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Simple Summary: Colorectal cancer has several disease pathways which have implications for how
patients are monitored and treated. One important pathway is caused by deficiencies to genes
responsible for repairing pre-cancerous cells. Methods to detect these deficiencies exist, but are not
implemented as often as recommended and could be improved. Raman spectroscopy is a technique
that could provide such an improvement, having shown potential in other areas of cancer research.
The full potential of Raman datasets may be achieved by exploiting modern machine learning models.
We evaluated a small colorectal tissue dataset to assess the viability of some common machine
learning techniques to detect different colorectal cancer pathways. We find that Raman spectroscopy
in conjunction with machine learning could be a viable means of improving screening and potentially
diagnostic tools and warrants further research with larger sample sizes.

Abstract: Defective DNA mismatch repair is one pathogenic pathway to colorectal cancer. It is
characterised by microsatellite instability which provides a molecular biomarker for its detection.
Clinical guidelines for universal testing of this biomarker are not met due to resource limitations;
thus, there is interest in developing novel methods for its detection. Raman spectroscopy (RS)
is an analytical tool able to interrogate the molecular vibrations of a sample to provide a unique
biochemical fingerprint. The resulting datasets are complex and high-dimensional, making them
an ideal candidate for deep learning, though this may be limited by small sample sizes. This study
investigates the potential of using RS to distinguish between normal, microsatellite stable (MSS)
and microsatellite unstable (MSI-H) adenocarcinoma in human colorectal samples and whether
deep learning provides any benefit to this end over traditional machine learning models. A 1D
convolutional neural network (CNN) was developed to discriminate between healthy, MSI-H and
MSS in human tissue and compared to a principal component analysis–linear discriminant analysis
(PCA–LDA) and a support vector machine (SVM) model. A nested cross-validation strategy was
used to train 30 samples, 10 from each group, with a total of 1490 Raman spectra. The CNN achieved
a sensitivity and specificity of 83% and 45% compared to PCA–LDA, which achieved a sensitivity
and specificity of 82% and 51%, respectively. These are competitive with existing guidelines, despite
the low sample size, speaking to the molecular discriminative power of RS combined with deep
learning. A number of biochemical antecedents responsible for this discrimination are also explored,
with Raman peaks associated with nucleic acids and collagen being implicated.

Keywords: Raman spectroscopy; deep learning; oncology; microsatellite instability; diagnostics;
colorectal cancer
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1. Introduction

Colorectal cancer (CRC) encompasses cancers of the large colon and rectum. It is one
of the major malignancies of the world, being the third most commonly occurring and the
second most deadly cancer, with an estimated 1.8 million new cases and 881,000 deaths
worldwide in 2018 [1]. With a few exceptions, CRC incidence is increasing globally, particu-
larly in developing countries, as shifting dietary and lifestyle factors are likely driving an
increase in early onset CRC [2].

There are several known pathological pathways leading to CRC, resulting in heteroge-
neous presentations, therapies and outcomes. One such pathway is DNA mismatch repair
deficient (dMMR) CRC, in which there are pathological alterations to any of a number of
MMR genes (MLH1, MSH2, MSH6 or PMS2). This loss of MMR function causes high-level
microsatellite instability (MSI-H), characterised by mononucleotide, dinucleotide and trin-
ucleotide tandem repeats. This can occur sporadically or as an inherited trait, as in Lynch
syndrome (LS). Hence, the detection of MSI-H is recommended in every case of CRC to
screen for LS [3]. The high mutational burden seen in MSI-H tumours also has implications
for treatment, providing potential targets for immunotherapy such as immune checkpoint
inhibitors [4].

Despite recommendations for universal testing for MSI-H for all CRC cases, resource
limitations mean that this cannot always happen and is particularly poor for young
adults [5]. Testing for dMMR/MSI-H typically involves either immunohistochemistry
(IHC) of the mismatch repair proteins or PCR amplification of consensus microsatellite
repeats. Recent developments in machine learning (ML) have led to the possibility of
exploiting morphological information in standard H&E slides [4,6]. Such digital pathol-
ogy techniques require few additional resources and have proven highly accurate in high
quality, curated datasets. However, consistent with other domains using modern ML,
these promising results do not generalise well when applied to settings or cohorts outside
of the context in which they were developed [6]. The literature has thus far focused on
H&E stained slides but ML applied to other histological stains, such as IHC, may yield
further improvements by exploiting molecular-level information. Raman spectroscopy is a
technique which opens the possibility of digitally staining a sample for many biomolecules,
without the need for specific sample preparation [7].

