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The 2004 Indian Ocean tsunami affected 5% of Sri Lanka’s schools, severely
damaging 108 and destroying 74. The catastrophe highlighted the critical role of
schools in providing educational continuity during community recovery. Sri Lanka
has since rehabilitated and rebuilt most of the destroyed schools along the
coastline. However, there is a limited understanding of current levels of school
exposure to tsunami. This hampers preparedness and risk reduction interventions
that can improve community and educational tsunami resilience. This paper
presents a multi-disciplinary school exposure database relevant to both
vulnerability and loss modelling. The repository includes data on 38 schools
and 86 classroom buildings, surveyed across the coastal districts of Ampara,
Batticaloa and Galle in Sri Lanka, which were heavily affected by the
2004 tsunami. A new engineering rapid visual survey tool is presented that was
used to conduct the physical assessment of schools for the exposure repository.
School damage mechanisms observed in past tsunami inform the survey forms,
which are designed to capture information at both school compound and building
levels. The tsunami engineering survey tools are universally applicable for the
visual assessment of schools exposed to tsunami. The surveys show that most Sri
Lankan school buildings can be classified into three building archetypes. This
means that future risk assessments can be conducted considering a small number
of index buildings that are based on these archetypes with differing partition
arrangements and structural health conditions. The surveys also raise three
significant concerns. Firstly, most schools affected by the 2004 tsunami remain
in the same exposed locations without any consideration for tsunami design or
strengthening provisions. Secondly, Sri Lankan schools are fragile to tsunami
loading and many of the schools in the Galle district suffer from severe
corrosion, which will further affect their tsunami vulnerability. Thirdly, schools
do not appear prepared for tsunami, and do not have adequate tsunami warnings
nor evacuation protocols in place. These observations raise the urgent need to
mitigate tsunami risk, including a holistic plan for tsunami retrofitting and for
interventions to improve the tsunami preparedness of schools in Sri Lanka.
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1 Introduction

School facilities are vital community assets during and after
natural disasters, including tsunami. They can provide emergency
vertical refuge and play a vital role in education recovery. The
UNISDR Comprehensive School Safety (CSS) initiative aims to
safeguard students and educators from physical harm and ensure
educational continuity in case of a disaster. The framework rests on
three pillars: safe learning facilities; school disaster management;
and risk reduction and resilience education (UNISDR and
GADRRRES, 2017). Each pillar requires a comprehensive
understanding of the risks facing the education system. Risk, in
turn, requires the understanding of the system’s exposure to hazards.

The 26 December 2004 Indian Ocean tsunami, the deadliest
geophysical disaster in Sri Lanka’s history, clearly demonstrated the
vital role of schools. The disaster claimed over 35,000 casualties and
missing persons, and internally displaced over one million people
(Pomonis et al., 2006). The tsunami inflicted acute stresses on the
education sector across Sri Lanka’s coastal regions. It affected 5% of
the country’s schools, severely damaging 108 and destroying 74. It
displaced 94,000 students and 3,000 teachers. Some 458 schools–but
estimated by others as 287 (Bitter and Edirisinghe, 2013) - served as
internally displaced persons (IDP) camps, causing disruption to
education for a further 300,000 students (TERM, 2009; Bitter and
Edirisinghe, 2013). Despite the immense shock to the country’s
education system, classes resumed in January 2005. ByMarch of that
year, affected schools functioned either through double shift
arrangements (teachers taught day and evening classes), student
transfers or through the construction of temporary shelters. School
enrolment also recovered. Overall dropout rates were low the year
following the disaster in the most affected regions (UNICEF
Evaluation Office, 2009). The legacy of the school rehabilitation
process provides a window into today’s school exposure and
vulnerability to tsunami. The Education Rehabilitation Monitor
(TERM), a non-government organization set up immediately
following the 2004 event by the Ministry of Education (MoE),
coordinated and oversaw school rehabilitation and reconstruction
efforts. By 2008, under the direction of TERM, the MoE, provincial
Ministries and Departments of Education and a host of national and
international agencies had rehabilitated 70% of the 182 destroyed
and damaged schools. The civil war, between the Sri Lankan
government and Liberation Tigers of Tamil Eelam (LTTE) forces,
obstructed the reconstruction of a further 20 schools (UNICEF
Evaluation Office, 2009). A key observation is that schools, NGOs,
and local authorities mostly used a set of pre-approved architectural
designs to speed up the approval process (De Mel et al., 2021). These
designs did not consider the tsunami performance of schools and
most schools were rebuilt in the same hazard-prone locations.

