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ABSTRACT

Data stored in cloud services is highly sensitive and so access to
it is controlled via policies written in domain-specific languages
(DSLs). The expressiveness of these DSLs provides users flexibility
to cover a wide variety of uses cases, however, unintended mis-
configurations can lead to potential security issues. We introduce
Block Public Access, a tool that formally verifies policies to en-
sure that they only allow access to trusted principals, i.e. that they
prohibit access to the general public. To this end, we formalize the
notion of Trust Safety that formally characterizes whether or not
a policy allows unconstrained (public) access. Next, we present a
method to compile the policy down to a logical formula whose
unsatisfiability can be (1) checked by SMT and (2) ensures Trust
Safety. The constructs of the policy DSLs render unsatisfiability
checking PSPACE-complete, which precludes verifying the millions
of requests per second seen at cloud scale. Hence, we present an
approach that leverages the structure of the policy DSL to compute
a much smaller residual policy that corresponds only to untrusted
accesses. Our approach allows Block Public Access to, in the com-
mon case, syntactically verify Trust Safety without having to query
the SMT solver. We have implemented Block Public Access and
present an evaluation showing how the above optimization yields a
low-latency policy verifier that the S3 team at AWS has integrated
into their authorization system, where it is currently in production,
analyzing millions of policies everyday to ensure that client buckets
do not grant unintended public access.
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1 INTRODUCTION

In the cloud computing era, clients ranging from banks to hospitals
to commercial and government entities store and access their sen-
sitive data via remote services managed by third-party providers.
These clients elect to do so because centralized services are fast,
inexpensive, reliable, available, and can scale up to serve the data
to as many users as needed. For example, S3 is a high-performance,
high-availability cloud object storage service offered by AWS that
allows clients to create buckets within which they can store their
data as S3 objects.
DSLs for Access Control Policies Much of the client data stored
in such services is highly sensitive, and should only be accessible
to the organizations to whom the data belongs. Even within those
organizations, there may be strict policies governing which set of
principals should be granted or denied access to different kinds of
data. To this end, services like S3 also provide their clients a domain
specific language (DSL) in which the clients can precisely specify
access control policies as per their own requirements. As in many
other settings, the policy DSL was originally designed to grant a sin-
gle user access to a specific resource, but has, over time, evolved to
support the myriad use cases that arise in large client corporations.
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{(Allow,
Principal : "arn:aws:iam::123456789012:role/dev",
Action : "s3:*",
Resource : "arn:aws:s3:::my-bucket/*"),
(Allow,
Principal : "*",
NotAction : "s3:DeleteObject",
Resource : "arn:aws:s3:::my-bucket/*")}

Figure 1: Misconfigured S3 access control policy.

For example, instead of specifying just a single user, the DSL has
ways to describe sets of users and express hierarchical relationships
between organizations, groups, roles and users. Similarly, instead
of describing just buckets, there are primitives for describing the
detailed structure of buckets, organized as hierarchical directory
structures.

Who Polices the Policies? The flexibility provided by the DSL is
crucial to support the diverse use-cases of different clients, how-
ever, unintentional misconfigurations can lead to potential security
issues. For example, consider the policy in Figure 1 that is based
on a real user policy adapted to S3 [20]. The policy consists of two
statements. The first statement allows a "dev" role to execute any S3
action on any object in the "my-bucket" bucket. The second state-
ment allows all actions not-equal-to (i.e. other than) s3:DeleteObject
on any objects in the same bucket. The client intended their policy
to allow the "dev" role to perform any action except s3:DeleteObject.
The result, however, was a policy that allows everyone to access
data in the bucket, as the second allow statement does not restrict
access, but instead gives access to all principals. (In this case, the
correct mechanism to restrict access as per the client’s intent would
be to change the allow in the second statement to a deny and the
not-equals-action clause to an equals-action.) While the policy DSL
allows for compact specifications of expressive policies, reasoning
about the interaction between the semantics of different statements
can be challenging to manually evaluate especially in large policies
with multiple operators and conditions.

Block Public Access In this paper, we introduce Block Public
Access, a tool that formally verifies policies to ensure that they
only allow access to trusted principals, i.e. that they prohibit access
to the general public. We develop Block Public Access via the
following contributions.

1. Trust Safety Our first contribution is the notion of Trust Safety
that formally characterizes whether or not a policy allows uncon-
strained (public) access § 3. The definition of Trust Safety varies
on each use case which can have an implicit set of trusted entities
outside of whom access should not be granted. Some policies may
consider any access beyond a trusted part of the network to be
public, while others may wish to restrict access to certain individu-
als regardless of location. At cloud scale, manually inspecting or
annotating policies to specify trusted entities is infeasible. Likewise,
asking clients to provide this set of trusted entities is not an option,
as it imposes a significant burden on users by requiring them to
annotate legacy policies. We address this problem by presenting an

algorithm to infer the set of trusted entities from an access control
policy (§ 4.3),

2. Semantic Verification Our second contribution is an algorithm
to automatically verify whether a given policy is Trust Safe § 4. Our
algorithm builds on work that encodes the semantics of policies
as logical constraints that soundly and precisely characterize the
sets of requests that are granted access by the policy [1]. We show
how to compose this encoding with additional constraints that
determine whether or not the policy is Trust Safe. This allows
us to compile the policy down to a single logical formula, whose
unsatisfiability, determined by an SMT solver [2, 6, 19], implies that
the policy is Trust Safe. The rich policy language – which allows
conditions with wildcards ranging over user-names, IP addresses,
and sets of users, roles, and resources – yields SMT formulas that
fall in the combined theories of strings, regular expressions, bit-
vectors, and arithmetic. Checking the satisfiability of formulas over
such theories is a PSPACE-complete problem [5]. The formulas
encoding real-world policies are often large and complex, making
satisfiability solving slow.

