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Abstract
Background: Particle imaging can increase precision in proton and ion therapy.
Interactions with nuclei in the imaged object increase image noise and reduce
image quality,especially for multinucleon ions that can fragment,such as helium.
Purpose: This work proposes a particle imaging filter,referred to as the Prior Fil-
ter,based on using prior information in the form of an estimated relative stopping
power (RSP) map and the principles of electromagnetic interaction, to iden-
tify particles that have undergone nuclear interaction. The particles identified
as having undergone nuclear interactions are then excluded from the image
reconstruction, reducing the image noise.
Methods: The Prior Filter uses Fermi–Eyges scattering and Tschalär straggling
theories to determine the likelihood that a particle only interacts electromag-
netically. A threshold is then set to reject those particles with a low likelihood.
The filter was evaluated and compared with a filter that estimates this likelihood
based on the measured distribution of energy and scattering angle within pixels,
commonly implemented as the 3𝜎 filter. Reconstructed radiographs from simu-
lated data of a 20-cm water cylinder and an anthropomorphic chest phantom
were generated with both protons and helium ions to assess the effect of the fil-
ters on noise reduction. The simulation also allowed assessment of secondary
particle removal through the particle histories.Experimental data were acquired
of the Catphan CTP 404 Sensitometry phantom using the U.S.proton CT (pCT)
collaboration prototype scanner. The proton and helium images were filtered
with both the prior filtering method and a state-of -the-art method including an
implementation of the 3𝜎 filter. For both cases, a dE-E telescope filter, designed
for this type of detector, was also applied.
Results: The proton radiographs showed a small reduction in noise (1 mm of
water-equivalent thickness [WET]) but a larger reduction in helium radiographs
(up to 5–6 mm of WET) due to better secondary filtering.The proton and helium
CT images reflected this, with similar noise at the center of the phantom (0.02
RSP) for the proton images and an RSP noise of 0.03 for the proposed filter
and 0.06 for the 3𝜎 filter in the helium images. Images reconstructed from data
with a dose reduction, up to a factor of 9, maintained a lower noise level using
the Prior Filter over the state-of -the-art filtering method.
Conclusions: The proposed filter results in images with equal or reduced noise
compared to those that have undergone a filtering method typical of current
particle imaging studies. This work also demonstrates that the proposed filter
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2 LIKELIHOOD-BASED PARTICLE IMAGING FILTER

maintains better performance against the state of the art with up to a nine-fold
dose reduction.

KEYWORDS
bespoke filter, helium CT, ion imaging, noise reduction, proton CT

1 INTRODUCTION

Ion computed tomography is an imaging method that
uses charged particles (often protons or helium ions)
to create a 3D map of material parameters (stopping
power, scattering power, nuclear attenuation, straggling
in reference to water) from an object.1 It presents sev-
eral advantageous properties compared to conventional
X-ray CT imaging, among which the three most impor-
tant are (1) a lower imaging dose,2,3 (2) low sensitivity
to metal or cupping artifacts usually present in X-ray
CT and (3) the possibility to reconstruct multiple images
from a single-acquisition.1 It has been proposed for a
variety of clinical applications, such as particle therapy
treatment planning,4 multimodality imaging,5 dynamic
motion tracking,6,7 and patient positioning.

Ion tomography image formation is different from
that of x-ray tomography, relying on charged particles
that interact with nuclei through the Coulomb scatter-
ing processes and lose energy through interactions
with atomic electrons, to form the reconstructed image.
The nuclei scattering process induces a blurring in
the reconstructed image, which depends on the prop-
erties of the chosen ion.8 Therefore, particle imaging
is commonly used as a single-event modality, to facil-
itate path reconstruction and improve image quality.
Since every recorded particle contributes to the final
image, this method of reconstruction also minimizes
the required dose to produce high-quality images. Still,
some processes undergone by the charged particles
through the medium induce noise in the reconstructed
image, such as large-angle Coulomb scattering or
nuclear interactions.

To maximize image quality in particle imaging for its
promising applications, bespoke filters must be devel-
oped that account for the different processes and the
single-event nature of this modality. Commonly, data fil-
tering in particle imaging is based on the mean and
standard deviation of the distribution of the measured
energy loss and angular displacement of particles that
are binned based on their measured positions. This
follows the reasoning that the central part of both
energy straggling and angular distribution approximate
Gaussian distributions. Particles that have undergone
large-angle scattering or nuclear fragmentation are not
likely to be well represented by this distribution. This
allows particle filtering based on their distance from
the distribution mean by applying a strict cutoff (𝜎t),
such as a multiple of the distribution’s standard devi-

ation, beyond which they are not included in image
reconstruction.

A filter of this kind was initially presented by Schulte
et al.,3 where a threshold of 𝜎t = 3𝜎 was explored and
later again investigated by Schulte et al.9 with a thresh-
old of 𝜎t = 2𝜎, but in theory, any cut off value can be
used. It may, however, perform poorly in a heteroge-
neous medium, where the distribution of all particles is
a poor surrogate for the state of an individual particle.10

Despite being the filter approach used most often in
literature, there is no agreed-upon standard of how to
perform the 3𝜎 filtering. For example, the binning of the
particles to form the distributions underlying the filter-
ing can be performed based on the particle’s position
on the front or rear tracker, or any position in between,
using an estimate of their path. The position where the
particles are binned has a considerable effect on the
point-spread function for features located at different
depths in the object,11 and, therefore, also the compu-
tation of the pixel-wise standard deviation underlying
the filtering. Finally, when the pixel-wise distributions are
formed, the standard deviation can be computed in dif-
ferent ways. Computing the standard deviation directly
from the distribution variance is highly sensitive to the
tails of the non-Gaussian distributions of WEPL12 and
angular deviation. This issue is amplified for experi-
mental pCT setups, due to additional detector noise. In
literature, rough cuts to the distribution are, therefore,
sometimes applied prior to the variance calculation.13

Alternatively, the standard deviation can be computed
from a specific fall-off point of the distribution, for exam-
ple, the FWHM. However, while this is more robust to
distribution tails,14 it is nonideal when there is more than
one peak in the distribution. For this work, this type of
filter will be referred to as the “sigma filter,” to reflect
the fact that it works by making predictions based on
the standard deviation of distributions measured at posi-
tions in the projection data,when not referring to the filter
implemented with a specific threshold.

To improve on the sigma-based filtering, Volz et al.
have introduced, first for helium ions15 and later for
protons,13 particle discrimination using a longitudinally
segmented calorimeter as a dE-E telescope. They have
demonstrated that it is possible to discriminate the
incident particle charge and mass and consequently
identify it for acceptance/rejection. This method has
shown highly promising results in the reconstruction,
reducing the noise drastically in the image.However, this
method relies on projectile mass/charge variation and is
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LIKELIHOOD-BASED PARTICLE IMAGING FILTER 3

not able to discriminate (1) nuclear elastic events, (2)
nuclear inelastic events where the projectile integrity is
conserved as well as (3) large angle Coulomb scattering
events. Therefore, further filtering is required to achieve
optimal image quality.

