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Simple Summary: Subtype classification and prognostic prediction are key research targets in
complex diseases such as cancer. In this work, an optimisation model was designed to infer the
activity of biological pathways from gene expression values. The optimisation model enables the
pathway activity values to separate the sample subtypes to the greatest extent, thereby improving
sample classification accuracy. The proposed model was evaluated on cancer molecular subtype
classification, robustness to noisy data and survival prediction, and allowed the identification of
disease-important genes and pathways.

Abstract: Background: With advances in high-throughput technologies, there has been an enormous
increase in data related to profiling the activity of molecules in disease. While such data provide more
comprehensive information on cellular actions, their large volume and complexity pose difficulty in
accurate classification of disease phenotypes. Therefore, novel modelling methods that can improve
accuracy while offering interpretable means of analysis are required. Biological pathways can be
used to incorporate a priori knowledge of biological interactions to decrease data dimensionality and
increase the biological interpretability of machine learning models. Methodology: A mathematical
optimisation model is proposed for pathway activity inference towards precise disease phenotype pre-
diction and is applied to RNA-Seq datasets. The model is based on mixed-integer linear programming
(MILP) mathematical optimisation principles and infers pathway activity as the linear combination
of pathway member gene expression, multiplying expression values with model-determined gene
weights that are optimised to maximise discrimination of phenotype classes and minimise incorrect
sample allocation. Results: The model is evaluated on the transcriptome of breast and colorectal
cancer, and exhibits solution results of good optimality as well as good prediction performance
on related cancer subtypes. Two baseline pathway activity inference methods and three advanced
methods are used for comparison. Sample prediction accuracy, robustness against noise expression
data, and survival analysis suggest competitive prediction performance of our model while providing
interpretability and insight on key pathways and genes. Overall, our work demonstrates that the
flexible nature of mathematical programming lends itself well to developing efficient computational
strategies for pathway activity inference and disease subtype prediction.

Keywords: pathway activity; RNA sequencing; optimisation; breast cancer; colorectal cancer

1. Introduction

Deriving molecular signatures is essential for the diagnosis and prognosis of complex
multi-factorial diseases such as cancers [1–3]. Gene signature identification methods that
are associated with high-throughput technologies, such as Differentially Expressed Genes
(DEGs) [4], have been widely used for this purpose and have been shown to outperform
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the traditional histopathological features [5,6]. However, the inherent “large-p, small-n”
nature of high-throughput genomic data, where the amount of observations (n) is orders of
magnitude smaller than the number of observable features (p), renders the identification of
reliable and reproducible gene markers for heterogeneous diseases difficult [7,8]. Because
the development of complex diseases is related to the disorder and perturbation of multiple
genes, recent work has sought to incorporate a priori knowledge of gene sets to the disease
classification problem in order to specify stable biological signatures [9–13] .

Biological pathways are gene sets that reflect series of actions among molecules, en-
capsulating specific functional processes in cells and tissues such as signaling events or
metabolic conversions. Determining which pathways are implicated in disease may en-
hance personalised strategies for diagnosis, treatment, and prevention of disease. A series
of methods have been proposed to address this problem by constructing a new composite
feature, called Pathway Activity (PA) [14], to transform gene-level data to pathway-level
data. However, robustness and biological interpretability are challenging problems for ex-
isting pathway inference methods in trying to reduce dimensionality from a few thousands
of genes in the entire genome to a few hundreds of pathways.

Popular baseline pathway activity inference methods in the literature include averaged
gene expression [14], z-score [15], PCA [16–19], and the Bayes method [20]. These methods
use statistical strategies or basic dimensionality reduction approaches to maintain a low
level of data reconstruction errors. However, without biological insights (i.e., relationships
or importance of pathway member genes) embedded in the inference procedure, the PA
value differences between sample cohorts are difficult to explain. More advanced methods
have been introduced for pathway activity inference. Ranking of pathway constituent genes
according to their discriminative power and identifying a small set of highly differentially
expressed genes has been reported [21]. Another method (Pathifier [19]) uses a principal
curve generated from control samples to calculate the pathway deregulation score of disease
samples. More recently, PASL has been proposed [12], with the aim of efficiently balancing
biological interpretability and classification performance. While these advanced methods
place greater emphasis on interpretability most of them remain statistical approaches, i.e.,
they rely on capturing the variance between sample cohorts. Therefore, their performance
is highly dependent on the quality and volume of the input data. Moreover, most of these
advanced methods are either applied to binary classification or are limited to a few signaling
pathways [20,22], while the classification of multiple phenotypes remains challenging.