Sri Lanka remains susceptible to tsunami generated by
megathrust subduction earthquakes in the Northern Andaman-
Myanmar, Northern Sumatra-Andaman, and Southern Sumatra
trenches. This is in addition to the Makran Trench in the
Northern Arabian Sea (Wijetunge, 2010). A recent study
conducted in the coastal provinces of Galle, Ampara and
Batticaloa by Cels et al. (2022), showed that school principals
rank tsunami as the most highly perceived threat facing schools.
At the same time, the study found that tsunami are the hazard
schools consider they are the least prepared for and that there is a

general lack of preparedness and coordination between schools and
government, heightening the level of risk to pupils and teachers.

Given the importance of school assets to communities, it is
imperative to form an understanding of tsunami risks to the
education system. This paper aims to define and classify the
exposure of the school building stock of coastal Sri Lanka,
enabling the assessment of their structural vulnerability to
tsunami. The paper first presents a brief overview of existing
survey tools and building classification systems relevant to
schools affected by natural hazards. It then presents a new
engineering rapid visual survey (RVS) tool for schools exposed to
tsunami. The tool captures information at both school compound
and individual building levels, allowing for the detailed collection of
data for structural fragility and vulnerability analyses. The RVS was
deployed in the survey of 38 school compounds (86 buildings in
total) in three coastal districts in Sri Lanka between June and
November 2020. The results of the survey show that a large
portion of the school buildings are built according to three main
archetypes or “type-plans”. These are presented in the following text,
and the identified archetypes can be used to construct model index
buildings for future physical vulnerability studies. The results of the
school surveys in terms of structural properties of the school
buildings (including the geometric configuration, infill
configurations and member details) are also presented in this
paper. The final school exposure database and an improved
version of the rapid visual survey tool are available in the
supplementary materials of this paper.

2 Existing engineering survey and
classification methods for school
buildings

Within risk assessment frameworks, Rapid Visual Survey tools
(RVS) can be used to collect data on the attributes of a physical asset,
such as a building, to assess their performance under given hazards.
RVS are mostly used where large portfolios of buildings need to be
assessed and are not appropriate for a site specific, highly detailed
structural assessment. As such, RVS aim to collect the minimum
number of attributes necessary to inform a vulnerability assessment
and to reduce the time required for the survey of any single asset
(hence they are “rapid”). Past studies have used RVS to assign
buildings to a vulnerability class, for the development of relative risk
indices (e.g., Baiguera et al., 2021). They have also been used to
identify building archetypes for the development of representative
index buildings that are then analysed to develop fragility or
vulnerability functions (e.g., D’Ayala et al., 2020).

Structural classification systems provide the link between
exposure data collected in the field and fragility or vulnerability
models (Lang et al., 2018). Many such classification systems exist
and are present in international building codes and risk assessment
platforms, such as FEMA 256 (FEMA, 1994), HAZUS (FEMA, 2003),
and PAGER (Jaiswal andWald, 2008), among others. However, only a
few classification systems consider tsunami in determining exposure
characteristics and most do not focus on schools.

Schools have several distinct structural and non-structural
characteristics that make them susceptible to damage from
natural hazards. In addition to distinct architectural layout
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arrangements, school buildings can sometimes include enhanced
structural design provisions (such as seismic provisions) due to
being classed as high occupancy structures in building codes (e.g.,
Eurocode-8, 1998).

A well-established example of RVS to capture building
earthquake exposure in seismic areas is FEMA P-154 (Lizundia
et al., 2014), which a few studies have adapted for tsunami (e.g., Park
et al., 2017 and; Park et al., 2019; Rahman and Rafique, 2018). RVS
developed specifically for school infrastructure include the Safer
Communities through Safer Schools (SCOSSO) mobile App
(Nassirpour et al., 2018). The SCOSSO RVS collects data on
structural and non-structural components/fittings in schools and
has been applied to a case study consisting of 115 schools in the
Philippines (D’Ayala et al., 2020; Nassirpour et al., 2017). This App
considers several hazards, but not tsunami.

A study which explicitly developed a RVS for a tsunami
vulnerability assessment of schools is the INSPIRE study
(INdonesia School Programme to Increase REsilience). INSPIRE
was developed for schools in Indonesia exposed to earthquakes
and tsunami. Tsunami vulnerability is evaluated using the
Papathoma Tsunami Vulnerability Assessment model (PTVA)
(Dall’Osso et al., 2016; Papathoma and Dominey-Howes, 2003).
The PTVA considers high level attributes that affect tsunami
vulnerability and assigns weight factors to each attribute to
produce an index, which has been validated against field data from
the Indian Ocean tsunami (Dominey-Howes and Papathoma, 2006).
The limitations of the INSPIRE RVS and of the PTVA model is that
theymiss some of the detailed (but key) attributes that make buildings
susceptible to tsunami and are necessary for detailed analytical
fragility analysis. They also neglect important damage mechanisms
like scour and debris impact, or potential tsunami mitigation
mechanisms like shielding from flow due to large barriers, which
are based on observations of buildings’ surroundings. The Hospital
Engineering Assessment for Resilience to Tsunami and Storm Surge in
Sri Lanka (HEARTS-SL) RVS presented in Baiguera et al. (2021), does
include the level of structural detail and information on building
orientation and surroundings that is missing from the INSPIRE
approach. It also extends traditional RVS by considering energy
and other systems that are critical to determining the functionality
of hospital units post-disaster. However, this RVS is highly bespoke to
hospital units and not immediately transferable to schools.

