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Abstract: Autonomous outdoor operations of Unmanned Aerial Vehicles (UAVs), such as quadrotors,
expose the aircraft to wind gusts causing a significant reduction in their position-holding performance.
This vulnerability becomes more critical during the automated docking of these vehicles to outdoor
charging stations. Utilising real-time wind preview information for the gust rejection control of
UAVs has become more feasible due to the advancement of remote wind sensing technology such as
LiDAR. This work proposes the use of a wind-preview-based Model Predictive Controller (MPC) to
utilise remote wind measurements from a LiDAR for disturbance rejection. Here a ground-based
LiDAR unit is used to predict the incoming wind disturbance at the takeoff and landing site of an
autonomous quadrotor UAV. This preview information is then utilised by an MPC to provide the
optimal compensation over the defined horizon. Simulations were conducted with LiDAR data
gathered from field tests to verify the efficacy of the proposed system and to test the robustness
of the wind-preview-based control. The results show a favourable improvement in the aircraft
response to wind gusts with the addition of wind preview to the MPC; An 80% improvement in its
position-holding performance combined with reduced rotational rates and peak rotational angles
signifying a less aggressive approach to increased performance when compared with only feedback
based MPC disturbance rejection. System robustness tests demonstrated a 1.75 s or 120% margin in
the gust preview’s timing or strength respectively before adverse performance impact. The addition
of wind-preview to an MPC has been shown to increase the gust rejection of UAVs over standard
feedback-based MPC thus enabling their precision landing onto docking stations in the presence of
wind gusts.

Keywords: MPC; remote wind sensing; gust rejection; preview control; optimal control; quadrotor;
VTOL aircraft

1. Introduction

Unmanned Aerial Vehicles (UAVs) are being increasingly employed for autonomous
operations due to their cost-effectiveness in applications such as aerial inspection, 3-D
mapping, search and rescue, delivery, and precision agriculture. Their small size and use
in urban environments makes them susceptible to wind gust which can cause significant
deviation from their intended flight path. This poses a safety risk to the UAV and its
surroundings, particularly in applications such as aerial inspection and delivery. Further-
more, the autonomous nature of their operations entails the need for accurate position
control to enable the UAVs to successfully dock onto a charging station. Gust resilience
is therefore a necessary requirement for the safe and reliable operations of autonomous
UAVs. A powerful method to impart gust resilience to UAVs is through the develop-
ment of flight control systems that can sense and compensate the disturbance by making
real-time adjustments to the UAV’s attitude and trajectory to ensure that it remains stable
and on course.
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Most research on gust rejection of UAVs tackles the problem of wind disturbance
by first utilising robust model-based filters or observers to estimate the disturbance act-
ing on the aircraft and then using a suitable feedback controller to provide the necessary
compensation. Ref. [1] develops a generalised extended state observer to estimate the
wind disturbance and utilise an attitude tracking backstepping controller for disturbance
rejection. Refs. [2,3] model the effects of wind on the UAV’s dynamics to explicitly estimate
the wind velocity acting on the aircraft for disturbance rejection. Refs. [4–7] propose the
use of active disturbance rejection control, where extended state observers are utilised to es-
timate the total disturbance acting on the aircraft followed by the adjustment of an adaptive
feedback controller to reject the effects of the disturbance. Due to the utilisation of ob-
servers in all these methods, the wind disturbance needs to propagate throughout the entire
system before it is sensed and compensated for. This inevitably adds a delay to the com-
pensation which decreases the potential performance improvement. This becomes more
significant for larger UAVs due to their increased actuator lag and slower aircraft dynamics.
An alternative to these sole feedback-based methods is preview-based disturbance rejec-
tion. Here, future wind disturbance information is used to compute the necessary control
compensation either preemptively (to account for delays) or in real-time. A suitable method-
ology to utilise this preview information for optimal gust rejection is Model Predictive
Control (MPC).

MPC was initially widely used in the petro-chemical industry due to its ability to
easily handle dynamic constraint manipulation. This allowed the operators to react to
rapid changes in the marketplace while keeping the plant at the most economically optimal
operating condition [8]. With its ability to easily handle multivariable control applications,
MPC started gaining popularity in flight control of UAVs due to the ready access of
lighter, faster, and cheaper computers to run numeric algorithms for solving its dynamic
optimization problem. Most implementations of MPC in UAVs focused on guidance
control [9–12], where the MPC’s dynamic optimization and constraint handling allowed for
optimal trajectory generation in dynamic and unknown environments. In Refs. [13,14], the
MPC algorithm was leveraged to compute UAV trajectories which optimize both for system
dynamics and perception objective that aims to maximize visibility of a point-of-interest
to enable reliable vision-based tracking for navigation. Ref. [15] found improvements in
trajectory tracking performance under wind disturbances through the use of a non-linear
MPC over a linear MPC due to the inclusion of full system dynamics. Refs. [16–19] estimate
the disturbances on the vehicle for offset-free tracking with the MPC. Ref. [18] uses an MPC
in the position control loop of a tail-sitter Vertical-Takeoff-Landing (VTOL) UAV where
wind is considered as a measurable disturbance and feedforward control is incorporated
into the MPC to reject its effects. While MPC with measured disturbance feedforward can
improve its gust rejection properties compared to purely feedback based methods, this can
be taken a step further by using a preview of the incoming wind for its rejection. Ref. [20]
developed an MPC strategy that estimates and stores the wind disturbance information of
a leader quadrotor to be used as the disturbance preview for the follower quadrotor thus
increasing its disturbance rejection. While this utilises the MPC’s future optimization to
reject the incoming disturbance, the strategy is limited to situations where past information
of steady wind disturbance fields is available and hence is not suitable for the rejection of
dynamic wind gusts. In this work, the incoming wind disturbance on a quadrotor UAV is
estimated using remote measurements from external ground-based sensors. The remote
measurements are then used to predict the future disturbance profile on the aircraft. This
preview information is then utilised by an MPC for optimal disturbance rejection over its
prediction horizon. The feasibility of this preview-based strategy is mainly limited by the
availability of accurate preview information, the possibility for which has increased due to
ongoing development of remote wind sensing instruments such as LiDAR.