We have reported a supervised mathematical programming optimisation model, called
DIGS (DIfferential Gene Signatures), which infers pathway activity as a weighted linear
combination of pathway constituent genes [23,24]; it is one-of-a-kind among pathway
activity inference methods, as it is based on optimisation principles. In DIGS, weights
of features are optimised to maximise the discriminative power of the inferred pathway
activity, in contrast to other methods where gene weights are set using prior knowledge
(usually assuming averaged gene weights [14,25,26]). Furthermore, the supervised nature
of DIGS is better suited to disease classification tasks than unsupervised methods, where
pathway activity merely summarises the variance in molecular data. Lastly, the model is
applicable to multi-class disease classification problems, and has been demonstrated to
outperform other PA inferencing methods in classification tasks [23]. Overall, benefiting
from its mathematical optimisation nature, DIGS ensures classification accuracy, while
gene weights determined by the objective function provide DIGS with dual biological
interpretability, deriving important pathways as well as important genes.

In this work, we aim to reduce the computational complexity of our previous mode;
to this end, we propose a novel pathway activity optimisation model which avoids a large
number of binary decision variables, converging more easily to optimality. In addition, we
introduce a new way of evaluating the proposed method which does not rely on external
Machine Learning classifiers, and can instead conduct disease phenotype prediction directly
from the outputs of the new proposed model. Using RNA-Seq datasets of colorectal cancer
and breast cancer from the Cancer Genome Atlas (TCGA) database, we show that the
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new optimisation model proposed here improves classification accuracy on multi-class
problems compared to both the original model and to other pathway activity inference
methods in the literature.

2. Materials and Methods
2.1. Data Preparation

Raw RNA-Seq count data were downloaded from the Cancer Genome Atlas (TCGA)
database [27] along with corresponding clinical information. Two publicly available TCGA
datasets, BRCA (for breast cancer samples) and COAD (for colorectal caner samples),
were obtained [19,28–30]. Breast cancer is the most common malignancy in women
globally [31], and colorectal cancer (CRC) is among the most lethal and prevalent ma-
lignancies worldwide [32]. Read count data were normalised by upper quartile FPKM
(FPKM-UQ) [33] to obtain the gene expression profiles. Then, genes with very high miss-
ingness (over 30% zero expression values across the sample cohort) were removed. Table 1
shows the details of the TCGA datasets.

Table 1. TCGA dataset details.

Dataset Tumour or Normal Label Molecular Subtype Label

CMS1: 85
CMS2: 165
CMS3: 58COAD Tumour: 480

Normal: 41
CMS4: 120

LumA: 579
LumB: 217
Basal: 191
Her2: 82

BRCA Tumour: 1091
Normal: 120

Normal-Like: 22

The COAD dataset consists of 521 samples in total, of which 480 are tumour tissue and
41 normal. For molecular subtypes, 85, 165, 58, and 120 samples belong to CMS1, CMS2,
CMS3, and CMS4 respectively [34]. For BRCA, the total number of samples is 1211, with
1091 being tumour tissue samples and 120 being normal. PAM50 [35] was used to determine
the molecular subtypes, and was retrieved using the TCGAbiolinks package [36]), resulting
in 579 samples in Luminal A, 217 in Luminal B, 191 Basal samples, 82 Her2 samples, and
22 normal-like samples. The normal-like subtype accounts for about 5–10% of all breast
carcinomas. These are poorly characterized, and have been grouped into the classification
of intrinsic subtypes with fibroadenomas and normal breast samples [37,38].

Biological pathways were retrieved through the Kyoto Encyclopedia of Genes and
Genomes (KEGG) API [39,40]. In total, 279 Homo Sapiens pathways were used in this
study, with the number of genes in these pathways being 6761.