Raman spectroscopy (RS) is a technique which interrogates molecular vibrational states
through inelastically scattered photons from a sample. As the vibrational modes of any
given molecule are unique, it is possible to identify a molecule through its Raman spectrum.
A Raman spectrum represents the change in photon wavenumber from a monochromatic
light source along the x-axis and the intensity (i.e., number of photons) thus scattered on the
y-axis. RS has been successfully applied to discriminate between numerous cancer types
in human tissues, most recently to the brain, breast, cervical, colon, lung, nasopharyngeal,
prostate, skin and tongue [8]. The applications include early diagnosis, biopsy guidance and
intraoperative tumour margin detection. As a molecularly sensitive modality, RS may be
able to detect the molecular antecedents of microsatellite stable (MSS) and MSI-H samples.

Despite promising results, RS has yet to become routinely used in the oncology
setting for several reasons, including technical limitations in in vivo applications, a lack of
visibility in the medical literature and a lack of thorough validation of the models on truly
independent datasets [9]. Additionally, the inherent complexity and high dimensionality
(number of discrete wavenumber points per spectrum) of biomedical RS data, compounded
with various sources of noise, such as fluorescence, necessitates the use of mathematical
modelling to extract coherent molecular information.

Deep learning (DL) is a family of modelling techniques under the umbrella of ML
models. Its ability to capture non-linear relationships make it suited to complex clinical
datasets, and it may help unleash the potential of RS. In addition to being increasingly ap-
plied to oncology problems in the context of digital histopathology [10], it is now extending
into oncological applications of RS [8]. However, DL is notoriously data-intensive, which
makes it difficult to apply to smaller medical proof-of-concept studies. Combined with
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the large size of DL models, it is susceptible to over-fitting, in which excellent results on
a dataset fail to transfer across to general settings. However, with developing techniques
such as data augmentation and strict validation practices, it may still be possible to leverage
DL even with small datasets.

This proof-of-concept study explores the potential of RS to distinguish between healthy,
MSS adenocarcinoma (AC) and MSI-H AC in human tissue. A DL model is developed
alongside two traditional ML models commonly used in RS, taking great methodological
care not to produce overly optimistic performance estimates. Biochemical antecedents re-
sponsible for the DL model’s discriminative performance are then inferred. The exploratory
nature of this study seeks only to assess whether RS applied to this particular clinical
problem merits additional studies, to highlight some of the methodological considerations
for such a larger study and to explore potential clinical uses such as screening or diagnosis.

2. Materials and Methods
2.1. Tissue Acquisition and Processing

Formalin fixed paraffin embedded (FFPE) human colon samples were obtained from
the UCL/UCLH Biobank for Studying Health and Disease (REC 20/YH/0088). A total of
10 FFPE samples of resection margins of normal colonic mucosa from sporadic CRC cases
were obtained along with 10 MSS/MMR proficient samples from the same patients. A total
of 10 archival MSI-H samples were also obtained and matched to the sporadic AC samples
by cancer stage (T-stage, see Appendix D for details).

From each sample, one section was cut at 8 µm thickness and mounted onto silanised
304L super mirror stainless steel slides for Raman analysis and one 3 µm section was cut
and mounted onto standard glass slides for H&E staining. The steel mounted samples
were prepared as described by Gaifulina et al. [11]. Steel slides have been shown to
improve Raman signal acquisition by up to a factor of four and reduce background signal
compared to calcium fluoride (CaF2), the standard substrates often used in RS [11,12],
and are far cheaper.

Unstained tissue sections were immersed in a series of baths to remove paraffin wax.
Four successive ten-minute baths in xylene (VWR International Ltd., Lutterworth, UK)
with gentle agitation, were followed by a series of rehydration steps in graded ethanol
absolute (VWR International Ltd., Lutterworth, UK), followed by a final immersion in
distilled water for ten minutes.

The 3 µm sections were subject to standard automated staining and cover-slipping
for H&E slides. The histopathology of all samples was confirmed by a resident consultant
pathologist. A full breakdown of the patient samples and cancer stages can be found in
Appendix D Table A2.

