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NOVELTY & SIGNIFICANCE 

We present a novel method for synthetic CT generation from CBCTs. The proposed method was tailored 

to address challenges in paediatric applications. We adapted cycle consistent Generative Adversarial 

Networks (cycleGAN), introducing global residuals in the generators with structure-consistency loss and 

weakly paired data approach via smart data selection. All these innovations improved the performance of 

CBCT-to-CT synthesis in the proposed application outperforming a baseline cycleGAN method. Extensive 

evaluation showed that the proposed method led to more realistic CT synthesis in terms of intensity 

distance to ground truth images, allowing for more accurate structure segmentation and in radiotherapy 

specific water equivalent thickness metric.  
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ABSTRACT 5 

Objective: Adaptive radiotherapy workflows require images with the quality of computed tomography 

(CT) for re-calculation and re-optimisation of radiation doses. In this work we aim to improve quality of 

cone beam CT (CBCT) images for dose calculation using deep learning. 

Approach: We propose a novel framework for CBCT-to-CT synthesis using cycle-consistent Generative 

Adversarial Networks (cycleGANs). The framework was tailored for paediatric abdominal patients, a 10 

challenging application due to the inter-fractional variability in bowel filling and smaller patient numbers. 

We introduced the concept of global residuals only learning to the networks and modified the cycleGAN 

loss function to explicitly promote structural consistency between source and synthetic images. Finally, to 

compensate for the anatomical variability and address the difficulties in collecting large datasets in the 

paediatric population, we applied a smart 2D slice selection based on the common field-of-view across 15 

the dataset (abdomen). This acted as a weakly paired data approach that allowed us to take advantage of 

scans from patients treated for a variety of malignancies (thoracic-abdominal-pelvic) for training 

purposes. We first optimised the proposed framework and benchmarked its performance on a 

development dataset. Later, a comprehensive quantitative evaluation was performed on an unseen 

dataset, which included calculating global image similarity metrics, segmentation-based measures and 20 

proton therapy-specific metrics.  

Main results: We found improved performance, compared to a baseline implementation, on image-

similarity metrics such as Mean Absolute Error calculated for a matched virtual CT (55.0±16.6 proposed 

vs 58.9±16.8 baseline). There was also a higher level of structural agreement for gastrointestinal gas 

between source and synthetic images measured through dice similarity overlap (0.872±0.053 proposed 25 

vs 0.846±0.052 baseline). Differences found in water-equivalent thickness metrics were also smaller for 

our method (3.3±2.4% proposed vs 3.7±2.8% baseline). 

Significance: Our findings indicate that our innovations to the cycleGAN framework improved the quality 

and structure consistency of the synthetic CTs generated.  

 30 
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MAIN BODY 

 

1 Introduction 35 

 

Abdominal irradiation is commonly used in the treatment of young patients with a variety of tumours, 

including abdominal neuroblastoma and Wilms’ tumour (Bölling, Willich, and Ernst 2010). The success of 

radiotherapy relies on the accurate delivery of radiation dose to the target volume with minimal toxicity 

to surrounding normal tissues. Anatomical variations throughout the course of radiotherapy may lead to 40 

reduced tumour coverage and increased radiation to healthy tissues, thereby affecting the efficacy of 

radiotherapy (Berger et al. 2017). Although approaches to adapt radiotherapy plans have been extensively 

researched in the head and neck, thoracic and pelvis for adult populations (Ghilezan, Yan, and Martinez 

2010; Sonke and Belderbos 2010; Thörnqvist et al. 2013; Morgan and Sher 2020; Tocco et al. 2020), fewer 

studies have exclusively focused in abdominal malignancies (Feng Liu et al. 2012; Schlaich et al. 2013) 45 

especially in younger populations (Laskar et al. 2015; Guerreiro et al. 2019). The abdominal and lower 

abdominal region is particularly susceptible to daily anatomical variations due to the presence of organs 

with variable filling, including the gastrointestinal (GI) tract, bowel, bladder, and rectum (Berger et al. 

2017). GI air volumes were shown to vary by up to ±80% throughout radiotherapy in adult pancreatic 

cancer patients (Estabrook et al. 2018). In children with abdominal cancers, average GI air volume changes 50 

of 99.4±126.9 ml (range: 216.7–454.7 ml) have been reported (Guerreiro et al 2019) as well as evidence 

that younger children are the most predisposed to variability (Lim et al. 2021; Sabrina Taylor et al. 2021). 

The presence or absence of GI air is reflected into substantial local tissue density changes. Density changes 

are particularly detrimental to proton beam therapy (PBT) treatments, a favourable radiation modality in 

abdominal paediatric cancer due to its tissue-sparing capabilities and potential for reducing long term side 55 

effects (Guerreiro et al. 2019; Lim et al. 2021; Sophie Taylor et al. 2021). A study on adult cervical cancer 

patients receiving PBT found correlations between dose degradation and volume, thickness, and width of 

bowel gas (Berger et al. 2017). The impact of GI air variation on radiotherapy plan robustness was shown 

to be more pronounced in PBT than x-ray intensity modulated arc therapy plans in both paediatric and 

adult cancers (Lim et al. 2021; Ashida et al. 2020; Mondlane et al. 2017). 60 
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Image-guided radiotherapy (IGRT) technologies, such as cone-beam-CT (CBCT), show the patients’ 

anatomy immediately before treatment. IGRT enables the monitoring of patient’s anatomical variations 

between when their planning CT was acquired and subsequent treatment fraction delivery sessions, and 

potentially allows one to adjust the treatment to the observed anatomical variations (Nazmy et al. 2012). 65 

A limitation to the direct use of CBCT in adaptive pathways is that the imaging quality of CBCT scans is 

considered significantly inferior to the planning CT scans in terms of contrast-to-noise ratio and 

prevalence of imaging artefacts such as streaks. In abdominal scans, streak artifacts can be attributed 

(amongst others) to x-ray scatter and internal motion (Siewerdsen and Jaffray 2001; Peroni et al. 2012). 

This has led to growing interest in developing methodology to make the quality of CBCT scans comparable 70 

to that of CT. 

 

The most established technique to generate synthetic CTs (synCT) scans with the image quality of CT is 

based on deformable image registration (DIR) (Giacometti, Hounsell, and McGarry 2020), in which the 

planning CT is deformed to match the CBCT’s geometry (Peroni et al. 2012; Veiga et al. 2014; Landry et al. 75 

2015). The main disadvantage of DIR-based approaches is that they cannot properly account for non-

deformable changes between consecutive scans, such as collapsing lungs or variable GI air volume and its 

location. Post-processing methods may be paired with DIR to minimize gross anatomical mismatch to a 

certain degree (Veiga et al. 2016). Most DIR algorithms also do not meet speed requirements to be usable 

in real-time applications, particularly without GPU implementations (Shams et al. 2010; Fu et al. 2020). 80 

An alternative approach is to directly apply scattering-corrections to CBCT images (Mainegra-Hing and 

Kawrakow 2010; Park et al. 2015; Hansen et al. 2018). Deep learning (DL) methods became an emerging 

and active field in recent years for medical image synthesis tasks such as CBCT-to-CT translation (Yu et al. 

2020; Wang et al. 2021). Compared to classical approaches, data-driven methods have shown 

encouraging performance metrics and can be applied to unseen datasets quickly. Their main 85 

disadvantages are the significant efforts required for appropriate data collection and its curation (Wang 

et al. 2021).   

 

There is a wide breadth of previous work on using DL in image-to-image translation. The most popular 

application of such task is MRI-to-CT conversion (Maspero, Houweling, et al. 2020; Florkow et al. 2020). 90 

There are also successful implementations of DL-based solutions for PET attenuation correction 

(Ladefoged et al. 2018) and CT synthesis from CBCT in the context of adaptive radiotherapy (Kurz et al. 