2.2. A Novel Optimisation-Based Pathway Activity Inference Model

In this work, we propose an optimisation-based pathway activity inference model,
DIOPTRA (Disease OPTimisation for biomaRker Analysis), which infers pathway activity in
a supervised manner, i.e., by utilising clinical phenotype data and maximising the discrimi-
native power of pathway activity values towards the sample subtype class. In DIOPTRA,
pathway activity is created by linearly combining expressions of pathway constituent genes
and then multiplying them with gene weights determined by the model. The objective
function of the optimisation problem is used to minimise the distances between samples
and their corresponding class intervals. Overall, DIOPTRA derives a pathway activity fea-
ture that allows samples with the same label to be clustered both together as well as further
away from samples of different class; the overall procedure is summarised in Figure 1.
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Figure 1. Pathway activity inference flowchart for DIOPTRA. The normalised RNA-Seq data and a
number of pathway gene sets serve as the input to the pathway activity inference pipeline. For each
pathway p, pathway activity values pasp are calculated as linearly combined expressions of pathway
genes Gsm multiplied with gene weights rm, where rm is decided by two variables (rpm and rnm) in
the model. A pathway activity profile is formed by connecting the pathway activity vectors of all
pathways, and the new matrix of pathway activity profiles is obtained and further evaluated.

The pathway activity value pas in the model is defined as a weighted linear summation
of the expressions of pathway constituent genes:

pas = ∑
m

Gsm · (rpm − rnm) ∀s (1)

where Gsm is the gene expression value for sample s and gene m for the current pathway p;
furthermore, rpm and rnm are positive continuous variables that model the positive and
negative weights of a gene m, and their values are determined by the optimisation model.

The following three equations set the restrictions on gene weights. Equations (2) and (3)
ensure that for each gene m at most one of rpm and rnm can take positive values. This is
implemented by introducing a set of binary variables Lm, which takes a value of 0 or 1:

rpm ≤ Lm ∀m (2)

rnm ≤ (1− Lm) ∀m (3)

when Lm = 1, rpm can take any value between 0 and 1, while rnm is forced to be 0; otherwise,
when Lm = 0, rpm is forced to be 0, and rnm can be between 0 and 1. Overall, a gene can
have positive, negative, or zero weight towards the composite feature (pas) construction.
For normalisation purposes, the summation of absolute gene weights should be equal to 1:

∑
m
(rpm + rnm) = 1 (4)
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On the pathway activity dimension, each sample phenotype occupies a unique in-
terval and does not overlap with the intervals of other phenotypes, as implemented by
Equations (5)–(7):

UPk + ε ≤ LOc + U · (1−Ykc) ∀k < c (5)

UPc + ε ≤ LOk + U ·Ykc ∀k < c (6)

UPc − LOc ≥ ε ∀c (7)

where both c and k denote phenotypes; LOc and UPc are continuous variables modelling
the lower and upper bound of the activity interval of phenotype c, respectively; U and ε
are arbitrarily large and small positive constants, respectively, where U ensures the non-
overlapping nature of the class intervals and ε indicates the minimum distance between
two classes; and Ykc is a set of binary variables used to ensure the non-overlapping of the
pair-wise phenotype intervals. When Ykc = 1, the lower bound of phenotype c is greater
than the upper bound of phenotype k (LOc > UPk), while when Ykc = 0, the lower bound
of phenotype k is greater than the upper bound of phenotype c (LOk > UPc). In either case,
the phenotype ranges of k and c do not overlap.

For sample s, the violation distance Ds (positive continuous variable) is defined as
the distance between sample pathway activity pas and the pathway activity range of the
phenotype that the sample belongs to [LOcs , UPcs ].

Ds ≥ pas −UPc ∀s, cs (8)

Ds ≥ LOc − pas ∀s, cs (9)

Figure 2b shows three possible scenarios between pas and [LOcs , UPcs ]. When pas
is smaller than its lower bound LOcs , the violation distance becomes Ds = LOcs − pas,
while when pas is greater than its upper bound UPcs , the violation distance becomes
Ds = pas −UPcs , and when pas is inside its target range, the violation distance is equal
to 0.

The objective function (10) in the model minimises the sum of violation distances Ds
over all samples:

Min z = ∑
s

Ds (10)

This novel optimisation model, named DIOPTRA, consists of a linear objective function
and several linear constraints. The presence of both continuous and integer variables
yields a mixed-integer linear programming (MILP) model; the mathematical formulation is
summarised below.