LiDAR (Light Detection and Ranging) can be broadly split into two types: ranging
LiDAR s which are used for surveying/mapping, and atmospheric LiDAR s which can
be used to measure wind speed. The latter utilises the Doppler frequency shift of back-
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scattered light from airborne particles to measure the wind speed. Here in this paper, the
term LiDAR is used to exclusively refer to the wind measuring subgroup of LiDAR s. Wind
energy was the first major industry to make use of the remote wind sensing capability
of LiDAR [21–25], the main idea being to utilise a forward-looking LiDAR mounted on
the nacelle of the wind turbines to measure incoming wind disturbances. This preview
information is then used by the turbine’s blade pitch controller to effectively mitigate
against gust loads, decrease turbine fatigue, and increase its power output [23–26]. The
measurement range of these remote sensors also facilitates the study and modelling of air
flow in complex terrains and wind farms, Refs. [27–30] developed a more comprehensive
real-time estimation algorithm for dynamic spatial and temporal wind fields in state-
space representations using scalar measurements of a LiDAR. This allows for the easier
integration of wind field preview for control algorithms of multiple turbines in a wind farm.
The use of LiDAR s for aerospace research has steadily grown due to developments in the
telecommunication industry, where components such as the optical fibres have allowed for
their miniaturisation and improved reliability. Refs. [31,32] investigates the feasibility of
the LiDAR based feedforward flight control system to minimise gust loads in high-speed
civil transport and flexible aircraft respectively. Ref. [33] looks into both active gust load
alleviation control and investigates the characterisation of aircraft wake vortices using
airborne LiDAR systems. While LiDAR systems have become more and more compact and
portable over the years, their size and weight are still too large for onboard use in most
commercial UAVs. Tethered applications of LiDAR systems have been investigated using
UAVs. Ref. [34] conducted a proof-of-concept of a tethered UAV-LiDAR system in which
the LiDAR unit was kept on the ground and its telescopic transmitter-receiver was mounted
to the UAV; The main application of which was to test the system as a wind-measurement
platform. Ref. [35] simulates the use of an airborne LiDAR and a H∞ preview controller
during the autonomous landing of a highly flexible fixed-wing aircraft to reject wind
disturbances. However, the assumption that the LiDAR unit is kept onboard the aircraft
wing limits the study to large scale aircraft and excludes most UAVs. In this paper a
ground-based LiDAR unit is proposed to generate the preview needed for disturbance
rejection during the takeoff and landing of a quadrotor UAV from its ground station. Here,
the LiDAR unit has no physical connection to the autonomous UAV and hence does not
limit its flight-envelope. This paper builds on previous work [36], where a prototype
LiDAR unit was experimentally verified to predict the incoming wind disturbance at the
landing site of UAV. The benefits of a feedforward control strategy were also assessed
in this previous work. In the work presented here the disturbance rejection is improved
further by incorporating the preview information received from the LiDAR in an MPC
formulated for disturbance preview.

The main contributions of this paper include the development of a linear MPC with
wind disturbance preview, the analysis of the MPC’s performance against varying preview
lengths, the verification of the proposed performance benefits through non-linear simula-
tions using experimental LiDAR data, and a preliminary analysis into the robustness of
the system against uncertainty in the wind preview information. The remainder of this
paper is organised as follows: The methodology, including system architecture, quadrotor
modelling, wind preview MPC formulation, and description of the LiDAR-based wind
preview system, are provided in Section 2. Results of simulation and analysis work with
accompanying discussion are given in Section 3. Finally, Section 4 provides concluding
remarks and highlights future work to be carried out.

2. Methods and Systems
2.1. Control Architecture

The architecture of the wind preview-based MPC is shown in Figure 1. As the LiDAR
measurements are line-of-sight (LOS), a scanning procedure is employed to reconstruct the
wind vector from its scalar measurements. This upstream wind vector is then fed into the
wind predictor block which uses the quadrotor’s position within the landing site and a
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wind propagation model to predict its incoming disturbance. This wind preview is used by
the MPC that sits in the outer loop of the aircraft’s overall control architecture and sends
attitude demands to the inner loop. This cascading of controllers and the placement of the
gust rejection control on the outer loop is for the following reasons:

• To impart modularity in the overall system and to allow the outer-loop control to be
kept off-board the aircraft. This removes any weight constraints for the gust rejection
controller and hence makes computational expensive controllers more feasible.

• To keep the inner-loop of the quadrotor unmodified and hence minimise the effect
the outer-loop controller has on the stability characteristics of the aircraft. This can be
further ensured by bounding the output attitude demands of the outer-loop controller.

• The identification of the aircraft model required for MPC design becomes easier. The
placement of the controller on the outer-loop eliminates the need to identify/model
the inner-loop dynamics of the aircraft which tend to be more non-linear. This also
adds to the modularity of the gust rejection system as the model identification required
for different UAVs becomes quicker.

quadrotor
UAV

wind prediction

wind preview
MPC

wind measuring
LiDAR

wind

attitude
control

reference

position,
attitude,

rates

attitude,
rates

demand

position

wind 
evolution

wind preview

Figure 1. Overall system architecture of the gust rejection control system for the quadrotor UAV.

2.2. Quadrotor Simulation Model

A mathematical model of the qaudrotor was developed for MPC design and simulation
in this research. The equations of motion used for this model are the standard Newton-Euler
equations, the translational component of which is given by:

~Fb =

Fx
Fy
Fz

 = m( ~̇Vb + ~ωb × ~Vb)

where ~Fb is the total force applied on the rigid body in the aircraft’s body-fixed reference
frame, m is the mass of the aircraft, Vb is its velocity and ~ωb =

[
p, q, r

]ᵀ are its rotational rates,
both in the body-fixed reference frame. The rotational motion of the aircraft is defined by:

~Mb =

 L
M
N

 = I( ~̇ωb + ~ωb × Iωb)

where Mb is total rotational moment acting on the aircraft about its body-fixed reference
frame; with its components

[
L, M, N

]ᵀ corresponding to the total pitch, roll, and yaw
moments respectively. I is the inertia matrix of the aircraft, assumed to be constant along
with the mass of the aircraft. The translational velocity of the aircraft in the earth-fixed
reference frame is obtained by the rotating the translational rates in the body-fixed reference
frame using the direction cosine matrix,

R(φ, θ, ψ) =

 cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ
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where
[
φ, θ, ψ