3. Syntactic Trust-Safety Verification Any solution that pre-
vents public access must be part of the authorization system itself
and therefore has to be extremely fast. (For example, S3 handles
millions of requests per second, all of which need to be checked to
ensure they are not gaining access based on a misconfigured policy.)
Thus, our third contribution is an approach that efficiently rewrites
the formulas to eliminate all the rules that allow trusted access,
leaving behind a much smaller residual policy that corresponds
only to untrusted accesses § 5. In the majority of cases, the residual
policy is trivial, i.e. prohibits all (untrusted) accesses, allowing us to
verify Trust Safety without even querying the SMT solver! In the
remaining cases, the formula is drastically smaller, thus enabling
efficient SMT-based verification.

4. Evaluation and Deployment Our final contribution is an im-
plementation of Block Public Access that ensures that all created
and updated policies are Trust Safe § 6. Our implementation ensures
that untrusted public access to S3 buckets is not allowed anytime
during the bucket’s lifecycle. To this end, we introduce two ad-
ditional checks in the authorization process: one when attaching
policies and one when requesting bucket access. When a user tries
to attach a new policy to a bucket, e.g. the policy from Figure 1, S3
invokes Block Public Access to check if the policy is Trust Safe.
If this is not the case, S3 fails to attach the policy and returns a
warning. Second, when a user requests access to a bucket, Block
Public Access uses a cache to determine whether the policy at-
tached to the bucket was Trust Safe, and if not, the S3 authorization
mechanism denies the request based on Block Public Access’s
result. Thus, to be integrated as a blocking check in the request
path of the S3 service, Block Public Access’s checks must have
very low latency. We present an evaluation that shows that the
syntactic rewrite enables precisely such low-latency verification
without compromising soundness § 7. Consequently, the S3 team at
AWS has integrated Block Public Access into their authorization
system, where it is currently in production enabling S3 to guard
client buckets from unintended public access.
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2 S3 ACCESS POLICIES

We begin with an overview of some of the features of the IAM
policy language that highlights the features that make checking
Trust Safety challenging. S3 is an object store where a logical unit of
storage is called a bucket. S3 stores data as objects in these buckets.
Each resource, e.g. the bucket and the objects in the bucket, is
uniquely identified by an Amazon Resource Name (ARN). Access
to S3 buckets and other AWS resources is granted via Identity &
Access Management System (IAM) policies, which are attached to
the bucket or resource, and are used to control access to the bucket
and the objects in it.
Request Contexts When an access request is made to an AWS
service, a request context is generated which includes the principal
making the request, the resource being requested, and the action
being invoked. The request context also contains a set of service-
specific key-value pairs that can be referenced in policy conditions.
The IAM policy evaluation engine compares the request context
with the policies for the user and the resource to determine if access
is granted or denied. S3 uses this evaluation engine to make sure
only authorized requests are serviced. The IAM policy evaluation
engine is called on all requests so it must only add a very small
overhead. For example, the IAM engine would allow the following
request context under the policy in Figure 1:

Principal : "arn:aws:iam::999999999999:user/malicious"

Action : "s3:PutObject"

Resource : "arn:aws:s3:::my-bucket/dir/filename"

SourceIp : "192.0.2.3"

(1)
The AWS policy language is expressed as serialized JSON, and
hence, the request context can contain extra keys not present in
the policy.
Policies Figure 2 summarizes the core constructs of the AWS policy
language in a simplified abstract syntax. A policy comprises a set
of Allow and Deny statements that respectively grant or block
access to sets of users. A request is only granted access if the policy
contains an Allow statement that matches the request, and does
not contain any Deny statements that match it (regardless of the
order in which the statements appear in the policy.) When writing
example policies we will elide set brackets for singleton sets, and
elide the Condition section when it is empty. The policy language
has grown to be flexible enough to support all current AWS services
as well as future ones and extensions. This flexibility stems from
two crucial features.
Wildcards First, allowing wildcards in the Principal, Resource and
Action constructs. Wildcards can range over (possibly unboundedly)
many values and hence, let users concisely specify permissions at
a fine level of granularity. For example the user can refer to all S3
actions as "s3:*" or use "arn:aws:s3:::my-bucket/*.html" to refer to
all HTML files in a given bucket.
Conditions Second, the Condition construct over key-value pairs,
allows specifying a set of logical conditions under which access is
granted or denied. Conditional expressions are constructed using
Operators on key-value pairs. These operators can, for example,
compare dates (DateLessThan), check IP ranges (IpAddress), do
case-insensitive string matching (StringEqualsIgnoreCase) and also

match regular expressions (StringLike) over a set of candidate val-
ues. If any of these values match the key, the condition evaluates to
true. Additionally, the negation (Not), quantification (ForAllValues)
and optional check (IfExists) qualifiers can suitably extend the op-
erator’s semantics.
Reasoning about Policies Wildcards and conditionals – which
are the key to the flexibility of the policy language – combine to
make manually reasoning about policies challenging. For example,
consider:

(Allow,
Principal : "*",
Action : "s3:GetObject",
Resource : "arn:aws:s3:::my-bucket/*",
Condition : {(IpAddress, SourceIp, "192.0.2.0/24"),

(StringNotLike, SourceIp, "192.?.*.*")})

This policy will allow "s3:GetObject" requests if the source IP
address matches both conditions. The source IP must be in the
"192.0.2.0/24" range but at the same time not match the "192.?.*.*"
regular expression, where "?" stands for any one character, and "*"

for one or more arbitrary characters. All IP addresses in this range
will match the regular expression, so this allow statement will deny
all requests. Automatically inferring this fact, requires combining
bit-vector constraint solving for the "IPAddress", a NP-complete
problem, with string constraints for "StringNotLike", an even harder
PSPACE-complete problem [17]. While this is obviously a crafted
example, large organizations often write complex policies hundreds
of lines long that are similarly challenging to reason about.
Service Specific Constraints To precisely analyze policies, we
need to also take into account constraints that are specific to differ-
ent services using AWS. Each service publishes the custom set of
actions, resource and condition key combinations they support.
Certain condition keys are defined globally across all services,
e.g., SourceIp, while other condition keys are service specific, e.g.
s3:prefix. There are currently 24 global context keys and S3 has
26 additional service-specific context keys. Some keys are not al-
ways present, some keys are only compatible with certain actions
and some key combinations are not compatible. For example the
s3:prefix key only exists for s3:ListBucket action requests, and it
limits the response of s3:ListBucket to object key names with a
specific prefix.