This work presents a novel, physics-based, filter for
particle imaging that (1) models the interactions of
charged ions based on electromagnetic processes and
(2) calculates a likelihood of the difference between
detected and predicted characteristics,for individual par-
ticles, based on the model. Similarly, to the sigma filter,
this filter uses Gaussian distributions to try and iden-
tify particles that have undergone nuclear interactions or
large angle scattering. However, rather than comparing
each particle to others in its detected bin, the proposed
filter bases its likelihood estimate on how well the mea-
sured particle position,deflection,and energy loss agree
with predicted values obtained through a model of elec-
tromagnetic interactions and a prior estimate of the
imaged object. The aim of this work is to further reduce
the effects of secondary particles and large-angle scat-
tering on image quality,and enable low-dose high-quality
tomographic particle imaging.

2 MATERIALS AND METHODS

The filter as implemented in this work modeled the elec-
tromagnetic interactions of primary particles to identify
particles that had undergone nuclear interactions and
exclude them from the reconstruction. The model used
prior information, namely an estimated relative stopping
power (RSP) map, to predict the measured exit energy
and position of each individual particle used in image
acquisition, and estimate the likelihood it is a primary
particle, as described in Section 2.1. To evaluate the fil-
ter, simulated and experimental particle images (proton
and helium ions) were reconstructed, after being filtered
using the proposed filter (referred to as prior filtering)
and compared to radiographs being reconstructed after
filtering with the state-of -the-art sigma filter. Simulated
radiographs of a water cylinder and the anthropomor-
phic XCAT phantom16 (Section 2.2) were used to assess
intrapixel noise and the efficiency of the two filters
to remove secondary particles. For the prior informa-
tion required to filter the simulated data, an analytical
description of the water cylinder with an RSP of 1.0
was used and the voxelized phantom itself was used for
the XCAT phantom.The experimental data (Section 2.3)
include tomographic reconstructions of the Catphan
CTP404 sensitometry module,using the distance-driven
binning (DDB) reconstruction algorithm17 (Section 2.4),
to generate back projected tomographs of the image
noise for filter evaluation. The prior information was
obtained by first reconstructing a tomograph using state-
of -the-art filters. A full description of how each filter is
applied and the processing order is given in Section 2.5.

F IGURE 1 A visual representation of an ion computed
tomography apparatus, and parameters used in the primary model,
used in this study. Shown are the pair of double-layered detection
planes, the beam source rotating around the phantom, the entrance
(Y0), the measured (Y1) and predicted (Y0R0) parameter vectors, the
calculated standard deviation in the Y direction (𝜎y ) as well as the
prior information, a previous reconstruction of the phantom with state
of the art filtering for this study, (Ω).

2.1 Primary model: Electromagnetic
interactions

A visualization of the ion tomography apparatus and
the parameters used for the model of the interaction of
primary particles is shown in Figure 1. The primary par-
ticles will refer to those that have undergone small-angle
electromagnetic interactions only and all others will be
referred to as secondaries.The model for these particles
is split into the Coulomb scattering and energy loss pro-
cesses, respectively, making use of Fermi–Eyges and
Bethe–Bloch/Vavilov theories.18,19 It is defined as a mul-
tivariate normal distribution centered on the difference
between the measurements and their expectations. The
predicted position and direction are projected as a
straight line from the front tracker position and direction
measurement (dashed line in Figure 1). Their standard
deviation is obtained from the Fermi–Eyges theory20

(shaded region in Figure 1). The expected energy out is
acquired by superposing a path estimate21 (solid line in
Figure 1) to a prior image of the phantom (Ω) combined
with the Bethe–Bloch equation. The standard deviation
of the energy loss is obtained from the Tschalär theory.12

The primary model can, therefore, be expressed as

prim. = 2(ΔY,Σ) ⋅2(ΔZ,Σ) ⋅ (ΔE,𝜎E) (1)

In Equation (1), the operator  represents the single
variate normal distribution and 2 the bivariate nor-
mal distribution. Let us define a parameter vector as
Y = (y, 𝜃y) where y is the position, and 𝜃y is the com-
ponent of the particle’s direction along the y-axis. Y0
represents this position as measured by the front tracker,
at x = x0, and Y1 the position as measured by the rear
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4 LIKELIHOOD-BASED PARTICLE IMAGING FILTER

tracker at x = x1. ΔY and ΔZ represent the difference
between the exit measured parameter vector and the
predicted one, respectively, in the lateral and longitudinal
axis defined in Section 2.1.1.Σ is the co-variance matrix,
which is identical in both dimensions and is defined in
Section 2.1.1. ΔE is the difference between the mea-
sured and predicted energy loss and 𝜎E represents the
energy loss standard deviation as described in Sec-
tion 2.1.2. Using this model to calculate a likelihood for
each particle, given predicted exit vectors and energy
loss, particles that fall below a likelihood threshold can
be rejected as likely to have undergone processes not
included in this model, that is, large-angle scattering or
nuclear interactions. This threshold can be placed on
the overall likelihood or on the individual predictions (i.e.,
 < Pt or prim. < P3

t where Pt is the threshold value).
For clarity, the threshold values quoted later in this work
will be the threshold applied to each of the individual
predictions. Due to the use of normal distributions to
calculate the likelihood, the Prior Filter threshold value
(Pt) could be expressed in terms of standard deviation,
that is, 1𝜎 would be Pt = 0.68. To represent the filter as
implemented and to avoid confusion with the sigma filter
threshold (𝜎t) the threshold values used in this work will
be reported as a probability value between 0 and 1.

2.1.1 Fermi–Eyges lateral and angular
displacement model

The multiple Coulomb scattering is modeled using the
Eyges solution20 to Fermi theory22 that models small
angle scattering in a multivariate normal distribution. A
particle can be deflected in any direction in two dimen-
sions perpendicular to its path. Here, the scattering
distribution will be defined for a single plane repre-
senting one of the two perpendicular dimensions. The
orthogonal scattering distribution will be assumed to be
predicted by the same rules. The scattering in the two
perpendicular planes is uncorrelated and can thus be
treated independently. The multivariate normal function
can be defined as

2(ΔY,Σy) =
exp

(
−1

2
(ΔY )TΣ−1(ΔY )

)
√

(2𝜋)2|Σ| (2)

where 2 represents a bivariate normal distribution,ΔY
is calculated from the parameter vector Y1 = (y1, 𝜃y1),
the exit measurement, and Y0 = (y0, 𝜃y0), the entrance
measurement.

ΔY = Y1 − R0Y0 (3)

R0 is defined as the transvection matrix that projects the
entrance measurement to the exit tracker, to form the

predicted exit position, and is defined as

R0 =

(
1 x1 − x0

0 1

)
(4)

The covariance matrix is defined as

Σ =

(
𝜎2

y 𝜎2
y−𝜃

𝜎2
y−𝜃 𝜎2

𝜃

)
(5)

The moments of the distribution are defined with
Highland’s correction23 to the Eyges MCS theory24:

𝜎2
𝜃
=

(
1 +

1
9

ln

(
∫

x1

x0

dx
X0(x)

))2

∫
x1

0

(
z ⋅ E0

pv(x)

)2
dx

X0(x)
(6)

𝜎2
y−𝜃 =

(
1 +

1
9

ln

(
∫

x1

x0

dx
X0(x)

))2

∫
x1

0

(
z ⋅ E0

pv(x)

)2
(x − x1)dx

X0(x)
(7)

𝜎2
y =

(
1 +

1
9

ln

(
∫

x1

x0

dx
X0(x)

))2

∫
x1

0

(
z ⋅ E0

pv(x)

)2
(x − x1)2dx

X0(x)
(8)

The term X0(x) represents the radiation length of the
material at depth x,which was approximated to be water
whenever inside the object (36.1 cm) and air outside the
object (3.5 × 104 cm). This assumption is not expected
to greatly affect the path reconstruction,as this has been
demonstrated to be an appropriate approximation in
previous work.25 The empirical constant E0 =14.1 MeV
was used as in Gottschalk et al.26 to best represent the
scattering of ions crossing a medium. The term pv(x)
represents the momentum and velocity as a function
of the depth in the material, specific to the investigated
ion. It can be described through the energy function of
the particles throughout the medium. In this work, the
prior image allows us to generate the pv(x) function and
calculate the integral directly as

pv(x) =
E(x) + 2mIc2

E(x) + mIc2
E(x) (9)

where E(x) is the energy of the ion at depth x and mI
is the rest mass of the ion species used for imaging.
Finally, z represents the charge of the particle for which
the scattering power is calculated.