]
are the Euler/Tait-Bryan angles representing the orientation of the aircraft

in the earth-fixed reference frame. Here c(·) and s(·) denote the cosine and sine of (·)
respectively. Finally, the rotational rates in the earth-fixed reference frame can be obtained
through the following rotation:φ̇

θ̇
ψ̇

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

p
q
r


where t(·) denotes tan(·). The aerodynamics of the propeller and the airframe are integrated
with the above equations of motion to allow the simulation of the aircraft model. To accurately
capture the aircraft response under wind disturbances, the aerodynamics of each propeller is
considered individually. The aerodynamic outputs of each propeller are given by

T = ρA(ΩR)2CT

H = ρA(ΩR)2CH

Q = ρAΩ2R3CQ

where T, H, and Q are the propeller thrust, in-plane horizontal force, and torque respec-
tively. ρ is the air density, A is the area of the propeller disc, Ω is the rotational speed of
the propeller, R is its radius. (CT , CH , CQ) are the propeller coefficients for thrust, hori-
zontal force, and torque respectively. These coefficients are a non-linear function of the
aircraft’s airspeed, rotational speed of the propeller, and propeller blade characteristics.
The expressions for the coefficients and mappings to various incidence angles, rotational
speeds, and airspeeds are omitted here for brevity and since they are already detailed in
previous related works, Refs. [37–39]. The airframe drag for the quadrotor is considered
as follows:

~Db =

Dx
Dy
Dz


b

= −1
2

ρCD ~Vb · ~Vb

Sx
Sy
Sz


where CD is the airframe drag coefficient and

[
Sx, Sy, Sz

]ᵀ is the surface area of the air-
frame along each respective axes. The above formulation simplifies the airframe drag and
considers the aircraft as a cuboid and only accounts for form drag, ref. [40].

The Draganflyer X-Pro quadrotor, depicted in Figure 2, was used as the simulation
aircraft in this research. The mass, inertia, and aerodynamic properties of which are
provided in Table 1.

Figure 2. Draganflyer X-Pro quadrotor used for simulation, ref. [41].
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Table 1. Mass, inertia, and aerodynamic properties used to build mathematical model of the Drgan-
flyer XPro quadrotor, ref. [41]. diag(·) denotes a diagonal matrix.

Property Value

Mass (kg) 2.36
Inertia matrix (kg m2) Ib = diag(0.1676, 0.1686, 0.2974)
Surface areas [Sx, Sy, Sz] (m2)

[
0.0076 0.018 0.0195

]
Airframe drag coeff. (CD) 1.05
Propeller arm length (m) 0.45
Number of blades per propeller 2
Blade chord (m) 0.04
Blade lift-curve-slope 5.5
Blade pitch (rad) 0.3025
Blade zero-lift drag coeff. (CD0 )b 0.05
Blade drag coeff. due to angle of attack (CDα

)b 0.7

Linear Model for MPC Design

The aircraft simulation model described above contains non-linearities due to its
aerodynamics and hence needs to be linearised for MPC design. The linearisation procedure
was carried out by first trimming the aircraft at zero wind and at hover. The trimming
and linearisation process were carried out numerically in MATLAB using the findOp
and linmod commands respectively. The linearised model is obtained in a state-space
representation with the following structure:

~̇x = A~x + Bu~u + Bw~w

~y = C~x

where A is the state-matrix, Bu is the input matrix due to control input ~u, Bw is the wind
effector matrix, ~w is the three-dimensional wind vector, ~y is the output vector, and C is the
output matrix, and ~x is the state vector with the following definition:

~x =
[
x y z u v w φ θ ψ p q r

]ᵀ
where

[
x, y, z

]
is the position vector of the aircraft in the earth-fixed reference frame and[

u, v, w
]
= ~Vb, the translational velocity of the aircraft in the body-fixed reference frame. To

obtain offset-free position tracking in wind, the attitude states of the aircraft were removed
from the outputs, hence ~y is defined as:

~y =
[
x y z u v w p q r

]ᵀ
This removal of attitude states in the outputs is necessary as the quadrotor holds

position in wind with a non-zero attitude. Hence, the MPC should not try to track the
attitude states of the quadrotor. It should be noted here that the attitude states are only
removed from the tracked outputs of the MPC’s internal model and not its states. Full
state-feedback is still required for the MPC’s prediction, detailed in Section 2.3. The state
effector matrices A, Bu, and Bw were obtained from the linearisation procedure as follows:
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A =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 Xu 0 0 0 −g 0 0 0 0
0 0 Yv 0 g 0 0 0 0 0

· · · Zz 0 0 Zw 0 0 0 0 0 0
...

0 0 0 0 Lφ 0 0 Lp 0 0
0 0 0 0 0 Mθ 0 0 Mq 0
0 0 0 0 0 0 Nψ 0 0 Nr


[12×12]

BU =



...
Zu1 0 0 0

...
0 0 Lu3 0
0 Mu2 0 0
0 0 0 Lu4


[12×4]

BW =



0 0 0
0 0 0
0 0 0

Xu 0 0
0 Yv 0
0 0 Zw

...


[12×3]

where g is the acceleration due to gravity, [Xu, Yv, Zw] are the aerodynamic drag derivatives
in the respective axes, Zz is the vertical force derivative to height feedback, [Lφ, Mθ , Nψ]
are the rotational moment derivatives due to attitude, [Lp, Mq, Nr] are damping terms for
the rotational moments, and [Zu1 , Mu2 , Lu3 , Nu4 ] are the control derivatives. The above
input effector matrix, Bu, corresponds to a input vector ~u =

[
u1, u2, u3, u4

]
where u1 is the

altitude control input, u2 is the pitch angle control input, u3 is roll angle control input and
u4 is the yaw angle control input. The values of these derivatives for the linearised model
of the Draganflyer X-Pro are given in Table 2.

Table 2. Aerodynamic and control derivative values of the linear Draganflyer X-Pro model obtained
through numerical linearisation.

