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ABSTRACT

Context. The identification of proton core, proton beam, and alpha particles in solar wind ion measurements is usually performed by
applying specific fitting procedures to the particle energy spectra. In many cases, this turns out to be a challenging task due to the
overlapping of the curves.
Aims. We propose an alternative approach based on the statistical technique of clustering, a standard tool in many data-driven and
machine learning applications.
Methods. We developed a procedure that adapts clustering to the analysis of solar wind distribution functions. We first tested the
method on a synthetic data set and then applied it to a time series of solar wind data.
Results. The moments obtained for the different particle populations are in good agreement with the official data set and with the
statistical studies available in the literature.
Conclusions. Our method is shown to be a very promising technique that can be combined with the traditional fitting algorithms in
working out difficult cases that involve the identification of particle species in solar wind measurements.
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1. Introduction

One of the primary goals of space physics missions is the deter-
mination of the particle velocity distribution function, f (v, t)
(VDF, hereafter). This represents the particle number density in
the 3D velocity space at a time, t. The moments of the VDF
define the macroscopic quantities characterizing the plasma,
such as density, velocity, and temperature. The form of the VDF
provides essential information about the kinetic processes tak-
ing place in the plasma. Turbulent heating, dissipative processes,
wave-particle interactions, leave their signature on the VDF,
which departs from the equilibrium Maxwellian shape, as seen
in many experimental (Marsch 2006; Tu & Marsch 2002) and
numerical works (Hellinger & Trávnícek 2011; Valentini et al.
2014, 2016). In order to determine the VDF, plasma particles
must be sampled and classified according to their velocity and
direction of arrival. This can be done through specific detectors,
such as electrostatic analyzers (Carlson & McFadden 1998) and
Faraday cups (Ogilvie et al. 1995), which are fundamental com-
ponents of the payload of many space missions. These sensors,

however, can only measure the particle flux as a function of the
energy per charge ratio of the particles. This means that an ambi-
guity is present when different ion species are involved, as in
the case of the solar wind, composed for the ∼95% of protons
and for ∼4%, of alpha particles, plus minor ions. Alpha particle
velocity is similar to proton velocity, but their mass-per-charge
ratio is twice that of protons. Consequently, when a 3D VDF is
integrated over the angles and represented as a function of the
velocity, at least two peaks can usually be observed in the 1D
spectrum: a first peak which corresponds to protons and a second
peak at about

√
2 the protons’ bulk velocity, which is related to

the alpha particles. This is due to the fact that, when lacking more
specific information, we must plot the VDF as if the particles
are all protons and the mass-per-charge factor of the alpha parti-
cles is included in the alpha velocity. The displacement between
the two peaks ranges from ∼100 km s−1 to ∼300 km s−1, depend-
ing on the velocity of the wind. If the thermal speed of the two
species is so low that no significant overlapping between the
curves is present, the two distributions can be separated with-
out any crucial assumptions. More often, there is a variable
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superposition of the spectra and a fitting procedure is needed to
extrapolate the VDFs, as discussed, for instance, in Marsch et al.
(1982b) and Robbins et al. (1970). Furthermore, in many solar
wind spectra, a secondary proton population, namely, the pro-
ton beam, is observed. Several authors have extensively studied
the properties of beams in the solar wind in the inner helio-
sphere (Feldman et al. 1973; Marsch et al. 1982b; Livi & Marsch
1987; Steinberg et al. 1996; Tu et al. 2004; Kasper et al. 2006;
Klein et al. 2018; Alterman et al. 2018; Durovcová et al. 2019a,b)
and in the outer heliosphere (Goldstein et al. 2010; Neugebauer
et al. 1996; Neugebauer & Goldstein 2013). The beam drifts with
respect to the proton core along the magnetic field direction, at
a velocity of the order of the local Alfvén speed (Tu et al. 2004;
Alterman et al. 2018). Due to this small separation from the core,
the identification of the beam is usually a difficult task. Basi-
cally, it is identified by searching for secondary peak in the 1D
cuts of the VDF along the magnetic field and then the param-
eters of the distribution are obtained applying a Maxwellian
fit. Often, constraints are set in order to find a stable solution
(Tu et al. 2004; Alterman et al. 2018; Wilson et al. 2018). In cases
of strong overlapping between core, beam, and alpha particles,
the fitting procedure is not possible and approximate estimates
must be obtained, at least for protons and alphas, usually by
splitting the VDF at some energy value. More recently, machine
learning techniques are becoming more and more popular in
space physics, and neural networks trained on 2D images of
VDFs integrated over the solid angles have been applied to the
problem of particle separation with good results (Vech et al.
2021). Here, we present a possible alternative method directly
applied to the 3D VDFs measured by an electrostatic analyzer,
which could be used to separate a proton core, proton beam,
and alpha particles in solar wind measurements. This innova-
tive method is based on the statistical technique of clustering.
We introduce the method in Sect. 2. In Sect. 3, we illustrate its
application to a simulated measurement of solar wind ions. In
Sect. 4, we discuss the performance of the algorithm. Finally, in
Sect. 5, we present the results of the application of our method
to real data.