3 Method

This paper presents a new RVS tool, called the ReSCOOL RVS
tool after the sponsoring research project. The ReSCOOL RVS is
designed to evaluate the tsunami exposure of school infrastructure.
Its effectiveness is demonstrated through the engineering surveys of
86 school buildings across Sri Lanka by multiple teams of trained
engineers.

The ReSCOOL RVS tool collects structural and non-structural
exposure information related to tsunami resistance for each building
within a school compound, allowing for the modelling of buildings
towards their assessment under tsunami loading. It also allows for
each structure to be classified according to existing building
taxonomies, such as the Global Library Of School Infrastructure
(GLOSI, World Bank Group, 2019) and the Global Exposure

Database for Multi-Hazard Risk Analysis (GED4ALL, Silva et al.,
2018). The RVS also collects information on building and resource
arrangements within the school compound including school energy,
water sources and preparedness for tsunami. This information
allows the development of multi-disciplinary repositories of
exposure information, aimed at improving disaster risk reduction
efforts for evacuation and for maintaining/restoring school
functionality after natural hazards. Although the new RVS tool
was developed specifically for Sri Lanka, it can be applied worldwide
for on-site rapid collection of data on school exposure to tsunami.
The following sections describe the ReSCOOL RVS tool in detail.

3.1 The new ReSCOOL RVS tool for
evaluating tsunami exposure of school
infrastructure

The ReSCOOL RVS tool enables the collection of sufficient
data on.

1) Structural and non-structural characteristics relevant to tsunami
performance assessment and for the definition of index buildings
for tsunami fragility analyses,

2) Elements of the school surroundings needed to identify
susceptibility to debris and scour induced hazards as well as
reduction in tsunami loads due to sheltering effects,

3) Occupancy, disaster preparedness, energy and communication
systems to support educational resilience studies.

ReSCOOL RVS incorporates some of the school exposure
characteristics defined in the SCOSSO project (D’Ayala et al.,
2020; Nassirpour et al., 2017) and is hence adequate for

FIGURE 1
Engineering survey forms for schools exposed to tsunami.
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characterising school exposure to earthquakes. However, the forms
are added to and modified to explicitly consider damage
mechanisms from tsunami inundation and associated secondary
hazards (e.g., scour and debris impact). These damage mechanisms
are informed by post-tsunami field surveys including Dias and
Mallikarachchi (2006), Dias et al. (2006), Lagesse et al. (2019),
Pomonis et al. (2006) and Rossetto et al. (2007).

The ReSCOOL RVS tool consists of two survey forms, as
illustrated in Figure 1. The first form provides a high-level
overview of the school compound and supporting infrastructure
(referred to hereafter as the ‘school-level form’). The second form
captures the detailed structural characteristics of each school
building within the school complex (referred to hereafter as the
‘building-level form’). The ReSCOOL RVS tool is fully compatible
with GLOSI and GED4ALL taxonomy systems.

The ReSCOOL RVS tool is provided in the supplementary
materials (Supplementary Table S1); this has been improved
since performing the actual surveys presented herein as a case-study.

3.2 School-level form

The first section of the school-level form captures key attributes
such as the school’s name and student years taught; address and
geolocation; and school type–whether it is a government, religious
or private school. Part of the school-level form can be completed in
advance of the field survey using data available online; remotely
sensed images (e.g., from Google Earth); and school censuses,
among other sources. Doing this research in advance can assists
surveyors when they complete the rest of the RVS as they will be able
to contextualise the school within a wider urban and coastal setting.
The field survey can be used to complete the form and validate the
desk-based observations.

The second section of the school-level form gathers data on the
site characteristics of the school complex, including local soil
conditions and the presence of perimeter walls. The former is key
to the occurrence of scouring. Foundation scouring, as depicted in
Figure 2B, was one of the main school building failure mechanisms

observed in Sri Lanka (Dias et al., 2006). Scouring effectively washes
away the soil underneath a structure (typically starting around the
corners), undermining the foundations, and eventually leading to its
collapse. Perimeter walls can act to block or divert the water flow so
long as the wall does not fail. Urban conditions influence localized
tsunami flow conditions, including the potential sheltering of one
structure by another or as sources of debris (ASCE/SEI 7-16, 2017;
Chock, 2016). To this end, the ReSCOOL RVS proposes the use of
indices to characterise the level of urban density and vegetation
surrounding the school complex.