2019; Y. Liu et al. 2020). Different frameworks utilising this approach have been proposed, such as paired 

Page 6 of 41AUTHOR SUBMITTED MANUSCRIPT - PMB-114342.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



7 
 

U-nets (Kida et al. 2018; Y. Li et al. 2019; Landry et al. 2019; L. Chen et al. 2020), paired pix2pix generative 

adversarial networks (GANs) (Yang Zhang et al. 2020), paired cycle-consistent GANs (cycleGANs) (Harms 95 

et al. 2019; Y. Liu et al. 2020; Eckl et al. 2020; Yang Zhang et al. 2020), and unpaired cycleGANs (Kurz et al. 

2019; Liang et al. 2019; Gao et al. 2021). While all methods use a data-driven approach to map image 

intensities between different imaging modalities, unpaired cycleGANs frameworks are of particular 

interest as they do not require pairs of data with structural correspondence for training, while they still 

offer good synthesis performance. This is of great interest in the context of CBCT-to-CT synthesis, where 100 

simultaneous acquisition of both scans is unfeasible in practice, and using scans acquired closely in time 

reduces but does not eliminate anatomical mismatch. Previous studies implementing paired approaches 

used CTs and CBCTs acquired on the same day and applied DIR to compensate for residual anatomical 

mismatch resulting from patient’s position in the different scanners and potential internal anatomy 

changes (L. Chen et al. 2020). These datasets still do not represent ideally paired examples and introduce 105 

uncertainties. Additional challenges must also be considered when applying methodologies to younger 

populations. IGRT protocols that include regular CT or CBCT imaging are rarely used in children’s 

treatments (Hua et al. 2019) due to concerns with the long term side effects associated with diagnostic 

radiation doses  (Alaei and Spezi 2015). Acquiring CT and CBCT so close in time is not routinely performed 

in adult populations and even harder to justify in younger patients, limiting the amount of data available 110 

for training. Approaches capable of utilizing large and representative but unpaired datasets are very 

advantageous in DL-based image synthesis frameworks, which usually benefit from larger dataset 

(Shorten and Khoshgoftaar 2019; Brown et al. 2020).  

 

Promising results were reported by several groups in the application of unpaired cycleGANs for CBCT-to-115 

CT synthesis (Kurz et al. 2019; Liang et al. 2019; Maspero, Houweling, et al. 2020; Uh et al. 2021). However, 

there are still challenges in achieving CT-like quality in synthetic images and completely removing CBCT 

artefacts. A well-known limitation of unpaired cycleGANs in medical image synthesis is that structural 

consistency between source and synthetic images cannot be guaranteed, leading to incorrect anatomical 

information in the synthetic images. Therefore, the original cycleGAN framework is not well suited for 120 

CBCT-to-CT synthesis without addressing this limitation.  

 

Data from younger cohorts require techniques specifically developed to account for the variability 

presented due to disease, presentation, growth, and development from young age to adulthood. 

Paediatric patients are a very diverse population, which likely reflects into a more challenging learning 125 
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task (Ladefoged et al. 2018; Maspero, Houweling, et al. 2020; Florkow et al. 2020). Childhood cancer is a 

rare disease, making it more difficult to gather large, representative cohorts across all age groups for DL 

applications (Guerreiro et al. 2019). CBCT imaging frequency may vary greatly between primary care 

centres and types of radiotherapy used, often at the discretion of the treating physician (Nazmy et al. 

2012). Low yearly patient numbers, combined with challenges in collecting imaging datasets in children, 130 

make large datasets availability scarce, particularly for single institutions (Florkow et al. 2020). To address 

limitations in data available for disease specific cohorts, combining multiple datasets from different 

anatomical sites has been previously proposed; however, this has been achieved simply by including well-

balanced number of cases per patient group in training and evaluation (Maspero, Houweling, et al. 2020; 

Uh et al. 2021). Transfer learning from adult cohorts is a viable option as well (Ladefoged et al. 2018). 135 

However, there are intrinsic differences in the paediatric cancer population in comparison with adults that 

will likely affect model generalizability. Differences include treatment strategies, such as the common use 

of shunts and anaesthesia, and the inherent anatomical differences across developmental stages such as 

variation in composition and shape of tissues and organs (White et al. 1991; Bolch et al. 2020).  

 140 

Key challenges remain that impede the usability of cycleGANs for CBCT-to-CT synthesis in clinical settings. 

These challenges include how to ensure that structural consistency in the synthetic images is preserved 

while removing unwanted artifacts, how to achieve large and representative sample sizes – particularly in 

scarce data settings (as paediatrics), and how to define adequate ground-truths for the validation of novel 

synthesis methods when paired data is not available. In this work we propose and evaluate a novel 145 

framework for CBCT-to-CT synthesis tailored for paediatric abdominal patients, a challenging application 

both due to inter-fractional variability in gastrointestinal filling and small patient numbers. This study 

focuses on exploring improvements to the original cycleGAN framework and training data selection 

techniques aiming to addresses the outlined challenges in the proposed application. Preliminary results 

of this study were presented in conference publications (Szmul, Taylor, Lim, Cantwell, D’Souza, 150 

Moinuddin, et al. 2021; Szmul et al. 2022).  The key novel aspects of our framework are: (1) application of 

the global residuals only learning approach, (2) incorporating structural consistency metrics to promote 

anatomical plausibility of synthesized images, (3) a novel smart data selection process to efficiently 

combine data from multiple patient groups (weakly-paired approach), (4) an automated pipeline for 

evaluation of synthetic images.  155 
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2 Methods and Materials 
 

2.1 A framework for CBCT-to-CT synthesis using cycleGANs 

 160 

The developed synthetic CT (synCT) generation pipeline included the following key steps: (1) smart slice 

selection strategy, (2) image pre-processing and (3) network training and inference (Figure 1). 

 

 
Figure 1- Overview of the CBCT-to-CT synthesis framework developed, highlighting the three main steps: training data selection, 165 
image pre-processing and the networks training. 

 

2.1.1 Smart slice selection via weakly paired data approach 

 

CT and CBCT scans do not cover the same sections of the body due to the reduced field-of-view of CBCT 170 

(in comparison to CT) and the intra-patient variability in the location of the imaging isocentre. We propose 

a weakly-paired data approach to compensate for the intra and inter-subject variability in imaged 

anatomical location. The CT and CBCT scans were spatially normalized to a common reference space and 

only slices from the same body regions were sampled (Figure 2). We used as reference space an atlas-

based paediatric average anatomy and a co-registration strategy developed and evaluated in our previous 175 

study (Veiga et al. 2021). A region of interest was defined by fusing the co-registered CBCT body contours 

on the average space and applying a thresholded majority voting. The created common field-of-view mask 

was then propagated back to each subject’s space. Slices in the individual CT/CBCT scans located outside 
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of this mask were excluded from all experiments. The top and bottom four slices of each CBCT scans were 

typically truncated and thus were also excluded from all experiments. 180 

 

 
Figure 2- Overview of the proposed weakly-paired data approach. The CT and CBCT scans were spatially normalized to a paediatric 

anatomical atlas, and a common field-of-view mask generated after fusing the CBCT body contours. The mask was then mapped 

back to each individual space and used to include CT and CBCT slices only within the region of interest from training. This approach 185 
effectively adjusted the field-of-view of all images to the abdominal region only, allowing us to best utilize data from multiple 

patient groups.  

 

2.1.2 Image pre-processing steps 

 190 

Pre-processing steps were applied to all CT and CBCT scans before presenting them to the networks for 

training and inference. The images were corrected to exclude surrounding equipment and elements 

external to the subject – such as the treatment couch, anaesthesia equipment, shunts, feeding tubes, 

and/or lines, some of which may introduce high-intensity artifacts. External components were defined as 

regions outside the body contour and were replaced with air equivalent intensity (−1000HU). Internal 195 

regions with high-intensity artefacts were segmented by applying thresholding (HU≥1700) followed by 

morphological operations, and subsequently overwritten with water equivalent intensities (0HU). Finally, 

the image intensities were clipped to the range of [-1000, 1000] and normalized to [-1, 1]. The proposed 

adjustments of intensities aimed at preventing the networks from generating elements such as tubes and 
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internal lines in the synthetic images that were not present in the source images but commonly present 200 

in the training data.  