2.1.2 Energy loss model and energy
straggling

The calculation of the expected energy loss is done by
constructing a maximum likelihood path (MLP) estimate
S(t) through an initial reconstruction of the phantom, fol-
lowing the procedure shown in Collins-Fekete et al.25

This reconstruction provides the prior-knowledge RSP
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LIKELIHOOD-BASED PARTICLE IMAGING FILTER 5

map. The predicted exit energy of each particle can
be calculated following the continuous-slowing-down
approximation as

Epred. = Einit − ∫
t

0
RSP(S(t))SP(Iw, E(S(t))dt (10)

The parameterization of the MLP, S(t), using a phe-
nomenological adaptation of a cubic spline as proposed
by Collins-Fekete et al.21 was used combined with a
convex hull to account for the air gap.25,27 Iw is the
water mean excitation energy set at 75 eV for this work,
SP(Iw, E) is the water stopping power at a given energy
E, Einit is the initial energy. RSP(S(t)) is the local RSP,
which is taken from the prior-knowledge RSP map along
the path estimate of the particle.

The energy loss likelihood is defined by the differ-
ence between the expected exit energy (Equation 10)
and the measured energy, with the modeled fluctuation
around this value (Equation 11). For two protons follow-
ing an identical path through a medium, the amount of
energy loss is subject to two sources of fluctuations:The
number of proton–electron collisions can fluctuate sta-
tistically, as well as the energy loss in each collision.
The energy variation introduced by these fluctuations
is called energy straggling. Energy straggling has been
described thoroughly for thin absorbers by Vavilov19 and
approximated for thick absorbers by Tschalär12:

𝜎2
E(Eout) = k2

1(Eout)∫
Eout

E0

k2(Eout)

k3
1(Eout)

dE (11)

where Eout is the energy of an ion exiting the phantom
and k1 and k2 are defined as

k1 =
K

𝛽2(E)

[
ln
(

2mec2

I(S(t))
𝛽2(E)

1 − 𝛽2(E)

)
− 𝛽2(E)

]
, k2 = 𝜂eK

1 − 1∕2𝛽2(E)

1 − 𝛽2(E)
(12)

In this equation, c is the speed of light, 𝛽 is the parti-
cle velocity relative to the speed of light, 𝜂e is the ratio
of the electron density of the medium to the electron
density of water, me is the relativistic electron rest mass,
I(S(t)) is the local medium mean excitation energy,which
in this work is approximated as water (75 eV), and the
constant K= 170 MeV/cm combines various fixed physi-
cal parameters. The likelihood model for the energy loss
of primary particle is defined as

 (ΔE,𝜎E) =
1√

2𝜋𝜎2
E

exp

(
−ΔE2

2𝜎2
E

)
(13)

where ΔE is defined as the difference between the mea-
sured exit energy (Eout) and the predicted exit energy
(Epred).

2.2 Geant4 Monte Carlo simulations

For evaluation, radiograph acquisitions were simulated
using the Geant4 MC code version 10.06.p03.28 200
MeV/u ions (n = 107) in a 30 cm × 30 cm homogeneous
field were simulated through a cylinder of water with a
diameter of 20 cm and the XCAT anthropomorphic body
phantom.16 The phantoms were located at the center of
the two imaging planes, with a 5 cm air gap between
the detectors and the phantom. The detectors in these
simulations were treated as ideal planes; one upstream
and one downstream from the imaged object. The pri-
mary beam was distributed evenly along the phantom
lateral side with no initial angular deviation, neglecting
any beam-line effects. Every particle was recorded with
the process that generated it, the water-equivalent path
length (WEPL),converted from the recorded exit energy,
and both its initial and final position and direction.

The standard physical processes included energy
loss and straggling, following Bethe–Bloch theory, multi-
ple Coulomb scattering based on Lewis theory29 using
the Urban model,30 a definition of parameterized inter-
actions with nuclei and electrons and elastic/inelastic
ion interactions from Geant4 ion dedicated packages.31

The following physics lists were enabled: the standard
electromagnetic option 3 for higher accuracy of elec-
trons, ions, and ion tracking without a magnetic field, the
ions elastic model (G4HadronElasticPhysics) and a mix
of the QMD (G4IonQMDPhysics) and the Bertini/binary
cascade (G4HadronInelasticQBBC) ion models both for
elastic and inelastic collisions. Electrons, neutrons, and
gamma particles were removed from the analysis as
they would be easily removed by existing filters, allow-
ing the analysis to better reflect the more difficult cases.
Finally, one major distinction was introduced within the
Geant4 simulation; particles identified with a hadron
elastic scattering were classified as secondary particles.

2.3 Experimental data

Experimental proton and helium CT data, to test the filter
performance, were available from a recent study con-
ducted with the US pCT collaboration prototype particle
CT scanner32 at the Heidelberg Ion-Beam Therapy Cen-
ter (HIT). A schematic of the experimental acquisition is
shown in Figure 2. The prototype scanner comprised of
eight silicon strip tracking planes (0.228 mm strip pitch),
arranged into a front and a rear tracker, measuring the
position and direction of each particle.The trackers have
an aperture of 350 × 90 mm2,and the distance between
the innermost tracker layers was 334 mm. A five-stage
scintillator placed behind the rear tracker was used to
measure the residual energy/range of each particle after
passing the object.

The five polystyrene scintillator blocks, each 50.8 mm
thick in the beam direction and are read out by a

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16258 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [31/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 LIKELIHOOD-BASED PARTICLE IMAGING FILTER

F IGURE 2 Schematic of the experimental setup for the
acquisition proton and helium tomographs of the CTP404 module
using the U.S. pCT collaboration scanner. pCT, proton CT.

single photo-multiplier, are arranged sequentially such
that the thickness of each stage crossed completely by
a particle directly contributes to the measurement of
its residual range. Only in the stage, where the particle
stopped, is the measured energy deposit relevant, relax-
ing precision requirements of the detector readout and
improving overall image noise.33

The prototype featured a remote-controlled rotating
platform that enabled the acquisition of full CT scans
at horizontal beam lines, either in stepped or continu-
ous acquisition mode. For this work, pCT and HeCTs
scans of a Catphan (the Phantom Laboratory, Salem,
NY, USA) CTP404 sensitometry module were acquired
in stepped scan mode from 360 projections separated at
1◦ steps. The phantom was a 150 mm diameter, 20 mm
tall epoxy cylinder that contained six different cylindri-
cal plastic inserts. RSP reference values for each of the
inserts were available from Giacometti et al.34

The initial energy was 200.11 MeV for protons, and
200.38 MeV/u for helium ions.Each projection consisted
of approximately 1.4×106 irradiated particles at ∼ 700-
kHz particle rate for helium ions, and 3.1 × 106 particles
irradiated at ∼ 1.35-MHz particle rate for protons. Irradi-
ation fields of 200×50 mm2 were generated employing
the HIT raster scanning technique. Thereby, the beam
FWHM was 10.2 mm for helium ions and 12.8 mm for
protons. The lateral spacing between spots was 3 mm.
The differences in particle rates were due to vendor-set
sensitivity limits in the beam monitoring systems regu-
lating the raster scanning. The high proton rate resulted
in reduced dose efficiency for pCT compared to other
published literature on pCT with the scanner,due to both
detector dead time and event pile-up.