2.2. Raman Spectroscopy

Point spectra were acquired using the Renishaw prototype RA800 series benchtop
system with a 785 nm laser (Renishaw plc, Wotton-under-Edge, UK). A total laser in-
tensity of approximately 158 mW was focused onto samples through a 50 × NA 0.8
objective. A 1500 L/mm grating was used to disperse the light providing a spectral range of
0–2100 cm−1 in the low wavenumber range. An integration time of 20 s was used for all
measurements. A total of 50 individual spectra were collected from each tissue sample,
except for one sample with only 40 spectra, resulting in a total of 1490 across the 3 classes.
All spectra were acquired from the glandular mucosal region in normal samples and from
confirmed cancerous regions in all cancer samples, located by the resident pathologist prior
to Raman measurement.

2.3. Modelling and Cross-Validation Strategy

Cosmic rays were removed using a combination of the width of feature and nearest
neighbour methods available in the manufacturer’s software. Spectra were visually in-
spected at the time of acquisition and any saturated spectra were discarded and a new
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spectrum obtained from a different region. Each spectrum was standard normal variate
(SNV) normalised to have zero mean and unit variance.

Baseline correction was not performed. An initial analysis showed that baseline
correction via several methods (references [13–16]) did not improve performance, and sig-
nificantly altered resulting mean and difference spectra which impacted the biochemical
interpretation (details in Appendix A).

A principal component analysis–linear discriminant analysis (PCA–LDA), a support
vector machine (SVM) and a convolutional neural network (CNN) were developed using
SNV normalised Raman spectra truncated to the range of 400–1800 cm−1. PCA–LDA is one
of the most commonly used ML model in biomedical RS. PCA reduces the dimensionality of
data, and LDA constructs a linear decision boundary for classification. SVM is an ML model
which can construct non-linear decision boundaries by using, amongst others, a radial
basis function kernel. These are both traditional ML models. A CNN is a DL model which
has become popular in medical imaging. It also constructs non-linear decision boundaries
and its invariance to certain data inputs make it robust to irrelevant features in the data.
Figure A2 provides an overview of the custom CNN developed for this application. These
models represent increasingly complex modelling techniques that can be applied to the data.
Often with small datasets, a simpler model such as PCA–LDA will perform best as it does
not overfit the data, which complex models such as CNNs are prone to do. However, given
the complexity of RS data, simpler models may not be able to capture sufficient nuances to
be useful. It is not clear which modelling technique would best facilitate discriminating
between disease classes and, therefore, a secondary aim of this study is to compare the
performance of this range of models.

These models all have hyperparameters, which can be understood as decisions a
researcher may make to optimise performance. However, it is possible to over-optimise
these hyperparameters so that a model performs well on the research data, but does not
generalise to new data. To mitigate against this risk, a repeated nested cross-validation
(CV) strategy was used. This allows for hyperparameters to be optimised in an inner CV
loop, and then tested against held-out data in an outer CV loop (Figure 1). Nested CV
has been shown to reduce a model’s estimated accuracy by as much as 20% in oncological
applications of RS, giving a more realistic assessment of the model’s generalisability [8].
A single metric needs to be selected to optimise: the log loss was chosen as it is a proper
scoring metric which utilises distributional information, compared to typical binarised
metrics such as accuracy [17].

Additionally, we use an occlusion study in order to determine those regions of a
spectrum which the CNN uses during classification. This technique involves sequentially
“blanking” out regions of an input and returning a prediction. This occluded prediction is
then compared to the whole spectrum prediction. A reduction in prediction suggests that
the occluded spectral region contained an important feature for the CNN. This technique
has, for instance, been used to highlight diagnostically significant brain regions from MRI
scans of Alzheimer’s patients [18].

Each sample has at least 40 Raman spectra. The interest in this application is the
overall sample label rather than that of individual spectra. Therefore, sample labels were
determined by taking all the spectrum-level disease classifications and using a simple
majority voting consensus to return an overall label for the sample. Thus, all spectra are
used for model construction but a single prediction per sample was obtained. During voting,
any ties were to be broken by classifying to the clinically worst disease label, but there
were no ties. Data were split into training/test sets on the basis of samples rather than
spectra, ensuring that spectra from the same sample were not present in both training
and test (or validation) sets, thus maintaining the independence assumption required
for model validation. This has been shown to return far more realistic measures of ML
performance [8].
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Figure 1. Nested CV strategy.