 

To account for significant variation in body size and shape across ages, an axial normalisation pre-

processing step was also employed. The training CT/CBCT slices were axially normalized by fitting the body 

contour to a fixed size of 256×256 and resizing the corresponding image slice. This step was done by 205 

finding the longest profile between x and y axis on each slice; a margin of 10 pixels padded with -1000HU 

was included to each slice to allow for additional variation in shape during data augmentation. The 

determined distance was used to calculate the required scaling factor to best fit the slice to the fixed 

image size of 256×256. The same scaling factor was applied on both directions to preserve body shape. 

The images requiring resampling were interpolated using spline interpolation, using intensity clipping to 210 

ensure the intensity ranges do not extend the normalisation ranges.  The spatial normalisation of the body 

aimed at artificially reducing the anatomical variability in size across the population while preserving 

shape variability. In our preliminary investigations we have found consistent improvements by including 

axial normalisation – without this step the results were often unrealistic and the body contours could be 

distorted, particularly for smaller patients  (Szmul, Taylor, Lim, Cantwell, D’Souza, Syed, et al. 2021). Our 215 

observations were also confirmed by  (Uh et al. 2021).  

 

2.1.3 Design of the cycleGAN network 

 

A 2D cycleGAN approach for CBCT-to-CT synthesis was implemented in this study, known for its good 220 

performance in unpaired data style conversion (Figure 3). We followed closely the implementation 

presented in (Zhu et al. 2017). The cycleGAN framework consists of two arms with a pair of a generator 

and a discriminator in each of the arms. One arm converts CBCT to CT, and the counterpart generates 

CBCT from CT. The task of a generator in this configuration is to, conditioned on an input image from one 

modality, provide a corresponding image in another imaging modality.  225 
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Figure 3. Overview of the proposed cycleGAN architecture. The main difference from the original cycleGAN implementation is the 
inclusion of the Structure Consistency Loss between raw input images and their synthetic contour parts, shown in orange colour. 
The paths of the different types of images are shown with dedicated line types: solid for the raw images, dotted for synthetic 230 
images and dashed for cycle images. Blue and red colours correspond to the modality arm paths, blue to the CBCT arm path and 
red to the CT arm path. For clarity the identity loss was not included in the diagram but described in the main body.  

 

We investigated two different generator architectures: UNet-based (Ronneberger, Fischer, and Brox 

2015) and ResNet-based (He et al. 2015). The ResNet-based generator is, similarly to UNet, an encoder-235 

decoder architecture. However, it does not apply skip connections and uses residual blocks at the 

bottleneck stage. The implementation is based on works of (Johnson, Alahi, and Fei-Fei 2016; Isola et al. 

2018), and has been successfully used in style adaptation and domain adaptation. For the rest of the 

paper, we will refer to these as UNet and ResNet generators respectively, to keep it consistent with the 

cycleGAN implementation of (Zhu et al. 2017). The choice of widely used generator architectures allowed 240 

our study to focus on improvements to the synthesis framework only.  
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A novel aspect of our cycleGAN CBCT-to-CT synthesis framework was incorporating the concept of global 

residuals only learning in the generators. Global residual only learning is a common technique in computer 

vision image restoration (Yulun Zhang et al. 2021), denoising (K. Zhang et al. 2017) and enhancement (Kim, 245 

Lee, and Lee 2016). Unlike other pairs of very distinct imaging modalities (for example, CT and MR), CBCT 

and CT share many acquisition similarities such that CBCT may be considered as distorted CT image to a 

certain extent. Therefore, instead of learning the whole image, our proposed network focused only on 

predicting the unwanted elements in the images, which were then combined with the source image to 

produce the synthetic counterpart (Figure 4). This approach effectively redefines the network’s aim from 250 

synthesizing to refining/enhancing images. The proposed concept of global residuals was applied to both 

generator architectures. 

  

 
Figure 4 Visualization of the concept of the only global residuals learning, by applying the global residual connection which 255 
combines the input image with the output of the generator network. For illustrative purpose we show global residuals only with 
UNet architecture, but the same concept was applied to ResNet. 

 

The task of the discriminators is to distinguish between real and synthetic images implemented as binary 

classifiers with a binary cross-entropy loss function. The core loss in the framework is a GAN loss function 260 

(ℒ!"#), which is used to reward the generator for delivering outputs closer to the target domain, while 

discriminator is rewarded for distinguishing between real and generated data. We applied an extended 

version of the loss using Least Squares GAN loss functions (ℒ!"#) which also notes how far from the 

decision boundary the new generated image was, when evaluated by the discriminator (Mao et al. 2017). 

CycleGANS utilise two arms, synthesizing CT into CBCTs and CBCT into CT, therefore there are two losses 265 

corresponding to each arm. The cycle consistency loss (ℒ$%$&') evaluates how similar the input image is to 

itself after going through both generators. This loss indirectly promotes structural consistency between 

source and synthetic images but cannot guarantee it (Yunhao Ge et al. 2019). Consequently, studies have 
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reported for example differences in body outline in CT images generated with CBCT-to-CT cycleGAN 

methodology (Kurz et al. 2019). To promote preservation of the CBCT anatomy, the original formulation 270 

was here extended by introducing a structure consistency loss (ℒ()*+$)+*') in the form of locally 

normalized cross correlation (LNCC) (Hermosillo, Chefd’Hotel, and Faugeras 2002) between the original 

images and their synthesized counterparts. A similar approach was applied by Hiasa et al. 2018a) in 

multimodal image synthesis, where cross correlation was calculated between gradients of CT and MRI 

images. In our case, before the LNCC was calculated, the images where smoothed with gaussian filter and 275 

gaussian noise was added to focus the attention of the measure into higher level structures. Additional 

regularisation was promoted by the identity loss (ℒ,-'.),)%), which penalises applying changes to an image 

introduced to the generator if the image is already in the target domain (for instance, the output of CT to 

CBCT generator when a CBCT image is the input should be the same image). L1 was used as the identity 

and cycle consistency losses. The overall proposed cycleGAN framework is optimised based on the total 280 

loss function stated in Equation 1. Complete details of each loss function can be found in Supplementary 

Data A. 

 

ℒ(𝐺/0→/2/0 , 𝐺/2/0→/0 , 𝐷/0 , 𝐷/2/0) =	 

ℒ𝒢𝒜𝒩𝒞𝒯→𝒞ℬ𝒞𝒯(𝐺/06/2/0 , 𝐷/2/0) + 285 

ℒ𝒢𝒜𝒩𝒞ℬ𝒞𝒯→𝒞𝒯(𝐺/2/0→/0 , 𝐷/0) +																																															 (1) 

λ$%$&'ℒ𝒸𝓎𝒸ℓℯ(𝐺/2/0→/0 , 𝐺/0→/2/0) + 

λ,-'.),)%ℒ𝒾𝒹ℯ𝓃𝓉𝒾𝓉𝓎(𝐺/2/0→/0 , 𝐺/0→/2/0) + 

λ()*+$)+*'ℒ𝓈𝓉𝓇𝓊𝒸𝓉𝓊𝓇ℯ(𝐺/2/0→/0 , 𝐺/0→/2/0) 

 290 

2.2 Data and data split 

 

Scans from 63 patients aged 2 to 24 years old historically treated with radiation therapy were used in this 

study. The data for this study was requested and approved in line with the internal information 

governance procedures of the University College London Hospital NHS Foundation Trust Radiotherapy 295 

Department. The smart slice selection process described in section 2.1.1 allowed us to make use of data 

from multiple treatment groups. Thus, we included not only subjects irradiated to the abdomen (68%) but 

also to the thoracic (8%) and pelvic (24%) region to increase the dataset size for training in this scarce data 

domain. One planning CT and one to ten weekly CBCTs were gathered per patient, from a variety of 

scanners and on-board imaging systems. The planning CTs were acquired on a SOMATON Confidence 300 
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(Siemens), LightSpeed RT16 or Discovery 710 (GE Medical Systems) with 120 kVp and field of view of 28 – 

50 cm, resulting in reconstructed images with 0.93 (±0.1) x 0.93 (±0.1) x 2.29 (±0.25) mm3 resolution. 