Objective function:
Minimising the summation of violation distance (10)
Subjected to:
Pathway activity definition (1)
Restrictions on positive and negative gene weights (2, 3 and 4)
Non-overlapping constraints for phenotype ranges (5, 6, and 7)
Sample violation distance calculation (8 and 9)
Variables:
rpm, rnm, Ds ≥ 0;
pas, LOc, UPc : Unstricted;
Lm, Ykc ∈ {0, 1}
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Figure 2. Individual Pathway Evaluation. (a) Motivating Example of the DIOPTRA model. DIOPTRA
seeks to infer pathway activity as a discriminative feature for sample classes. Pathway activity (pas)
is defined as the weighted linear summation of expressions of constituent genes m, where the gene
weights (rpm − rnm) are modelled as free variables. On the pathway activity dimension, each
class occupies a distinct range ([LOcs , UPcs ], represented by the black boxes), and classes do not
overlap. The points indicate samples coloured according to class, while values are pas. (b) Three
possible scenarios between pas and [LOcs , UPcs ]. The distance between the pas and its corresponding
[LOcs , UPcs ] is the sample violation distance Ds. (c) Two applications of the outputs of the DIOPTRA
model. (i) Individual Pathway Prediction Accuracy: after pas values are obtained, samples are
allocated into the nearest class range, then accuracy for p is calculated as the percentage of samples
that are allocated to the correct class. (ii) Combined Prediction Results: after obtaining sample
allocations from all pathways, the predicted class for s is the one with the highest number of pathways;
the combined accuracy is then calculated after dividing the number of correctly predicted samples by
the total.

Because MILP models are NP-hard, computational requirements may increase signifi-
cantly as the number of binary variables increases [41]. DIOPTRA builds upon concepts
introduced in our previous work (DIGS [23]) by eliminating most of the binary variables
used previously. The DIGS model uses a set of binary variables to force the class in-
tervals enclosing the samples. DIOPTRA removes this by replacing the sample enclose
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constraints with violation distance constraints. In addition, DIOPTRA releases limitations
on the number of genes that can obtain gene weights, thereby eliminating another group of
binary variables.

Figure 2a presents a motivating example to illustrate how DIOPTRA separates samples
of different classes. The input data consist of a simulated pathway expression matrix, where
30 member genes from a specific pathway serve as columns and COAD samples serve
as rows. The output consists of gene weights (rpm − rnm), which are further used for
calculating the PA values via Equation (1), as well as the class intervals LOc and UPc. The
points in Figure 2a represent the inferred pathway activity values of all samples, while
the black boxes on the horizontal axes represent the class intervals (here, the four cancer
subtypes of COAD). All the intervals on the plot are non-overlapping, as they are restricted
by Equations (5)–(7). With the violation distance Ds calculated by Equations (8) and (9), the
objective function (10) performs the task of minimising the summation of Ds for all samples.
As shown in Figure 2a, the pathway activity values for samples of the same class label are
clustered together. The bounds of each class are close to the centres of the sample clusters,
which illustrates the ability of the model to separate samples of different phenotypes to the
largest extent.

The MILP model is solved using the general purpose CPLEX solution algorithm
implemented in the General Algebraic Modelling System (GAMS) [40]. Solutions are
identified in a user-specified time limit (200 seconds by default). Note that simply increasing
the time limit only marginally improves the quality of the solution. Therefore, both the
feasible solution and the optimal solution are acceptable. In addition, the relative optimality
criterion solver (optcr) is set to its default value of 0, that is, the limit for Gap, which reflects
the percentage difference between the best potential target and the best found target, is not
restricted in the model solver report.

2.3. Comparison of Pathway Activity Inference Approaches

To demonstrate the efficiency of the proposed DIOPTRA model for pathway activity
inference, we implemented a range of other pathway activity inference methods for com-
parison, including two baseline methods: (i) the approach of Guo et al. [14] (referred to
as MEAN), which calculates average gene expression values as pathway activity and is
the original work that proposed the concept of applying dimensionality reduction based
on functional gene sets; (ii) the approach of Bild et al. [26] (referred to as PCA), which
calculates the top principle component as a representation of the pathway activity. This
method has been adopted in many studies [16–19].