The third section provides a referencing system to locate the
buildings and assets on the complex alongside their primary
classification parameters, including the asset type; number of
storeys; structure type; footprint area; and orientations to the
coastline. Building orientation with respect to the coast is a
significant determinant of the net tsunami drag forces induced
on a structure, as drag forces are a function of the surface area
exposed to the tsunami flow (ASCE/SEI 7-16, 2017; Chock,
2016).

The third section of the school-level form collects any
information available on the impact of previous hazard events
and their intensity measure (e.g., inundation height in case of
tsunami) that may have affected the school. Information on past
hazard events is best obtained from discussions with school
principals and staff on site. The school’s functional loss ratio and
functional downtime are used as proxies for the impact on the
school. The ReSCOOL RVS also gathers data on the individual level
of damage of affected buildings, in addition to the cost and time-
taken of any measures to reconstruct or rehabilitate them. These
parameters are intended to enable an empirical evaluation of
vulnerability and recovery for a particular hazard event.

The ReSCOOL RVS also includes a section for recording
functional dependencies and their backup systems (e.g., water,
power, telecommunication). Note that these aspects were not
covered in the actual survey carried out and described below.
Many schools in Sri Lanka rely primarily on water wells, many
of which were contaminated or destroyed following the
2004 tsunami (Ratnasooriya et al., 2007).

FIGURE 2
(A) Washed away building in front and washed away infills at the rear. (B) Foundation scouring of a corner.
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The last section of the school-level form collects data on school
tsunami preparedness, including any information on emergency
tsunami protocol. Examples of this could be whether schools
regularly engage in tsunami evacuation drills, or if they have
designated evacuation routes or refuges.

3.3 Building-level form

The building-level form captures data on the structural and non-
structural features of each school building in the school compound.
Structural features include the building geometry; construction
materials; and typical structural member details of the primary
structure, such as foundations, columns, floor slabs and roof
systems. Non-structural features focus primarily on the materials
and configurations of non-load-bearing infill walls. All collected
data is granular enough to enable the identification of building
classes and the numerical modelling of school buildings.

Of particular importance to the tsunami performance of
buildings are the physical attributes of columns, slabs, and infill
walls. The horizontal tsunami loads on columns are strongly
associated with the integrity of masonry infills and their out-of-
plane resistance. This is because infills create a surface area on which
the tsunami flow acts, thereby increasing the total drag forces acting
on the structure. Once the infills break away, as depicted in
Figure 2A, the reduction in surface area reduces the pressure on
the columns and structure (Chock, 2016; Del Zoppo et al., 2021a;
Del Zoppo et al., 2021b). Furthermore, infills that act in-plane to the
tsunami flow contribute to the lateral strength and stiffness of the
structure, at least initially before the infill materials degrade or
columns fail. However, partial height infill walls can create a ‘short
column’ effect that can precipitate column shear failure. This re-
enforces the importance of capturing details on infill geometry,
strengths, connections to the structure and openings.

Recent research has highlighted the importance of floor slabs
due to the substantial influence that vertical buoyancy forces can
have on a structure’s performance in a tsunami. As stipulated by the
ASCE 7-16, Chapter 16 (ASCE/SEI 7-16, 2017), when the
inundation rises to the first-floor slab, air pockets underneath the
slab result in the formation of upward pressure. These upward forces
reduce the axial forces on the columns below and thus their lateral
resistance capacity (Del Zoppo et al., 2022). The roof plays a smaller
role in tsunami vulnerability mainly because a structure is likely to
suffer severe damage by the time the inundation reaches the roof
level (with the caveat that the roof system contributes to gravity
loads and lateral stiffness). Rather, roof attributes are collected to
provide data for cyclone, storm, and high wind exposure. The role of
staircases is twofold, on the one hand, a staircase can stiffen the
structure laterally or in torsion. The asymmetric location of
staircases can, for example, lead to eccentric stiffness and a non-
uniform load pattern, causing irregular exertion of lateral forces. On
the other hand, staircases serve as routes for vertical evacuation.
Their location and accessibility are thus critical factors for
evacuation protocols. The building-level form collects additional
information on the foundation system which becomes especially
relevant to tsunami vulnerability if the structure is susceptible to
foundation scouring, as discussed under the school-level form.

The building-level form collects data on the building age and any
strengthening measures or building alterations. Building age is
useful information to contextualize structures in relation to
building codes and practices. It also puts structures in context
with respect to possible exposure to past hazard events. Finally,
surveyors assess the general structural health of the building,
capturing any existing damage or degradation, such as the
corrosion of structural members. Significant material degradation
such as concrete spalling and steel corrosion, particularly of
columns, will affect the structure’s ability to withstand tsunami
(or gravity) loads.