Aerodynamic/Control Derivative Value

Forward force due to forward airpseed—Xu (N s m−1) −0.1785
lateral force due to lateral airpseed—Yv (N s m−1) −0.1785
Vertical force due to vertical airpseed—Zw (N s m−1) −1.2495
Vertical force due to altitude—Zz (N m−1) −0.8169
Rolling moment due to roll angle—Lφ (N m rad−1) −3.6594
Pitching moment due to pitch angle—Mθ (N m rad−1) −3.6376
Yawing moment due to yaw angle—Nψ (N m rad−1) −0.0785
Rolling moment due to roll rate—Lp (N m s rad−1) −1.7815
Pitching moment due to pitch rate—Mq (N m s rad−1) −1.7709
Yawing moment due to yaw rate—Nr (N m s rad−1) −0.2868
Vertical force due to control input u1—Zu1 (N) −0.8160
Pitching moment due to control input u2—Mu2 (N m) 3.6376
Rolling moment due to control input u3—Lu3 (N m) 3.6594
Yawing moment due to control input u4—Nu4 (N m) 0.0785

Figure 3 shows the architecture of the simulation environment. The control outputs
from the MPC are then sent to the individual inner-loop proportional-integral-derivative
(PID) controller to track the respective variable. The gains for these controller were deter-
mined using Simulink’s in-built PID tuner application and are given in Table 3. The error
driven outputs of the PID controllers are U1 the thrust collective, U2 the pitch differential,
U3 the roll differential and U4 the yaw differential. These control outputs are then set to a
control allocation block that combines and translates each control input into a rotational
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speed demand for each propeller. The relation between the control output and propeller
speed depends on the location of the propeller in the body reference frame of the aircraft.
The model used here has been set for the ‘X’ configuration where the diametrically oppo-
site propellers are placed along the forward and lateral body frame axes with propeller
number 1 being placed along forward body axes and the remaining propellers following
a clockwise numbering convention. The propeller speeds are then obtained using the
following expressions:

~Ω =


Ω1
Ω2
Ω3
Ω4

 =


U1 + U2 + U3 + U4
U1 + U2 −U3 −U4
U1 −U2 −U3 + U4
U1 −U2 + U3 −U4


where Ω(i) denotes the rotational speed of the (i)th propeller. The allocation of propeller
speeds in this manner allows for the decoupling of the various control channels.

Figure 3 also depicts the use of the Kalman Filter (KF) to estimate the states of the
quadrotor for feedback into the MPC. This was required as the access to the rotational
rates from the onboard sensors was not possible for the intended aircraft for future flight
tests. Furthermore, the use of a KF also allows for the minimization of errors caused by
measurement and process noise.

DrganFly XPro
Model

Kalman Filter

Control 
Allocation

Altitude PID

Pitch PID

Roll PID

Yaw PID

Wind Preview
MPC

Wind preview Wind disturbance

ෝ𝒙 = Position, Attitude, Rates 𝒚 = Position, Attitude,
Velocity

Propeller 
speeds
𝛀

𝑼𝟐

𝑼𝟏

𝑼𝟑

𝑼𝟒

𝒖𝟐,
𝜽

𝒖𝟏, 𝒛

𝒖𝟑,
𝝓

𝒖𝟒, 𝝍
Reference
Position

and Heading

Figure 3. Simulation model architecture. MPC outputs and inputs into plant model are separated to
allow for decoupled control action.

Table 3. PID gains of the different inner-loop controller for the quadrotor simulation model.

Control Channel Proportional Gain Integral Gain Derivative Gain

Altitude 5.89 0.80 8.72
Pitch/roll 5.89 0.13 1.62

Yaw 2.44 0.08 6.56

2.3. MPC with Wind Disturbance Preview

MPC is a well-established control methodology that has found success in aerospace
applications due to its ability to handle complex and nonlinear systems and optimize
performance in real time whilst keeping the system within desired operating conditions.
The basic principle of MPC is that by repeatedly solving an open-loop optimal control
problem, closed-loop control can be applied. Following the measurement of the system
state, the control sequence that minimizes some performance measures over a finite time
horizon subject to a set of constraints is computed. The first control of the sequence is
applied and at the next sampling instant, the process is repeated. Detailed descriptions can
be found in standard reference texts [42–44].
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The general design objective of an MPC is to compute a set of future control inputs
for a system to optimize its future behaviour within a finite time horizon. This is defined
as the prediction horizon of the MPC. To obtain an estimate of the future response of the
system, MPC utilises a mathematical model of the system to be controlled. In this paper,
the model detailed in Section 2.2 is used. The future response of the system is estimated by
simulating this model forward in time in the length of the MPC’s prediction horizon. This
prediction is then optimized over the same horizon according to a specific performance
criterion and constraints, which are typically defined in terms of minimizing a cost function.
In the standard feedback-only configuration, the MPC’s control optimization takes into
account only the current system outputs to simulate forward in time, hence any future
or current disturbance acting on the system needs to be sensed through its effects on
the system outputs. This invariably adds a delay in the compensation from the MPC. If
future disturbances can be measured or estimated then the MPC’s predictive methodology
can be leveraged to account for the disturbance within its optimization scheme. This
preview driven optimization translates to preemptive control inputs to compensate for the
incoming/changing disturbance.

The formulation of a linear MPC with wind disturbance preview will now be discussed.
This formulation is built on the standard formulation of MPC for discrete linear time-
invariant systems [44], with the new addition of wind disturbance and wind preview into
the MPC. Usually, wind acts as an unknown disturbance input into the system however if
the incoming disturbance can be measured and estimated then this preview information
can be used within the prediction horizon of the MPC to determine the optimal control
inputs. For the discrete-time implementation of the MPC, we define the system as:

~x(k + 1) = Ad~x(k) + Bd~u(k) + Bw~w(k)

~y(k) = Cd~x(k)
(1)

where Ad, Bd, Cd are the discrete state-space matrices of the quadrotor system and Bw
is its wind disturbance matrix. ~x(k), ~u(k), ~w(k), and ~y(k) denote the state, input, wind
disturbance and system output vectors at the kth timestep. Denoting the difference in state,
output, and control input as follows:

∆~x(k + 1) = ~x(k + 1)−~x(k)

∆~y(k + 1) = ~y(k + 1)−~y(k)

∆~u(k) = ~u(k)− ~u(k− 1)

(2)

and then substituting Equation (1) into the right hand side of Equation (2) we get,

∆~x(k + 1) = Ad∆~x(k) + Bd∆~u(k) + Bw∆~w(k)