In addition, three more advanced methods were used for benchmarking DIOPTRA:
(i) our previous model, DIGS [23], which selects the best subset of genes to build pathway
activity while minimising the number of misclassified samples; (ii) the GSVA [42] approach,
a variation of Gene Set Enrichment Analysis [43]; and (iii) the Pathifier [19] approach,
which investigates the extent to which the behavior of a pathway deviates from normal.
Pathifier was shown to be the most competitive method in a recent review of pathway
activity inference methods [44].

2.4. Method Evaluation

Three metrics were used to evaluate comparisons of pathway activity inference meth-
ods: (i) sample prediction accuracy using machine learning classifiers, (ii) robustness
against noise in gene expression data, and (iii) ability to use pathway activity values for
survival analysis. The comparison carried out via these metrics is described below.

2.4.1. Classification

The accuracy of classifying samples to the appropriate class using the pathway activity
matrix was used to assess the ability of pathway activity vectors to separate samples of dif-
ferent phenotypes. In this work, we used Random Forest (referred to as RF) and K-Nearest
Neighbor (referred to as KNN). To obtain robust results and assess the generalisation
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properties of the trained models, ten-fold stratified cross-validation was used. To further
assess the reproducibility of the results, we ran each cross-validation analysis three times,
generating 30 training and 30 testing sets. The two classifiers were trained on the pathway
activity profile inferred from the training samples and tested on the pathway activity profile
inferred from the testing samples.

Binary classification (sometimes referred to as two-class classification) and multi-class
classification were both implemented. Binary classification uses tumour and normal sample
labels, while multi-class classification refers to the classification of molecular subtypes
(Table 1). To avoid the effects of unbalanced sample groups for two-class labels in both
datasets, SMOTE [45] was applied to the training sets to ensure that the number of normal
samples was balanced to the number of tumour samples. The RF parameter n_estimators
was tuned from 200 to 2000 using grid search optimisation on the training sets to optimise
the performance of the trained model. As opposed to RF, KNN represents a basic and
naïve classifier. The k parameter for KNN was selected using a trial-and-error process on
the training dataset, testing values of 3, 5, 10, 20, 30, and 50. We selected k = 30, as it was
the value providing the highest performance on the classification metrics. Both RF and
KNN were implemented using the Python library sklearn 0.24.0 [46]. The performance of
the classifiers was evaluated using four metrics, namely, Accuracy, F1-score, Precision, and
Recall, which were averaged over the 30 testing sets.

2.4.2. Robustness against Noise in Data

The robustness of pathway activity inference methods when facing unpredictable fluc-
tuations in gene expression values was assessed, with the expectation that pathway activity
inference methods should be able to retain good classification performance as the noise
level increases. The robustness evaluation procedure consisted of three steps: simulating
noise in expression data, pathway activity inference on the simulated data, and evaluating
classification accuracy. The pipeline is illustrated in Supplementary Figure S1. The gene
expression perturbation simulation process was performed by permuting the sample order
for the randomly selected genes [47]. The proportions of affected genes were set to 0%,
3%, 10%, and 50%, with increasing noise when the percentage increased. Therefore, in
addition to the original gene expression profile (0%), three perturbed expression profiles
were created for the two datasets. Finally, the robustness of the methods was evaluated
using the multi-class classification accuracy as assessed by the KNN classifier.

2.4.3. Survival Analysis

Survival analysis is a key means of expressing prognostic value in cancer studies. As
a new composite feature that can aggregate the gene expression values, pathway activity
values are expected to perform better at predicting survival than random data. As a new
composite feature that aggregates the gene expression values, pathway activity values are
expected to perform better than random data in predicting survival probabilities. In this
work, the pathway activity data produced for cancer molecular subtypes (multi-class) was
used to train the survival model with the sample clinical information.

Clinical data of both datasets were downloaded together with the raw counts data
from the TCGA database. The event (“0” for observed death or “1” for not observed death)
and duration time for samples were extracted from the clinical data. Considering the
inaccuracy caused by the loss of clinical information, samples with too short a follow-up
time (where the duration of the time was less than one year and the event was “0”) were
removed. After sample selection, 196 samples (98 samples with label ’1’) were kept for
COAD and 206 samples (103 samples with label “1”) were kept for BRCA.