4 Case-study: Sri Lankan schools

4.1 Sri Lankan school exposure to tsunami

Following the 2004 Indian Ocean tsunami, the Ministry of
Education (MoE) and others sought to address the fundamental
question of school exposure to a tsunami. The MoE made attempts
to relocate the affected schools further inland, thereby reducing
school tsunami exposure and risk. These efforts were only partially
successful. Due to difficulties in procuring land for school relocation
and resistance from local communities, few schools were relocated
outside the coastal buffer zone. The buffer zone was initially set at
minimum of 100-m from the coast to encourage reconstruction
further inland. But it was soon reduced to local setback distances
specified by the Coast Conservation Department based on coastal
erosion (usually in the range of 35–120 m form the Mean High-
Water Line) (Coast Conservation Department, 2021).

Figures 3A,B, show the recovery funds allocated to 187 of the
severely affected schools according to the tsunami reconstruction
and rehabilitation program (TERM, 2009). Figure 3B shows that the
allocated recovery funds (aggregated by district) have an almost
linear relationship to the number of students in each district. It also
highlights that the three most heavily affected regions in terms of the
number of pupils and reconstruction fund allocations are Batticaloa,
Galle and Ampara. These three regions were highlighted by post-
tsunami field surveys to have sustained some of the greatest losses
(Jayasuriya et al., 2005; Palliyaguru et al., 2007; Rossetto et al., 2007)
and largest levels of tsunami inundation following the 2004 event
(Goff et al., 2006; Wijetunge, 2012). They are the regions of focus for
the RESCOOL RVS implementation.

Simulations of nine maximum probable tsunami scenarios
reveal that a seismic event in the Northern Sumatra–Andaman
segment of the Sunda Arc would cause the greatest inundation
amplitudes in Sri Lanka (Wijetunge, 2012). The Sri Lankan Disaster
Management Centre (DMC) uses the 2004 event’s inundation
footprint generated using the earthquake source in Wijetunge,
(2012) as the basis for Sri Lanka’s hazard definition (DMC, 2012;
Wijethunga and Piyasiri, 2012). At the time of writing, there are
430 coastal schools in Sri Lanka that lie within the DMC tsunami
inundation zone, potentially affecting over 193,000 pupils according
to the 2019 school census (DMC, 2012; Ministry of Education,
2019). Figure 4 shows the schools (orange circles scaled by pupil
population size) that lie within the DMC tsunami hazard zones. The
DCM characterises the tsunami hazard zones into three inundation
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height ranges: low (less than 0.5 m), medium (between 0.5m and
2 m), and high (greater than 2 m).

4.2 Surveyed schools

ReSCOOL RVS were conducted on 38 school compounds,
comprising 86 individual school buildings, as depicted in
Figure 4. The three primary districts of focus were Ampara, with
12 school compounds and 34 school buildings surveyed; Batticaloa,
with four school compounds and eight buildings; and Galle, with
eight school compounds and 21 buildings. In addition to this core set
of coastal schools, students from the South Eastern University of Sri
Lanka expanded the database and surveyed schools in their home
districts using the same forms. This expands the database to include
14 school compounds and 23 school buildings in the Trincomalee,
Jaffna, Kandy, Badulla, Kurunegala and Monaragala Districts.
Although not all these schools are within the tsunami hazard
zone, they are included in the database (Supplementary Table S2)
as they help characterize school building architypes and exposure to
other hazard. The surveys did not include single storey structures as
they have limited resistance capacity to tsunami and cannot serve as
vertical evacuation refuges.

5 Survey findings

The survey data collected using the ReSCOOL RVS tool are
presented in the following sections. The findings relate to the typical
structural and architectural designs of the surveyed schools, as well as

their infill configurations and structural health conditions. In addition,
the state of school tsunami preparedness is discussed. This data is
valuable for the vulnerability and risk assessment of schools in Sri Lanka.

5.1 School archetypes

The surveys reveal that most schools in Sri Lanka follow one of
three standardized layout arrangements, here denoted as Type 1,
2 and 3 and shown in Figures 5–7, respectively. Type 1 schools have
two rows of columns at the perimeter aligned with the longer
dimension of the building. Type 2 schools have a similar layout
to Type 1 but have an additional row of columns aligned with the
corridor. This additional row of columns may improve their seismic
and tsunami performance, as they enhance the lateral load resistance
of the building. Type 1 and Type 2 schools are typically two to four
storeys tall, and their architectural arrangement comprises a central
staircase with two or three classrooms on either side connected by a
longitudinal corridor. A classroom typically spans two bays, each of
which is about 3 m (although classrooms sometimes span three or
four bays). Most Type 1 and Type 2 schools have nine bays, i.e., four
classrooms. However, the number of bays ranges from seven to 16,
i.e., two to eight classrooms. The transverse width of the structure is
typically around 7.5–10 m for both Type 1 and Type 2 schools. Type
3 schools, much fewer in number, have a central staircase with four
adjoining classrooms, which are used as lab rooms, libraries, staff
rooms, or rooms for other supporting functions, see Figure 7. Type
3 school buildings are typically two to three storeys high.

