeria, and Sudan. We excluded previously
published individuals without background information about
grandparent birthplace (the Nigerian Yoruba and the Sudanese
Dinka). Cameroon was split into two populations (dark red and
light red), corresponding to the north and south, using both clus-
tering (see below) and ethnic group information. These two groups
have large differences in genetic variation patterns that would
obscure any isolation-by-distance relationships seen within
regions of Cameroon. A total of 114 individuals who had missing
birthplace information or whose grandparents lived further than
150 km apart were excluded. Thirty Cameroonians with mean
birthplace outside of Cameroon, or that clustered with northern

Cameroonians but lived in the south (or vice versa), were also ex-
cluded. One Nigerian individual, who lived more than 400 km from
all other pairs of Nigerians, was also excluded.

Within each country/region, we inferred the relationship
between genetic similarity (1 − TVD) and geographic distance
between pairs of individuals under three separate analyses: (i)
where the two individuals in each pair were from different ethnic
groups, (ii) where the two individuals were from the same ethnic
group, and (iii) where both individuals were from different ethnic
groups and lived within 20 km of the Nile river in Sudan. For each
analysis, we grouped distances into 25-km bins and calculated,
within each bin, the mean genetic similarity across all pairs of indi-
viduals separated by that distance and meeting criterion (i), (ii), or
(iii). We modeled the correlation between genetic distance and geo-
graphic distance using a linear model and the R package ggpmisc to
calculate the R2 of each line (figs. S10 and S11). For all analyses, bins
where all comparisons involved the same individual were removed.
For analysis (i), all distance bins with more than 100 pairwise com-
parisons were included. For analyses (ii) and (iii), bins with more
than 20 pairwise comparisons were included.

Defining genetically homogenous clusters at
different levels
We used fineSTRUCTURE (47) to cluster the painting patterns pro-
duced by the ChromoPainter Internal analysis into genetically ho-
mogenous “populations.” Each population (cluster) contains
individuals with indistinguishable genetic variation patterns
under the model, i.e., they are inferred to be equally related to all
members of their own cluster and to share similar relationships
with all other clusters. The software also allows fixing certain
groups as “superindividuals.” These are clusters that cannot be
split up by the algorithm and are considered by the model as one
individual, with a painting profile that is the average of those for all
individuals in the superindividual. Using these fixed superindivid-
uals can increase the power to detect fine-scale differences between
the “free” (i.e. nonsuper) individuals.

To increase both the speed and power to detect structure, we ran
four fineSTRUCTURE analyses with different sets of superindivid-
uals. Individuals from each of the following countries/regions were
left free to cluster, and the remaining superindividuals were defined
using ethnic group label (see data S3):

1) Cameroon, Republic of the Congo, Ghana, and Nigeria
2) Sudan
3) Africa (excluding the above countries)
4) Non-Africa

For each analysis, fineSTRUCTURE was run with the normali-
zation parameter “c” estimated as 0.244191687 for 3 million itera-
tions. Clusters were sampled every 10,000 iterations after discarding
the first 2 million iterations as “burn-in.” For the dendrogram-
building (or tree-building) step, the algorithm was run for 1
million additional hill-climbing steps, after which fineSTRUC-
TURE merged clusters two at a time under a greedy approach
that minimizes the loss in posterior probability. After each fineS-
TRUCTURE run, we used cluster assignments from all samples to
reassign individuals to the cluster with the highest probability using
the method described in Leslie et al. (29), resulting in 354 final raw
clusters (figs. S12 and S13 and data S3).
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We used both the above dendrograms and an individual’s self-
reported ethnic group to define groups where all individuals (i)
report the same ethnic group label and (ii) cluster on the same
branch of the dendrogram. There are a few exceptions where one
ethnic group was split into two based on differences in position
on the fineSTRUCTURE dendrogram (Bamileke, Mbo, Tikar,
Ja’aliya, Halfawieen, and Beni-Amer). For interpretability, individ-
uals who clustered with a different ethnic group to what they self-
identified as were removed from subsequent analyses described
below, and ethnic groups that clustered together were separated
into subclusters containing one ethnic group only. As a result,
367 of 5253 individuals were removed from subsequent analyses,
including 190 individuals of the 1580 from Cameroon, Republic
of the Congo, Ghana, Nigeria, and Sudan. Overall, this process re-
sulted in 348 total clusters, with 101 of these from Cameroon, Re-
public of the Congo, Ghana, Nigeria, and Sudan (data S4).