∆~y(k + 1) = Cd Ad∆~x(k) + CdBd∆~u(k) + CdBw∆~w(k)
(3)

Here ∆~y(k + 1) denotes the difference in predicted output of the system at the next
timestep (k + 1) formulated in terms of the current state difference ∆~x(k) and the current
control and disturbance input differences ∆~u(k) and ∆~w(k). Now defining the predicted
state of the system at the (k + j)th timestep based on the current state ~x(k) as ~x(k + j|k), the
state evolution can then be extended over the entire horizon of the MPC as:
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∆~x(k + 1 | k) = Ad∆~x(k) + Bd∆~u(k) + Bw∆~w(k)

∆~x(k + 2 | k) = Ad∆~x(k + 1) + Bd∆~u(k + 1) + Bw∆~w(k + 1)

= A2
d∆~x(k) + AdBd∆~u(k) + Bd∆~u(k + 1) + AdBw∆~w(k) + Bw∆~w(k + 1)

... (4)

∆~x(k + Np | k) = ANp

d ∆~x(k) + ANp−1
d Bd∆~u(k) + ANp−2

d Bd∆~u(k + 1)

+ ANp−1
d Bw∆~w(k) + ANp−2

d Bw∆~w(k + 1)

· · ·+ ANp−Nc

d Bd∆~u(k + Nc − 1) + ANp−Nc

d Bw∆~w(k + Nc − 1)

where Np and Nc are the prediction and control horizons respectively. Now from the
predicted states we can obtain the predicted outputs through substitution:

∆~y(k + 1 | k) = Cd Ad∆~x(k) + CdBd∆~u(k) + CdBw∆~w(k)

∆~y(k + 2 | k) = Cd A2
d∆~x(k) + Cd AdBd∆~u(k) + CdBd∆~u(k + 1)

+ Cd AdBw∆~w(k) + CdBw∆~w(k + 1)

... (5)

∆~y(k + Np | k) = Cd ANp

d ∆~x(k) + Cd ANp−1
d Bd∆~u(k) + Cd ANp−2

d Bd∆~u(k + 1)

+ Cd ANp−1
d Bw∆~w(k) + Cd ANp−2

d Bw∆~w(k + 1)

· · ·+ Cd ANp−Nc

d Bd∆~u(k + Nc − 1) + Cd ANp−Nc

d Bw∆~w(k + Nc − 1)

Hence all predicted outputs in the above equation are in terms of the current state x(k), the
future control inputs ∆~u(k + j) and future wind inputs ∆~w(k + j) where j = 0, 1, · · ·Nc − 1.
Defining vectors for the future outputs, control inputs and wind inputs:

∆Y =
[
∆~y(k + 1 | k) ∆~y(k + 2 | k) · · ·∆~y(k + Np | k)

]T

∆U =
[
∆~u(k) ∆~u(k + 2) · · ·∆~u(k + Nc − 1)

]T

∆W =
[
∆~w(k) ∆~w(k + 2) · · ·∆~w(k + Nc − 1)

]T

Hence the predicted outputs can be written in the compacted matrix form as:

∆Y = F∆~x(k) + ΦU∆U + ΦW∆W (6)

where,

F =


Cd Ad
Cd A2

d
Cd A3

d
...

Cd A
Np
d

; ΦU =


CdBd 0 0 · · · 0

Cd AdBd CdBd 0 · · · 0
Cd A2

dBd Cd AdBd CdBd · · · 0
...

Cd A
Np−1
d Bd Cd A

Np−2
d Bd Cd A

Np−3
d Bd · · · Cd A

Np−Nc
d Bd

 (7)
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ΦW =


CdBw 0 0 · · · 0

Cd AdBw CdBw 0 · · · 0
Cd A2

dBw Cd AdBw CdBw · · · 0
...

Cd A
Np−1
d Bw Cd A

Np−2
d Bw Cd A

Np−3
d Bw · · · Cd A

Np−Nc
d Bw

 (8)

This predictive model can now be used along with the wind preview and future
control inputs to optimise the future response of the system. For this optimization we
define the cost function as:

J = (Rs − ∆Y)T(Rs − ∆Y) + ∆UT R̄∆U (9)

where Rs is the vector containing the reference information and R̄ is a diagonal weighting
matrix to impart cost on high control efforts. The diagonal terms in R̄ can be modified to
tune the closed-loop performance of the system. Substituting Equations (6)–(8) into the cost
function and taking the partial derivative w.r.t ∆U gives:

∂J
∂∆U

= − 2ΦT(Rs − F∆~x(k)) + 2(ΦTΦ + R̄)∆U

+ ΦTΦd∆W + ∆WTΦdΦ
(10)

The minimum of the cost function J is obtained by equating the above equation to
zero, which gives the optimal set of control inputs ∆U as:

∆U = (ΦT
UΦU + R̄)−1(ΦT

U(Rs − F∆~x(k))− 1
2
(ΦT

UΦW∆W + ∆WTΦT
WΦU)) (11)

For the receding horizon control strategy employed in MPC, only the first input of
optimised ∆U is sent through to the quadrotor. The prediction and optimisation is then
repeated at the next timestep with the updated state of the system.

∆~u(k) =
[
1 0 0 · · · 0

]
∆U

Hence the control input into the system is then obtained as:

~u(k) = ~u(k− 1) + ∆~u(k)

Constraint Handling for Real-Time Implementation

In MPC methodology, constraints on the system are defined as linear inequalities w.r.t
to the decision variable ∆U.

M∆U ≤ γ

where M is a matrix defining how the constraints relate to ∆U and γ is a vector contain-
ing the numeric limits of the constraints. The MPC optimisation now becomes a quadratic
programming problem where the goal is to find the constrained minimum of a positive defi-
nite quadratic cost function subject to linear inequality constraints. In this paper, Hildreth’s
quadratic programming algorithm [45], is used to numerically solve the constrained optimi-
sation. The strength of Hildreth’s programming is its ability to find near-optimal solutions
during conflicting constraints. Hence, it can automatically recover form ill-conditioned con-
straint problems. This attribute is key to the safe real-time operation of MPC in flight control
systems of UAVs. Detailed implementation of the algorithm in MATLAB is provided in [44].