The MoE’s use of pre-approved architectural and structural
designs provides the best explanation for the prevalence of the three

FIGURE 3
(A) School recovery funds allocated per student. (B) Total number of students by district versus allocated funds. Data from TERM, 2009.
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identified typologies amongst the Sri Lankan school building stock,
both pre-and post-tsunami. The surveys reveal that there are no
significant differences in terms of architectural type plans, design
and construction practices among the investigated districts. Figure 8
shows the year of construction (completion) of the entire dataset of

coastal school buildings surveyed, classified by building type. Table 1
provides the breakdown of building type by district. It is noted that
information about the year of construction is not available for
18 schools. Although Type 1 is the most prevalent architype, a
higher proportion of Type 2 schools were built following the

FIGURE 4
Schools exposed to tsunami and schools surveyed; enlarged window of the Ampara district. Data from the DMC, 2012 and Ministry of Education,
2019.

FIGURE 5
Type 1, (A) ground floor plan; (B) two-storey 3D view (right).
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tsunami, indicating that there may have been an awareness that
buildings needed greater resistance to lateral loads as Type 2 ones
have an additional row of columns; Figure 8 also clearly shows a
large spike in the numbers of newly constructed school buildings in
tsunami-stricken regions over a period of 2 years following the
tsunami, implying a 2-year average reconstruction time. A report
by the Education RehabilitationMonitor further substantiates this; it
indicates that most affected schools received the full amount of their
allocated reconstruction funds by this time. Schools that did not
were mostly within conflict zones (TERM, 2009).

It is important to note that a 2-year reconstruction time for
school buildings does not equate to a ‘downtime’ period for
education provision. Building functionality is a poor proxy for
school or educational downtime as this negates the measures
schools and relief efforts can take to resume classes in a disaster’s
aftermath. In the case of Sri Lanka, classes mostly resumed between
2 weeks and 2 months after the tsunami, with school attendance
effectively fully recovered by the end of 2005. This was achieved
through student transfers to undamaged/functional schools and the
erection of temporary teaching facilities (UNICEF, 2009). Hence,

FIGURE 6
Type 2, (A) ground floor plan; (B) three-storey 3D view (right).

FIGURE 7
Type 3, (A) ground floor plan; (B) two-storey 3D view (right).

FIGURE 8
Building type by year of construction.
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school recovery and resilience require a more nuanced
understanding of school functionality than merely reconstruction
times.

5.2 Structural designs

Sri Lanka does not have national design codes for buildings, or
specific regulations for schools. Instead, Sri Lankan engineers adopt
a range of building standards including Eurocodes, (predominantly)
British Standards and (occasionally) Australian design standards
(Rossetto et al., 2019). None of the building codes adopted consider
tsunami loading, and seismic design is not considered in Sri Lanka.
Hence, school design in Sri Lanka is dominated by gravity load
design, which is covered in similar ways by the predominantly used
building codes, leading to a general uniformity in element sizes and
detailing. All school buildings covered by the survey are Reinforced
Concrete (RC) moment resisting frames with masonry brick infills.
They tend to have one column type, one beam type for the short
spans between bays in the longitudinal direction, and a different
beam design for the long spans in the transverse direction. Figure 9
depicts the nominal structural member section details for Type 1,
Type 2 and Type 3 archetypes. School structural drawings from the
MoE School Works Division stipulate the use of BS CP110:1972 and
BS 8110: 1985, which specify a characteristic strength concrete of

20 or 25 MPa, a steel yield strength of 460 MPa for longitudinal
reinforcement, and a mild steel strength of 250 MPa for stirrups.

No significant differences in structural design have been
observed among the surveyed districts. All school buildings
surveyed have RC floor slabs which are mostly 125 mm in depth.
Most school buildings have gable pitched roofs, supported by either
steel (75%), timber (20%), or mixed RC and timber (4%) truss
systems, except for one school building with a flat RC roof. Roof
coverings are either clay tiles (55%), metal sheets (10%) or asbestos
sheets (35%). Most surveyed school buildings have shallow brick
strip foundations for walls and pad footings for columns, built on
sandy soils, owing to their coastal proximity. This paper thus
classifies the foundations as flexible, with an elevated risk of
scour, supported by evidence during the 2004 tsunami and
depicted in Figure 2B (Dias et al., 2006).