The Survival Random Forest [48] model (implemented using the Python package
scikit-survival 0.16.0 [49]) was used for training and testing the survival model, and the
concordance index (c-index) [50] was used for evaluating the model. On random data, the
c-index was 0.5, meaning that values higher that 0.5 indicate good survival prediction.
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2.5. Sample Classification through DIOPTRA
2.5.1. Pathway and Gene Ranking

One of the most important applications of pathway activity inference is identifying
significant pathway signatures related to cancer subtypes. Previous research has used
computational or statistical approaches, such as p-value ranking or information gain
index [30,42,51,52], to select the pathways with relatively high significance. In this work,
benefiting from the explainability of the optimisation model, we present a comprehensive
method that can identify pathways important for disease classification directly from the
outputs of DIOPTRA, rather than relying on post-processing of pathway activity values
through machine learning classifiers.

Figure 2a,b illustrates the mechanism of how DIOPTRA classifies the samples in
individual pathways. Based on this, another application of the outputs of the DIOPTRA
model is introduced in Figure 2c. For each pathway, the DIOPTRA model provides the
pathway activity value for each sample s and the class ranges for each class c. By calculating
the distance of samples to each class (violation distance Ds), samples can be allocated to
their nearest class. In other words, the allocation result is the predicted class of the sample
s, and the prediction accuracy of the pathway p can be calculated as the number of true
positive samples divided by the total amount of samples, termed as the Individual Pathway
Prediction Accuracy. Consequently, pathways can be ranked according to their ability to
separate sample subtypes, and pathways with higher prediction accuracy are the ones most
significant for disease classification.

In addition to ranking pathways, DIOPTRA provides quantitative evaluation and
ranking of member genes of pathways. As the pathway activity value is defined by
the weighted summation of gene expression values, a gene that obtains a higher weight
(rpm − rnm) from the DIOPTRA model has a higher influence on pathway activity values.
Moreover, as rpm − rnm can be either positive or negative, the impact of the gene is
decided by the absolute gene weights. Therefore, the final ranking of genes is decided by
accumulating the absolute weights from all the available results (30 times model training)
for the same pathway.

These DIOPTRA-identified important pathways were verified by SHapley Additive
exPlanations (SHAP) analysis [53], which is a unified framework used to interpret the
predictions of machine learning classifiers by assigning importance values to input features.
We applied the Tree Explainer from the Python package SHAP [54] to our trained RF
classifiers. The results of this SHAP analysis provide the pathways with the highest impact
on the prediction accuracy of the RF.

2.5.2. Assessing Sample Classification through DIOPTRA

Typically, pathway activity inference methods are assessed based on how well samples
can be classified using machine learning classifiers on pathway activity values. However,
as the DIOPTRA model can be used to predict the sample class directly, we illustrate its
classification power here without resorting to the use of external classifiers.

Sample allocation in individual pathways can be combined to produce a final sample
prediction; this process is illustrated in the two tables on the left-hand-side of Figure 2c.
The first table shows the allocated class of sample s of each pathway p, while the second
table counts the percentages for each class c. The percentage value represents the number
of pathways that allocate sample s into class c, and the combined prediction class for
sample s is the class with the highest percentage. As in the example shown in Figure 2,
the highest percentage is 40%, which means that in 40% of KEGG pathways sample s is
allocated to class c2. Therefore, the combined prediction class for s is c2. The table on the
right-hand-side of Figure 2c shows the accuracy calculation of the combined prediction for
all samples, which is determined as the number of correctly predicted samples divided by
the number of all samples.
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3. Results
3.1. Classification Comparison

Classification performance comparisons were conducted for both two-class and multi-
class problems. The pathway activity profiles inferred by six methods (DIOPTRA, DIGS,
MEAN, PCA, GSVA and Pathifier) were input to the RF and KNN classifiers for training.
Note that Pathifier was used only for two-class classification problems, as it is not designed
for multi-class problems. It should be noted that in order to achieve an objective evaluation
of classification performance, the training process (i.e., inferring pathway activity and clas-
sifier training) was always blind to testing. Classification evaluation metrics were averaged
across the testing sets and classification accuracies of all methods; the classifier combina-
tions are shown in Figure 3a,b for multi-class classification and two-class classification,
respectively. The outcomes of all four classification metrics are provided in Supplementary
Table S1.