Calculating IBD sharing between individuals
For each of the 101 clusters defined above with >3 individuals (data
S4), we inferred IBD segments using hap-ibd with default parame-
ters (49). We then used the “merge-ibd-gaps” program to remove
breaks and gaps in IBD segments, using parameters gap = 0.6 and
discord = 1. We decomposed IBD segments into bins of different
lengths (2 to 6 and >6 cM) (fig. S14).

Modeling clusters’ inferred haplotype sharing as a mixture
of that from other groups
To infer the amount of recent ancestry a target population shares
with other reference groups, we used SOURCEFIND to model the
painting profile of a target cluster as inferred by ChromoPainter as a
mixture of those from a set of reference clusters (50). We applied
SOURCEFIND to each of the 101 clusters from Cameroon, Repub-
lic of the Congo, Ghana, Nigeria, and Sudan described above, using
the 226 of 348 surrogate clusters external to these five countries that
had ≥4 individuals (data S4). This is because the lack of shared
genetic drift in small clusters can favor them in the mixture
model. Here, we used the ChromoPainter External painting (see
text S3), in which the individuals from Cameroon, Republic of
the Congo, Ghana, Nigeria, and Sudan were excluded as donors
when painting each target individual. SOURCEFIND was run
three independent times, each for 2 million iterations and sampling
every 5000 iterations after discarding the first 50,000 iterations as
“burn-in.” A maximum of eight reference clusters were allowed to
describe the mixture composition of the target population at each
iteration, with an a priori expectation of four reference clusters. For
each cluster, we report the mean across the top 50 samples for the
run (of three) with the highest average posterior probability. For
results reported in data S6, mean mixture components that
summed to less than 1% in all clusters were grouped together as
“other" (gray).

We used the results from this SOURCEFIND analysis to create
18 supergroups by merging groups where inferred recent ancestry
sharing with reference groups appears similar (fig. S15). These
larger groups (see Fig. 3 and data S5) give us more power to infer
and date any admixture events present (see below). We then reran
SOURCEFIND on these supergroups in the same way as above for
Fig. 5C. These supergroups were then used for all admixture anal-
yses below.

Identifying and dating admixture events
We inferred admixture events in the history of our 18 supergroups
using each of fastGLOBETROTTER (27), MOSAIC (25), and
MALDER (26). In all cases, fastGLOBETROTTER was run for
five mixing iterations, using 240 clusters as potential surrogates to
the admixing sources (data S4). We performed 100 bootstrap re-
samples to generate 95% confidence intervals around the inferred
dates. We used null.ind = 1, which aims to eliminate any signals as-
sociated with LD decay that are not attributable to genuine admix-
ture. We only included results with a maxR2fit.1date of greater than
0.5, which indicates a good fit of the theoretical admixture model to
observed LD decay patterns. To be conservative when concluding
two dates of admixture, we also increased the default maxScore.2e-
vents cutoff that is used to determine whether admixture events at
multiple times occurred, to 0.4 (default = 0.35). We initially used a
curve.range of 25 for all tests, which models LD decay at segments
separated by ≤25 cM to infer admixture. However, for target pop-
ulations with an inferred dated older than 40 generations ago under
this analysis, we reran (and report results from) fastGLOBETROT-
TER using a curve.range of 15, since admixture LD decays more
rapidly for older events. Assuming that a fastGLOBETROTTER in-
ferred date of g generations, the year (Y) of admixture was calculat-
ed as Y = D − 28 × (g + 1), where D is the average birth year among
sampled individuals (D = 1968) and generation time is set to 28
years (88).

When running MOSAIC, for computational efficiency, we used
a set of 14 clusters as admixture surrogates {Ethiopia_Anuak,
Malawi_Tumbuka, Gambia_Mandinka3, Tunisian, Yemen,
Ethiopia_Tigray, Mende_Sierra_Leone, Morocco_Berber,
Uganda_Baganda, Namibia_Wambo, BiakaPygmy, Egyptian,
Somali, Saudi1}, picked because they were inferred as representative
surrogates to ancestral sources in each supergroup using SOURCE-
FIND. For all supergroups, we ran MOSAIC with both two and
three admixing sources and picked the result with the greatest ex-
pected genome wide r2. We used the bootstrap_individuals_-
coanc_curves function in the MOSAIC R package to calculate
confidence intervals for the inferred dates. We excluded results
with an expected genome-wide r2 of less than 0.5, and where the
Rst between sources, a measure of how well inferred sources are dif-
ferentiated using these reference groups, was less than 0.01.