Before image acquisition, the five-stage energy/range
detector was calibrated to water-equivalent thickness
(WET) using a dedicated setup of known geome-
try and RSP. The procedure is detailed in the recent
technical report by Schultze et al.,35 and results in indi-
vidual energy-to-WET calibration curves for each of
the five scintillator stages. When processing each set

of projection data, first, an online re-calibration of the
photo-multiplier gain is performed using particles that
missed the phantom to ensure the highest accuracy of
the energy measurement. Then, the energy output from
the stage where a particular event stopped was used to
assign it a WET value from the calibration curve.

All experimental data made use of the dE-E telescope
filter as described by Volz et al.,13,15 which utilizes the
multiple segments to remove secondary particles, pro-
viding the best impression of image quality achievable.
However, for completeness, the CT reconstructions with-
out use of the dE-E filter are included in Appendix A.The
simulated data does not use this filter due to the use of
ideal plane detectors in the simulation.

2.4 CT and tomographic noise
reconstruction

For tomographic reconstruction, the DDB method of Rit
et al.17 was used. This reconstruction technique was
chosen over nonlinear reconstruction methods to allow
back projection of the pixel noise and better evaluate the
Prior Filter performance. The reconstruction grid used
320 bins in both the y and z direction with a field of
view covering 200 mm (0.625 mm in-plane pixel size)
with 1 mm slices in the x direction. The implementation
of this reconstruction binned the WEPL values of each
particle along the MLP parameterized using the cubic
spline method of Collins-Fekete et al.21 for each projec-
tion,before convolving it with the Ram-Lak filter.36 All the
projections were then summed to generate the tomo-
graph.To reconstruct the tomographic noise, the binning
was conducted using the same method,but the standard
error of the WET calculated using all the particles for
each bin of a projection (𝜎2

𝜃,WET(y)) was back-projected
convolved with the squared Ram-Lak filter function37,38

𝜎2(x, y) = {
𝜎2
𝜃,WET(y)

ND(y)
⊛ h2(y)}. (14)

where  represents the back-projection operator, h rep-
resents the filtering function, and 𝜎𝜃,WET represents the
standard error in each bin (expressed in WET) for a
defined position/projection angle. From the variance, the
intrapixel noise can be calculated by taking the square
root.The sigma filter and Prior Filter were applied before
reconstructing with the DDB algorithm. The reconstruc-
tion as implemented here assumes a parallel beam,due
to the distance from the scanning magnets to the cen-
ter of the phantom (6.5 m and 7.2 m) being much larger
than the diameter of the phantom. Also, only the cen-
tral slice was used in the analysis to minimize the cone
beam effects in the vertical direction.
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LIKELIHOOD-BASED PARTICLE IMAGING FILTER 7

2.5 Filtering and comparison metrics

2.5.1 State-of -the-art filter steps

Prior to applying any of the filters under investigation,
all cases were filtered with hard cuts at 0 and 260 mm
WEPL to remove physically nonmeaningful values from
the dataset. The state-of -the-art filtering included the
sigma filter (investigated up to thresholds (𝜎t) of 10𝜎)
with radiographs and tomographs presented using the
3𝜎 threshold suggested by Schulte et al.9 and used for
the DROP-TVS reconstruction.39 In the rest of the text,
when referring to the sigma filter being used with a
threshold (𝜎t) of 3𝜎 this filter will be named as the 3𝜎
filter and when no specific threshold is being applied it
will continue to be referred to as the sigma filter. The
dE-E telescope filter was also applied to the state-of -
the-art datasets to identify and remove ions resulting
from fragmentation13,15 in the experimental data.For the
sigma-based filtering, each projection was binned into a
grid with bins of 1 mm × 1 mm based on their mea-
sured exit positions. The mean and standard deviation
of both WEPL and scattering angle (𝜃s) were calculated
for each bin.

𝜃s =

√(
𝜃y,0 − 𝜃y,1

)2
+
(
𝜃z,0 − 𝜃z,1

)2
(15)

To avoid the effects of the distribution tails on the
calculation of parameters in the sigma filter, for each
bin, values were included in the calculation of mean
and standard deviation if they fell within 0.7 × the bin
mode up to 1.3 × the bin mode within their bin.13 For
the data cuts, any particles with a WEPL or scatter-
ing angle that lies outside the threshold (𝜎t) for its bin
were removed prior to reconstruction. The filtered data
were then used to reconstruct 2D radiographs and 3D
tomography images.As discussed in Section 1,there are
inconsistent methods used in implementing the sigma
filter in the literature. Although this one has been cho-
sen for a full investigation, due to its common usage, a
comparison to other implementations has been included
in Appendix B.

2.5.2 Prior filter steps

As with the state-of -the-art filtering, hard cuts at 0 and
260 mm WEPL were made to remove unrealistic val-
ues before applying any other filters. In order to use
the proposed filter, prior information (i.e., an estimated
RSP map of the object) was required. For the simulated
water cylinder acquisition, the prior information was an
analytically described cylinder with the same geome-
try as the simulation and an RSP of 1.0. For the XCAT
phantom, the voxelised known RSP, as used in the sim-
ulation, was used to create a 3D phantom for use as the

F IGURE 3 A flow chart showing the steps of generating the
state-of -the-art 3𝜎 reconstructions and how these reconstructions
are used as prior information for filtering using the methods proposed
here. This process follows the steps of processing that were applied
to the experimental data in this study.

prior information. In effect, the prior information for the
simulated data is an example of perfect or ideal prior
information.

For the experimental data, no ideal prior informa-
tion was available, so a different method is required,
which is shown in Figure 3 and described here. An ini-
tial image reconstruction, with the state-of -the-art filters
applied, served as the prior reconstruction to provide
the RSP map for use in the Prior Filter. In effect, the
experimental data followed the process that we envision
for potential future adoption of this method in particle
imaging experiments or in clinics. First, the acquired
data were reconstructed with both the 3𝜎 threshold and
dE-E telescope filter applied as in the state-of -the-art
reconstructions.Second,as an additional step, this initial
reconstruction provides the RSP map for the Prior Filter.
Once the Prior Filter has been applied, a second tomo-
graphic reconstruction was done to provide the Prior
Filtered tomographs.