2. Methods: Cluster analysis and Gaussian mixture
models

Cluster analysis, or clustering (Aggarwal & Reddy 2014; Barber
2012), is a task that involves grouping together observations that
share some property. Data in the same cluster are more similar
to each other than they are to data belonging to another clus-
ter. Clustering is a central technique in unsupervised learning
and big data, and it is widely used in many fields such as pat-
tern recognition, data summarization, information retrieval, and
image processing. It differs from classification, where observa-
tions are assigned to a group through an algorithm trained on
predefined categories (supervised learning). There are plenty
of clustering algorithms conceived for various situations and
data types and, in general, it is optimal to choose the most
appropriate for the particular application at hand, since differ-
ent clustering algorithms are likely to provide different results
based on the same data. In our case, the most convenient algo-
rithm falls under the category of model-based clustering, where
it is assumed that the data are described by a mixture of probabil-
ity distributions. Each cluster can be represented mathematically
by a parametric probability distribution and the clustering prob-
lem then boils down to a parameter estimation problem. Among
model-based clustering methods, the Gaussian mixture model

(GMM) is perhaps the most commonly used. In a GMM, given
a set of N observations, X = {x1, . . . , xN}, where xi is a vec-
tor in a d-dimensional space, the probability of an observation,
xi, is assumed to be the outcome of a linear combination of K
Gaussian probability distributions, namely:

P(xi|wk, µk,Σk) =
K∑

k=1

wkN(xi|µk,Σk). (1)

In this equation, K represents the number of distributions
involved, wk is the mixing proportion of the kth distribution, with
0 < wk < 1 and

∑K
k=1 wk = 1, and N(xi|µk,Σk) is the multivariate

Gaussian distribution, namely:

N(xi|µk,Σk) =
1√

(2π)d |Σk |
exp
[
−

1
2

(xi − µk)TΣ−1
k (xi − µk)

]
, (2)

where µk is the mean vector, Σk the covariance matrix, and
k = (1, . . . ,K). In the following, we use the following short
notations: θk = (wk, µk, Σk) to indicate the parameters of the kth
Gaussian and Θ = {θ1, . . . , θK} to refer to all the parameters of
the model. In order to learn a GMM clustering model, given the
dataset X = {xi} drawn from a mixture of K distributions, we
have to estimate the parameters Θ that define the clusters. This
is done by maximizing the log-likelihood function of the model.
If the N observations are generated independently, the probabil-
ity of observing the entire set X is just the product of the single
probabilities, and the equation to be solved is:

Θ∗ = arg max
Θ

(log L(Θ|X)), (3)

where

L(Θ|X) =
N∏

i=1

K∑
k=1

wkN(xi|µk,Σk) (4)

is the likelihood of the model explaining the observed data.
Equation (3) can be solved analytically for a single Gaussian but
not for a mixture. In this case, in fact, we do not know which
distribution generated the various points, and, consequently, the
probabilities of the data points cannot be computed. In this sense,
the likelihood L(Θ|X) is said to be incomplete. The missing
data (or latent variables) are variables that clarify whether a
given point comes from the kth Gaussian or not. The problem
of maximizing the likelihood function in case of missing data
is usually addressed by the expectation maximization (EM for
short) algorithm (Dempster et al. 1977), which is essentially an
optimization procedure that iteratively maximizes the likelihood
function, starting from an initial guess of the parameters, Θ. In a
nutshell, the model is trained by repeating two steps until some
convergence criterion is met: the expectation step, in which a
membership in each distribution is assigned to the data starting
from the current estimate of the parameters; and the maxi-
mization step, where the likelihood function is maximized with
respect to the parameters, Θ. The EM algorithm and its implica-
tions are discussed in many specialized books and papers (see
e.g. McLachlan & Peel 2000; McLachlan & Krishnan 2008).
Therefore, we do not describe the algorithm in this work, lim-
iting the details to a consideration of the EM results. Besides the
parametersΘ that identify the clusters, results of the EM are also
the so-called “responsibilities” of the data points. The responsi-
bilities, γi,k, denote the membership value of a point, xi, in the
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specific cluster k. They range from 0 to 1 and for each observa-
tion xi,

∑
k γi,k = 1. In this way, a “soft clustering” is allowed,

where each data point has a certain probability of belonging
to each cluster. The input data to the GMM model are simply
the observed 3D velocities, and the EM algorithm explores the
domain to make sense of the arrangement of the data points.
There is no need to specify the magnetic field orientation or the
expected location for beam and alphas to find the families. The
results of the algorithm are the parameters Θ of the model, but
most importantly, for each data point, we obtain the membership
in each group. By multiplying these probabilities for the value of
the distribution function in that velocity bin, we have three sep-
arate 3D distribution functions for the proton core, proton beam,
and alpha particles.

3. Application of the GMM method to solar wind ion
measurements: Testing on synthetic data

We designed an automated procedure where the distribution
functions are fetched, for each family the procedure isolates
the VDF and derives the moments: the zeroth order moment,
namely, the density, the first-order moment, the velocity vector,
and the second-order moment, namely the pressure tensor. For
the clustering step, we used the Python package sklearn.mixture
included in the scikit-learn library (Pedregosa et al. 2011), ver-
sion 1.0.2. In order to evaluate the performance of our algorithm
we carried out several tests on synthetic data. The results depend
on a number of physical and instrumental parameters, such as
the range of velocities and densities involved and thermal veloc-
ities of the families, as well as the energy and angular resolution
of the sensor. All these factors determine the fine resolution of
the VDF and the overlapping of the curves, affecting the capa-
bility of separating the families. Here, we present a test where
we refer to an hypothetical instrument inspired by the sensor
PAS on board Solar Orbiter (Müller et al. 2013). The Proton-
Alpha Sensor, one of the three sensors of the solar wind analyzer
SWA (Owen et al. 2020), collects the solar wind ions with an
energy per charge ratio between 200 eV and 20 keV divided
in 92 channels that are exponentially distributed. The angular
resolution is 5◦ achieved by nine channels in elevation and 11
channels in azimuth and the time cadence, in normal mode,
is 4 s, although each VDF is acquired in about 1 s. With the
help of a simulated PAS detector (De Marco et al. 2016, 2020)
given the values of density, bulk velocity vector, parallel, and
perpendicular temperatures for core, beam, and alpha particles,
we generated 2000 VDFs composed of the three families, with
noise added. Our algorithm was then applied to each VDF, the
moments were computed and compared to those in input. The
initial moments of each populations were selected randomly
in the ranges indicated in Table 1. Velocities are expressed in
the spacecraft reference frame. The randomly generated sets of
moments, while they do not cover all the possible solar wind con-
ditions, represent a sufficient number of cases to investigate the
behaviour of the algorithm and evidence some characteristics of
its performance.