Contrast enhancement was used in 70% of the CT scans. The CBCTs were acquired with the on-board 

imaging of the Varian Medical Systems Truebeam or Clinac with 125 kVp, 15 – 80 mA, 13 – 18 ms, half-fan 

mode, and shifted panels. The CBCT scans had a field of view of 41 – 46 cm and were reconstructed with 305 

a resolution of 0.91 (±0.1) x 0.91 (±0.1) x 1.99 (±0.001) mm3. In total 63 CT and 209 CBCT scans were 

available for the development and evaluation of the proposed CBCT-to-CT synthesis framework. In 

addition to the CT and CBCT scans, corresponding segmentations of the body, GI air, bone, and lung 

volumes were used for evaluation purposes. The volumes were first semi-automatically generated, and 

then manually edited and revised slice by slice using ITK-Snap (Yushkevich et al. 2006). Post-processing 310 

was applied to all contours to reduce common manual segmentation errors, such as discarding small 

volumes located outside the body. 

 

The whole dataset was divided into 50 development cases and 13 cases for testing. The development 

dataset contained scans from thoracic-abdominal-pelvic subjects and was randomly split as 40 and 10 for 315 

training and validation. The testing dataset consisted of scans from abdominal subjects only, and cases 

were selected to achieve a well-balanced representation of ages and genders, while prioritizing the use 

of cases with multiple CBCTs for development purposes. The split between the datasets was made based 

on non-image characteristics only to minimise selection bias (i.e., the scans were not visually inspected 

during the splitting process). 320 

 

We have created three training datasets by applying different slice selection approaches to our imaging 

data, which resulted in different number of slices being used for training. In the first dataset no data 

selection threshold was applied (naïve sampling). Two other datasets were created using the smart data 

selection via weakly paired approach, with two different thresholds to create the datasets: 1% and 40%. 325 

The 1% mask excluded rarely represented slices (hereby referred as “no outliers”) in a systematic way 

(such as for instance slices containing the neck or inferior members), which could accidently be included 

in the naïve sampling. The 40% mask effectively adjusted the field-of-view of all images to the abdominal 

region, as shown previously in Figure 2 (hereby referred as “smart data selection”). A complete breakdown 

of the number of CT/CBCT slices included per approach can be found in Supplementary Data B. 330 
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2.3 Network training and inference  

 

We trained a total of 16 cycleGAN frameworks by varying the generator architectures (Unet and ResNet), 

the slice selection strategy (naïve, no outliers and smart data selection), with and without global residuals, 335 

and including (or not) the structure consistency loss in the frameworks.  

 

For the ResNet networks we followed the implementation used in (Johnson, Alahi, and Fei-Fei 2016; Isola 

et al. 2018). It consists of a down-sampling (encoder-like) section, 9 residual blocks at the bottleneck stage, 

and an up-sampling (decoder-like) section afterwards. The Unet-like architecture was a standard 340 

implementation by  (Ronneberger, Fischer, and Brox 2015), with 5 down/up sampling levels, LeakyReLu 

activation function used in the downspampling blocks and ReLu in upsampling blocks, following (Isola et 

al. 2018). Both architectures were used with 64 initial filters, instance normalisation and dropout 

probability set to 0.5. The implementation of the discriminator followed PatchGAN discriminator with 

70x70 overlapping patches, initially introduced in (Isola et al. 2018) and successfully applied by (Uh et al. 345 

2021). The discriminator had 3 layers of depth, with 64 filters in the initial layer. Leaky ReLu was applied 

as the activation function. The cycleGAN frameworks were trained for 200 epochs with a batch size of 4 

and diminishing learning rate on an in-house high-performance computing (HPC) facility with graphical 

processor units (Titan X 12GB GPU cards). The initial learning rate was set to 0.002 for the initial 100 

epochs and was linearly decreased to 0 for the following 100 epochs. Adam optimiser was used with 350 

momentum b1=0.5. Before calculating the Structure Consistency Loss, the images were smoothed with 

gaussian filter (kernel size 7, s=1) and random gaussian noise was added (with the magnitude of 0.001). 

The losses were calculated with fixed weights for all experiments: lcycle=10, lidentity=0.5, lstructure=1 (when 

no structure consistency was used this weight was set to 0). For data augmentation, the following 

transformations were applied: random flipping (left and right), elastic deformations with the spacing set 355 

to (64, 64) and magnitude range to (3, 3), rotations by up to 15 degrees, and gamma contrast adjustments 

in a range [0.7, 1.3]. The probability of all random augmentations was set to 0.5. 

 

At the inference stage, unseen datasets were fed to the network subjected to the same pre-processing 

steps as the training data (Section 2.1.2). The generated synCT were then resized back to their original 360 

size, their intensities were rescaled to [-1000, 1000] and stacked back into a 3D volume for evaluation.  
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2.4 Evaluation experiments 

 

2.4.1 Definition of the ground-truth 365 

 

Evaluating the quality of synthetic images is a challenging task due to the lack of a real ground-truth, which 

in this application would consist of pairs of simultaneously acquired CT and CBCT scans. Thus, we opted 

to evaluate the synCTs against two complementary image ground-truths: the raw CBCT and a virtual CT 

(vCT) matched to the anatomy of the raw CBCT. The vCT consisted of the planning CT deformably 370 

registered to the CBCTs using the open-source NiftyReg (Rueckert et al. 1999; Ourselin et al. 2001; Modat 

et al. 2010; 2014) with additional post-processing steps to account for the variable position of the GI air 

between scans (complete details in Supplementary Data C). Figure 5 shows an example of a planning CT 

and corresponding CBCT and vCT. The use of those two ground-truths enables the quantitative evaluation 

of both anatomical and intensity consistency of the synthetic images.  375 

 

 
Figure 5- Example of paired CT, CBCT and virtual CT slices. The virtual CT was created by registering CT to CBCT and semi-
automatically correcting for GI air differences. The air regions inside body in CT were replaced with water equivalent values prior 
to the registration, while air regions from CBCT were subsequently embedded into the virtual CT (that is indicated by white arrows 380 
in CT and in corresponding places in vCT). 

 

2.4.2 Experiments  

 

A total of three sets of experiments were conducted to optimise and evaluate the proposed CBCT-to-CT 385 

synthesis method. 

 

Page 17 of 41 AUTHOR SUBMITTED MANUSCRIPT - PMB-114342.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



18 
 

Experiment 1: Ablation study of the proposed modifications. We performed a general search for the 

optimal configuration of the framework on one-fold of the development dataset to find the optimal CBCT-

to-CT synthesis framework. A total of 16 framework configurations were quantitatively evaluated 390 

calculating global image similarity metrics between the gold-standards and the synthesized images 

(details in Section 2.3.3). 

 

Experiment 2: Five-fold cross validation and benchmarking of the optimal configuration. We evaluated in 

more detail the optimal configuration of the framework on five-folds of the development dataset and 395 

compared it against a baseline configuration. These experiments aimed to ascertain on the level of 

overfitting of the method to the training dataset. The proposed cycleGANs was benchmarked against a 

baseline implementation of the cycleGANs (also defined in Experiment 1). Both methods were evaluated 

in terms of global image similarity with CBCT and vCT (details in Section 2.3.3). 