3 TRUST SAFETY

Next, let us formalize what it means for a policy to be Trust Safe,
i.e. whether the policy blocks all requests coming from untrusted
entities. Specifically, we delineate exactly what aspects of policies
and requests are trusted and hence what constitutes an untrusted
public access.

3.1 Motivating Examples

Recall that S3 is an object store where a logical unit of storage is
called a bucket. S3 stores data as objects in these buckets. Each
resource, e.g. the bucket and the objects in the bucket, is uniquely
identified by an Amazon Resource Name (ARN). The bucket policy,
which is attached to the bucket, controls access to the bucket and the
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Policy → {Statement}

Statement → (Effect, Principal,Action, Resource, {Condition})

Effect → Allow | Deny

Principal → (Principal | NotPrincipal) : {string}

Action → (Action | NotAction) : {string}

Resource → (Resource | NotResource) : {string}

Condition → Condition : {Operator}

Operator → (OpName,KeyName, {Value})

OpName → Null | StringEquals | StringEqualsIfExists |

ForAllValues:StringEquals |

ForAnyValue:StringEquals |

StringLike | StringNotEquals | IpAddress | . . .

KeyName → SourceVpc | SourceIp | s3:prefix | . . .

Value → string | num | bool

Figure 2: Core Syntax of the AWS Policy Language

{(Allow,
Principal : {"arn:aws:iam::123456789012:role/dev",

"arn:aws:iam::123456789012:role/support"},
Action : "s3:GetObject",
Resource : "arn:aws:s3:::my-bucket/*"),
(Allow,
Principal : ∗,
Action : {"s3:GetObject", "s3:PutObject"},
Resource : "arn:aws:s3:::my-bucket/*",
Condition : (StringEquals, Username, "admin")),

(Deny,
Principal : "*",
Action : "s3:*",
Resource : "arn:aws:iam::my-bucket/accounts/*",
Condition : (StringNotEquals, SourceVpc, "vpc-abcdef"))}

(a) Policy P1 is not Trust Safe: allows untrusted access
{(Allow,
Principal : ∗,
Action : "s3:*",
Resource : "arn:aws:s3:::my-bucket/*")

(Deny,
Principal : "*",
Action : "s3:*",
Resource : "arn:aws:s3:::my-bucket/*",
Condition : (StringNotEquals, PrincipalOrgID, "o-1234"))}

(b) Policy P2 is Trust Safe: prohibits untrusted access

Figure 3: Example policies.

objects in it. Figure 3 shows two example policies in the simplified
abstract syntax for S3, that we will use to motivate our definition
of Trust Safety.
Example 1: Not Trust Safe Consider policy P1 from Figure 3(a).
The first statement (Allow) gives bucket read access to the "dev"

and "support" roles. The second statement (Allow) gives read and
write access to all principals if the username is "admin". The final
statement (Deny) restricts access to "my-bucket/accounts" only to
requests originating from the "vpc-abcdef" virtual private cloud1.

This policy allows untrusted entities access to certain resources.
Consider the following request context:

Principal : "arn:aws:iam::999999999999:user/admin"

Action : "s3:GetObject"

Resource : "arn:aws:s3:::my-bucket/secret/filename"

Username : "admin"

(2)
This request context will match the second allow statement. While
there is a restriction on the Username, there is no restriction on
the account containing the username. An adversary could create a
user called "admin" in their own account and thus gain access to
the bucket. While theUsername key in the request is populated by
the service from the user part of the Principal identifier, the value
is controlled by the issuer of the request. The Username is not by
itself sufficient to uniquely identify a request issuer. Note that the
Deny statement does not apply to this request context, because
the deny only applies to resources that match "arn:aws:s3:::my-

bucket/accounts/*".
Example 2: Trust Safe The policy P2 in Figure 3(b) consists of
one statement that allows any principal to execute any action on
the bucket, and another that denies all requests not originating
from the "o-1234" organization. This policy does not allow public
access, because it only allows requests coming from the "o-1234" or-
ganization. The PrincipalOrgID is a unique identifier that cannot
be duplicated or modified by the issuer of the request.

3.2 Requests and Policies

We start by defining requests and access control policies.
Keys and Values Let K denote the set of all request context keys,
including global keys and S3-specific keys. Each key k ∈ K has a
type Type(k) associated with it, representing the set of the values
that can be associated with the key. For example, Type(SourceIP) =
"IpAddress" and Type(s3:prefix) = "string".
Request Contexts A request context r is a set of key-value pairs
mapping keys to their values, i.e.

r = {(k, val) k ∈ K and val ∈ Type(k)}

where principal, action and resource are always present. Other
request keys may be optionally present.
Allowed Requests Let P be a policy. We write Allow(P) to denote
all the request contexts that are allowed by a given policy:

Allow(P) = {r policy P allows request context r }

3.3 Trusted Requests

As the above examples illustrate, in order to formalize Trust Safety,
we must answer the question: given a request context comprising a
set of key-value pairs, how do we know it is coming from a trusted

1Virtual private clouds are a feature in most public cloud offerings that provides
isolation between different parts of the cloud through a private IP subnet or VLAN.
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entity?2 Not all request keys are created equal: some of the key
values can be controlled by the issuer of the request while others
are populated by the service. Recall the request context from (1).
The values of the Action and the s3:prefix keys are controlled
by the issuer of the request: they choose what action to call and
how to configure it. On the other hand, the values of Principal
and SourceIP are set by the service and are always the unique
principal identifier of the request issuer and the request source IP,
respectively. Similarly, in the above examples, we assumed that the
virtual private cloud "vpc-abcdef" and the organization "o-1234"

are trusted and that requests that can be proven to come from these
sources are safe. Thus, intuitively, the keys that cannot be altered by
the user are considered trusted. We will use this notion of trusted
keys (and their values) to define Trust Safety.
Trusted Keys The trusted key set TrK is a subset of K containing
the set of keys in a request context that cannot be altered by the
issuer of the request. Examples of trusted keys in Tr

K include
SourceVpc, SourceIp and UserId. The Username key is not a
trusted key because, as we have seen in Example 1 above, one can
create a user with any name in a different account. The set of trusted
keys for a given service requires domain expertise, but only needs
to be determined once.
Trusted Values Let TrV (k) be a given set of trusted values for key
k , where a trusted value corresponds to an entity the author of the
policy trusts. For policy P1 in Example 1, the set of trusted values
is TrV (SourceVpc) = {"vpc-abcdef"}. For policy P2 in Example 2,
the trusted value set is TrV (PrincipalOrgID) = {"o-1234"}. We
will use these sets of trusted values to define a trusted context.