Figure 1 displays the errors in the density estimation for core
and beam (top panel) and alphas (bottom panel). Errors are con-
sidered as a signed quantity in order to highlight overestimation
and underestimation. The top panel shows the errors for core
and beam densities as a function of the input velocity separation
between the two families, which is representative of the overlap-
ping. Clearly, the error is larger in case of smaller separations
and the errors in core and beam are anti-correlated. This is not

Table 1. Values of density, velocity, parallel and perpendicular temper-
ature used in the simulations.

Core Beam Alpha particles

N [5, 24] cm−3 [0.2 · Nc, 0.6 · Nc] [0.03 · Np, 0.07 · Np]
V x [−550,−350] km s−1 [V xc − 100,V xc] [V xc − 50,V xc]
Vy [10, 40] km s−1 [Vyc,Vyc + 100] [Vyc,Vyc + 30]
Vz [−40, 40] km s−1 [−50, 50] km s−1 [−50, 50] km s−1

T∥ [8, 16] eV [T∥c, 1.5 · T∥c] [4 · T∥c, 8.5 · T∥c]
T⊥ [T∥c, 1.6 · T∥c] [T∥b, 1.5 · T∥b] [0.5 · T∥a,T∥a]

Notes. The subscripts c, b, a, and p stand for core, beam, alphas, and
protons (i.e., core and beam), respectively. Velocities are expressed in
the spacecraft reference frame.

Fig. 1. Difference between densities computed after the separation and
ground truth for core and beam for 2000 synthetic VDFs as a function
of the absolute value of input separation between core and beam (top).
Error in density for alpha particles as a function of the absolute value
of the velocity separation between proton beam and alpha particles
(bottom).

surprising, given that core and beam share many velocity bins,
therefore data points that are erroneously attributed to the core
are taken from the beam and vice versa. Moreover the core is
always overestimated and the beam is always underestimated. In
contrast to what happens for protons, the error in the alpha den-
sity, reported in the bottom part of Fig. 1 as a function of the
input velocity distance between proton beam and alphas, does
not vary with the separation, since there is a minor superposition
of the species. The few large errors here are due to unresolved
beams, whose data points are assigned to alphas. If we con-
sider the velocity separation between the alphas and beam as it
seen by the sensor and ingested to the algorithm, namely, with
alpha velocities including the factor

√
2, these errors are found

at small separations between the alphas and beam (not shown
here). This effect is due to the non-linearity of the transforma-
tion of the velocity separation. We return on the issue of the
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Fig. 2. Distribution of the relative density error in core and beam for
2000 synthetic VDFs.

Fig. 3. Error in the bulk velocity of core and beam for 2000 synthetic
VDFs as a function of the separation between core and beam (top). Error
in the bulk velocity of alpha particles as a function of the velocity sep-
aration between proton beam and alphas (bottom).

missed beams in the following section. An insight in the errors
in core and beam densities is given in Fig. 2, which displays the
distribution of the relative errors. We can see that in roughly
12% of cases, the relative error in core density is greater than
20%, while relative errors in beams show a slower decreasing
trend. Figure 3 illustrates the error on the estimate of the bulk
velocity, V, for core and beam (top panel) and for alphas (bottom
panel). While alpha particles velocity is almost equally overesti-
mated and underestimated, the speeds of the core and beam are
slightly overestimated, most of the time. There are a few large
errors in beam velocity in cases of small core-beam separation.
These are due to a misclassification of the beams. In fact, if
we plot the error in V for the beam as a function of the out-
put density ratio, Nbeam/Ncore (Fig. 4), we can see that the large
errors refer to really tiny beams, with a density lower than 3%
of the core, while the minimum input ratio, Nbeam/Ncore, is 0.2.
This means that sometimes beams with small separation from
the core are not identified and a beam is instead located in the

Fig. 4. Error in the bulk velocity for the beam as a function of the output
ratio between beam and core density.

Fig. 5. Error in temperature anisotropy for core and beam for 2000 syn-
thetic VDFs as a function of the separation between core and beam
(top). Error in temperature anisotropy for alpha particles as a function
of the velocity separation between proton beam and alphas (bottom).

region of velocities (and densities) proper of the alpha parti-
cles. Finally, Fig. 5 displays the difference in the temperature
anisotropy, T⊥/T∥, between the output and input. For the core
and beam, the anisotropy is recovered to a very good degree,
while the alphas are slightly more anisotropic. In both cases,
larger errors are concentrated in VDFs with a small displacement
between particle families or they are due to a misclassifica-
tion of beams, which is reflected in the poor definition of alpha
particles.

4. Measuring the algorithm performance

In order to trust the clustering results, we need a method for
assessing the performance of the algorithm. A closely related
problem involves deciding on the “true” number of clusters in a
data set. In GMM, as in other clustering algorithms, the num-
ber of clusters to be found is an input parameter. Setting aside
the possibility to visually inspect the outcome in each step of
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Table 2. Confusion matrix showing the classification of 8000 test VDFs.