5.3 Masonry infill configurations

The presence of infills can have a substantial effect on the
building response during tsunami inundation. The ReSCOOL
RVS therefore collects information on infill type, material
properties, their connection to the surrounding frames, and
opening configurations. The masonry infills are either made with
clay bricks, with nominal dimensions of 200 × 100 × 50 mm, or

TABLE 1 Building type by district.

Type 1 Type 2 Type 3

District Total Built after 2004 Total Built after 2004 Total Built after 2004

Ampara 26 12 7 6 1 1

Batticaloa 6 3 2 0 0 0

Galle 11 4 9 5 1 1

all other 19 5 4 2 0 0

total 62 24 22 13 2 2

FIGURE 9
Typical column details for two- and three-storey school buildings (nominal dimensions).
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(increasingly) cement blocks, with nominal dimensions of 300 ×
100 × 150 mm to 300 × 200 × 150 mm (length × width × height),
respectively. Wall plaster (~10 mm thickness) is made of a cement-
sand mortar mix ratio of 1:5. The characteristic strength of infill
masonry walls depends on the properties of the individual
constitutive materials (i.e., masonry unit and mortar). The
material strength and quality of clay bricks and cement blocks
vary in Sri Lanka because construction materials are not fully
standardised and controlled. An investigation into material
strengths of brick and block samples indicated that these have
low strength, i.e., less than 10 MPa (Thamboo and Dhanasekar,
2020). Mortar in Sri Lanka is typically made using a cement-to-sand
ratio of 1:5, corresponding to a strength class of 4 MPa as per EN
1996-1-1 (2005). The compressive strength of masonry assemblages
varies in the range of 1.4 MPa–7.3 MPa according to recent
experiments from South Eastern University, Sri Lanka (Thamboo
and Dhanasekar, 2019; Thamboo, 2020).

The infills and partitions of all the surveyed schools are
mostly unconfined masonry. The surveys show that the infill
configurations can be grouped into eight classes, (three classes for
the front elevations and five classes for the rear elevations), as
depicted in Figure 10. Schools typically have a uniform
combination of one front and one rear infill configuration
across all bays along the longitudinal direction of the
structure. The thicknesses of the infills vary between 125 mm
and 230 mm, corresponding to masonry brick (solid clay) or
block type used and their bonded thickness (half- and full-brick
masonry walls). The gable end walls and the two internal walls
abutting the staircase are mostly of full-brick masonry
construction; and in some cases, the gable end walls constitute
masonry confined on all four sides. Classroom partitions and
external walls in the longitudinal direction are typically half-
brick masonry.

5.4 Structural health and maintenance

Several schools, mostly in the Galle district, exhibit severe
structural and non-structural degradation. The surveys found
multiple instances of severe cracking and concrete spalling due to
reinforcement corrosion in columns, beams, and floor slabs.
Figure 11A depicts examples of severe spalling and reinforcement
corrosion observed in some ground floor columns of surveyed
school buildings. Typical non-structural degradation was in the
form of broken roof sheets or tiles, and water leaks and ingress.
In addition, in several school buildings the steel roof trusses
displayed significant signs of corrosion and rust, as shown in
Figure 11B.

Figure 12 plots the distribution of the surveyed buildings
according to their structural health conditions and building age.
As expected, age is a reasonable predictor of condition. None of the
buildings constructed after 2005 are in a poor condition. A poor
structural health condition denotes significant degradation to the
structure and threatens the structural integrity of the building if not
addressed (like in Figure 11A). A fair health condition denotes
minor degradation to structural members (hairline cracks), and
some lack of maintenance to non-structural members. Multiple
factors may explain the elevated levels of building degradation of
such a young building stock - ‘young’ because the mean year of
construction of the surveyed buildings in both the Galle and Ampara
districts is 2003. One plausible factor is the proximate locations of
the schools to the coast. There is some indication, for example, that
the proximity to the coast may influence the level of corrosion of RC
members and steel roof trusses. This is especially the case in the
Galle district, where four schools have poor structural health
conditions, and the others have fair conditions. Conversely, in
Ampara only one school is in a poor state of structural health,
while 27 have fair and six have excellent conditions. In Batticaloa

FIGURE 10
Front and rear infill configurations (nominal dimensions; B0: bare frame).
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and the other surveyed districts, only one school has a poor
structural health condition, 26 have fair conditions and four have
excellent conditions. The discrepancy between the Galle and the
other districts may be due to regional differences in construction
materials, building construction and maintenance practices.

The lack of systematic maintenance, however, is likely to be the
main contributing factor to the poor structural health of the
building stock. Several school principals expressed concerns
during the building surveys regarding the lack of funds
available to conduct maintenance works. Moreover, multiple
schools contain abandoned and severely dilapidated buildings
on school grounds. The principals of these schools indicated
that they had not obtained the funds for their demolition and
stressed that they constitute a safety hazard (which, objectively,
they do). In an independent investigation that looked at the level of

preparedness of schools to tsunami, principals (unprompted)
highlighted building degradation as posing a considerable
danger to the safety of students and staff (Cels et al., 2022).
These interviews tell a similar story of difficulties in obtaining
funds for repair works. In some cases, school principals have
attempted to raise funds themselves or have partially or entirely
closed off buildings in fear of spalling material.