We ranMALDERon the 17 supergroups using a list of 22 groups
as reference populations for computational efficiency, {Turkish1,
Ethiopia_Nuer, Botswana_Taa_North, Mozambique, Zimbabwe,
Ethiopia_Gurage, Kenya_Bantu, Ethiopia_Anuak, Malawi_Tum-
buka, Gambia_Mandinka3, Yemen, Ethiopia_Tigray, Mende_Sier-
ra_Leone, Morocco_Berber, Uganda_Baganda, Namibia_Wambo,
BiakaPygmy, Egyptian, Somali, Saudi1, MbutiPygmy, Gambia_Fu-
la1}. Results with the largest two-reference curve amplitude were
picked for each cluster, though we note these chosen reference
pair combinations may not be a significantly better fit to the data
than other reference pair combinations. We used a P value cutoff
of 0.01. To calculate the 95% confidence interval, we multiplied
the standard error by 1.96. We concluded two dates if there were
two events inferred where neither the date confidence interval
nor the two-reference curve amplitude confidence interval over-
lapped. We do not report cases where MALDER infers a date
older than 200 generations, which would have little remaining
signal of admixture LD decay. This occurred in one case, where
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MALDER inferred admixture 203 generations old, involving a
source related to non-Africans, in the Nigeria West cluster.

To investigate admixture in the group of Sudanese who cluster
with the Cameroon Fulani (Sudanese clustering near Fulani in fig.
S13), we ran fastGLOBETROTTER using the Internal painting de-
scribed above, where target individuals were painted against all
other sampled individuals, including those from Cameroon,
Ghana, Nigeria, Republic of the Congo, and Sudan. The 100 clusters
containing people from these five countries were also included as
surrogates to the admixing sources, excluding the one cluster con-
taining the target individuals. We also ran MALDER andMOSAIC,
not only using the same reference populations described above but
also including the 17 other supergroups as references. This was so
we could detect admixture at (plausibly) more local scales between
the different populations present in northern Cameroon (results in
data S7). For MALDER, the results were the same between the two
analyses, but for fastGLOBETROTTER andMOSAIC, we inferred a
different, more recent admixture event. We report these results that
used Cameroonian surrogate populations for the Sudanese cluster-
ing near Fulani in Fig. 5A; for all other clusters in Fig. 5A, we report
results from the analyses described above that exclude Cameroonian
surrogates.

Genetic variation patterns in Bantu-speaking populations
We also used SOURCEFIND to model genetic variation patterns in
14 groups (shown in Fig. 7) and four ancient individuals (Eland
Cave, Mfongosi, and Newcastle from South Africa and Deloraine
Farm fromKenya), whose individuals either speak a Bantu language
or were previously reported to share Bantu-related ancestry (e.g.,
Damara and Luo) (10, 13, 15, 50). We first ran ChromoPainter on
the whole dataset, but excluding matching to any of the above 18
groups/individuals (Ne = 182.82, Mu = 0.000576034). The
purpose of this analysis was to examine whether these Bantu-
related target populations matched to similar nonlocal reference
groups, e.g., in Cameroon. We ran SOURCEFIND using this paint-
ing as input, and 270 surrogate clusters that had ≥4 individuals, in-
cluding 262 non-Bantu speaking groups and 8 Bantu-speaking
groups from Cameroon. We also excluded non-Bantu–speaking
southern African populations with previously reported Bantu-
speaking related ancestry [leaving only Ju_Hoan, Taa, Naro, and
Xuun from southern Africa (89)], to avoid overestimating the pro-
portion of “local” (i.e. non-Bantu–related) ancestry in southern
African Bantu-speaking peoples (data S4). As before, we ran three
independent runs of two million iterations each, sampling every
5000 iterations after discarding the first 50,000 iterations as
“burn-in.”