Data augmentation was used to supplement the training of the CNN. This is a tech-
nique which creates new spectra by replicating existing spectra and adding noise. This
helps train the CNN to ignore those perturbed features, reducing over-fitting. This was
achieved by adding Poisson noise to the Raman intensity (before normalisation) and adding
a random wavenumber shift of no more than +/−6 cm−1 (details in Appendix C). Data
augmentation was performed inside the nested CV loops after the data had been split,
increasing the training set size by a factor of 8. This technique is a strictly computational
method, and does not seek to simulate biomedical Raman spectra.

Analyses were conducted using Python version 3.10 using the Scikit-learn library [19]
for the PCA–LDA and SVM models and PyTorch to develop the CNN [20].

Our results are compared to existing diagnostic and screening tests and benchmarks.
Current UK guidelines recommend that all CRC patients are offered IHC testing for MMR
proteins (a histology-based technique) or MSI-H testing (a genetic-based technique) [21].
If either of these is positive, then subsequent tests are conducted, including genetic testing
of germline DNA to detect LS. These tests are two class models, distinguishing in the first
instance between dMMR/MSI-H in samples already diagnosed as CRC. To fit into this
existing clinical pipeline, two class models were developed using the nested CV strategy
described above. The principle performance metrics used to assess IHC and MSI-H testing
in the UK guidelines are sensitivity and specificity and these are reported below, alongside
the area under the receiver operating characteristic (AUROC) curve.

3. Results

The three-fold CV strategy, repeated five times, returned 15 estimates of the perfor-
mance of each model, allowing for an average performance to be calculated. It was not
possible to construct confidence intervals from these results as each CV fold contains over-
lapping data, violating the independence assumption required for confidence intervals.
In lieu of confidence intervals, standard deviations are reported.

3.1. Spectral Data Analysis

Spectra belonging to the same disease class were averaged and are shown in Figure 2.
Visual inspection reveals little appreciable difference, as the general composition of the
tissues is similar. Together with the standard deviations of the average spectra, this shows
how subtle the biochemical differences are between disease classes. To better contrast these
subtleties, a difference spectrum was obtained by subtracting the average MSS spectrum
from the average MSI-H spectrum (Figure 3). From this, it is possible to infer some
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biochemical differences between the classes. In particular, peaks at 714, 1081, 1302 and
1445 cm−1 have tentatively been assigned to lipids. Other peak assignments include 1672
cm−1 (cholesterol), 494 cm−1 (glycogen, nucleic acids), 529 cm−1 (amino acids), 732 cm−1

(phosphatidylserine, adenine), 787 cm−1 (nucleic acids), 852 cm−1 (ring-breathing mode of
proline, hydroxyproline, tyrosine), 1003 and 1034 cm−1 (phenylalanine, polysaccharides),
1110 cm−1 (lipids, proteins), 1366 cm−1 (tryptophan, lipids, guanine) and 1583 cm−1 (C-
C bending mode of phenylalanine). Overall, these indicate differences in nucleic acids,
proteins and lipids between the two classes. Band assignments were made using findings
contained within the work of Movasaghi et al. [22].

Figure 2. Average normalised spectrum by class. Right panels, average spectra with shaded areas
indicating 1 standard deviation.

Figure 3. Difference spectrum: MSI-H minus MSS. Numbers indicate peaks mentioned in the text.
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3.2. Two-Class Model

Current UK guidelines recommend that all CRC patients are offered IHC testing for
MMR proteins or MSI-H testing [21]. If either of these is positive, then subsequent tests
are conducted, including genetic testing of germline DNA to detect LS. These tests are
two-class models, distinguishing between dMMR/MSI-H in samples already diagnosed as
CRC. In this section, a two-class model was developed to this end, consisting of samples
that have already been diagnosed as CRC but requiring discrimination between MSI-H
and MSS. The principle performance metrics used to assess IHC and MSI-H testing in the
UK guidelines are sensitivity and specificity, and they are reported below, alongside the
area under the receiver operating characteristic (AUROC) curve. Results from all three ML
models are shown in Table 1.

Table 1. Two-class models: mean sensitivity, specificity and AUROC across all folds +/−1 stan-
dard deviation.

PCA–LDA SVM CNN

Sensitivity 70.0% +/− 36.1 85.6% +/− 21.0 73.0% +/− 10.0
Specificity 62.8% +/− 27.5 32.8% +/− 15.7 48.9% +/− 12.5
AUROC 0.65 +/− 0.21 0.71 +/− 0.16 0.75 +/− 0.15

The SVM model performs best in terms of sensitivity at 85.6%, but trades heavily for
this with a low specificity of 32.8%, while the PCA–LDA is best for specificity at 62.8%.
The CNN performance is between these two traditional ML models. The large standard
deviations are likely an artefact of the small sample size. This makes it difficult to draw
any conclusions regarding the superiority of any of the models. Despite the CNN being
the largest model, and therefore more prone to over-fitting, it returns the lowest variance,
indicating a more stable model.