5.5 Tsunami and other hazard preparedness

The schools surveyed showed a low level of preparedness for
tsunami and other natural hazards for all the districts. None of the
schools have any firefighting equipment or practice fire drills,
suggesting a low baseline level of preparedness. None of the
schools in this survey actively conduct regular tsunami
evacuation drills. Only two surveyed schools have identified
emergency assembly points and evacuation routes. One of these
two schools has designated the upper storeys of two and three
storeyed schools as refuges. A tsunami fragility study of a two storey
Type 1 school in Sri Lanka by Del Zoppo et al. (2021b) raises the
question of whether schools should designate two or three storeyed
school buildings as vertical evacuation refuges, given their high level
of fragility to tsunami. Furthermore, if the tsunami inundation
simulations of Goff et al. (2006) and Siriwardana et al. (2005) are
considered, onshore inundation could reach heights up to 12–15 m.
Inundation of this height would make three storey school structures
unusable as safety refuges since the structure would be fully
submerged.

Discussions with school principals during the surveys also
highlighted the progressive loss of human capital with respect to
tsunami preparedness. For example, multiple principals noted that
teacher training in tsunami preparedness, along with practice drills,
have significantly diminished in recent years and are not systematic.
Many teachers that did receive training have since left the schools.
This leaves many schools without any trained staff in tsunami
evacuation protocol.

FIGURE 11
(A) Left and centre, Structural degradation: Severe corrosion of columns (B) Right, Roof degradation: Corrosion of steel trusses.

FIGURE 12
Structural health condition.
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6 Conclusion

Since Sri Lanka remains highly exposed to tsunami and given the
vital role of schools in community resilience, assessing the coastal
hazard, exposure and vulnerability of schools is of critical
importance to ensuring the resilience of coastal communities in
Sri Lanka. This paper presents a new engineering rapid visual survey
tool for schools exposed to tsunami, ReSCOOL RVS, which is
provided in the supplementary material. The ReSCOOL RVS tool
is designed to capture key parameters that affects a school’s
susceptibility to tsunami (and earthquake) damage. This includes
the structural and non-structural characteristics of school buildings
and information on the school compound and its surroundings.
Moreover, the tool includes sections for recording information on
the hazard preparedness of schools and functional dependencies
(e.g., water and energy sources). The ReSCOOL RVS was deployed
in the survey of 38 school compounds (consisting of 86 buildings), in
three districts most severely hit by the 2004 Indian Ocean tsunami in
Sri Lanka, namely, the Ampara, Batticaloa and Galle districts. This
paper presents a database of the school exposure data collected in the
supplementary material, where each school building is also classified
according to the GLOSI and GED4ALL taxonomies for wider
applicability. The school surveys reveal that there are three
prevalent school building archetypes in Sri Lanka, which range
from two to four storeys (note that single storey structures were
not surveyed due to their limited tsunami resistance). In addition,
several combinations of non-structural partitions were also
identified. The configurations and properties of these three
school types are presented with the view of enabling future
detailed numerical fragility assessments of the school archetypes
which will, in turn, enable tsunami vulnerability assessments of
schools in Sri Lanka.

Overall, this study has found that the tsunami exposure of
the school system in Sri Lanka remains high since the
2004 tsunami. With reference to the 2019 school census and
the tsunami hazard as defined by Sri Lanka’s Disaster
Management Centre, there are currently 430 schools that are
within the 2004 Indian Ocean tsunami inundation zone. The
engineering surveys corroborate that most schools were rebuilt
to the same pre-2004 designs and have not been refitted with
tsunami strengthening measures. Past studies performed by the
authors on the tsunami performance of one of the archetypes
highlights the high fragility of the Type 1 school building design.
Furthermore, the survey presented in this paper highlights the
lack of systematic maintenance of schools, particularly those in
the Galle district. Unless rectified, this deterioration will further
compromise school building performance under future tsunami.
These factors increase the burden on tsunami preparedness and
evacuation to mitigate the tsunami risk to life and to the
education network of Sri Lanka. However, the survey reveals
a concerning lack of preparedness for tsunami and other
hazards, with no schools with any firefighting equipment, and
very few conducting regular evacuation drills. Improving the
tsunami resilience of Sri Lanka’s school network will require a
holistic and comprehensive approach. One that reduces physical
exposure and fragility to tsunami where possible, and crucially,
one that ensures schools are prepared and able to effectively
evacuate.
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