We then used fastGLOBETROTTER, MOSAIC, and MALDER
to infer and date admixture events in the 13 groups (excluding
Congo, which was already analyzed in analyses described above)
and four ancient individuals. Using the ChromoPainter results of
this section, we ran fastGLOBETROTTER on each of the 17
groups, using 304 reference groups as surrogates to the admixing
sources (data S4). We used a curve.range of 15 and the parameters
used in our previous analysis described above (results in data S7).
For the four ancient individuals, we used the chromosome jackknife
resampling option rather than bootstrapping to infer confidence in-
tervals, since bootstrapping cannot be done on a single individual.
To mimic previous analyses (5, 15, 23, 30) exploring the route of the
initial expansion of Bantu speakers, we also ran

fastGLOBETROTTER on Kenya Kikuyu and Zimbabweans using
the 304 reference groups mentioned above, plus (i) 11 clusters
from Congo or (ii) all 14 groups whose individuals either speak a
Bantu language or were previously reported to share Bantu-
related ancestry and the 4 ancient individuals (fig. S18).

When running MOSAIC and MALDER, we included a set of
local admixture surrogates that were inferred as important ancestry
surrogates in SOURCEFIND, 11 in MOSAIC {BiakaPygmy, Mbu-
tiPygmy, Botswana_Taa_East, Tanzania_Sandawe, Namibia_Xuun,
Gambia_Mandinka3, Ethiopia_Tigray, Ethiopia_Anuak,
Kenya_Sengwer, Kenya_Maasai, Yemen} and 12 in MALDER
{MbutiPygmy, BiakaPygmy, Botswana_Taa_North,
Namibia_Xuun, Gambia_Mandinka3, Mende_Sierra_Leone,
Ethiopia_Amhara, Ethiopia_Gumuz, Ethiopia_Gurage,
Ethiopia_Nuer, Kenya_Sengwer, Kenya_Maasai}. For both
analyses, we also included a set of 11 Bantu- and Grassfields-
speaking groups from southern Cameroon, to see which was
the best representative of Bantu speaking–like ancestry
{Cameroon_Mambila, Cameroon_Noni, Cameroon_Bamun,
Cameroon_Mbo1, Cameroon_TikarEast, Cameroon_Bafut,
Cameroon_Bassa, Cameroon_BamilekeNorth, Cameroon_
BamilekeSouth, Cameroon_Bonguili, Cameroon_Bulu}. We ran
MOSAIC using both two and three admixture sources and picked
the result with the greatest r2. As before, we excluded events with an
expected genome-wide r2 of less than 0.5 and where the Rst between
sources was less than 0.01. MALDER could not be run on the
ancient individuals. For the 13 present-day groups, for MALDER,
we picked the highest two-reference curve amplitude for each
cluster and used the same filtering steps as above.

Inferring historical changes in Ne
We used GONE (55) and IBDNe (56) to infer historical effective
population size changes in Republic of the Congo (fig. S20).
Among pairs of Congolese with a Plink v1.9 (86) PI_HAT > 0.05,
we excluded one individual per pair to prevent cryptic relatedness
within populations potentially decreasing recent population size es-
timates. The plink b37 genome build was used to generate genetic
distances for the .map files. GONE was run using the standard pa-
rameters and PHASE = 2 (unknown phase), including 40 replicates.
IBDNe was run using the IBD segments inferred above, the param-
eters “filtersamples = true” and a minimum length of 2 cM. We dis-
regarded results from more than 100 generations ago, as these have
been suggested to be unreliable (55).

Simulating the spread over spread model of the Bantu
expansion
We used msprime (90) to simulate 30 independent chromosomes,
each 100 mega-base pairs (Mbp) in length to roughly mimic the size
of the human genome. Code used for simulations can be found in
text S4. Four different scenarios were simulated tomatch the scenar-
io proposed by Seidensticker et al. (53) and Saulieu et al. (54) of two
different waves of expansion into the Congo basin. The first expan-
sion is simulated to begin roughly 100 generations ago (800 BCE),
followed by a bottleneck beginning 50 generations ago (560 CE).
The second expansion then begins 25 generations ago (1260 CE).
The strength of bottleneck and first and second expansion sizes
was varied (fig. S21).

After running the simulation in msprime, the output vcf was
downsampled such that the number of SNPs in each 0.05 minor
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allele frequency bin matched that in our data of individuals from
Congo to ensure that the simulated data mimicked array data. Effec-
tive population size changes were then inferred from this simulated
dataset using GONE and IBDNe (as above).
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