Actual
# of families 3 2 (p. core + p. beam) 2 (p. core + alpha) 1

3 92.25% 0.1% 9.5% 0%
2 (p. core + p. beam) 0% 96.85% 0% 0%

2 (p. core + alpha) 7.75% 0% 90.5% 0%

Pr
ed

ic
te

d

1 0% 3.05% 0% 100%

a pipeline, we need an automated method that can assure us
we have identified meaningful subgroups. The selection of the
optimal number of clusters and the evaluation of the cluster-
ing results are widely investigated topics (see e.g., Halkidi et al.
2004, and reference therein). The usual approach is to try dif-
ferent cluster numbers and select the solution which optimizes
specific validity scores. However, as pointed out in many papers
(Smyth 1996; Vargha 2016; Wang & Xu 2019, among others),
the choice of a suitable score is not obvious. In the absence
of a ground truth, validity scores are often based on concepts
such as compactness and separation between clusters, or they
favour schemes where the data points exhibit a high degree of
membership in one cluster. Both these objectives are not neces-
sarily the best options for our purposes. Moreover, scores are
often computationally expensive, which means their adoption
is not recommended for a pipeline where we need to evaluate
thousands of VDFs. Indeed, we calculated a number of common
indexes, in particular the Akaike Information Criterion (Akaike
1974), the Bayesian Information Criterion (Wit et al. 2012), the
silhouette score (Rousseeuw 1987), the Calinski-Harabasz index
(Caliński & Harabasz 1974), Xie-Beni index (Xie & Beni 1991),
the Fukuyama-Sugeno index (Fukuyama & Sugeno 1989), and
the partition coefficient (Bezdek 1973), on a set of simulated
VDFs made of different number of particle families. They can
be helpful in identifying definitely wrong solutions, but none of
these indicators guarantee the identification of the correct num-
ber of clusters. Therefore, in order to check that we are obtaining
plausible results, we follow another path, taking advantage of
what we already know about the physical situation from pre-
vious studies. Our strategy is to set the number of clusters to
be identified equal to three. This means that the algorithm will
almost certainly find three groups, but some of the solutions can
be discarded if we rely on physical considerations. Primarily, we
set a minimum distance between the clusters in order to accept
them as a good solution. In Alfvénic wind, the particular type of
wind considered in this paper, we can choose the Alfvén speed.
Another suitable limit can be imposed on the distance between
core and alpha particles. Other anomalies may occur, such as
clusters with an irrelevant number of data points or clusters with
marginal membership. These solutions suggest that, while the
algorithm did cluster the data, there is no clear indication of
three “robust” clusters. If one or more of these situations occur,
an error code is issued clarifying the situation, the solutions is
rejected and the test is repeated with two clusters and so on.
The requirement of having up to three clusters could be limit-
ing in some cases. However, it does catch on to the common
scenario in solar wind and, along with our procedure for discard-
ing poor solutions, it can be easily handled in a data processing
pipeline. We performed a test on synthetic VDFs to see whether
the VDFs are correctly classified according to the right number
of sub-populations. We simulated 8000 test VDFs, as outlined
in Sect. 3 according to the parameters contained in Table 1.
Overall, 2000 are composed of proton core, proton beam, and

Fig. 6. Distribution of the VDFs with unresolved proton beams as a
function of the input distance between core and beam.

alpha particles, 2000 are composed of core and alphas, 2000 are
composed of proton core and proton beam, and 2000 are just
one-family VDFs. Table 2 shows the so called confusion matrix
obtained in the test. The confusion matrix summarizes the errors
of the model in predicting classes. The entries are the number
of VDFs made up of the number of particle families reported in
the corresponding column, which are recognized as being com-
posed of the families reported in the corresponding row. On the
principal diagonal, we can read the number of VDFs that are
correctly classified in the three cases. A perfect classifier would
result in a confusion matrix where all the values off the diagonal
are zero. With our procedure applied to the data set described
above, the VDFs with three particle populations are correctly
inferred in 92.25% of cases, while in 7.75% of them, there are
missed beams, namely VDFs with three families which are rec-
ognized as composed of two families, protons (unseparated), and
alphas. To figure out the reason for these unsolved beams we look
to Fig. 6, where we report the frequency counts of the missed
beams normalized to the number of beams in the interval, as a
function of the distance between core and beam. We can see that
most of the missed beams are less than ∼50 km s−1 away from
the core (we required a minimum distance of 30 km s−1 between
core and beam to accept the solution). The separation between
core and beam seems to be the pivotal quantity when searching
for the beams; in fact, the distribution of unsolved beams as a
function of other quantities, as for example, the density or tem-
perature, does not show any particular tendency. With regard to
VDFs with two particle populations, there is a slight difference
according to whether we consider the two families as proton core
and beam or proton core and alphas. The VDFs composed of
proton core and alphas are correctly inferred in 90.5% of cases,
while in the remaining 9.5%, a third population is identified. It
seems that these fake beams have a slightly greater probability
to be found in case of cores characterized by higher velocities
and small temperatures and alpha particle with small densities,
which implies more noise. The VDFs composed of proton core
and proton beam are correctly separated in 96.85% of cases.
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Fig. 7. Contour lines of the ion VDF observed by PAS, in a quasi-perpendicular magnetic configuration, in the plane identified by the radial
direction R and the magnetic field vector (left). Contours have been computed after integration of the VDF along the direction perpendicular to this
plane. The arrow indicates the direction of the local magnetic field vector. Right panel shows the same VDF integrated in polar and azimuth angles
with the three ion families highlighted in different colors.