 400 

Experiment 3: Comprehensive quantitative evaluation on the unseen testing dataset. The baseline and the 

identified optimal configuration were retrained on the whole development dataset and used for inference 

in the testing dataset.  This experiment aimed to evaluate how the model generalises to unseen data, and 

to validate its performance in detail in the proposed application. The proposed cycleGAN was again 

compared to a baseline configuration of the cycleGAN. The performance of the networks was assessed 405 

through global image similarity metrics, segmentation-based measures and radiotherapy-specific metrics 

(details in Section 2.3.3).  

 

2.4.3 Evaluation metrics 

 410 

The quality of the CBCT-to-CT synthesis achieved by different methods was evaluated using metrics that 

quantify how close the synthetic CT is to the original planning CT intensities and to the CBCT anatomy. 

These metrics may be grouped into three separate categories: (1) global image similarity (experiments 1 

– 3), (2) segmentation-based measures (experiment 3) and (3) radiotherapy-specific metrics (experiment 

3). Global image similarity metrics as well radiotherapy-specific metrics were calculated in 2D (i.e., slice 415 

by slice) in all experiments, while segmentation-based metrics were calculated in 3D. The metrics are 

briefly described in the following paragraphs.  
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We used three global image similarity metrics when comparing pairs of images: mean absolute error 

(MAE), normalised cross-correlation (NCC) and Root Mean Square Error (RMSE). Those measures were 420 

calculated between the evaluated image and two ground truth images: CBCT and vCT. The metrics were 

chosen to provide complementary information on the similarity between synCTs in pixel intensities (MAE 

and RMSE) and structural agreement (NCC) with the CBCT/vCT. It is expected that MAE and RSME between 

synCT and CBCT will always reflect some disagreement from locally incorrect CBCT intensities. However, 

they may also reflect differences due to structural inconsistencies. Therefore, due to their complementary 425 

nature, all metrics were reported and analyzed for both ground-truths. Voxels outside the body contour 

were excluded from analysis based on semiautomatic binary masks. Intensities in all images were clipped 

to [-1000, 1000].   

 

For segmentation-based evaluation, we used complementary measures of volume similarity between 430 

different types of tissue within the body contour: GI air, bones, soft tissues (muscles and fat) and lungs. 

Ground truth segmentations of these volumes on CBCTs were compared with corresponding structures 

automatically segmented on the synthetic CTs using the Dice Similarity Coefficient (DSC), the Hausdorff 

Distance (HD) and average pixel intensity (HU) as metrics. To automate the tissue segmentation we 

implemented and trained a patch-based 3D-UNet (Çiçek et al. 2016) using MONAI library 435 

(https://monai.io/) (Consortium 2020)  (complete implementation details in Supplementary Data D).  The 

training dataset consisted of a total of 183 CBCT and 50 CT scans, and corresponding ground truth labels, 

from the same subjects included in development dataset of the cycleGAN networks. The training dataset 

consisted of both CT and CBCT images. The assumption is that while synCTs are expected to have CT-like 

quality, some features/artifacts typical of CBCT may not be completely removed. Our initial experiments 440 

using only CTs led, for example, to gross segmentations errors in the presence of streak artifacts caused 

by high-intensity elements.  

 

For radiotherapy-specific evaluation, we calculated polar water equivalent thickness (WET) differences 

between the vCT and synthetic CT methods (ΔWET). The WET is the thickness of water that would cause 445 

a proton beam to lose the same energy as if it had crossed a certain medium. The WET for a given beam 

direction (Θ) was calculated as: 

𝑊𝐸𝑇B =	 5 𝑅𝑆𝑃,,D,E × 𝑑,,D,E
,,D,E∈G
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where 𝑆 is a set of voxels that contains the beam path, 𝑅𝑆𝑃,,D,E is the relative stopping power (estimated 

from CT numbers using a standard calibration curve), and 𝑑,,D,E is the path length of the beam inside voxel 450 

(𝑖, 𝑗, 𝑘) estimated by a ray tracing algorithm (R. Zhang et al. 2010; Lui, C F 2018). The WET between the 

beam entrance point and centre-of-mass of the body contour was calculated slice-by-slice, considering a 

complete arc with steps of one degree. The WET differences (Δ𝑊𝐸𝑇%,'( ) between two scans (A and B) was 

reported as the RSME value 

Δ𝑊𝐸𝑇",2B = 𝑅𝑀𝑆𝐸 ?100 ×
𝑊𝐸𝑇2B −𝑊𝐸𝑇"B

𝑊𝐸𝑇"B
B 455 

Δ𝑊𝐸𝑇	was calculated overall and for each gantry angle individually, to quantify the impact that synthesis 

errors have on calculation of clinical dose distributions and ascertain if some beam angles were more 

affected than others.   

 

3 Results 460 

 

3.1 Experiment 1: Ablation study of the proposed modifications 
 

Table 1 presents the numerical results in terms of the global similarity measures for the ablation study of 

the proposed modifications, where we tested a total of 16 configurations for the network. We 465 

systematically added the proposed modifications (global residual learning, smart data selection and 

structure consistency loss) and observed steadily improved performance of the framework, regardless of 

the generator architecture that was used. The largest improvements were observed by introducing the 

global residuals to the generators. Configurations that used the UNet architecture always outperformed 

the Resnet-based frameworks.  470 
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Table 1- Results of the ablation study of the proposed modification in terms of global similarity metrics for two generator networks 
architectures. The proposed configuration is highlighted in bold font in the grey box. 

 
 475 

This first experiment allowed us to narrow down into an optimal configuration, as well as a baseline 

configuration for comparison purposes, to use in the following experiments. The optimal configuration 

used the following settings: UNet as generator, applying the global residual learning, the smart data 

selection strategy and using structural constrains. We will refer to this configuration as the “proposed” 

approach for the rest of the manuscript. Likewise, the “baseline” cycleGAN configuration settings chosen 480 

were: Unet generator (Zhu et al. 2017), without structure consistency loss and global residuals learning 

trained with the “no outliers” slice selection method.  

 

 

 485 

Architecture
Global 

residuals
Data Selection

Structure 
consitency

MAE_vCT 
[HU]

NCC_vCT   
[1]

RMSE_vCT 
[HU]

MAE_CBCT 
[HU]

NCC_CBCT    
[1]

RMSE_CBCT 
[HU]

No None No 78.9±30.0 0.91±0.06 148.0±62.4 86.8±31.5 0.91±0.06 148.1±60.8

No No outliers No 71.7±21.7 0.92±0.04 136.7±38.3 71.8±18.6 0.92±0.04 130.2±34.2

Yes None No 58.7±15.8 0.96±0.02 102.3±29.8 63.8±17.3 0.96±0.02 107.3±31.3

Yes None Yes 54.5±15.5 0.97±0.01 90.5±22.4 48.5±11.9 0.97±0.02 87.8±25.9

ResNet Yes No outliers No 61.9±17.5 0.9±0.05 98.3±25.3 71.0±16.4 0.92±0.04 95.0±20.8

Yes No outliers Yes 54.2±17.0 0.92±0.04 84.3±23.6 40.2±10.3 0.96±0.02 58.7±14.5

Yes Smart data selection No 59.4±13.9 0.96±0.01 101.9±21.3 69.2±13.9 0.95±0.02 107.9±23.3

Yes Smart data selection Yes 53.5±16.0 0.97±0.01 90.7±22.2 51.9±12.6 0.97±0.02 90.8±24.9