Definition 1 (Trusted Request Context). A request context r is
trusted for a given set of trusted values Tr

V (k) if there exists
(k, val) ∈ r such that k ∈ Tr

K and val ∈ Tr
V (k), and r is untrusted

otherwise.

In other words, if the request context contains at least one trusted
key—i.e. one that cannot be modified by the issuer of the request—
and the value associated with this key is trusted, then the request
is considered trusted.

Definition 2 (Trust Safety). A policy P is Trust Safe if there does
not exist an untrusted request context r ∈ Allow(P).

That is, a policy is Trust Safe if it only allows trusted requests,
or dually, if it blocks all untrusted (public) accesses.

4 VERIFYING TRUST SAFETY

Next, we will use the definition of Trust Safety to construct an SMT
formula that is unsatisfiable iff the policy is Trust Safe, thereby
yielding an algorithm to automatically verify whether a policy is
Trust Safe. We develop our algorithm in three steps. First, we build
up a semantic representation of a policy, i.e. a logical formula for
which each satisfiable assignment represents an allowed request
context. Second, we assume that we are provided with a set of
trusted entities, and we show how to combine this set with the
policy to obtain a logical formula that is unsatisfiable if and only
if the policy is Trust Safe (§ 4.2). Third, we present our technique
2Note that we assume the request is authenticated: our goal is to ensure it is authorized
to perform the requested action.

S1 � (p = "arn:aws:iam::123456789012:role/dev" ∨

p = "arn:aws:iam::123456789012:role/support") ∧

a = "s3:GetObject" ∧ r = "arn:aws:s3:::my-bucket/*"

S2 � (a = "s3:PutObject" ∨ a = "s3:GetObject") ∧

r = "arn:aws:s3:::my-bucket/*" ∧

username∃ ∧ username = "admin"

S3 � a = "s3:*" ∧

r = "arn:aws:s3:::my-bucket/accounts/*" ∧

(¬sourceVpc∃ ∨ sourceVpc , "vpc-abcdef")

Allow(P1) � (S1 ∨ S2) ∧ ¬S3

Figure 4: SMT encoding of P1

for inferring a set of trusted entities automatically from the policy
description, which together with the logical encoding lets us use
SMT solvers to automatically determine whether a policy is Trust
Safe.

4.1 A Logical Encoding of Policy

Zelkova [1] is an SMT-based checker for IAM access control poli-
cies that can answer questions about policies by (1) converting the
policies into a logical representation and (2) using SMT solvers
to answer queries about interesting properties of the policies. For
example, Zelkova can check whether one policy is more permis-
sive than another. Block Public Access uses Zelkova to generate
an SMT formula corresponding to Allow(P), where satisfiable as-
signments are in one-to-one correspondence with request contexts
r ∈ Allow(P).

Figure 4 (resp. figure 5) shows the encoding corresponding to
Allow(P1) (resp. Allow(P2)). The encoding for each policy is a for-
mula over the variables p, a, and r that correspond to the principal,
action, and resource in the request context. In addition to these
variables, the encoding also introduces a variable for every con-
dition key referenced in the policy. In the above example these
are sourceVpc, username and principalOrg. Because some condition
keys are optional, we introduce an additional boolean variable key∃
which is true if the key is present in the context. The set of all
satisfying assignments of the formula corresponds to the set of all
authorization contexts that will be allowed by the policy.

For P1, we have two allow statements, S1 and S2, and one deny
statement S3. The policy allows a request if either of the two allow
statements match, i.e. S1 ∨ S2 is satisfied, and the deny statement
does not match (¬S3). The policy is represented by the conjunction
of the encoding of the allow statements and the negation of the deny
statement. Thus the policy allows access for requests matching
any of the allow statements but that do not match any of deny
statements.3 The encoding of P2 follows a similar pattern.

While we use Zelkova for policy translation, we do not use the
public check mentioned in [1]. That check is not formally defined,
3Note that we are abusing notation to say a = "s3:*" since this, in fact, will correspond
to a form of string matching rather than equality.
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S1 � a = "s3:*" ∧ r = "arn:aws:s3:::my-bucket/*"

S2 � a = "s3:*" ∧ r = "arn:aws:s3:::my-bucket/*"∧

(¬principalOrg∃ ∨ principalOrg , "o-1234")

Allow(P2) � S1 ∧ ¬S2

Figure 5: SMT encoding of P2

and furthermore it was based on a fixed notion of public access not
influenced by the policy under consideration. Instead, we develop
a logical encoding of Trust Safety that can be compared against the
SMT encoding of Allow(P).

4.2 A Logical Encoding of Trust Safety

Given a policy P, a set of trusted keys TrK and trusted values
Tr

V we can check whether a policy is Trust Safe by constructing a
verification condition (VC), a first-order logic formula:

VC(P, TrK , TrV ) � Allow(P) ∧ ¬Trust(TrK , TrV ) (3)

where Allow(P) describes all request contexts allowed by P, and
Trust(TrK , TrV ) describes trusted request contexts. We can then
use an SMT solver to check the satisfiability of the formula (3). A
satisfying assignment corresponds to an untrusted (public) access
that is allowed, and hence, we reject P as not Trust Safe. Instead, if
the formula is unsatisfiable, we can be sure that all allowed requests
are trusted, and hence, we can accept the policy as Trust Safe.
Encoding the Trusted Requests Given the sets of trusted keys
Tr

K and their trusted values TrV , we generate the following for-
mula that corresponds to the set of all trusted request contexts.