Binary ML models typically do not give a classification but a prediction, a numerical
output between 0 and 1, where in this case 0 represents MSI-H and 1 MSS. To calculate sen-
sitivities and specificities, a threshold needs to be applied to the model outputs. A separate,
and much larger, study would be required to calibrate the optimal balance of sensitivity
and specificity desirable for this application. In lieu of such calibration, the sensitivities
and specificities reported use the standard threshold of 0.5. An ROC curve summarises
performance over a range of thresholds, giving an indication of how the models may
perform under different calibration conditions. The CNN achieves the best AUROC at 0.75.
This is often considered a good performance, though this is context-dependent (Figure 4).

(a) (b) (c)

Figure 4. Receiver Operating characteristic curve for (a) PCA–LDA (b), SVM (c), CNN. Bold lines
indicate mean ROC, pale lines performance for individual folds and shaded area 1 standard deviation.

3.3. Occlusion Study

In Section 3.1, we explored the mean and difference spectra in an attempt to find
the biomolecular markers which distinguish LS from AC. However, it is not necessarily
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the case that a model learns to use those particular features to make its prediction. To
elucidate this information, we use an occlusion study. This technique involves sequentially
“blanking” out regions of an input and returning a prediction. This occluded prediction is
then compared to the whole spectrum prediction. A reduction in prediction suggests that
the occluded spectral region contained an important feature for the CNN. This technique
has, for instance, been used to highlight diagnostically significant brain regions from MRI
scans of Alzheimer’s patients [18].

The region between 680 and 1020 cm−1 seems to be diagnostically significant to the
CNN (Figure 5). In particular, the regions between 680 and 710 cm−1 (associated with the
ring breathing modes of DNA, C-S bond of methionine and C-N bond of phospholipids
and adenine), 800–830 cm−1 (uracil-based ring breathing mode, O-P-O stretching and
C5-O-P-O-C3 phosphodiester bands of RNA, PO−

2 stretch of nucleic acids as well as C-C
stretching in collagen and proline and hydroxyproline) and 870–900 cm−1 (C-C stretching
of collagen and C-O-C skeletal mode of monosaccharides, disaccharides and adenine) [22].
Overall, these regions are largely associated with nucleic acids, consistent with findings
according to which MSI-H cancers tend to be diploid rather than aneuploid, as well
as collagen. The latter is consistent with recent findings according to which COL11A1
mutations, affecting non-fibrillar collagen expression in the extracellular matrix of MSS
colonic and ovarian tissues, may be a useful oncological biomarker [23].

Figure 5. Occlusion study: Blue indicates drops in performance due to occlusion. The stronger the
shade, the larger the drop in performance.

3.4. Three-Class Model

Although current practice is to test for dMMR/MSI-H only on confirmed cases of CRC,
RS allows for the possibility of screening all suspected CRC samples by using a three-class
model at first inspection. If the performance of a model is sufficiently discriminatory
between non-cancerous tissue, MSS AC and MSI-H AC, this would bypass the need for
the two-step approach currently in practice, whereby samples are first tested for CRC and
if positive then undergo a further test to discriminate between MSI-H and MSS. Such a
streamlined process may help ameliorate the afore-mentioned lack of surveillance in this
regard [5]. To assess this possibility, a three-class model was trained using the same CV
strategy outlined in Section 2.3.

Sensitivity, specificity and ROC curves are only defined for binary classification, often
implemented as one-vs.-all in multiclass tasks. However, the log loss is reported here
(Table 2), to remain consistent with prior results, alongside the more intuitive accuracy and
confusion matrices (Figure 6).
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Table 2. Three class models: mean log loss and accuracy across all folds +/−1 standard deviation.

PCA–LDA SVM CNN

Log Loss 0.66 +/− 0.17 0.80 +/− 0.07 0.54 +/− 0.17
Accuracy 71.3% +/− 8.8 74.7% +/− 7.2 74.0% +/− 12.0

The three models return similar accuracies, though the corresponding confusion
matrices show that they achieve this by different means; while all models are able to well
separate healthy tissues from diseased, the sub-division of the AC cases is more difficult.
The SVM does well in correctly identifying MMS with only 4% error, but misclassifies 22%
of MSI-H samples as healthy. PCA–LDA and the CNN perform less well discriminating
between MSI-H and MSS with 24% error, but only misclassify AC tissue as healthy 4% and
6% of the time, respectively.