2.4. KF for State Estimation

Due to practical considerations with the intended test aircraft, rotational rate mea-
surements are not available for direct feedback. Hence a discrete-time linear KF was used
to estimate the missing states using the available measurements and a linear model of
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the aircraft. The same linear model and discretisation step used in MPC design is used
here. The KF follows a standard formulation, the structure of which is summarised in the
following equations:

~̂x(k|k− 1) = Ad~̂x(k− 1|k− 1) + Bd~u(k) + Bw~w(k) (12)

P(k|k− 1) = AdP(k− 1|k− 1)Ad
ᵀ + Q (13)

K(k) =
P(k|k− 1)Hᵀ

(HP(k|k− 1)Hᵀ + R)
(14)

~̂x(k|k) = ~̂x(k|k− 1) + K(k)(z(k)− H~̂x(k|k− 1)) (15)

P(k|k) = (I − K(k)H)P(k|k− 1) (16)

~̂x(k + 1|k) = ~̂x(k|k) (17)

P(k + 1|k) = P(k|k) (18)

Equations (12) and (13) represent the KF prediction at current timestep k from the
previous state estimate ~̂x(k− 1|k− 1), and previous error covariance matrix P(k− 1|k− 1).
Here ~̂x(k|k− 1) and P(k|k− 1) represent the a priori estimates for the state vector and error
covariance matrix at the current timestep and Q is the process noise covariance matrix.
Equation (14) represents the calculation of the Kalman gain K(k), for the current timestep
using the a priori error covariance matrix estimate, the output matrix of KF model H, and
the sensor noise covariance R. Equations (15) and (16) represent the update step of the
KF algorithm which yields the state estimate and error covariance matrix for the current
timestep, using the a priori estimates and current measurement vector, z(k). This state
estimate is then sent to the MPC for its control calculation. Finally, Equations (17) and (18)
represent the projection step of the KF algorithm where the current estimates are projected
into the next timestep for the subsequent calculations. Here, ~̂x(k + 1|k) and P(k + 1|k) are
known as the a posteriori state estimate and error covariance matrix respectively. As the
rotational rates are not directly measured, the measurement vector takes the form:

~z =
[
x y z u v w φ θ ψ

]ᵀ
The KF was then configured to estimate the rotational rates using the above measure-

ments by setting its model output matrix, H, to disregard the rotational rates. This is possible
as the system model described by matrices Ad, Bd, Bw and H is still observable. The covariance
matrices for process noise and sensor noise were fixed at 0.1 and 0.3 respectively in this work.
The sensor noise covariance was obtained by using historical data of the quadrotor’s sensor
measurements while the process noise covariance was obtained heuristically in simulation
by looking at the estimation accuracy of the unmeasured states for different process noise
covariance values while keeping the sensor noise covariance fixed.

2.5. LiDAR for Wind Preview

To measure the incoming wind disturbance an atmospheric wind LiDAR will be used.
These LiDAR s use the principle of Doppler effect to estimate the speed of air particles
by measuring the Doppler shift in frequency of the back-scattered laser. The LiDAR unit
investigated in this research is a prototype version of a miniaturised continuous wave (CW)
coherent LiDAR system that utilises the infra-red band for measurement. The wind-speed
measurement range of the unit exceeds the flight-envelope of the test vehicle and most
commercial quadrotor UAVs. The unit is a class 3 b laser that weighs less than 5 kg and its
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approximate physical dimensions are 35 cm × 25 cm × 12 cm. Detailed specification of this
LiDAR unit is omitted here due to commercial sensitivity.

As the LiDAR unit measures LOS wind speed, a scanning procedure needs to be
used along side its use for wind vector reconstruction. A mechanical mount was devised
to horizontally scan the laser beam to reconstruct the horizontal wind vector. Once the
upstream wind vector is reconstructed a wind propagation model is used to predict the
downstream wind disturbance and hence provide the wind preview. Figure 4 depicts
the mechanical mount used for the LiDAR scan procedure and illustrates the system
architecture of the proposed MPC based gust rejection control system including the various
system components used for wind preview generation. Detailed explanation of the various
system nodes, methods for wind reconstruction, wind prediction, and their experimental
verification has been conducted in previous work [36]. The wind data gathered from these
experiments has been used in this paper to allow for more representative simulations.

Quadrotor with 
onboard attitude 

controller and 
integrated camera

DJI smart RC

DJI sdk flight 
control App

ArUco 
position node

Sensor feedback 
and camera feed

Attitude and altitude 
commands

Ground Station Computer

LiDAR

Upstream 
Anemometer

Wind 
Predictor

MPC

Control 
commands

Wind preview

Position, 
Velocity, 
Orientation

Servos for pan and tilt

LiDAR Mount

Mini-LiDAR

Aircraft position

Figure 4. LiDAR on its scanning mount (left) and the proposed Quadrotor flight-test platform
architecture (right).

3. Results and Discussion

This section looks at the results of the simulations conducted using the aircraft model
described in Section 2.2 and the MPC designed using the same. A sample time of 0.1 s
was used for the discretisation and the MPC’s weighting matrix used was kept as identity
for all simulations. Section 3.1 will first look at simulations of the linearised model of the
quadrotor with wind-preview-based MPC control, highlighting the performance improve-
ments over an MPC with no disturbance preview. Section 3.2 shows the analysis results of
varying preview length in the MPC. Remaining subsections utilise the non-linear model
of the quadrotor with the addition of measurement noise, non-linear aerodynamics and
experimental wind data; thus allowing for more representative results. Section 3.3 looks at
the estimation results of the KF with added noise and the complete system performance,
MPC + KF, in the presence of gusts. Section 3.3 looks at simulations using the experimental
wind data gathered from the LiDAR as the wind preview for the MPC. Finally, Section 3.5
finishes with a analysis into the robustness of the wind-preview MPC based on system
performance in the presence of gusts with uncertainty. MPC’s control and prediction
horizons were kept fixed at 1 s in all simulations except for those in Section 3.2 where the
MPC’s horizons were changed according to the wind preview length considered.