Trust(TrK , TrV ) �
∨

k ∈TrK

∨
v ∈TrV (k )

(
var∃k ∧ vark = v

)
where vark denotes the variable in the SMT encoding corresponding
to keyk. Hence, if the VC formula (3) has any satisfying assignments
then the policy allows untrusted (public) access, and the satisfying
assignment can be used to compute an example of an untrusted
request that would be allowed by the policy and can be presented
to the user as an explanation.

4.3 Inferring Trusted Entities

The above procedure relies on having a given set of trusted values
for the trusted keys. As discussed earlier (§ 3.3), the set of trusted
keys can be determined once for each service. Hence, we need only
determine the trusted values for each key. Instead of relying on users
to provide a specification of trusted values, we must automatically
infer the values that the user trusts. We achieve this with a syntactic
analysis on the structure of the policy.
Extracting Trusted Values from Policies Tr

V (key)(P) denotes
the set of trusted values that can be inferred from policy P. Intu-
itively, TrV (key)(P) contains all the values of the key in the policy
that cannot match an overly large set of values, for domain-specific
definitions of “overly large.” This set is computed syntactically from

the policy. The following are examples of what we consider trusted
key values for several keys:

Tr
V (SourceVpc)(P) =

{v v ∈ P is compared with SourceVpc and
"*" < v and "?" < v}

Tr
V (SourceArn)(P) =

{v v ∈ P is compared with SourceArn and
"*" < account(v) and "?" < account(v)}

For the SourceVpc key that stores the virtual private cloud identi-
fier, we only trust values that do not contain any wildcard symbols.
Because private cloud identifiers are assigned nondeterministically,
any wildcard in this identifier will result in granting unintended
access. However, other trusted identifiers may contain wildcards.
Consider, for example, the Amazon Resource Name (ARN) that has
the following structure:

arn:partition:service:region:account-id:type/resource

A wildcard in the region section of the ARN is safe, because a
user may want to reference resources across multiple regions. A
wildcard in the account-id section (denoted by account(v)) is not
safe, because account IDs are nondeterministically assigned—even
a wildcard replacing just one digit would allow public access, since
the matched accounts are random. Coming up with the precise
definition of TrV (key)(P) for each key requires extensive domain-
specific knowledge, but it need only be created once to be used
many times.
Examples 1 & 2 Revisiting policy P1 in Figure 3(a), we infer the
following set of trusted key value pairs:

{(Principal, "arn:aws:iam::123456789012:role/dev"),

(Principal, "arn:aws:iam::123456789012:role/support"),

(SourceVpc, "vpc-abcdef")}

Note that the (Username, "admin") key pair is not in the set of
inferred keys because theUsername value can be controlled by the
issuer of the request. For the policy P2 in Figure 3(b), we infer just
the following pair as a trusted value: (PrincipalOrgID, "o-1234").

5 EFFICIENT VERIFICATION

Given a policy P, we can compute the set of trusted keys and
values, and then use those to compute a VC (3). If the VC is (resp.
not) satisfiable, then the policy allows (resp. prevents) untrusted
request contexts, and hence is not (resp. is) Trust Safe.
Semantic Trust Elimination Recall that the VC (3) has two parts.
The formula Allow(P) describes all allowed request context, and
the second conjunct ¬Trust(TrK , TrV ) stipulates that we exclude
all trusted requests. Intuitively, the second conjunct semantically
eliminates trusted requests from the VC, forcing the SMT solver
to find a satisfying assignment that corresponds to an untrusted
(public) access. The wildcards and string comparisons that are cru-
cial for making the policies flexible, yield VCs whose satisfiability
checking is PSPACE-complete [5]. While SMT solvers have sophis-
ticated heuristics to efficiently solve string constraints, in practice,
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the VCs generated in § 4 are quite large for real-world policies, and
hence, satisfiability checking is quite slow.
Syntactic Trust Elimination Our key observation is that instead
of semantically eliminating trust using the SMT solver, we can
exploit the structure of the policies to syntactically eliminate the
trusted components from the policies, in a sound manner. This dras-
tically shrinks the sizes of the policies and hence, the VCs, making
verification efficient. We implement syntactic trust elimination via
a set of syntax-directed rewrite rules that rewrite a policy P into a
new, smaller P ′ that allows strictly fewer requests than P, by deny-
ing some (or all) of P’s trusted requests. Formally, given an input
policy P � P0, we use a set of local rewrite rules to derive from P0 a
sequence of increasingly restrictive policies P0,P1, . . . ,Pn , where,
for each step 0 ≤ i < n, (1) Allow(Pi ) ⊇ Allow(Pi+1), (2) and any
request context r ∈ Allow(Pi ) \ Allow(Pi+1) is a trusted request
context. When no further rewrites can be applied, P ′ � Pn does
not allow any trusted request contexts, but allows only the untrusted
requests allowed by P. Thus, if P ′ denies all requests, we can be
sure that P also denies all untrusted requests, i.e. that P is Trust
Safe. We can establish the last check, that P ′ denies all requests
by comparing P ′ to the trivial policy that denies all requests using
Zelkova’s policy comparison engine.