(a) (b) (c)

Figure 6. Confusion matrix for (a) PCA–LDA (b), SVM (c), CNN.

The log loss measures the performance of predictions rather than classifications: it
compares the probability of belonging to a disease class, rather than a definitive disease
label. The lower the log loss, the closer a prediction is to the true disease class. This
allows for a more subtle interpretation of performance. The lower log loss of the CNN
indicates that this model gives more conservative predictions compared to the other models,
particularly the SVM, meaning it is less likely to confidently give incorrect classifications.

4. Discussion

A direct comparison with existing testing (i.e., IHC or MSI testing) is difficult as various
studies have used different thresholds and definitions for these tests and used different
methods for the gold standard genetic testing. The resulting study’s heterogeneity means
no meta-analysis is available to provide a statistically pooled estimate of performance [21].
For MSI testing, sensitivities range from 100% to 66.7% [24–26] with specificities from
92.5% to 61.1% [24,26]. For IHC testing, sensitivities range from 100% to 80.8% [25,27],
and specificities range from 91.9% to 80.5% [27,28].

False positives from both methods have been related to the tissue-processing method.
Formalin fixation is known to fragment DNA, causes issues with epitope access due to
excessive cross-linking and alters native proteins. These biochemical alterations have
also been shown to alter Raman spectra, similarly afflicting the technique’s diagnostic
potential [29]. However, RS can easily bypass these alterations by taking spectra from
fresh tissues or minimally processed samples, though the degree of any improvement in
performance would need empirical corroboration.

The results in this study sit in the lower range of the above sensitivities and speci-
ficities, indicating some potential to compete with molecular techniques, but quite some
improvement would be needed to establish superiority. Other screening methods based on
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familial history are also used to identify at-risk patients. The Amsterdam II criteria achieve
a sensitivity and specificity of 72% and 78% respectively; the Bethesda protocol 94% and
25%, against which these study’s results are competitive.

DL has also been explored for MSI-H prediction performed on H&E stained samples [4,6].
These take CNNs designed for image classification, which tend to be very large models
and require more data to train. These results tend to be given in terms of AUROC, which
on average range from 0.77 to 0.93 during internal validation and from 0.60 to 0.89 when
applied to an external dataset. This indicates that morphology alone can distinguish MSI-H,
a hitherto unused biomarker, though the generalisability of the DL models to external
datasets needs improving before clinical adoption. The results of this study show the
potential of RS to discriminate between MSS and MSI-H tumours based on molecular infor-
mation alone. RS allows for the possibility of combining biomolecular and morphological
information. While typical image classification takes images as 3D inputs, with red, green
and blue channels, a Raman hyperspectral image has several hundreds of channels, which
contain biomolecular information.

This study is too small for clinical utility. However, it does demonstrate the predictive
capability of RS to this particular clinical problem and therefore motivates the development
of larger studies. This study has also confirmed the suitability of CNNs to modelling such
data, which has at the least displayed non-inferiority to simpler modelling techniques
traditionally used in RS. This would likely improve with larger sample sizes, as DL requires
many examples in order to achieve its best possible performance. Consistent with this,
AUROC scores assessing the performance of DL to predict MSI-H from H&E slides have
been shown to be positively correlated with sample size [6]. Indeed, a related technique to
RS, infrared (IR) spectroscopy, has been used to predict MSI-H and achieved a sensitivity
and specificity of 100% and 93%, respectively, with a sample size of 100 patients [30].

Another limitation of this study is that the normal, healthy samples were taken from
the same patients as the MSS/MMR proficient samples, due to the ethical constraints of
obtaining samples from truly healthy colon biopsies. This means that these two classes are
not truly independent and there is a risk that the three-class model is consequently biased.
Additionally, the three-class model suffers from the fact that the normal samples have been
taken from ostensibly healthy regions from patients with confirmed disease. These may
well harbour sub-clinical oncogenic mutations that have yet to manifest morphologically,
but that may have biochemical antecedents detectable by RS. Hence, the extent to which
these samples represent truly healthy tissue is debatable. This problem is common to
many oncology RS studies [8]. It has been argued that this approach, called “paired
sampling”, reduces interference by individual differences [31], as seen with traditional
statistical hypothesis testing. However, it is not clear that ML models similarly benefit from
this effect. Conversely, sampling from the same patients likely hinders the generalisability
of models trained in this manner when deployed on truly independent samples. The
two-class model is unaffected by this potential bias as it did not use the healthy samples.
Another limitation is that this study only took resected tissue and no biopsied tissue. It has
been shown that models trained to detect MSI-H with H&E samples on one type suffer
when trying to predict tissue taken by the other method [32]. Finally, consensus agreement
between pathologists is the gold standard for labelling histology slides for ML, but this
study only obtained single pathologist labelling.