3.1. Linear Model Simulations–MPC with Wind Preview

Figure 5 shows the linear system response to a forward wind disturbance with and
without wind-preview compensation in the MPC. The applied wind disturbance is a
step input of 10 ms−1 at time t = 2 s. A significant reduction in the quadrotor’s position
deviation is observed with wind preview. There are also significant reductions in peak pitch
rate, pitch angle, and control input magnitude with wind preview. These improvements are
accredited to the MPC’s preemptive control action in pitch before the arrival of the gust as



Sensors 2023, 23, 3711 14 of 23

seen in Figure 5b. This preemptive pitch input start as soon as the gust enters the prediction
horizon of the MPC, the window length of which was set to 1 s for this simulation.
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(a) forward position response
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(b) pitch angle response
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(d) MPC pitch demand

Figure 5. Linear aircraft response with and without wind preview control to a step input in forward
wind of 10 ms−1 at time t = 2 s.

Figure 6 plots the MPC’s internal prediction of the aircraft’s forward position at time
t = 1.5 s for the same gust starting at t = 2 s compared against the actual response in aircraft
position for the same time range. From Figure 6 we can see that with the addition of the
wind disturbance matrix along with wind preview has allowed the MPC to better predict
the aircraft’s trajectory in wind. Hence it is clear that the MPC’s optimisation scheme has
deliberately moved the aircraft forward preemptively to minimise its position deviation
over the prediction horizon defined. It should also be noted that this optimization accounts
for the system lag in reaching the desired pitch attitude due to the model based prediction
in the MPC. The following subsection will look into how varying the window length of the
MPC’s prediction horizon will effect the system response.

3.2. Linear Simulations–Prediction Horizon Length

Figure 7 plots the linear system response to a forward step input in wind (at time
t = 10 s) for increasing prediction horizon lengths in the MPC, from Tp = 1 s to Tp = 10 s.
It is assumed here that the length of the wind preview increases alongside the MPC’s
prediction horizon. From the responses we can see that the most noticeable difference with
increasing prediction length is in the position response of the aircraft, albeit the differences
are in the cm scale. We can observe that increasing the horizon beyond 1 s also commences
an initial backward motion of the aircraft before its forward motion to counter the backward
push of the incoming wind. This two-stage preemptive motion of the aircraft results in a
lower peak magnitude in position deviation to either side of the position set-point and thus
results in a lower variance of the position response of the aircraft. This multi directional
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preemptive motion of the aircraft is a resultant of the MPC optimisation scheme which aims
to minimise the position error of the aircraft from its set-point over the defined prediction
horizon. Hence, by first moving the aircraft backwards and then forwards against the
headwind, the system can build up momentum to counter the sudden push from the
wind while still minimising its position deviation throughout the length of the horizon.
The magnitude of this initial backward motion increases with increasing horizon length
until Tp = 5 s. Increasing the preview length further results in a three-stage preemptive
movement of the aircraft where an initial forward movement is followed by a backward
motion and then finishing with a forward motion before the wind impacts the aircraft.
Doubling the preview length to Tp = 10 s showed no noticeable difference to the system
response when compared to Tp = 5 s.
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Figure 6. MPC forward position prediction vs actual response with a step input in forward wind of
10 ms−1 at time t = 2 s.
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Figure 7. Linear aircraft response with varying wind preview lengths to a step input in forward wind
of 10 ms−1 at time t = 10 s.
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Table 4 lists the Root-mean-square (rms) values of the aircraft states with and without
preview as well as with varying lengths of wind preview in the MPC. Correlating the
forward position response of the aircraft in Figure 7 with Table 4, it is clear that the multi-
stage preemptive motion of the aircraft for increasing preview lengths has in fact reduced
the rms value of the forward position error.

Table 4. Root-mean-square (rms) values of position, MPC pitch demand, pitch response, and pitch
rate for different wind preview lengths.

Wind Preview
Length (s) xrms (cm) (U2)rms (deg) θrms (deg) qrms (deg s−1)

No preview 14.57 10.58 8.71 5.9
Tp = 1.0 1.25 (−91%) 8.66 (−18%) 8.44 (−3%) 2.51 (−57%)
Tp = 1.5 1.04 (−16%) 8.66 (0%) 8.44 (0%) 2.51 (0%)
Tp = 1.7 0.76 (−28%) 8.66 (0%) 8.45 (0%) 2.52 (0%)
Tp = 1.8 0.70 (−8%) 8.65 (0%) 8.45 (0%) 2.51 (0%)
Tp = 2.0 0.68 (−2%) 8.65 (0%) 8.45 (0%) 2.49 (−1%)
Tp = 5.0 0.70 (+2%) 8.65 (0%) 8.45 (0%) 2.47 (−1%)
Tp = 10 0.70 (0%) 8.65 (0%) 8.45 (0%) 2.47 (0%)

3.3. Non-Linear Model Simulations

All results within this subsection were obtained from simulations of the non-linear
aircraft model. To reduce the influence of measurement noise in the system performance
with MPC, a KF was used to estimate the aircraft states from the noisy measurements.
Figure 8 shows the KF estimation against the true states during a step demand in forward
position. White noise with a covariance of 0.3 was added to all measured outputs. Due to
practical constraints of the intended test aircraft, the rotational rates of the aircraft were not
available for measurement. Hence, the KF was configured to estimate the rotation rates
needed by the MPC. Figure 8d shows the estimation of the unmeasured rotational rate
during the step input.

Figure 9 plots the system response when the aircraft is subjected to a forward gust
and the KF estimates are used for MPC feedback. To better understand the benefits of
the preview based control, a more realistic gust profile was used in this simulation, see
Figure 9a. This gust profile consists of more representative rates in the windspeed variation.
The improvement in position holding performance with wind preview is subdued in the
non-linear simulation compared to the linear simulation but still significant. The addition of
measurement noise and the non-linear aerodynamics in these simulations has contributed
to the reduction in performance improvement observed with the linear MPC. However, a
66% improvement in position holding performance is still observed with the addition of
wind preview; The aircraft is able to stay within ±20 cm with wind preview compared to
±60 cm without wind preview. The peaks in pitch rate, pitch angle and control input are also
slightly reduced with wind preview, however their reductions are not as large as in the linear
simulations. This reduction in improvement is mainly due to the more gradual profile of the
gust unlike the step disturbance used in the linear case. This highlights that preview based
control becomes more beneficial as the disturbance becomes more abrupt or sudden.
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Figure 8. KF estimates (KF not in-the-loop) compared with measurements and true state during step
response in position of non-linear aircraft model.