In two cases, three families were erroneously found, and in 61
cases, 3.05% of the total, they are not separated at all. Finally, at
least in the case under study, one-particle population VDFs are
always correctly inferred. Another known issue of the EM algo-
rithm is that it is guaranteed to converge to a local maximum of
the likelihood function in Eq. (4), with a strong dependence on
initial conditions (see e.g., McLachlan & Krishnan 2008). The
mitigation strategy here can only consist of running multiple
instances of the clustering with different initial conditions and
choosing the solution with the highest final likelihood. Finally,
noisy or corrupt data may confuse the algorithm, leading to
formally correct, but generally unsuitable solutions. The prob-
lem of the data cleaning, as is well known, is vital in every
machine learning project. Incorrect or irrelevant data should be
fixed in a pre-processing stage. Real VDFs used in this paper
have been cleaned using the local outlier factor (LOF) algorithm
(Breunig & Sander 2000) in order to exclude stray points. This
algorithm compares the local density of each data point to the
local density of its k-nearest neighbors, assigning a score to each
point. Outliers tend to have a higher LOF score. Points with
LOF score above the 95th percentile were excluded from the
analysis.

5. Application to solar wind data

In this section, we show the result of the application of our
numerical technique to solar wind data collected by the plasma
suite SWA (Solar Wind Analyser) (Owen et al. 2020) on board
the Solar Orbiter mission (Müller et al. 2020). Launched in
February 2020, Solar Orbiter is a one-of-a-kind mission that
takes advantage of a unique combination of both in-situ measure-
ments and remote sensing observations (García Marirrodriga
et al. 2021), for the first time, on board a single spacecraft in the
inner heliosphere. The main goal of this mission is to perform
unprecedented magnetic connectivity analysis between the solar
atmosphere and the inner heliosphere (Zouganelis et al. 2020).
In particular, we use data produced by the Proton and Alpha
Sensor (PAS), introduced in Sect. 3. The 4s time resolution
proton moments, relative VDFs, and magnetic field parame-
ters from the MAG instrument (Horbury et al. 2020) can be

downloaded from ESA Solar Orbiter Archive1 (SOAR). We
focus on a sub-interval of the first stream observed by Solar
Orbiter after launch. This particular time interval ranges from
July 14 at 09:11 to July 16 at 18:30 of the year 2020 and
corresponds to the most Alfvénic part of a slow Alfvénic stream
recently analyzed by several authors (D’Amicis et al. 2021b;
Louarn et al. 2021; Lavraud et al. 2021, among others). Since
the main goal of this paper is to show that our numerical tool
is able to separate the three main components of the ion VDF,
namely, core, beam, and alphas, while detector resolution is a
non-trivial concern in this regard, we concentrate our attention
on an Alfvénic time interval where the chances of having a
proton beam resolved by currently available plasma detectors are
much higher compared to non-Alfvénic wind (see e.g., Marsch
et al. 1982b). Alfvénic slow wind has already been observed in
the inner heliosphere at different heliocentric distances and for
different phase of the solar cycle (Bale et al. 2019; Kasper et al.
2019; Perrone et al. 2020; Stansby et al. 2020; Parashar et al.
2020; D’Amicis et al. 2021a). It is a particular solar wind regime
identified for the first time as a single case study by Marsch et al.
(1981) and then statistically by D’Amicis et al. (2011). Further
studies by D’Amicis & Bruno (2015) and D’Amicis et al. (2019)
characterized this solar wind regime based on a dedicated focus
on the similarities with typical fast and Alfvénic wind streams
and on their importance in the context of the general problem
of solar wind acceleration (D’Amicis et al. 2021c). The selected
time interval contains 49484 VDFs taken at 4s. Before proceed-
ing to validate our analysis, we show, along with an example,
the capabilities of this innovative numerical technique. Figure 7
refers to the VDF of 14 July 2020 at 11:58:55.467982. For this
VDF, the magnetic field is quasi-perpendicular to the bulk veloc-
ity. The left panel shows the VDF isocontours in the V − B plane
after integration in the direction perpendicular to it (only the pro-
ton part of the VDF is reported here). The V − B plane contains
the local magnetic field vector, B, and the radial component,
VR, of the velocity vector (Marsch et al. 1982b). This particular
reference frame is chosen to better highlight the presence of the
proton beam, which propagates along the local magnetic field;
its presence in Fig. 7 is suggested by the bulge centered around

1 http://soar.esac.esa.int/soar
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Fig. 8. Ion families identified in the distribution function represented in Fig. 7. Panel a: contour lines for the core distribution in the plane identified
by the radial direction, R, and the magnetic field vector. Contours have been computed after integration of the VDF along the direction perpendicular
to this plane. Panels b and c refer to the proton beam and alpha populations, respectively. Solid straight line in each panel show the direction of the
local magnetic field vector. The contribution from the s/c velocity has not been removed.

the black solid line, indicating the magnetic field direction.
Proton beam drifts along this direction at a speed of the order of
or higher than the local Alfvén speed (Marsch et al. 1982b). In
this particular case, the effect of the spacecraft velocity has not
yet been removed and the VDF is represented as it appears in the
velocity space of PAS. This is particularly instructive for those
who are not familiar with this type of measurement. Obviously,
the velocity aberration due to the spacecraft velocity has always
been removed from the final moments in our analysis. On the
right-hand side of Fig. 7, we show the 1D VDF after integration
on polar and azimuthal angles. The three populations, as
identified by our algorithm, are highlighted in different colors:
red for the proton core, blue for the proton beam, and green for
the alphas. The three panels (a, b, and c) of Fig. 8 show the VDF
for the proton core, proton beam and alphas, respectively, for the
same distribution of Fig. 7. Similarly to the VDF representation
adopted in Fig. 7, the contour plane is identified by the radial
direction, R, and the local magnetic field vector. As for panel a
of Fig. 7, the effect of the spacecraft velocity has not yet been
removed. Contours have been computed after integrating the
VDF in the direction perpendicular to the plane. The local mag-
netic field direction is also shown by the solid line in each panel.
The core and beam show some temperature anisotropy with
respect to the magnetic field direction and the beam drifts along
this direction at a speed around 1.55 times the local Alfvén speed
of 52 km s−1. A quite interesting feature is the alpha particle
distribution in panel c. This distribution, as expected, is peaked
at a speed around