5. Conclusions

This study is the first of its kind to carry out a preliminary investigation into the use of
RS as a clinical diagnostic tool in discriminating MSS AC from MSI-H AC in FFPE colonic
tissues. From a very small sample size (10 samples per group), promising results were
achieved with the use of ML models, which show that a reasonable degree of discrimination
is possible from samples that appear to be spectrally very similar. This is the first proof-of-
principle study of its kind that is both label-free and has a rapid sample turnaround time.



Cancers 2023, 15, 1720 11 of 16

Through post hoc analysis of the DL model, diagnostically relevant molecular biomark-
ers have been implicated, which may distinguish MSS from MSI-H, with nucleic acids
and collagen being particularly pertinent. The DL model was able to achieve equivalent
performance with screening methods based on familial history, despite the low sample size,
though this is not yet competitive with molecular testing.
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Appendix A. Baseline Correction Experiments

The number of baseline correction techniques is too high to exhaustively search,
and there is no a priori reason to think that any one technique will work better than
another for any given application. Hence, we investigate a few techniques, which are
well established in RS and are relatively easy to perform. The first is the famous “Mod
Polyfit” method of Lieber and Mahadevan-Jansen, in which a modified polynomial is
iteratively fit to a spectrum using a least-squares-based polynomial curve fitting function
which ignores Raman peaks [13]. This requires selecting a single parameter: the order of the
polynomial to fit. An extension of this is “Improved Modified Multi-Polynomial Fitting” (I
Mod Polyfit) [14]. This was designed to improve fluorescence background removal by being
able to account for signal noise distortion and the influence of large Raman peaks. This
method also has the parameter of polynomial order. Zhang et al. developed an adaptive
iteratively reweighed penalised least squares method which is similar to the previous
methods but has the desirable trait of not needing any parameters [15]. Finally, extended
multiplicative scattering correction (EMSC) was developed to correct for additive baseline
effects, multiplicative scaling effects and interference in near infrared (NIR) spectroscopy,
but has been found to be useful in Raman applications for fluorescence removal [16].

We took these four techniques, two of which extend over a range of polynomial orders,
and applied them to the dataset. The polynomial order ranged from 1 to 5. Higher orders
were not explored due to a mathematical artefact known as Runge’s phenomenon which
causes increasingly severe distortions to the tails of Raman spectra as the order of the
polynomial increases.

Appendix A.1. Methods

A total of 13 baseline correction methods were evaluated; one with no correction, five
using Mod Polyfit with order of 1–5, I Mod Polyfit with order of 1–5, Zhang’s method and
EMSC. These were analysed using the three models with all other hyperparameters held
constant, allowing only the baseline method to vary. The 5 × 3-fold CV strategy was used
for a total of 15 folds per correction method. The mean accuracy and SD of each method
was calculated.

This study was conducted before the nested CV and so the hyperparameters used
here may not be the optimal ones found during nested CV. The hyperparameters for each
model were PCA–LDA: PCs = 20, SVM: C= 10, γ = 0.01, CNN: learning rate = 0.001,
batch size = 32. All other hyperparameters are as stated in the main text.

Appendix A.2. Results

Figure A1. Model Accuracy by baseline correction method: Lynch dataset. Mean value over 15 folds
and +/−1 SD bars.
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Appendix A.3. Conclusions

Although there is some suggestion that the CNN performs best with second-order
modpoly fit, the variance of the accuracies is such that no conclusion of superiority can be
made. The RS literature specific to oncological applications regarding baseline improve-
ment is ambivalent, with some studies directly comparing correction vs. no correction
finding no correction better [33], and others finding correction better for subsequent model
performance [34,35]. In lieu of empirical confirmation, we choose the most parsimonious
model: no baseline correction.