The estimates of standard deviation in the model
depend on the thickness of the material traversed,
which can result in unreasonably narrow uncertainty
envelopes for particles that cross only a small sec-
tion of the phantom. Additionally, the model described
in Section 2.1 assumes perfect measurement of each
parameter.To take these factors into account,a minimum
value of 3 mm in positional prediction was enforced
when the standard deviation predicted by the model was
lower than 3 mm. For ease of calculation, the energy
loss predictions were parameterized by the WEPL of
the particle. In practical terms, this allowed the predicted
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8 LIKELIHOOD-BASED PARTICLE IMAGING FILTER

value to be determined by integrating the RSP in the
prior reconstruction along the particle’s path.As with the
positional predictions, a minimum standard deviation of
3 mm of WEPL was applied to particles with a lower
standard deviation predicted by the model. Because the
sigma filter uses the measured data to determine its
parameters, it would not return such an unrealistic value.
The threshold for each of the Prior Filter parameters was
set at 0.6 for proton data and 0.4 for helium data. The
reason two different values were selected will become
clear in Section 3.1.2, where we investigate the filter
performance as a function of the threshold values.

2.5.3 Filter comparison

The filter performance was compared in terms of mean
noise profiles. These were produced by averaging the
intrapixel noise along the vertical direction (y-direction
in Figures 1 and 2) of the radiographs, reconstructed on
the front tracker plane, to create a single horizontal pro-
file of the noise from the filtered datasets. Additionally, a
tomographic reconstruction of the experimental data is
also presented using the DDB method17 along with the
back-projected noise for the sensitometry phantom as
specified in Section 2.4.

We also evaluated the specificity and sensitivity of
both Prior and Sigma filters under various thresholds
following:

Sensitivity =
True Positives

True Positives + False Negatives
(16)

Specificity =
True Negatives

True Negatives + False Positives
(17)

where true positives are secondaries correctly identi-
fied as secondaries, false negatives are secondaries
incorrectly identified as primaries, true negatives are
primaries correctly identified as primaries and false pos-
itives are primaries incorrectly identified as secondaries.
This was possible using the known interaction histo-
ries of the simulated data, where any particles that did
not exclusively follow the modeled electromagnetic inter-
actions were considered secondaries. Although events
such as inelastic collisions are easily identifiable in the
Monte Carlo histories, it would be difficult to define and
differentiate particles that have undergone large angle
Coulomb scattering with electrons from the primary
particles. As such, in this analysis, they would be incor-
rectly defined as primaries,affecting the accuracy of the
results.However,the number of these events is expected
to be relatively few, and both filters remove particles
based on scattering and as such should remove these
particles, resulting in a slightly underestimated speci-
ficity. Scattering with hadrons were however labeled
as secondaries and all nonhadron projectiles were
accounted for in this analysis.

In summary, the following metrics were used for filter
comparison:

∙ Secondary filtering (specificity and sensitivity – simu-
lated)

∙ Mean noise profile through the radiographs (simu-
lated and experimental)

∙ Tomographic reconstructions of the noise (experi-
mental)

3 RESULTS

The mean noise profiles of the simulated data are
shown in Section 3.1.1 followed by the sensitivity and
specificity plots in Section 3.1.2.Radiographs and noise
profiles obtained from the experimental data are then
presented along with the tomographic reconstructions
and the back-projected noise images in Sections 3.2.1
and 3.2.2, respectively.

3.1 Filter performance with simulated
data

3.1.1 Simulated radiograph noise

The radiographs were generated by binning, after fil-
tering, the particle WEPL based on the front-tracker
measurement of the entrance position with a bin-size of
1 mm × 1 mm. The mean intrapixel noise profiles from
the water cylinder simulation, obtained by averaging the
standard deviation of WEPL in each pixel in the vertical
direction, along with the prior filtered proton radiograph
are shown in Figure 4. The y-axes are broken to better
resolve the difference between the two filters’ profiles.
The probability thresholds (Pt) for the Prior Filter were
chosen to be 0.6 for the proton data and 0.4 for the
helium data. For the proton data, the noise profiles fil-
tered using the 3𝜎 filter and Prior Filter are similar, with
noise in the central region being approximately 2.5 mm
of WET. The Prior Filter, however, shows a flatter noise
profile remaining closer to 2.5 mm of WET than the 3𝜎,
which rises to 2.6 mm of WET further from the center
of the phantom. At the edge of the cylinder, where the
most extreme range mixing occurs, both filters exhibit a
sharp noise increase to approximately 7.5 mm of WET.

For the helium data, the difference between the two
filters is striking; the central region of the cylinder show-
ing the 3𝜎 filter resulted in ≈8 mm compared to ≈2 mm
for the Prior Filter. This increase is related to the higher
abundance of helium ion fragments in the phantom
center. These fragments skew the estimated mean and
widen the standard deviation used in the filter to the
extent that they are included in the 3𝜎 envelope. A
secondary reason why they are not easily filtered at
the center of the cylinder is that the fragments have a
higher-than-expected energy loss, which is closer to the
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LIKELIHOOD-BASED PARTICLE IMAGING FILTER 9
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F IGURE 4 Mean noise profiles generated by averaging the standard deviation of WEPL in each pixel along the vertical direction (as
viewed in the radiograph) for simulations of a proton (left) and helium (right) radiograph acquisition of a 20 cm water cylinder using different
filters binned at the front-tracker position. The threshold for the Prior Filter (Pt) was 0.6 for the proton radiograph and 0.4 for the helium
radiograph. An example of the proton radiograph is shown on the left. WEPL, water-equivalent path length.
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F IGURE 5 Mean noise profiles generated by averaging the standard deviation of WEPL in each pixel along the vertical direction for
simulations of a proton (left) and helium (right) radiograph acquisition, of the anthropomorphic XCAT phantom, using different filters binned at
the front-tracker position. The threshold for the Prior Filter (Pt) was 0.6 for the proton radiograph and 0.4 for the helium radiograph. An example
of the proton radiograph is shown on the left. WEPL, water-equivalent path length.

primary energy loss at the thickest portion of the phan-
tom.As in the proton data, the edges of the cylinder have
sharp increases in noise, going up to 7 mm of WET.

Figure 5 shows mean noise profiles generated in
the same way as above for the simulated radiograph
acquisitions of the XCAT phantom. The radiograph was
generated by binning the particle WEPL based on the
front-tracker measurement of the particle’s position.The
particles were binned into 1 mm × 1 mm pixels. As
with the water phantom data, the noise level between
the 3𝜎 filter and the Prior Filter for the proton radio-
graphs are similar with the Prior filter’s noise profile
running slightly below that of the 3𝜎 filter. Similarly,
the difference between the filters is much larger in the
helium radiograph.

3.1.2 Sensitivity and specificity

Figure 6 shows the receiver operating characteristic
(ROC) curves for the sigma filter and the proposed Prior
Filter generated using the histories from the water cylin-
der simulations with protons (left) and helium ions (right).
The ROC curves are created by plotting the sensitivity
against 1 − specificity and provide visualization of the
trade-off between the two. The thresholds chosen for
image reconstruction in this work are indicated on the
plots by the markers.