No None No 61.2±23.3 0.95±0.05 110.6±48.7 63.9±26.4 0.94±0.05 111.7±50.7

No No outliers No 59.2±15.2 0.95±0.03 107.1±29.1 59.6±18.9 0.95±0.03 104.9±34.2

Yes None No 54.4±12.8 0.97±0.01 90.0±20.0 61.4±16.3 0.96±0.02 97.1±28.0

Unet Yes None Yes 53.1±15.3 0.97±0.01 87.5±21.9 47.3±14.1 0.97±0.02 85.8±28.4

Yes No outliers No 54.1±14.1 0.97±0.02 89.7±22.9 56.9±16.9 0.96±0.02 93.6±31.3

Yes No outliers Yes 53.0±15.1 0.97±0.01 87.6±21.8 47.0±14.8 0.97±0.02 85.3±28.6

Yes Smart data selection No 52.3±12.4 0.97±0.01 86.4±19.6 57.0±16.3 0.97±0.02 92.2±29.4

UNet Yes Smart data selection Yes 51.7±15.0 0.97±0.01 85.0±20.9 45.0±12.6 0.97±0.02 82.8±27.5

MAE vCT/CBCT - Mean Absolute Error calculated with respect to vCT/CBCT
NCC vCT/CBCT - Normalised Cross Correlation calculated with respect to vCT/CBCT
RMSE vCT/CBCT - Root Mean Squered Error calculated with respect to vCT/CBCT
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3.2 Experiment 2: Five-fold cross validation and benchmarking of the optimal 

configuration  

 

In 5-fold cross validation study we investigated the proposed synCT generation configuration against the 

baseline cycleGAN configuration. The proposed method performed consistently between different folds. 490 

Figure 6 shows an example of inference results on the same slice for different folds, where in 4 folds the 

slice was used for training and in one it was part of the validation subset (4th fold). Only small levels of 

inconsistency were observed between folds, mostly originating from differences in where contrast 

enhancement is added by the networks (e.g: brightness of the kidneys and liver). These visual findings 

were also confirmed with the global similarity metrics, which were consistent for different folds and 495 

outperformed considerably the baseline method (Figure 7). To ascertain on the level of overfitting of the 

method to training dataset, the evaluation data is shown for both training and validation datasets – the 

results between the two datasets were comparable on average, with the validation set having larger 

standard deviations. The proposed method resulted not only in better mean values compared to the 

baseline method, but also in lower standard deviations. Overall, the numerical data suggests improved 500 

consistency with our method in agreement with the visual inspection findings. 

 

 
Figure 6- Comparison of synthetic results between different folds when 5-fold cross validation was applied. The folds when the 
case was in the validation subset is shown in bold (fold 4). For the remaining images the case was used for training. No significant 505 
visual differences in anatomy were observed.  In lower rows difference images between the outputs and CBCT and virtual CT are 
shown. 
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Figure 7- Box plot showing the distribution of the numerical results between the proposed and baseline synCT for MAE (A), RMSE 510 
(B) and NCC (C) calculated between the synCTs and ground truths (CBCT and virtual CT). 

 

3.3 Experiment 3: Comprehensive quantitative evaluation on the unseen testing dataset 

 

3.3.1 Global image similarity  515 
 

The final experiments were conducted after re-training the proposed and baseline configuration on the 

whole development dataset and applying them to a previously unseen testing dataset. For clarity, due to 

the smart slice selection step being included, the final proposed network was effectively trained only on 

slices coming from the abdomen region (although some slices are from patients treated primarily for 520 

different anatomical regions).  Figure 8 shows a visual comparison between the two configurations for 

two example slices from different subjects (A and B). The baseline configuration had worse performance 

in terms of anatomical realism and consistency when compared to both ground truths (CBCT and virtual 

CT). Our proposed method generated synthetic images that more closely matching the anatomy of the 

source CBCT. Upon visual inspection, the baseline method was found to commonly remove or add 525 

vertebrae and/or introducing inexistent bowel pockets, as well as contrast from shunts to the synCTs. 

Such patterns of failure were not observed for the proposed synCT method, which successfully preserved 

the anatomy from CBCT while improving the overall image quality. A limitation seen in both synCT 

methods was that occasionally the generated synCTs were contrast-enhanced, when the original CBCT or 

matching CT was not (and vice-versa), likely because the training set included both scans with and without 530 

contrast agent injection. That has led to inconsistencies in contrast between adjacent slices in some cases. 

The additional analysis of cross-sectional intensity profiles highlights how the baseline cycleGAN method 

was unable to preserve the structural information, adding up inexistent air pockets. The proposed method 

follows more closely the patterns observed in CBCT and virtual CT.  

 535 
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Figure 8- Visual comparison of the results between the proposed and baseline synCTs with respect to the virtual CT and CBCT for 
two cases A and B. We show difference images to highlight where disagreements appear in A1 and B1. The difference between 
the virtual CT and CBCT highlights the challenge with establishing reliable ground truth images. For both cases we show intensity 
profiles for cross-sections for the CBCT, virtual CT, baseline synCT and the proposed synCT in A2 and B2. 540 

 

Visual inspection was followed by numerical evaluation in terms of global similarity measures. The 

proposed method achieved better numerical results than the baseline method for all scores (Table 2). 

These results were only slightly worse than those reported for the during 5-fold cross validation, indicating 

that the method did not overfit to the training dataset and generalized well to unseen cases. 545 

 

Table 2- Numerical evaluation of the proposed method and the baseline in terms of global similarity measures.  

 virtual CT CBCT 
MAE [HU] NCC [1] RMSE [HU] MAE [HU] NCC [1] RMSE [HU] 

Baseline 
synCT 

58.9±16.8 0.96±0.02 102.6±31.7 63.4±15.9 0.95±0.02 110.0±32.2 

Proposed 
synCT 

55.0±16.6 0.97±0.02 89.8±23.8 49.8±10.9 0.97±0.02 88.6±24.9 
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3.3.2 Segmentation-based measures  550 
 

A 3D UNet segmentation was trained to identify four different types of tissue in CT and CBCT within the 

body contour: soft tissues, skeleton, GI air and lungs This network was used to automatically segment 

each testing CT, CBCT and synCT (Figure 9). 

 555 

 
Figure 9 Segmentation results for CT, CBCT, and proposed synCT with comparison to the ground truth segmentation overlayed 
on CBCT. 

 

Table 3 presents the similarity between automated and ground truth segmentations in terms of DSC, HD 560 

and average intensity for each tissue type. The DSC and HD values reported for planning CT and CBCT 

represent how well the automated segmentation method performed on real images from the testing 

dataset, with DSC ranging from 0.889 – 0.978 for both scans and tissue types. The DSC and HD values 

reported for the synCTs allowed to assess the structural similarity (versus the source CBCTs). The values 

of DSC and HD reported for the synCT, while expectedly inferior to those on real CT and CBCT, were of 565 

similar magnitude indicating that the automated segmentation worked well on all datasets. The proposed 

synCT approach outperformed the baseline synCT demonstrating better structural similarity to the CBCT 

segmentations. The average intensity data allowed us to assess the intensity similarity between the 

synCTs and planning CTs for different tissue types.  The proposed synCT method resulted in more closely 

matched mean HU value to planning CT for soft tissue and lungs. However, the proposed synCT method 570 

was found to slightly underestimate the skeleton Hus and to overestimate GI air intensities. Both methods 

achieved similar levels of standard deviations for all investigated tissue types (Supplementary Data D, 

Figure S1). 
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Table 3- Numerical evaluation of the baseline and proposed synCT in terms of structure-based metrics. DSC and HD were 
calculated between ground truth contours (on CT and CBCT) and automatically generated contours (on CT, CBCT and synCT). The 575 
mean HU values were calculated within the ground truth contours (on CT and CBCT). 