Appendix B. Custom Convolutional Neural Network

A custom built CNN was developed. Figure A2 describes the overall model archi-
tecture including three convolutional layers and two fully connected layers. Table A1
shows the hyperparameters used. Nested CV was used to choose the learning rate
and batch size using grid search over the ranges [10−1, 10−2, 10−3, 10−4, 10−5, 10−6] and
[32, 64, 128, 256, 512, 1032], respectively. A drop out rate of 0.2 was applied to the fully
connected layers and early stopping applied after five epochs of no test score improvement
to a maximum of 30 epochs to mitigate over-fitting.

Figure A2. CNN architecure.

Table A1. CNN hyperparameters.

Hyperparameter Value

Learning Rate 0.0001
Batch Size 256

Drop Out Rate 0.2
Early Stopping 5 epochs

Optimiser ADAM (β1 = 0.9, β2 = 0.999)
Loss Function Cross-Entropy

For the PCA–LDA model, the number of principal components to retain was searched
between 2 and 30 during nested CV, with 15 components being selected. For the SVM, the
C parameter (which controls the degree of misclassification tolerated during training) was
searched over the ranges [10−2, 10−1, 100, 101, 102]: the γ parameter (which controls the
extent of curvature of the decision boundary in feature space) was searched over the ranges
[10−4, 10−3, 10−2, 10−1, 100], with C = 0.1 and γ = 0.001 being selected during nested CV.
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Appendix C. Augmentation Process

Data were augmented by adding two perturbations to the training data: Poisson noise
was added, and the wavenumber axis was randomly shifted.

Appendix C.1. Poisson Noise

Poisson noise was added in a particular manner in order to more closely resemble
how noise is generated by the spectrometer. The wavelike properties of photons means
that their wavelengths are not equally distributed across the CCD pixels, which are of fixed
size. Therefore, to express Raman intensities in terms of raw electron count, and not the
usual photons/cm−1, we need to correct for the dispersion of light. We can calculate this
dispersion factor, d,

di =
xi−1 − xi+1

2
(A1)

For the ith wavenumber of a given spectrum x. The spectrum was then be multiplied
by this dispersion factor to give the electron count per wavenumber pixel in the CCD.
The spectrum is then adjusted so that its maximum intensity was 10,000 and Poisson noise
added according to this scaled signal intensity at each wavenumber.

Appendix C.2. Wavenumber Shifting

Wavenumber perturbation was achieved by shifting the entire wavenumber axis,
represented by a vector. This involves shifting every element in the vector up to a spec-
ified amount, which varied from −3 to 3. Each element in the vector corresponds to
approximately 2 cm−1; thus, the induced shifting varies from −6 to 6 cm−1.

Appendix D. Sample Characteristics

Table A2. Breakdown of patient samples used to build the ML models for the classification of normal
(N), sporadic adenocarcinoma (AC) and Lynch syndrome (LS) patients.

Sample ID Sample Type TNM Stage Tumour Grade

LS1 Resection cancer T2 N0 M0 Mod. Diff.
LS2 Resection cancer T2 N0 M0 Mod. Diff.
LS3 Resection cancer T2 N0 M0 Mod. Diff.
LS4 Resection cancer T3 N0 M0 Poor diff.
LS5 Resection cancer T3 N0 M0 Mod. Diff.
LS6 Resection cancer T3 N0 M0 Mod. Diff.
LS7 Resection cancer T3.N1.Mx Poor diff.
LS8 Resection cancer T3 N1 M0 Poor diff.
LS9 Resection cancer T4 N0 M0 Mod. Diff.
LS10 Resection cancer T4 N1 M0 Mod. Diff.

AC1 Resection cancer T2 N2 M0 Mod. Diff.
N1 Normal - -

AC2 Resection cancer T2 N0 M0 Mod. Diff.
N2 Normal - -

AC3 Resection cancer T2 N0 M0 Mod. Diff.
N3 Normal - -

AC4 Resection cancer T3 N1 M0 Mod. Diff.
N4 Normal - -

AC5 Resection cancer T3 N3 M0 Mod. Diff.
N5 Normal - -

AC6 Resection cancer T3 N0 M0 Mod. Diff.
N6 Normal - -

AC7 Resection cancer T3 N0 M0 Mod. Diff.
N7 Normal - -

AC8 Resection cancer T3 N0 M0 Mod. Diff.
N8 Normal - -

AC9 Resection cancer T4 N2 M0 Mod. Diff.
N9 Normal - -

AC10 Resection cancer T4 N0 M1 Poor diff.
N10 Normal - -
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