Figure 3. Assessment of pathway activity inference methods. (a) Comparison of pathway activity
inference prediction performance by Random Forest (RF) and K-Nearest Neighbour (KNN) on the
multi-class scenario. (b) Prediction performance comparison on the two-class scenario, including
the Pathifier method, which is designed for binary labelled data. (c) Prediction accuracy (multi-class
scenario) with noise introduced to the RNA-Seq data. The x-axis represents the percentage of samples
perturbed and the y-axis indicates the prediction accuracy and standard errors of KNN over one
instance of ten-fold cross-validation. AllGENE refers to directly using the gene expression values to
train and test the classifier. (d) C-index for evaluating the Random Survival Forest model fitted on the
pathway activity (multi-class scenario); C-index = 0.5 indicates the performance of a random classifier.

From Figure 3a, it is obvious that the inferred pathway activity using the proposed
DIOPTRA model results in more accurate overall predictions than the methods in the
literature. In both datasets and classifiers, DIOPTRA manages to achieve higher average
accuracy towards the classification of molecular subtypes (multi-class problem). For the
two-class classification problem (Figure 3b), although GSVA performs best for BRCA
and Pathifier performs best for COAD, DIOPTRA is the second-best method in both
datasets. However, as all methods perform well in two-class classification problems (over
90% accuracy, except for MEAN on BRCA), the slight differences between methods are
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negligible. Therefore, overall, DIOPTRA shows strong superiority on cancer classification,
especially in multi-class scenarios. Furthermore, as can be seen in Supplementary Table
S1, the DIOPTRA model has better prediction results than the other methods in terms of
F1-score, Precision, and Recall in the majority of cases.

3.2. Robustness Comparison

Robustness was evaluated by calculating the multi-class classification accuracy on
RNA-Seq datasets with the data perturbed at various levels. The KNN classifier was used
(where k = 30), and the accuracy was calculated by averaging across testing sets. The results
are shown in Figure 3c. In addition to the pathway activity inference methods, a gene-level
approach, referred to as allGENE, is used here, with gene expression values used to train
and test with the KNN classifier. This serves as a baseline for evaluating the extent to which
simulated noisy data can affect sample classification accuracy.

As seen in Figure 3c, DIOPTRA provides the best overall performance. As more noise
is introduced to the data, accuracy in DIOPTRA remains above 70% for both COAD and
BRCA. Although PCA is able to maintain more stable performance when the perturbation
degree is increased, its comparatively low accuracy in non-perturbed datasets inversely
demonstrates its poor power in differentiating sample types. For the performance of GSVA,
the accuracy in COAD does not fluctuate as perturbation increases; however, it shows a
decreasing tendency in BRCA. This phenomenon can be explained by the nature of the
GSVA method. GSVA focuses on the ranking of the genes rather than their expression
values. Therefore, the simulated perturbation process (i.e., re-ordering part of the expression
values) can take the form of either slight effects or obvious effects on the gene rankings.

3.3. Survival Comparison

Survival regression was conducted for both the training and testing sets. The C-index
results are reported in Figure 3d. For the training sets, all methods perform well on the
two datasets. For the COAD dataset, DIGS takes the first place, while for BRCA DIOPTRA
takes the first place. In the testing sets, nearly all methods gain a C-index over 0.5, except
for the MEAN method on BRCA. Although the differences between the five pathway
activity inference methods are not particularly distinct, DIOPTRA and DIGS show greater
performance in predicting survival information than the other methods.

Figure 4 provides a comprehensive overview of comparisons. The multi-class predic-
tion vertex uses the RF classification accuracy for the multi-class scenario. The robustness
(50%) vertex is the KNN classification accuracy produced on a 50% perturbed dataset, while
the c-index vertex represents the c-index values produced using testing samples. Two-class
classification accuracy is not included, as the results for all methods were similar. The
values on each vertex were normalised using a 0–1 scale to make the differences between
methods clearer. Figure 4a compares the performance between DIOPTRA and DIGS. The
shadowed area of DIOPTRA is larger than that of DIGS, indicating that the DIOPTRA
model has better quality pathway activity than the previous optimisation formulation in
DIGS. Figure 4b compares three pathway activity inference methods that are representative
of the different calculation principles, i.e., DIOPTRA for optimisation, PCA for dimension-
ality reduction, and GSVA for gene ranking. DIOPTRA outperforms the other methods for
nearly all the metrics on both datasets, especially in the case of multi-class prediction.