  Planning CT CBCT Baseline synCT Proposed synCT 

 

Soft tissues 

DSC 0.973±0.007 0.978±0.006 0.971±0.007 0.974±0.007 

HD 1.5±0.6 1.4±0.5 2.3±1.0 2.1±1.1 

Mean HU 2±1 0±26 24±20 9±20 

Skeleton DSC 0.896±0.011 0.889±0.022 0.849±0.024 0.862±0.020 

HD 1.5±0.8 2.0±2.5 5.9±6.6 3.4±5.2 

Mean HU 350±30 359±33 328±27 313±27 

GI air DSC 0.910±0.055 0.908±0.037 0.846±0.052 0.872±0.053 

HD 3.0±4.9 2.7±3.2 9.3±7.2 6.1±6.5 

Mean HU -814±76 -737±93 -775±113 -756±95 

Lungs DSC 0.956±0.017 0.928±0.034 0.898±0.055 0.898±0.059 

HD 2.1±0.9 2.2±0.6 3.9±2.2 3.5±2.0 

Mean HU -526±99 -573±67 -497±74 -547±71 

 

 

3.3.3 Radiotherapy-specific metrics 
 580 

The RMS error in relative WET differences between vCT and CBCT, baseline synCT and proposed synCT 

was 3.6±2.6%, 3.7±2.8% and 3.3±2.4%, respectively, when considering all gantry angles and all individual 

slices. The 𝛥𝑊𝐸𝑇 for different gantry angles is shown in Figure 10. The WET measured for the proposed 

synCT best matches the vCT WET for anterior and anterior-oblique angles (0° to 90° and 270° to 360°), 

likely due to its better representation of the location of GI air pockets. The differences are smaller in the 585 

posterior direction, with baseline synCT being more similar to vCT in terms of WET for gantry angles 

between 160° and 270°. This is likely due to HU differences in high-intensity regions for those angles, such 

as vertebrae and liver and kidneys (in contrast enhanced scans).  
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Figure 10- Polar map of the RMS value of the relative water equivalent thickness WET differences between virtual CT (ground-590 
truth) and CBCT and deep-learning synthetic images. 

 

4 Discussion 

 

We proposed and thoroughly evaluated a novel method for generating synthetic CTs from CBCTs based 595 

on cycleGANs. To the best of our knowledge, this is the first study to incorporate structural consistency 

loss and global residual learning with weakly paired data approach into CBCT-to-CT synthesis. Our novel 

smart slice selection framework was shown to facilitate training in diverse populations by allowing one to 

combine data from multiple patient cohorts in an optimal and efficient strategy. Global residuals learning 

combined with structural consistency loss helped to improve the structure correspondence between the 600 

input and output images, producing synthetic CT images that more closely preserve the structural 

information of the CBCT. 

 

To the best of our knowledge, (Uh et al. 2021) was the only other study that has also investigated using 

cycleGANs for CBCT-to-CT synthesis in children and young adults undergoing PBT. In their study models 605 

were trained for the abdomen and pelvis data using a configuration of cycleGAN very close to what we 
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defined as the baseline method in our study (a key difference was the use of ResNet as generator). The 

authors followed similar pre-processing steps to what we employed, such as intensity clipping, excluding 

information external to the body and applying axial normalisation (but only in left-right direction). They 

reported a mean absolute error of 47±7 HU, excluding regions with GI air, for their best configuration. We 610 

report slightly higher differences in our study (55±17 HU). This is likely due to two key differences between 

our studies which make the results hard to compare directly. First, the CT images used by us for training 

and evaluation included scans both with and without contrast enhancement, which could result in 

increased pixel intensity values for some organs (for instance liver or kidneys). Second, we did not exclude 

GI air regions from the analysis, which are the most difficult regions to synthesise. Regarding the integrity 615 

of GI air pocket location in the synCT, (Uh et al. 2021) reported a DSC in the range 0.71 – 0.88, compared 

to 0.82 – 0.92 (average, 0.87±0.05) in our study, which indicates that our method was more successful at 

preserving GI air pocket location in the synthetic images. In general, their results indicate structural 

consistency problems, just as we found with our baseline cycleGAN, such as bones disappearing, or 

pockets of GI air being introduced at wrong locations. Finally, there are also important differences in the 620 

methods used to report the quality of the synCTs – our analysis of image quality metrics is more 

comprehensive but did not explore in as much detail dosimetric aspects. 

 

In the ablation experiment we observed steady improvements in the performance of the framework by 

introducing all the proposed elements to the cycleGAN framework. The largest quantitative improvement 625 

was observed after incorporating the concept of global residuals learning for both generator 

architectures. Global residuals reframed the problem from generating synthetic images to improving the 

quality of images (or degrading them in case of CT to CBCT synthesis arm of the cycleGANs). The 

assumption here is that CBCT represents a corrupted CT image with unwanted artefacts and that the 

generators can estimate only those artefacts to unveil the underlaying artefacts free CT image. Our study 630 

demonstrated that this approach was suitable for CBCT to CT synthesis as both imaging modalities share 

physical acquisition principles.  

 

 A limitation of using cycleGANs in medical image synthesis is that the original implementation focused on 

transition of the images from one domain to another and did not explicitly promote structural consistency 635 

between source and synthetic images. As consequence the output images may have fit well into the target 

domain visually but lacked structural details of the input images. To ensure structural similarity between 

CBCT and synCT images, our synthesis framework included a structure consistency loss that optimised the 

Page 28 of 41AUTHOR SUBMITTED MANUSCRIPT - PMB-114342.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



29 
 

LNCC between the input and synthetic images. Although LNCC is commonly used in many medical image 

analysis applications, to the best of our knowledge its application with the image processing for CBCT-to-640 

CT synthesis has not been proposed before. Alternative approaches to explicitly encourage direct 

correspondence between source and synthetic images included using similarity measures such as 

Modality Independent Neighbourhood Descriptor (Shrivastava et al. 2017), mean absolute error, gradient 

difference (Wang et al. 2019; Dai et al. 2020), correlation coefficients (Y Ge et al. 2019) and gradient 

correlation (Hiasa et al. 2018b). (L. Chen et al. 2020) combined mean absolute error loss with structure 645 

dissimilarity loss to encourage whole structure wise similarity. (Ouyang et al. 2019) employed a feature-

matching technique where a new objective function was specified. In this case the generator encouraged 

the synthetic images to match the expected value of features on the intermediate layers instead of forcing 

it on the final output of the discriminator. The MaxInfo loss function proposed in (X. Chen et al. 2016) was 

applied to ensure correct pixel intensities of synthetic images. This function can be considered as an 650 

equivalent of histogram matching via informative maximising, working as an additional constrain to make 

the images follow the same intensity distribution. An alternative approach is to employ some sort of 

shape-consistency loss, which promotes similarity between annotated features, such as body contours 

(Yunhao Ge et al. 2019), organ sub-volumes (Z. Zhang, Yang, and Zheng, n.d.; Cai et al. 2019) or different 

tissue types (Fang Liu et al. 2018) between source and synthetic images. This is often employed in 655 

conjunction with segmentation networks to facilitate feature identification during the cycleGANS training. 

Changes to the generator architecture to capture multi-scale information have also been proposed, 

together with changes to the loss function to generate less blurry images (Lei et al. 2019). Others have 

used attention gates (Oktay et al. 2018) incorporated in the generated architecture to learn structural 

variations, improving prediction of the image intensities and organ boundaries (Y. Liu et al. 2020). Some 660 

solutions however are only valid when paired data is used for training, as the synthetic image is compared 

to some sort of ground-truth image. Our proposed approach with LNCC is task dedicated, making use of 

a well-suited similarity measure known to work well for two image modalities between which a linear 

relationship can be established. Additionally, the embedding gaussian noise and smoothing of the images 

helped to enhance global structure preservation. Our results showed that the introduction of the 665 

structure consistency loss improved the results for every configuration tested. 