For the proton data it can be seen that, except for
a small region corresponding to around 5𝜎, the Prior
Filter curve runs above the sigma filter curve, indicat-
ing that a higher sensitivity is achieved for a given level
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10 LIKELIHOOD-BASED PARTICLE IMAGING FILTER
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F IGURE 6 ROC curves from a simulated radiograph acquisition of a water cylinder, showing the Prior Filter (solid) and the sigma filter
(dashed) for both the proton data (left) and helium data (right). The markers show the chosen threshold for reconstruction using the filters within
this work. ROC, receiver operating characteristic.

of specificity. This area corresponds to a threshold of
Pt = 0.2. This can be considered a fairly low threshold,
with many particles with a low likelihood being included
within the reconstruction. For the helium data, the ROC
curve of the Prior Filter remains above the sigma fil-
ter, for the range of thresholds investigated, indicating
that it provides superior sensitivity for all given values
of specificity. For both filters, we observe that there
are no optimal points between sensitivity and speci-
ficity. Although this optimal value could be computed
and applied on a case-by-case basis, for simplicity, a
fixed value for each ion species will be used for the
Prior Filter determined through preliminary testing. For
the proton images, a value of 0.6 was chosen for the
threshold, which it can be seen to have a similar speci-
ficity to the 3𝜎 filter but with improved sensitivity. For the
Helium images, a threshold value of 0.4 was chosen,
which takes advantage of the increased sensitivity whilst
maintaining high specificity.

3.2 Filter performance with
experimental data

3.2.1 Projection noise

Figure 7 shows the mean noise profiles from a projection
(radiograph) of the CTP404 phantom acquired using
the U.S. pCT prototype scanner binned based on the
entrance measurement (at the front tracker plane) using
a 1 mm × 1 mm bin size.The profiles were generated by
averaging the WEPL standard deviation along the verti-
cal direction in a slice ± 5 pixels around the center of the
image.The results are in line with the simulated data; the
proton profiles show a baseline noise performance sim-
ilar in both filters (4 mm WET) in the uniform region of
the phantom and rising to 5.5 mm in the section, which

traverses the two air inserts.The profile from the 3𝜎 data
stays consistently above the profile of the prior filtered
data, indicating more noise, with a gap up to 1 mm of
WET. Similarly to the simulated data, the level of noise
from both filters increases rapidly at the very edges of
the object.

The helium data exhibit a larger difference. The prior
filtered data have a noise value around 2.5 mm in
the uniform sections of the phantom and 5 mm in the
section that traverses both air inserts. The difference
between the two filters in the experimental helium data
is not as large when compared to the simulated data
(Figure 4). This is due to the addition of the dE-E filter
in experimental data. Many of the helium ion fragments
that were not removed by the 3𝜎 filter in the simulated
data have been removed by the dE-E filter bringing its
performance closer to that of the Prior Filter. For both
the proton and helium profile, the difference in perfor-
mance between the Prior Filter and 3𝜎 filter is greater
in the location of high- and low-density inserts, indicat-
ing improved performance in heterogeneity. In the proton
profile at approximately −60 mm, a sharp spike in noise
for the 3𝜎 filtered projection corresponding to the Delrin
insert is not visible in the prior filtered projection. Simi-
lar differences can be seen in the Helium data (Teflon at
−30 mm).

3.2.2 Tomograph results

The CTP404 Sensitom’s RSP (top) and tomographic
noise reconstructions (bottom) are shown for proton and
helium in Figure 8. The noise reconstructions show sim-
ilar levels of noise at the center of the phantom for the
proton data, but a small benefit to using the Prior Fil-
ter can be seen towards the edges of the phantom.
Again, similar to the radiograph noise, the helium data
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LIKELIHOOD-BASED PARTICLE IMAGING FILTER 11
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F IGURE 7 Radiographs reconstructed from both the proton (top) and helium (bottom) acquisitions of the Sensitometry module of the
Catphan with binning based on the particles’ entrance measurement. The Prior Filter has been applied to these images using Pt of 0.6 and 0.4,
respectively. The plots show a mean noise profile obtained from averaging the WEPL standard deviation in each pixel in the vertical direction (as
viewed in the radiograph) over ± 5 pixels around the central bin for radiographs without a filter, with the 3𝜎 filter applied and with the Prior Filter
applied. WEPL, water-equivalent path length.

F IGURE 8 Central slice of the CTP404 Sensitometry module obtained using the tomographic reconstruction (top) and noise
reconstructions (bottom) with the Prior Filter and 3𝜎 filter applied.

show reduced noise when using the Prior Filter across
the whole phantom. All reconstructions show increased
noise at the edge of the phantom and the interfaces
between materials with a large difference in densities
(Teflon and air inserts).These features result from range
mixing caused by the scattering of particles across the
boundaries of inhomogeneous regions.40 Table 1 con-
tains the mean noise values within a 20 mm diameter
ROI at the center of the noise reconstructions shown
in Figure 8 and confirm what can be seen visually in
the figure.

Following these results,we investigated further recon-
structions with reduced imaging dose by removing a
randomly selected portion of the incident particles
before the filtering stage. These are shown in Figure 9
along with the profile from the full dose images. The
initial imaging dose can be estimated by extrapolation
of the simulation of the U.S. pCT collaboration proto-
type scanner by Piersimoni et al.41 To calculate the dose
for this study, differences in the number of particles
and the field size were accounted for with the number
of detected events rather than the irradiated particles
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12 LIKELIHOOD-BASED PARTICLE IMAGING FILTER

F IGURE 9 Reconstructed central slice and
mean noise profiles of RSP standard deviation
over ± 10 pixels from the center in the vertical
direction for a range of doses showing how the
3𝜎 filter and the Prior Filter perform with a
reduced dose. The proton data are shown on
top and the helium data on the bottom, with the
3𝜎 filter in orange and the Prior Filter in green.
The central slice of the reconstructions, after
applying the Prior Filter, at these doses are
shown on the left. The slices from the highest
dose for each ion are shown in Figure 8. RSP,
relative stopping power.

TABLE 1 Mean noise values in a 20 mm diameter ROI at the
center of the noise slices in Figure 8 for the proton and helium CTs
without filtering, using the 3𝜎 filter and using the Prior Filter.

Filter

Noise [RSP]
pCT HeCT

No filter 0.08 0.16

3𝜎 filter 0.02 0.06

Prior Filter 0.02 0.03

to counteract the previously mentioned inefficiencies
resulting from the particle rate. For the proton CT (pCT),
this was 1.8 × 106 particles per projection resulting in a
dose of 5.5 mGy; for the helium CT, this was 1.0 × 106

particles per projection resulting in a dose of 11.5 mGy.
Particles in each proton data set were reduced by fac-
tors of 4.5 and 9 to represent approximately 1.2 mGy
and 0.6 mGy, respectively.

The noise profiles under a dose reduction demon-
strate that the Prior Filter retains better image quality
than the 3𝜎 filter with the 0.6 mGy Prior Filter profile
being closer to the 1.2 mGy profile of the 3𝜎 filter than
the 0.6 mGy 3𝜎 filter. For the helium data, we chose

TABLE 2 Mean noise values in a 20 mm diameter ROI at the
center of the noise slices in the same location as for the data in
Table 1 for the proton and helium CTs reconstructed with low doses
using the 3𝜎 filter and using the Prior Filter.