Our syntactic elimination procedure drastically shrinks the size
of the VC in two ways. First, it yields a much slimmer P ′ that ex-
cludes all the trusted elements of P. Second, it removes the need for
the additional¬Trust(TrK , TrV ) clause that semantically eliminates
trusted keys and values. Together, the rewrites make verification
efficient as shown in § 7.
Rewriting Strategy Our rewriting rules implement the following
high-level strategy: each rule removes trusted values from (a) posi-
tive conditions in Allow statements, or, (b) negative conditions in
Deny statements. Intuitively, the former reduces the set of allowed
requests by directly eliminating the conditions that allow those
requests; the latter amounts to removing exceptions to the Deny
statements, thereby increases the set of requests that are explicitly
denied. Note that the the transformed policy is not used in place of
the original, user-supplied policy for the purpose of access control:
it is simply used to determine if the original policy is Trust Safe,
and then discarded.
Rewriting Policies Recall, from Figure 2, that a policy P is defined
as a set of statements {s1, . . . , sn }. We define our rewrite system
via two sets of rules. Rules of the form OPT(s) � s ′ rewrite the
statement s into s ′. Rules of the form OPT(s) � ⊥ indicate the
statement s is trivial and can be removed from the policy. We write
OPT

∗(s) for the result of repeatedly applying the rules until no
further rules can be applied or we have derived ⊥. The rules are
syntax-directed and hence, deterministic, making OPT

∗(s) well-
defined. Thus, we rewrite a policy as:

OPT
∗({s1, . . . , sn }) � {s ′ | ∃si . OPT

∗(si ) = s
′ , ⊥}

Rewriting Statements Figure 6 shows a subset of the rules for
rewriting different statements. Recall, from Figure 2 that each state-
ment is a tuple of the form (E, P,A,R,C)where E ∈ {Allow,Deny}

is the effect, P is the set of principals, A is the set of actions, R is
the set of resources, and C is the set of conditions under which the
statement is matched. The values of A and R are not used in our

rewrite rules, so we elide them and write simply (E, P,C). We will
also drop the literal Condition in our presentation of the rules.
The derivation rules from Figure 6 remove trusted principals and
trusted condition values from the policy.
Principal Matching Rules The [PrincipalVal] rule removes a
trusted principal from the set of principals of an Allow statement.
The rule can be read as: given a statement

(Allow,Principal : {p} ∪ P,C)

if the principal p is trusted, then p can be removed from the set of
(allowed) principals, resulting in the simplified statement:

(Allow,Principal : P,C)

The [PrincipalElim] rule determines that Allow statements with
an empty principal list can be rewritten to ⊥, i.e. deleted, as they
cannot match any requests.
Condition Matching Rules Op denotes the condition operation
such as StringLike orArnEquals . NotOp denotes the negated condi-
tion operators such as StringNotLike orArnNotEquals . The [OpVal]
rule removes trusted values that occur under a positive operator in
the condition of an allow statement. The resulting policy is more
restrictive, as it does not necessarily allow request contexts con-
taining (k,v). The [NotOpVal] removes trusted values that occur
under a negative operator in the condition of aDeny statement. The
intuition is that we are removing trusted exceptions to the Deny
statement, therefore the resulting policy allows fewer request con-
texts. Removing trusted values can result in policies with an empty
set of values. The [OpElim] rule removes Allow statements with
an empty set of values under a positive condition, because this
condition, and hence the entire statement, could never match. Simi-
larly, empty values under a negative condition in aDeny statement
always evaluates to true, and so we remove the condition.
Key-Existence Rules Recall that if the condition operator contains
the IfExists suffix, the rule matches if the key is not present in the
context. The trusted value elimination rules work the same as the
regular operators, but the operator elimination rule [OpIfExElim]
transforms the condition to match if the key is not present (checked
using the Null operator).
Correctness Each rule for OPT(s) preserves (un)satisfiability over
untrusted requests, i.e. modulo the assumption ¬Trust(TrK , TrV ).
This leads to the following correctness result for our optimization:

Theorem 1. P is Trust Safe iff OPT
∗(P) is Trust Safe

Example Figure 7 shows the policies obtained by rewriting the
examples in Figure 3. For P1, this entails the following steps:

(1) applying the [PrincipalVal] rule twice, until the principal
set is empty; then

(2) applying the [PrincipalElim] rule to remove the Allow

statement; and
(3) using the [NotOpVal] rule to remove all trusted exceptions

to the deny for the SourceVpc key in the StringNotEquals
condition.

After the above, no values remain in the Deny condition, and
we apply the [NotOpElim] rule to remove the condition entirely.
This results in a derived policy that still allows untrusted requests
from any "admin" user for resources in "my-bucket/*" but not in
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OPT((Allow,Principal : {p} ∪ P,C)) � (Allow,Principal : P,C)) if p ∈ Tr
V (Principal) [PrincipalVal]

OPT((Allow,Principal : ∅,C)) � ⊥ [PrincipalElim]
OPT((Allow, P, {(Op,k, {v} ∪V )} ∪C)) � (Allow, P, {(Op,k,V )} ∪C) if k ∈ Tr

K ,v ∈ Tr
V (k) [OpVal]

OPT((Allow, P, {(Op,k, ∅)} ∪C)) � ⊥ [OpElim]
OPT((Deny, P, {(NotOp,k, {v} ∪V )} ∪C)) � (Deny, P, {(NotOp,k,V )} ∪C) if k ∈ Tr

K ,v ∈ Tr
V (k) [NotOpVal]

OPT((Deny, P, {(NotOp,k, ∅)} ∪C)) � (Deny, P,C) [NotOpElim]
OPT((Allow, P, {(OpIfEx ,k, {v} ∪V )} ∪C)) � (Allow, P, {(OpIfEx ,k,V )} ∪C) if k ∈ Tr

K ,v ∈ Tr
V (k) [OpIfExVal]

OPT((Allow, P, {(OpIfEx ,k, ∅)} ∪C)) � (Allow, P, {(Null,k, true)} ∪C) [OpIfExElim]

Figure 6: Sample Rules for Simplifying Policies.

{(Allow,
Principal : "*",
Action : {"s3:GetObject, s3:PutObject"},
Resource : "arn:aws:s3:::my-bucket/*",
Condition : (StringEquals, Username, "admin")),
(Deny,
Principal : "*",
Action : "s3:*",
Resource : "arn:aws:s3:::my-bucket/accounts/*")}

(a) Final policy derived from P1.
{(Allow,
Principal : "*",
Action : "s3:*",
Resource : "arn:aws:s3:::my-bucket/*")
(Deny,
Principal : "*",
Action : "s3:*",
Resource : "arn:aws:s3:::my-bucket/*")}

(b) Final policy derived from P2.