√
2 the speed of the proton core. In addition,

the contours are nicely elongated in the direction of the magnetic
field, suggesting the presence of a beam of alpha particles sim-
ilarly to early observations by Helios s/c (Marsch et al. 1982a).
Finally, it is important to point out that our technique was able to
separate the three populations for 45 218 VDFs from the original
49484, which comprises more than 91% of the total number of
VDFs. However, we cannot exclude the possibility that other
minor ions such as O6+, which is the dominating minor species
(Bochsler 2007), might contribute (albeit minimally) to the
contours. For example, O6+ ions would be found moving at a
speed of about 1.6 times the speed of the proton core.

The only touchstone we have available to test our results is
represented by the moments of level 2 (L2) of PAS provided

by the SOAR. Our comparison, however, can only be qualita-
tive, since the L2 data do not separate the proton beam from
the core of the distribution and alpha population is separated by
searching the minimum in the energy spectra between the proton
energy peak and the alpha energy peak. If no minimum can be
found, the alpha particles are not separated. As a consequence,
moments relative to the proton core will be qualitatively com-
pared to moments on the SOAR while proton beam and alpha
particles will be compared on statistical basis to the results avail-
able from the literature. We chose this particular time interval
to select a solar wind status relatively homogeneous in order to
avoid (as much as possible) mixing together Alfvénic and non-
Alfvénic winds. Figure 9 shows the solar wind stream selected
for this analysis. This plasma sample corresponds to the most
Alfvénic part of the slow wind stream observed in the middle of
July 2020 (see also D’Amicis et al. 2021b). The panels refer to
the time series of the main moments for core, beam, and alphas,
derived by integrating over each velocity distribution function
separated by the clustering procedure, respectively. The three top
panels (a, b, and c) show a rather good agreement with some
larger discrepancies for the number density and total temper-
ature. In particular, the L2 time series show a higher number
density and a higher total temperature. The reason for this is that
moments derived without separating the proton beam from the
core of the VDF retain the contribution from the beam, which
in our case is much less relevant to the moments of the core.
The presence of a proton beam along the local magnetic field
direction, if not separated from the core, not only contributes to
increase the core number density estimation but also to increase
the parallel temperature and, as a consequence, the total tem-
perature. The beam density time profile (panel d) runs generally
around 2.5 cm−3, roughly 1/4 of the core number density. The
beam temperature (panel f) is remarkably similar to the core tem-
perature with a Pearson correlation coefficient CP = 0.86. The
alpha particle number density is generally below 1 cm−3, which
means a few percent of the core number density, as expected. The
alpha speed (panel h) resembles the speed profile of the beam
although with slightly lower values (CP = 0.85). Also, the alpha
temperature profile (panel i) closely resembles the temperature
profile of core (CP = 0.76) and beam (CP = 0.80) although at
much higher level as expected. At this point, to further test the
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Fig. 9. Overview of the solar wind sample detected by the PAS sensor on board Solar Orbiter from July 14:09:11 to July 16:18:42 (DoY 196–198)
2020. Panels from top to bottom refer to the time series of: (a) proton core number density, Ncore; (b) core speed, Vcore; (c) core total temperature,
Tcore; (d) beam number density, Nbeam; (e) beam speed Vbeam; (f ) beam total temperature, Tbeam; (g) alpha particle number density, Nalpha; (h) alpha
particle speed Valpha; (i) alpha particle total temperature, Talpha. The units are: cm−3 for density, km s−1 for velocity and eV for temperature. In
panels a, b, and c, the red solid lines refer to the proton time series of N, V and T from the SOAR. See text for details.

validity of the moments relative to the proton beam and the alpha
population identified by our clustering technique, we built his-
tograms of a few relevant parameters to be compared (as closely
as possible) to similar studies available in the literature. The dis-
tributions of these parameters are shown in the three panels of
Fig. 10. From top to bottom, panel a shows the ratio between
proton beam and proton core number density (solid line) and
the ratio between alpha particles and proton core number density

(dashed line); panel b shows the ratio between beam total tem-
perature and core total temperature (solid line) and the equivalent
parameter for the alpha particles (dashed line); the solid line in
panel c shows the distribution of the beam velocity drift nor-
malized to the local Alfvén speed and projected onto the local
magnetic field direction by means of cos θD, where θD is the
angle between the velocity drift vector and the local magnetic
field vector. The equivalent parameter for the alpha particles is
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Fig. 10. Histograms of the relevant parameters of proton beam and alpha
particles. The three panels from top to bottom show: (a) the distributions
of proton beam and alphas number density normalized to the proton
core number density Ncore; (b) the distributions of proton beam and
alphas total temperature normalized to the proton core total tempera-
ture Tcore; (c) the distributions of proton beam and alphas velocity drift
along the local magnetic field direction normalized to the local Alfvén
speed (VD cos θD)/VA. Beam distributions are indicated by a solid line,
alpha distributions by a dashed line.

indicated by the dashed line. The distribution of the relative den-
sity for the proton beam is slightly asymmetric with a longer tail
at higher values with respect to the peak. The average value is a
bit larger than 0.2 and quite close to the peak value. This value
is in remarkable agreement with the value based on Helios data
reported in Fig. 14 of Marsch et al. (1982b) at approximately the
same distance from the sun and for similar wind speed interval,
namely, between 400 and 500 km s−1. The distribution relative to
the alpha particles is quite symmetric with respect to the average
(∼0.044) which is in good agreement with previous estimates,
such as in Robbins et al. (1970), Kasper et al. (2007), Aellig et al.