3.4. Non-Linear Simulations–MPC with LiDAR Data

In the simulations conducted here, the experimental data set gathered from the LiDAR
tests conducted in previous work [36] was used. Here, the prediction estimates obtained
from the upstream LiDAR measurements were used as the preview input into the MPC
while the actual downstream measurement of the corresponding data set was used as the
wind distance input into the quadrotor model. This in turn adds the prediction errors and
measurement noise of the LiDAR to the MPC, thus allowing for a more representative
simulation. Figure 10 shows the histograms of the aircraft’s response for the non-linear
simulation. The performance improvements in this scenario have diminished when com-
pared with the ideal linear simulations but are still significant. Much like the previous
Subsection’s simulations, the position hold improvement is the most significant while the
improvements in rotational rates, peak attitude and control signals have been subdued.
While these simulations indicate that the wind-preview MPC is robust towards real word
wind prediction data, the following Subsection will quantify the robustness further.
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Figure 9. Non-linear aircraft simulation response with and without wind preview control to a
Mexican-hat shaped gust profile. One second wind preview.
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Figure 10. Histograms with and without wind preview control when aircraft is subjected to experi-
mental wind data. Vertical axis for all plots is probability density.

3.5. Robustness Analysis

System robustness was tested by adding increasing amount of structured uncertainty
into the wind preview information used by the MPC in non-linear model simulations. The
uncertainty is added into two parameters of the preview information, the magnitude of
the incoming gust, ∆g(%), and its timing, ∆t (s). Figure 11 shows how each of the parame-
terised uncertainties is applied on wind preview information. Here system robustness is
quantitatively defined as the acceptable margins in either gust strength or timing before
the system performance becomes similar to that without wind preview. i.e. the addition
of wind preview even with erroneous magnitude and timing has not deteriorated the per-
formance to worse than without the preview. Table 5 shows the results of the uncertainty
analysis through the rms values of key system outputs with increasing uncertainty either
in the strength of the gust or in its timing. From the analysis we can see that the system can
handle up to approx. 120% uncertainty in the magnitude of the preview or approx. 1.75 s
uncertainty in its timing before the system performance becomes lower than without wind
preview. These results add to the practical feasibility of the wind-preview based MPC. The
accuracy of the experimental data gathered in [36] fall well within the margins calculated
in the simulations here.
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Figure 11. Representations of gust magnitude and time uncertainty used in robustness analysis.

Table 5. rms Values of key system outputs for simulations with added uncertainty in the wind preview
information used by MPC.Here Baseline refers to control configuration without wind preview.

Uncertainty xrms (cm) (U2)rms (deg) θrms (deg) qrms (deg s−1)

Baseline 14.89 4.20 4.26 2.99
∆t = 0.5 s 4.84 3.98 4.06 2.84
∆t = 1.0 s 9.56 4.09 4.12 3.05
∆t = 1.5 s 13.94 4.18 4.26 3.17

∆t = 1.75 s 15.93 4.22 4.31 3.19
∆t = 2.0 s 17.68 4.25 4.34 3.18

∆g = +50% 5.73 3.75 3.83 2.44
∆g = +100% 12.55 3.63 3.68 2.31
∆g = +120% 15.30 3.59 3.62 2.26
∆g = +150% 19.35 3.52 3.53 2.21

4. Summary and Conclusions

In this paper wind preview-based Model Predictive Control is proposed to increase the
gust resilience of multi-rotor UAVs. A linear MPC with disturbance preview capability was
formulated using a mathematical model of a quadrotor. Remote wind sensing instruments
such as atmospheric LiDAR can be used to predict the wind profile needed for the wind
preview-based MPC. The preview information was used within the MPC to provide optimal
disturbance rejection over its prediction horizon. The proposed control architecture places
the wind-preview-based MPC off-board the UAV and in the outer-loop attitude channel
to eliminate weight and hence computational constraints of the MPC and to minimise the
impact on aircraft stability. Simulations were conducted using experimental LiDAR data
to assess the performance benefits with the addition of wind preview. Analyses on wind
preview length and system robustness were also conducted through simulation.

It was shown that wind preview-based MPC can significantly reduce the position
deviation of the UAV under gust and thus improve its tracking performance. Reductions
were also observed in translational, rotational rates, and maximum aircraft attitude during
the disturbance compensation. This allows for a less aggressive approach to increased
gust rejection. This key attribute of wind-preview-based MPC control differentiates it from
conventional feedback-based methods where delays in measurement and actuation have
to be dealt with larger control signals to achieve the same performance. Gust simulations
with varying prediction horizon lengths demonstrate the preemptive nature of the wind-
preview-based MPC. System robustness was tested in simulation by adding structured
uncertainty into the preview information used by the MPC; a 120% or 1.75-s margin was
possible in either the preview’s magnitude or timing before system performance dropped
below that without wind preview.

Although wind-preview MPC provides improved disturbance rejection with lower
magnitude control signals, aircraft attitudes, and rates, it requires additional instrumen-
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tation and increased computation. Hence it should be used for applications where gust
resilience is safety critical. This attribute could prove advantageous for UAVs in outdoor
‘drone-delivery’ applications where aircraft and hence payload orientation are critical for
stability and operational constraints. Moreover, electric VTOL aircraft could also leverage
this less aggressive control technique to improve passenger comfort during takeoff and
landing from gusty environments such as the rooftops of high-rise buildings. Additionally,
wind preview-based flight control of UAVs can also reduce the time required to com-
plete tasks where precise position control is required; such as the docking of the aircraft
with its charging station. This is again possible due to the preemptive control nature of
preview-based systems that yield reduced settling time in the presence of disturbances.

Future Work

The next steps for this research include the experimental validation of the proposed
wind-preview-based MPC. System identification tests will be carried out beforehand to
obtain the model of the test aircraft that will be used for MPC implementation. The flight
test platform and intended aircraft will be the ones used in previous work [36]. Integration
of the wind-preview-based MPC into a trajectory planner will also be carried out. This
will potentially aid the obstacle avoidance of autonomous UAVs during close proximity
inspections in gusty environments. The comparison of preview-based MPC control against
other pure feedback-based disturbance attenuation methods is another avenue for future
work that will be explored.
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