Figure 7: Final policies after applying derivation rules.

"my-bucket/accounts/*", e.g. requests like 2. Similarly, we trans-
form the policy in Figure 7(b) by first removing the safe exceptions
and then dropping the condition for theDeny statement altogether.
The resulting Deny statement unconditionally denies all requests,
as does the policy.

Note that derivation rules for handling both Allow and Deny

statements are necessary. Consider, simply using the syntactic check
from Tr

V (k) to ensure that every Allow statement only allows
syntactically trusted values. By ignoring Deny statements, this ap-
proach would result in a false positive for the policy in Figure 3(b):
while the Allow statement is very broad, the Deny statement cru-
cially narrows down the set of allowed request contexts to only
those coming from a specific organization.

6 IMPLEMENTATION

In this sectionwe describe the overall system architecture, and show
how Block Public Access is integrated in S3. This integration must
satisfy the same operational requirements as the S3 service: security,
durability, availability, and robustness.

A key concept in a service such as S3 is the separation between
the control plane and the data plane. The control plane is responsible
for configuring the service, e.g. creating buckets, setting the bucket
policy, and deleting buckets. The data plane is responsible for the
primary workload, e.g. read and writing objects to buckets. The
data plane of S3 is used several orders of magnitude more often
than the control plane. In turn, the latency requirements for the
data plane are an order of magnitude more stringent than on the
control plane.

Block Public Access is designed to prohibit public access to
both control and data plane operations.While Block Public Access
is fast enough to be integrated into the control plane of S3, it is
too slow and high variability for data plane integration. To solve
this, the crucial insight is that Block Public Access only needs
to run its analysis in the control plane when policies are updated.
A cached result can be used in the data plane since Block Public
Access analysis decides if a policy is Trust Safe rather than deciding
if individual requests are public or not.

The computational complexity of the problem still makes time-
outs on pathological examples unavoidable. To maintain soundness,
we choose to fail closed: if the analysis result is unknown due to a
time-out, we say the policy is not Trust Safe.

Block Public Access provides two checks which can be enabled
independently. The first blocks any attempt to attach a policy that
grant public access. The second blocks access to existing buckets
that already have a public policy. While sometimes it is reasonable
to allow public access, for example sharing public data, to ensure we
are safe by default the recommendation is to enable both options.

Figure 8 shows simplified S3 authorization code with these two
options. The updatePolicy routine calls Block Public Ac-
cess to check if the policy allows public access. If it does and the
s3NewPublic option is enabled, then the policy is never attached.
Otherwise the result of the Block Public Access analysis is stored
in the cache and the policy is attached to the bucket. The authS3
authorization check uses this cached value to block access if the
s3LegacyPublic option is enabled. After retrieving the cached
value we enhance the request context by adding a special key to
the context s3:isPublic and mapping it to the cached value. If
the s3LegacyPublic option is enabled we create a lock-down
policy that will deny access if the original bucket policy was public.
The lock-down policy has the following structure:
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boolean updatePolicy(Bucket bucket, Policy policy){
boolean isPublic = BlockPublicAccess.

checkPublicPolicy(policy);
Account account = bucket.getAccount();
if (isPublic && account.s3NewPublic) {

return false;
}
policyCache.store(policy, isPublic);
bucket.attachPolicy(policy);
return true;

}

boolean authS3(Bucket bucket, Request req){
if (!IAM.authenticate(req)) {

return false;
}
Policy policy = bucket.getPolicy();
boolean isPublic = policyCache.get(policy);
req.context.add("s3:isPublic", isPublic);
Account account = bucket.getAccount();
List<Policy> policies = new ArrayList<>();
policies.add(policy);
if (account.s3LegacyPublic) {

policies.add(generateLockDownPolicy(account));
}
return IAM.evaluate(policies, req);

}

Figure 8: Block Public Access integration in S3 authoriza-

tion process.

(Deny,
NotPrincipal : acccount,
Action : "s3:*",
Resource : "*",
Condition : (BoolIfExists, s3:isPublic, true)

Here account is the account owner of the bucket. This policy will
deny all requests for a public policy except from the owner’s ac-
count. Using a lock-down policy with an extra request context key,
ensures we do not have to modify the IAM policy evaluation logic.

Figure 9 shows the system design when Block Public Access is
enabled. S3 API calls that result in policy updates trigger a request
to a fleet dedicated to running Block Public Access. The result
is stored with the policy in the policy cache database. All other re-
quests consult this cache before delegating the authorization check
to the IAM authorization engine. When a user issues a request req,
S3 uses the policy cache to augment the req with the information
whether the bucket policy allows public access (req’). If the Block
Public Access option is enabled, it will also add a lock-down policy
(p’) and then use the IAM policy evaluation engine to determine
whether access should be granted.

In this architecture S3 manages a high availability silo-ed fleet of
hosts dedicated to handling policy analysis requests. This gives flex-
ibility in throttling requests as needed. One of the reasons for using
a dedicated fleet as opposed to reusing the existing S3 infrastructure
is that SMT queries have a very different CPU profile compared to
most S3 calls. Because SMT solvers are CPU intensive, using the
same hosts to handle both S3 API calls and Block Public Access
requests would result in unacceptable slow-downs. A Block Public
Access specific S3 fleet is deployed for each region the service runs

Block Public
Access Fleet

S3 Auth

Policy Cache

AWS Identity
and Access
Management

updatePolicy(p)

(p, isPublic)

(p, isPublic)

auth
response

req

(p', req')

User

Figure 9: System diagram for Block Public Access integra-

tion in S3 request path.

in. To ensure high availability, fleets are spread over 3 availability
zones and designed to work even if one of availability zones goes
down. The fleet can be dynamically scaled to meet demand.

To be integrated in a high-availability, widely-used service like
S3, our Block Public Access checks must meet the same oper-
ational bar as S3. In addition to exhaustive testing, we monitor
the following metrics across all regions: latency, availability, and
throughput. If any of these metrics are outside of predefined bounds,
an automatic system pages our on-call engineer.