(2001), among others. In particular, there is a remarkable agree-
ment also with the estimate reported by Stansby et al. (2019),
based on Helios observations, who found that the average value
for this parameter was 0.043. However, although these authors
only analyzed fast wind, the agreement we found should not
come as a surprise since it has been shown that fast wind, which
is generally Alfvénic, shares many similar properties with the
slow Alfvénic wind, such as the one that stands as the object of
this study (D’Amicis et al. 2019). With regard to the beam’s nor-
malized total temperature (reported in panel b) we do not have
statistical determinations available in the literature to make com-
parisons. In any case, our analysis shows that the proton beam is
slightly hotter than the core by about 18%. The ratio between
alphas and core total temperature is much larger, indicating an
average value of 5.18. In this case, we have a rather good agree-
ment with previous estimates (Tracy et al. 2015; Kasper et al.
2017). These authors found that within fast solar wind, the alphas
are hotter than the protons by a factor of about 5. The drift veloc-
ity distribution shown in panel c by the solid line indicates that,
on average, the beam drifts at a speed around 1.76 x VAlfvén along
the magnetic field direction. In this case, our results indicate an
average drift speed a bit higher than the average value reported
on the histogram shown in the middle panel of Fig. 13 by Marsch
et al. (1982b) relative to wind speed between 400 and 600 km s−1

at a similar heliocentric distance. In their study, these authors
found that the distribution is characterized by an average value of
1.50. The dashed line shows the distribution of the alpha velocity
drift projected onto the local magnetic field. The average value
of this distribution is 1.01. This value is in good agreement with
estimates by Marsch et al. (1982a) obtained for Alfvénic fast
wind. However, there are other estimates of this parameter in the
solar wind that have reported that the typical value is less than
0.7 (Kasper et al. 2008, 2017). More recently, Alterman et al.
(2018) found that the expected value for this parameter should
be around 0.67. The same authors found that, on average, the
proton beam should drift at a speed 1.7 times larger than the
alpha drift. This means that in our case, the beam drift speed
should be around 1.7 × 1.01 = 1.72 the Alfvén speed, which
agrees remarkably well with our findings. We note that differ-
ing values of the average normalized drift velocity reported by
other authors (see papers cited above) might be due to the dif-
ferent heliocentric distance or to the selected type of wind –
which in our case is limited to the Alfvénic one. In addition,
we should also expect that beam and alpha drift-velocity would
be field-aligned, as has already been shown by several authors
(Marsch 2006). Figure 11 shows the histograms of the angle
between beam drift-velocity and local magnetic field and the
angle between alphas drift-velocity and the same magnetic field
vector. As expected, proton beam and alphas drift quasi-parallel
to the local field direction, however, the beam drift–velocity his-
togram is much more peaked than the one for the alphas. At
the moment, we do not know whether this effect is due to a
larger uncertainty in determining the bulk velocity vector for the
alphas given the presence of unresolved alpha particle beams
or, instead, due to some other physical phenomenon. In partic-
ular, the drift-angle distribution for the beam has an average
value of 5.95◦, with a peak value around 2.5◦, compared to an
average value of 11.71◦ and a peak value around 8.5◦ for the
alphas.

Following Tu et al. (2004), we tested the empirical relation
that links together the beam velocity drift normalized to the
local Alfvén speed, VD

beam/VA, and the plasma beta of the pro-
ton core, β∥c. The relation VD

beam/VA = (2.16 ± 0.03)β∥c0.281±0.008

was found by Tu et al. (2004) in the framework of a study about
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Fig. 11. Histograms of the angle between beam drift-velocity and local
magnetic field (solid line) and the angle between alphas drift-velocity
and the same magnetic field vector (dashed line). Mean and standard
deviation values are indicated for each histogram.

Fig. 12. Beam velocity drift, normalized to the local Alfvén speed
VD

beam/VA, vs. the plasma beta β∥c of the proton core.

beam generation mechanisms in the solar wind possibly related
to ion-beam instabilities. These authors analyzed Helios 2 data
recorded during the 90 days of the primary mission from 1.0 AU
to 0.3 AU, considering only those proton velocity distribution
functions with a wind speed higher than 600 km s−1; this was
done with the intent of selecting mainly Alfvénic time intervals.
They picked out about 600 VDFs. In our case, the analysis is
limited just to a time interval slightly shorter than 2.5 days, but
we can rely over a much larger number of VDFs. In Fig. 12, we
show the distribution we obtained from our data reduction and
the related power law fit, which results in a good agreement with
that shown by Tu et al. (2004); however, we do obtain a lower
correlation coefficient (∼0.63) compared to their ∼0.82, which
is probably partly due to the stringent requirements they applied
to their data selection.