  

To address limitations in data available for disease specific cohorts, we proposed a weakly paired data 

method for training data . (Maspero, Houweling, et al. 2020) also proposed combining multiple datasets 

from different anatomical sites to generate a single, generalised network capable of performing on 670 
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multiple regions. In their study, scans from 33 head and neck, 33 lung and 33 breast subjects, with 15/8/10 

split per site were used training validation and testing of a cycleGAN. The reported differences between 

single-site networks and a combined network trained on a dataset of combined sites were of up to 3HU 

(mean value), and no statistical significance was reported. Similarly, (Uh et al. 2021) used data from two 

patient groups to correct CBCT scans of children and young adults (28 abdominal and 36 pelvic, 64 cases 675 

in total). They found that the model trained on the combined dataset significantly outperformed the 

abdomen and pelvis models in terms of mean absolute HU error of the corrected CBCT from 14 testing 

patients (47±7 HU versus 51±8 HU). It is possible that the relatively small number of cases per site used 

for training led to the conclusion that including all the sites in the training results in a better method 

performance. Moreover, both studies used relatively well-balanced datasets with roughly equal number 680 

of cases for each anatomical site in included (Maspero, Houweling, et al. 2020) and 2:3 (Uh et al. 2021)). 

Our proposed approach, where images are initially registered to a common reference space and then 

sampled only from a chosen anatomical region is a less naïve technique of combining cases from different 

anatomical sites. Multiple anatomical regions can be combined in a systematic manner, such that all 

regions are similarly represented during training. The weakly paired approach improved the performance 685 

in the ablation study regardless of the chosen generator architecture and other settings. This 

demonstrates that it is advantageous to carefully consider presentation strategies of the data to the 

networks. There is merit into making the training datasets representative, not only larger, as more data 

did not necessarily lead to better performance. 

 690 

Training an unsupervised model is a difficult task. We opted to train all models for a fixed number of 

epochs, while reducing learning rate, stabilizing the networks. Since all methods compared were based 

on the same generator architecture, therefore it was a reliable comparison of their performance. Early 

stopping, based on a metric calculated on a validation subset, could be an alternative, however the choice 

of the metric or a combination of multiple metrics becomes another challenge and variable within the 695 

framework. Our approach with a fixed number of epochs made it also consistent with other works in the 

field (Maspero, Bentvelzen, et al. 2020; Uh et al. 2021). 

 

The acquisition of paired CBCT and CT images is not easily feasible. With paired data the synthesis could 

be framed as a supervised regression problem. (Qiu et al. 2021) performed deformable image registration 700 

between planning CTs and CBCTs, which resulted in pseudo paired data and allowed for fully supervised 
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learning. Such an approach is heavily dependent on the quality of the registration between planning CT 

and CBCT. That might be challenging and in the case of abdomen with significant bowel gas changes, 

require additional postprocessing steps and still not always successful. These challenges were 

demonstrated in our work when generating our virtual CTs for evaluation purposes. While the DIR-based 705 

vCT grossly corrected for both structural and intensity differences between pairs of CT and CBCT scans, it 

was not a perfect representation of a CT-like scan paired to a CBCT. Therefore, unsupervised approaches, 

where paired data are not required are better suited for the proposed task. 

 

The segmentation-based evaluation allowed to explore in more detail how well different types of tissue 710 

are represented in the synCTs. It is important to note that our aim was not to develop a segmentation 

algorithm per se, but to generate quantitative and automated measures of the structural and intensity 

quality of the synCT. There were challenges associated with manual and automated segmentation of each 

tissue type. Segmentation of GI air pockets is associated with uncertainties due to scatter and motion 

artifacts. It is not always clear from a low quality CBCT where to draw a boundary between gas and tissue. 715 

For example, we could observe that the automated GI air segmentation was able to split air regions into 

individual air pockets, while manual segmentations was more likely to connect them into larger pockets. 

Furthermore, visual inspection indicated mismatch between the methods in identifying small pockets of 

gas. Errors in the automatic skeleton segmentation mostly originated from contrast agents been classified 

as skeleton. Our pre-processing step, where most of contrast agent areas were replaced with water 720 

equivalent HU values, contributed to minimise issues in skeleton segmentation. The lung volumes were 

underrepresented in the testing dataset since only a small fraction of the abdominal scans will contain 

this tissue type. Motion artifacts at the diaphragm also contributed to making it increasingly challenging 

to segment the lungs both manually and automatically. DSC and HD metrics were calculated on small 

sections of the total lung size which may be reflected in the scores. While these uncertainties may impact 725 

the results, in our opinion the methodology employed is accurate enough to compare structural similarity 

between the different synthesis methods. 

 

The analysis of the HUs for individual body tissue types indicated that some challenges remain in terms of 

generating synthetic CTs with the same intensity information of the matched planning CT. For instance, 730 

the mean value of the skeleton in CT was 359 HU, whereas in the proposed synCT it was 313 HU. Intensity 

mismatch may propagate to dosimetric errors. While our method led to relatively small WET differences 

(when compared to the baseline synCT) particularly for anterior proton beams, there were no clear 
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advantages for anterior proton beams. These angles could be associated path lengths that cross the 

vertebrae and organs such as liver and kidneys (in contrast enhanced scans), where our HUs errors were 735 

more pronounced. The observed differences could potentially be addressed by applying global histogram 

normalisations (Zimmerman et al. 1988; Sandfort et al. 2019) as a post processing or by introducing 

additional loss function within the optimisation framework (W. Li et al. 2019; Afifi, Brubaker, and Brown 

2020).   

 740 

One of the limitations observed in our study was occasional inconsistency between adjacent slices. Our 

models were trained with real world CT and CBCT images from a variety of scanners and acquisition 

settings. CT images used for training in our approach were both with and without contrast agent injection, 

which could lead to inconsistencies where some slices were generated with contrast and others not. This 

was not entirely unexpected, as our approach was 2D with no explicit adjacent slice consistency enforced. 745 

With access to larger datasets, this could be solved by improving the selection of CT scans used for training 

and ensuring that only the inclusion of scans with or without contrast. As an alternative approach to 

address this limitation, we are considering exploring 3D approach as that will improve consistency but 

would come with additional burden with larger memory and computational requirements. The pre-

processing method applied to all images corrected for the presence of elements such as anaesthesia 750 

equipment, shunts, and lines. Since these elements are very common in our cohort, we realised during 

our preliminary studies that the networks learned to spontaneously generate them in the synCT even 

when they were not present in the source CBCT. We expect that this is more likely to happen when the 

networks do not enforce structure similarity, so it is likely that this step is not required to train our 

proposed network. This should be investigated in the future. Clinically, these elements are avoided by the 755 

treatment beams if possible but, if they are inside the treatment volumes, the typical procedure is to 

override their density for accurate dose calculations. The impact of incorrect representation in synCTs 

could be corrected simply by propagating contours from the source CBCT. The proposed framework could 

also be further improved by finetuning hyperparameters of the optimisation stage (learning rate and its 

scheduler, optimiser and its parameters, etc) at data presentation (data augmentation parameters) and 760 

loss calculation (individual loss weights). We decided to keep them fixed and for all the experiments after 

initial parameters search for more interpretable results presentation.    

 

In the future it would be interesting to investigate the performance of the cycleGAN models in low dose 

CBCTs. In paediatric radiotherapy lower dose protocols are of interest (Bryce-Atkinson et al. 2021) but 765 
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may potentially result in lower quality and even more challenging task. (Gao et al. 2021) investigated 

different GAN configurations in CBCT-to-CT synthesis in the thorax, noting that the increased imaging 

artifacts inherent to lower dose CBCT protocols will disturb image translation tasks.  

 

 770 

5 Conclusions 
 

The proposed framework showed improved quality of synCTs generated from CBCTs when employing 

strategies to preserve structural consistency and to account for variable field-of-view in the training 

dataset. The reformulation of the problem from generating synthetic images to refining image quality by 775 

applying global residuals only learning lead to the biggest improvements. Our study demonstrated the 

advantages of thought-through data pre-processing and presentation to the AI method to improve its 

performance on challenging real-world applications, with scarce and diverse data. A multi-step and multi-

layer evaluation allowed us to prove that the proposed method results in more realistic synCT generation. 

Further evaluation using metrics of anatomical plausibility and realism, as well as impact on dose 780 

calculations, is needed to provide insights into clinical utility. 
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