The policy encoding in Zelkova (onwhich Block Public Access
is based) is designed to be robust to changes in the AWS environ-
ment. However, sometimes we do need to update the encoding to
support additional functionality. One such example is the addition
of new trusted context keys. To avoid false positives, Zelkova’s
encoding needs to be updated with knowledge of the syntax and
semantics of these keys. Due to backwards compatibility these up-
grades should not affect the way existing policies are evaluated. To
ensure that our updates will not change the way existing policies
are analyzed, we have an exhaustive corpus of policies that we
use to benchmark our Zelkova analysis results. Before releasing
the upgraded version of our Zelkova checks, we re-analyze these
policies to ensure there are no regressions.

The enhanced S3 authorization system described here helps
customers secure their S3 buckets. Using Block Public Access,
customers can override S3 permissions that allow public access,
making it easy for the account administrator to set up centralized
control and prevent variation in security configuration regardless
of how an object is added or a bucket is created. By integrated
policy analysis in the control plane and using cached results in the
data plane, S3 can use our Block Public Access checks as a sound
mechanism to prevent public access to S3 resources.
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Figure 10: Block Public Access runtime using direct and

optimized algorithms.

7 EVALUATION

Finally, we present an evaluation of the efficiency and precision of
Block Public Access.

Efficiency To evaluate the improvement in the overall runtime
of the policy analysis by our optimized (syntactic) algorithm, we
randomly selected 19,901 real-world policies and compared the
results to the direct (semantic) approach. The results are shown in
Figure 10. Each line in the graph is sorted to be monotonic, i.e. the
order of policies is different between the two lines and the graph
does not directly compare the runtime of each policy.

There is an 85.2% average speedup in runtime using the opti-
mized algorithm. The bulk of the optimized algorithm speedup
comes from avoiding the SMT solver. This can be seen in Figure 10
as short vertical segments of the graph. The optimized algorithm
is able to solve 88.0% of problems without even invoking the SMT
solver. Instead, Block Public Access detects that the generated
SMT formula is “trivial” i.e. it either asserts false or asserts a single
atom both positively and negatively. The direct algorithm produces
only 10.7% trivial SMT problems by comparison. Among the 19,901
policies, there were 167 problems that were non-trivial for both
approaches. Even across these non-trivial problems, the optimized
approach produces an average 65.7% reduction in SMT problem
size and a corresponding 10.1% speedup.

Precision We also evaluate the precision of Block Public Access
by measuring our rate of false positives when evaluating policies.
Recall that to ensure that a public resource is never marked as
non-public we chose to fail closed: if Block Public Access times
out on a request, we say the policy is not Trust Safe. False positives
and unknowns could result in denied access for legitimate requests.
Because we are solving a problem in the PSPACE complexity class,
it is inevitable that we will occasionally run into pathological exam-
ples that cannot be solved quickly. From our 19,901 sample policies
we had zero unknowns. From our own use of Zelkova over the
past three years, we estimate the unknown rate to be approximately
one unknown every two million policies. Additionally both internal
and external feedback we have received indicates a similarly low
rate of false positives.

8 RELATEDWORK

We position Block Public Access with respect to some lines of
related work.

Policy DSLs Policy languages have been used in a variety of do-
mains, including trust management, distributed authorization, role-
based access, and access control of resources [8–11, 14, 15]. Several
policy languages are defined as Datalog programs, as Datalog en-
ables efficient verification of properties [3, 7, 9, 13, 15, 16]. The
TRBAC policy model uses concrete units of time to grant or revoke
access [4]. This is accomplished in the AWS policy language with
conditions on date and time. Fisler et al. define a policy formalism
that consists of transitions between different states of the envi-
ronment that determine access control in policies [9]. The access
control model in AWS also uses a policy and a dynamic environment
request context to determine permissions, but the environment does
not evolve during a single access request.

The AWS policy language is defined with respect to a JSON
serialization and is designed to be used across various cloud services
and scenarios of access control.

Formal Policy Analysis The Fireman system [21] uses Binary
Decision Diagrams to analyze access control lists (ACL) in firewall
configurations. The ACL configuration language is more restricted
than ours and the tool answers a fixed set of queries about which
accesses (packets) are allowed. Hughes and Bultan [11] transform
XACML policies into Boolean satisfiability problems and use a SAT
solver to check partial orders between policies using a bounded
analysis. Bounding the analyses, however, makes it unsound. The
Margrave system [18] encodes firewall policies as propositional
logic formulas and uses SAT engines to analyze policies. Finally, the
SecGuru tool [12] compares network connectivity policies using
the SMT theory of bit vectors. Most similar to our approach is the
work in [1], which checks properties of AWS access control policies
by encoding their semantics in first-order logic.

None of the above explores any notion like Trust Safety. [1] has
heuristics to detect (not prevent) public access that are integrated in
monitoring mechanisms like AWS Config and the S3 Console that
have relaxed latency requirements compared to the request path
of S3. In contrast, Block Public Access implements a run-time
preventative check that improves on the response time of [1] by an
order of magnitude, which was achieved with an efficient algorithm
based on policy rewriting. Moreover, Block Public Access ensures
that no public access is ever allowed throughout the lifetime of the
protected cloud resources. Finally, the presentation in [1] lacks any
description of Trust Safety and any algorithm for checking it. We
provide a formal definition and a detailed algorithm describing how
to check this property without requiring user input.

9 CONCLUSION

Previous attempts at solving the problem of detectingmisconfigured
policies have relied on monitoring logs, using machine learning to
find suspicious access patterns, or providing console warnings. All
of these techniques detect the problem after access to the bucket
has already been granted. In this work, we developed a practical
solution that prevents public access to S3 buckets due to miscon-
figured policies. Our solution is sound, fully automated, scales to
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cloud-scale request rates, and handles all the intricacies of an in-
dustrial, widely used access control policy language. This solution
is currently deployed as part of S3. It analyzes millions of policies a
day to prevent unintended public access.
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