The left-hand panel of Fig. 13 shows normalized histograms
of proton core, proton beam, and alpha temperature anisotropy.
The histogram for the beam is slightly shifted at a higher
anisotropy with respect to the core, especially the tail at higher
values. However, the average values of the anisotropy for the
core (1.26) and the beam (1.31) lie together within the same

associated error interval. As expected (Marsch et al. 1982a) the
situation is different for the alphas, whose histogram is shifted
to the left with an average value quite smaller than 1. On the
right-hand panel, we show the plot for the instability plane for
core, beam and alpha populations. The instability plane is built
by reporting temperature anisotropy values versus plasma beta
β∥, first introduced by Gary et al. (2001), Kasper et al. (2002),
Hellinger & Trávníček (2006). As indicated in the plot, the dif-
ferent solid lines indicate different plasma instabilities adopted
from Hellinger & Trávníček (2006) for a maximum growth rate
γ ∼ 10−3Ωc, where Ωc is the local ion-cyclotron frequency.
However, these instability contours have been derived for a sin-
gle bi-Maxwellian proton population and, as such, they would
not be directly applicable to our case; thus, we display them
mainly for reference. Besides the instability lines for the pro-
tons, we also show the parallel firehose instability threshold for
the alphas for a normalized growth rate γ = 10−3Ωα, as shown
in Fig. 2 of Stansby et al. (2019). The core and beam anisotropy
have been plotted versus their respective values of β∥, as well as
the alpha anisotropy. As already shown in several previous stud-
ies (Hellinger & Trávníček 2006; Matteini et al. 2007; Bale et al.
2009; Telloni & Bruno 2016) the core population is stable within
the instability lines corresponding to the mirror instability for
T⊥/T∥ > 1 and the oblique firehose instability for T⊥/T∥ < 1.
On the other hand, the beam is characterized by roughly the
same degree of anisotropy as the core population, but smaller
β∥, such that the stability of this population seems to be regu-
lated by the proton cyclotron instability. Matteini et al. (2013)
also showed the proton beam population in the instability plane.
The data they used refer to about two years’ worth of data during
1995 and 1996, encompassing Ulysses’s first north pole passing.
During this time interval, Ulysses covered a radial distance from
1.3 to about 5 AU and a large latitudinal excursion, from −30◦
to +80◦. Comparing our results with the results shown in their
Fig. 6, it appears that the core population in both cases is charac-
terized by an anisotropy >1 and a plasma beta β∥ < 1; however,
in Matteini et al. (2013), the anisotropy seems to be quite higher
than what we observe. On the other hand, the anisotropy of their
beam population is clearly <1,while our analysis attributes to the
beam an anisotropy >1 and slightly larger than that of the core.
It is difficult to understand the reason for this discrepancy but we
have to consider that the physical environment at Ulysses and at
Solar Orbiter is quite different and we plan to focus on this in
the near future. Partially overlapped to the beam distribution, we
find the alpha distribution, which is characterized by both tem-
perature anisotropy and plasma beta generally less than 1. The
spread of these values, although limited, is in quite good agree-
ment with that shown by Maruca et al. (2012), who analyzed
a much larger database, spanning about 16 yr of Wind observa-
tions. Indeed, we recorded a much narrower spread of our values
of β∥, in comparison with the bottom panel of Fig. 2 by Stansby
et al. (2019), which is relative to reanalyzed Helios data between
0.6 and 0.7 AU. In any case, the alpha distribution we show in
Fig. 13 appears to be well limited by the parallel firehose insta-
bility. Among other authors who have previously discussed the
VDF instability, we would like to mention Klein et al. (2018).
While their analysis cannot be directly compared to ours or
that of Matteini, it is relevant to improve the general under-
standing of the origin of instability phenomena. These authors
discussed the instability of VDFs (using the anisotropy and beta
referring to the core only), finding that VDFs with a resolved
proton beam and/or with a relatively high alpha drift speed are
more unstable.
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Fig. 13. Histograms of the temperature anisostropies and instability plane. Left panel: normalized histograms of temperature anisotropy, defined as
T⊥/T∥, for proton core (red line), proton beam (blue line), and alphas (green line). Right panel: temperature anisotropy vs. β∥, commonly known as
instability plane for core (red), beam (blue), and alphas (green). Different solid lines indicate plasma instabilities: proton cyclotron and mirror for
T⊥/T∥ > 1 and oblique firehose and parallel firehose for T⊥/T∥ < 1.

6. Conclusions

Clustering is a form of unsupervised learning, meaning that
no labels are available for training. The membership of data is
deduced solely from the arrangement of the points in the input
space. In the Gaussian mixture model, the EM algorithm iter-
atively assigns the observed data to a component of a mixture
of several components, associating to each data point a mem-
bership in the distribution. We applied the clustering techniques
to the 3D VDFs of solar wind data, in order to separate pro-
ton core, proton beam, and alpha particles, which are usually
separated by means of fitting procedures in a reduced 2D space.
Since our method consists of a data-driven approach, it makes no
assumptions on the underlying physical situation. Even though
we elaborated on a set of rules to exclude clear non-physical solu-
tions, the results of our procedure are not without ambiguities,
due to the well-known critical points of clustering, such as the
identification of the best number of clusters and the convergence
to a sub-optimal solution. Moreover, we may obtain “wrong”
solutions due to noisy or corrupt data. For these reasons, human
oversight is still needed in a final stage for science-level data.
Nevertheless, we have shown that our method can be a powerful
tool which can complement and strengthen the traditional tech-
niques. This is confirmed by the good agreement between the
values we estimated for some representative plasma parameters
and corresponding values reported in literature. In addition, our
clustering technique gives us the capability to separate proton
core and beam for quite a large fraction of the entire data set we
analyzed (about 91% of the total number of VDFs), which makes
this new numerical technique a valid tool for advancing our
understanding of solar wind turbulence and kinetic processes.
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