Noise [RSP]
pCT HeCT

Filter 1.2 mGy 0.6 mGy 7.7 mGy 3.8 mGy

3𝜎 filter 0.06 0.09 0.07 0.11

Prior Filter 0.05 0.06 0.03 0.05

smaller reduction factors (3.0 and 1.5), resulting in esti-
mated doses of 7.7 mGy and 3.8 mGy, due to a greater
proportion of primary particles being lost through
nuclear interactions and fragmentation. The noise in the
prior filtered data is less affected than the 3𝜎 filtered
data under these dose reductions, which demonstrates
an image quality deterioration. The 3.8 mGy Prior Filter
profile is below the full dose (11.5 mGy) Sigma profile
for the reconstruction. This is also reflected in Table 2,
which contains the mean noise in a 20 mm diameter
region of interest centered on the middle slice of the
noise reconstruction. Here we see the minimal impact
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F IGURE 10 Mean and standard deviation of RSP error for the
proton (top) and helium (bottom) CT using both the 3𝜎 filter (orange)
and Prior Filter (green) for each of the inserts in the sensitometry
module evaluated within a cylindrical ROI 8 mm in diameter and
3 mm in height (across three slices). The mean absolute percentage
error (MAPE) is indicated in the axes on the right with the mean of
the standard deviations. RSP, relative stopping power.

on the noise level even with the reduction in dose of the
Prior Filter when compared to the 3𝜎 filter.

The RSP accuracy of each of the CT reconstruc-
tions was evaluated in cylindrical ROI 8 mm in diameter,
over three slices (3 mm cylinder height) within each
insert.The RSP percentage error of each insert is given
in Figure 10 with the mean absolute percentage error
(MAPE) for each reconstruction. The RSP is underes-
timated for all inserts, except for the PMP insert. For
the proton images, the MAPE were 1.66% and 1.75%
for the Prior filtered and 3𝜎 filtered tomographs, respec-
tively, and 0.87% versus 0.79% for helium. Additionally,
the standard deviation of RSP error within each insert
is reduced for the Prior Filter indicating a reduced noise.

4 DISCUSSION

The results shown in this work emphasize the conclu-
sions that filtering in ion imaging is essential for high
image quality.3,13,15 The 3𝜎 filter is currently in common
use in particle imaging research. This work has shown
that our Prior Filter returns equivalent or slightly superior
performance in proton imaging in terms of image noise.
Additionally, it has been shown to have improved perfor-
mance over the 3𝜎 filter when applied to helium imaging
as a result of the greater ability to filter secondary frag-
ments,which can be determined from the sensitivity and

specificity plots (Figure 6). Although both filters depend
on estimating the parameters of normal distributions,the
Prior Filter estimates the expected position and energy
loss of individual particles rather than characterizing an
ensemble of particles within a single bin. Khellaf et al.10

have previously discussed the implication of heteroge-
neous objects and the resulting multiple energy peaks
on sigma filtering. In the same work, they show that the
assumptions of the MLP are inaccurate at steep lateral
density gradients.By relying on the MLP to make predic-
tions of a particle’s exit parameters, the accuracy of the
prediction is tied to the accuracy of the path estimate.
In this work, it has been shown that the path estimates
used in the Prior Filter are sufficiently accurate to pro-
vide better filtering for inhomogeneous materials; see
the XCAT phantom simulations in Figure 5. The accu-
racy of the filter would only improve with more accurate
path estimates.

The MAPE of the RSP inserts were higher than
previously reported, see Giacommetti et al.34 for pro-
ton imaging and Volz et al.15 for helium imaging. The
systematic underestimate of RSP for reconstructions
using both filters indicates a calibration error that is not
picked up by the Prior Filter. Indeed, a recent publica-
tion by Dickmann et al.,42 using the same prototype
scanner, found a systematic shift in RSP values of
−1.3%. Additionally, pCT reconstructions with an iter-
ative reconstruction algorithm,32 reported higher RSP
accuracy (< 1%). However, the reconstruction algorithm
in this study was selected for its ability to generate pixel
noise tomographs for the filter evaluation, with the main
goal being the comparison of filter methods rather than
the precision of the reconstruction.

Aside from performance, there are some further
advantages to the use of the filter proposed in this work.
The filter itself is based on the physical principles of par-
ticle transport in matter, as opposed to the data-based
estimates underlying the 3𝜎 filter. Additionally, the acqui-
sition data are filtered on a particle-by-particle basis,
that is, each particle gets its own estimation of WEPL
and scattering angle (indirectly through the position esti-
mate), while the 3𝜎 filter assigns an estimate to each
bin, requiring sufficient statistics. The Prior Filter perfor-
mance should be independent of imaging dose, so long
as we have good prior information. This is supported by
the results presented in Figure 9. Conversely, the 3𝜎 fil-
ter makes the assumption that the number of particles
in each image bin is adequate so that the moments of
its distribution are related to the individual particle char-
acteristics. At low dose, this assumption drops, and the
3𝜎 filter performance suffers (see Figure 9).

An interesting feature of this filter is that it is eas-
ily adjustable through the use of different probability
thresholds (Pt). The sigma filter is also adjustable but
is dependent on estimates from the distribution per
pixel rather than individual particle estimates, which can
be vulnerable to heterogeneity. Though only the true
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14 LIKELIHOOD-BASED PARTICLE IMAGING FILTER

particle path will eliminate this effect, the benefit of the
Prior Filter can be highlighted by thinking of a pixel
at a high gradient edge. The distribution in said pixel
will have two peaks. The 3𝜎 filter would not reflect well
either distribution, while the Prior Filter acts on each
distribution individually.

Although in this work a fixed value was used, it would
be possible to optimize this value based on an image
quality metric to tailor the performance to the priorities
of the use case. Deviations from expected position and
WEPL are linked, however, the three variables (mea-
sured WEPL probability, measured Y probability, and
measured Z probability) might be related to various
nonelectromagnetic interactions, and have three sep-
arate optimal values, providing further opportunity to
tune performance.For example,in helium imaging where
particle fragments are more abundant and scattering
reduced when compared to proton imaging, emphasis
can be placed on the WEPL probability should there be a
need to conserve particles. The optimal threshold under
different use cases is a focus of further study.

By reducing the noise in the global signal, our filter
increases the inherent information carried by each par-
ticle and fewer particles are needed to reconstruct an
image with an adequate signal-to-noise ratio. This pos-
sibility is demonstrated in the low-dose imaging Figure 9,
which may contribute to realizing ultra-low-dose particle
imaging. The 3𝜎 filter noise increases faster as the dose
is reduced showing that the performance of the 3𝜎 filter
is being degraded. A possible method of improving the
3𝜎 filter’s performance with fewer particles is to increase
the bin size to ensure that there are enough particles
per bin to calculate the appropriate parameters. To test
this, the dimensions of each bin were tripled (nine-fold
area increase) for the 0.6 mGy reconstruction before
filtering and reconstructing the data again. This recon-
struction has a mean RSP noise of 0.07 in the same
20 mm diameter region explored in Table 2 with noise
level across the phantom between the 1.2 and 0.6 mGy
3𝜎 reconstructions, which can be seen in Appendix C.
Thus, the noise can be reduced with a larger bin size;
however, it is worth noting that this phantom is mostly
homogeneous and for less homogeneous phantoms,
the larger bin size increases the likelihood that a given
bin will contain a heterogeneity possibly affecting the
filter’s efficiency.10 Although the images reconstructed
using the 0.6 mGy data contain artifacts from voxels
that protons have not passed through, techniques such
as sinogram interpolation43 can be used to reduce the
impact of the artifacts. Other image improvement meth-
ods, such as Gaussian deblurring,44 are affected by the
noise and would also benefit from the proposed filter.

Still, there are some disadvantages to the Prior Fil-
ter when compared to the 3𝜎 filter. The requirement of
prior 3D information to filter the data limits its applica-
bility to filtering radiographs unless a previous image or
data from other modalities such as single-energy CT or

dual-energy CT are used to provide the prior information.
This comes with additional complications of registration
and RSP uncertainties. In the case of particle CT, an
initial reconstruction can be used in order to filter the
data before a final reconstruction is performed on the
filtered data, as shown in this study. This does again
require an increase in total reconstruction time when
including the initial reconstruction.However, the value of
using a prior reconstruction for hull detection has pre-
viously been demonstrated25 and as such, this step is
not expected to greatly impact the overall reconstruc-
tion time of quality particle CT images.Even in this case,
however,the number of computations required is greater
than the relatively simple 3𝜎 filter due to the need to esti-
mate the path for each particle in the filtering step. No
estimates for differences in time are given in this work
as neither filter was implemented optimally and to do
so would not be representative of achievable speeds
for either filter. One advantage of single-event imaging
is that the independence of each measurement allows
the data processing to be highly parallelizable.

5 CONCLUSIONS

A novel filtering technique based on an analytical model
of electromagnetic interactions has been proposed and
evaluated against distribution-based filtering techniques
for both proton and helium imaging. The filter uses
the models of multiple Coulomb scattering and parti-
cle energy loss to predict the likelihood that a measured
data point had not undergone nuclear interactions or
large angle scattering, that is,had interacted through the
primary electromagnetic model only. The performance
of the filter, applied to both simulated and experimental
data,was found to be comparable to the commonly used
3𝜎 cut when applied to proton imaging. The same com-
parison showed the proposed filter reduced noise in both
helium radiographs and tomographs. Investigation into
the sensitivity and specificity of the filters showed the
improved sensitivity over a range of sigma cuts although,
in the proton images especially, this came at reduced
specificity. The performance of the filter was evaluated
for lower dose imaging and found to be much more con-
sistent than the 3𝜎 filter. This results from an appealing
feature of the proposed filter; that each particle is filtered
independently of the others. Other potential advantages
of using such a filter are its basis in the physical pro-
cesses being investigated and the potential to optimize
the probability threshold based on the use case. This
does, however, come at the cost of increased complex-
ity with the requirement of prior knowledge and more
demanding computation.
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APPENDIX A: F ILTER PERFORMANCE
EXCLUDING DE-E F ILTER
For completeness and to show that the results of
this work hold when separated from the dE-E filter,
Figures A1 and A2 show the results of the tomographic
noise reconstructions with and without the application
of the dE-E filter for proton and helium ions, respectively.
These figures show that in both cases, the reconstruc-
tions without the dE-E filter applied, contain more noise
as a result of the inclusion of more secondary particles.
As expected, this is especially the case for the helium
ions for which this filter is designed, but a visible effect
is seen for the proton images. This is backed up by the
values in Table A1, which show the mean noise within a

TABLE A1 Mean noise values in a 20 mm diameter ROI at the
center of the noise slices in Figures A1 and A2 for the proton and
helium CTs without the dE-E filter applied.

Noise [RSP]
Filter pCT HeCT

3𝜎 filter 0.03 0.06

Prior Filter 0.03 0.03

Results are given for the reconstruction with using the 3𝜎 filter and using the
Prior Filter.

20 mm diameter ROI at the center of the noise images
without the dE-E filter applied.

APPENDIX B: PERFORMANCE OF THE
SI GMA FI LTER WI TH DI FFERENT
I MPLEMENTATI ONS
Due to the various implementations of the sigma filter
in the literature, this appendix includes a comparison
of different implementations to show that the Prior Fil-
ter outperformed them all in discriminating secondary
events.For comparison,ROC curves,as in Section 3.1.2,
were calculated based on a simulation of a radio-
graph acquisition of the XCAT phantom as described
in Section 2.2 between 0𝜎 and 10𝜎. The following
implementations of the sigma filter were compared:

∙ Standard – All particles are binned by their position
measurement and all particles are used in the calcu-
lation of the bin mean and standard deviation used to
make the sigma cuts.3,9

F IGURE A1 Central slice of the CTP404 Sensitometry module obtained using the tomographic reconstruction (top) and noise
reconstructions (bottom) with the Prior Filter and 3𝜎 filter applied without the dE-E filter for the proton tomographic data in this work.
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LIKELIHOOD-BASED PARTICLE IMAGING FILTER 17

F IGURE A2 Central slice of the CTP404 Sensitometry module obtained using the tomographic reconstruction (top) and noise
reconstructions (bottom) with the Prior Filter and 3𝜎 filter applied without the dE-E filter for the helium tomographic data in this work.
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F IGURE A3 ROC curves from a simulated radiograph acquisition of an anatomical XCAT phantom, showing the Prior Filter (solid) and the
standard sigma filter (dots), the mode-based sigma filter (dashes) and the percentile-based sigma filter (dash-dot) with both entrance (blue) and
exit (orange) binning for both the proton data (left) and helium data (right). ROC, receiver operating characteristic.

∙ Mode – All particles are binned by their position mea-
surement; however, only particles within 30% of the
bin mode are used in the calculation of mean and
standard deviation used to make the sigma cuts.13

∙ Percentile-based – All particles are binned by their
position measurement. However, rather than the
mean, the median was used and the standard devia-
tion is calculated by taking the difference between the
median and the 30.85th percentile (corresponding to
0.5𝜎) and multiplying it by 2.14

For each method, 1 mm × 1 mm bins were used, and
each method was implemented with binning based on
both the measured front and rear tracker positions. For

the proton data,similar performance is seen for all meth-
ods with the standard method showing a preference
towards specificity and the percentile-based binning
showing slightly better sensitivity than the other meth-
ods. Little difference is seen between the front and rear
tracker binning. In the helium data, there is a greater dif-
ference in performance between the different methods
and here the benefits of removing the tails of the dis-
tribution can be seen by the poor performance of the
standard binning method compared to the two that cal-
culate the distribution parameters on a smaller subset
of the binned data. In both proton and helium ions, the
Prior Filter shows superior performance to all methods
(Figure A3).
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18 LIKELIHOOD-BASED PARTICLE IMAGING FILTER

APPENDIX C: THREE SIGMA FILTER
WITH AN INCRE A S E D B IN S IZ E
Figure A4 shows the 0.6 mGy noise profiles from the
reconstruction of the CTP404 sensitometry phantom as
described in Section 3.2.2. The profiles shown include
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F IGURE A4 Mean noise profiles of RSP standard deviation for
proton CT reconstructions of the CTP404 sensitometry phantom
using particles corresponding to a dose of 0.6 mGy as shown in
Figure 9 for the Prior Filter and 3𝜎 filter including a 3𝜎 filtered profile
that has been filtered with a bin size of 3 mm bin size.

the data reconstructed with the Prior Filter (Pt = 0.6)
and the 3𝜎 filter applied from Figure 9. Additionally, a
profile from a reconstruction that was filtered using the
3𝜎 filter with an increased bin size, of 3 mm, to demon-
strate the effect of increasing the bin size to maintain the
same number of particles per bin when using this filter.
The increased bin size does reduce the overall noise in
the phantom, but not to the point where it is equal to the
Prior Filter. Additionally, this phantom is mostly uniform
which reduces the negative impacts of increasing the
bin size such as splitting the distribution as described in
Khellaf et al.10 Some of the effect can be seen in the
negative side of the x axis, where the noise increases
sharply, due to the higher density inserts on this side.
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