3.4. DIOPTRA Prediction Performance and Identification of Biologically Relevant Pathways

The prediction accuracy of DIOPTRA by itself (see Section 2.5.2) is comparable to that
achieved when DIOPTRA-derived pathway activity vectors are used for classification with
standard machine learning classifiers. Table 2 compares the performance of DIOPTRA
itself with DIOPTRA + Machine Learning Classifiers. All accuracy values are produced
for multi-class classification scenarios. It is shown that the accuracy of DIOPTRA is not
significantly degraded compared to DIOPTRA + KNN, which means that DIOPTRA by
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itself is competitive with simple machine learning classifiers. Therefore, the powerful
classification ability of the DIOPTRA model is confirmed.

Table 2. Prediction accuracy achieved by DIOPTRA and DIOPTRA + Machine Learning Classifiers.

Classifier BRCA COAD

DIOPTRA 0.67 (0.064) 0.75 (0.043)
DIOPTRA+KNN 0.74 (0.046) 0.76 (0.068)
DIOPTRA+RF 0.84 (0.031) 0.85 (0.060)

From another point of view, the prediction accuracy of DIOPTRA by itself can be
compared to accuracies produced by the other pathway activity inference methods using
machine learning classifiers. The accuracy of DIOPTRA in Table 2 is at the same level as the
other methods + KNN in Figure 3a. In detail, the DIOPTRA accuracy for BRCA subtypes is
0.67, while the accuracy of other moethods is between 0.6 and 0.7; moreover, the accuracy
of DIOPTRA for COAD subtypes is 0.75, while for other methods it is between 0.65 and
0.75. This implies that DIOPTRA by itself can achieve the classification performance of
other widely used pathway activity inference methods.

Figure 4. Radar charts; each vertex counter-clockwise from 12 o’clock of the radar chart indicates
sample phenotype prediction accuracy on molecular subtypes, robustness against 50% perturbed
genes, and survival regression as evaluated by C-index, respectively. (a) Comparison of the perfor-
mance between DIOPTRA and the original DIGS. (b) Comparison of the performance between three
representative methods (DIOPTRA, PCA, and GSVA). The number on each vertex is scaled to 0-1 for
these two plots.

We ranked KEGG pathways according to their Individual Pathway Prediction Ac-
curacy calculated using DIOPTRA. The member genes of each pathway were ranked
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according to their gene weights, and final rankings were aggregated using the results of
ten-fold cross-validation. Table 3 shows the top ten pathways for BRCA along with the
top five pathway constituent genes and their accumulated weights. The ranking of all
pathways and genes for BRCA and COAD are listed in Supplementary Table S2.

To demonstrate the effectiveness of the highly-ranked pathways, we projected the
pathway activity values of the top quartile pathways (i.e., 70 pathways) in two-dimensional
visualisation using tSNE. In Figure 5, the tSNE plot that clusters the samples using pathway
activity shows greater refinement of cancer subtypes compared to the projection of RNA-Seq
data. Especially for subtypes with a large number of samples, such as Luminal A, Luminal
B, and Basal (see Table 1), the clusters are much clearer. The hierarchical clustering heatmap
using the pathway activity values verifies this observation as well. We repeated the same
analysis for the remaining pathway activity inference methods and COAD dataset, with
the results presented in Supplementary Figure S2. Overall, the performance of DIOPTRA
is the best and DIGS takes second place. The other methods do not show improvements
compared to the RNA-Seq data.

Figure 5. Visualisations of significant pathways in BRCA. (a) The left tSNE plot is generated from
the RNA count data with genes across all KEGG pathways, while the right scatter plot is generated
from the activities for KEGG pathways derived from the DIOPTRA model using all samples. (b) The
hierarchical clustering heatmap represents pathway activities of the top 70 pathways with the highest
prediction accuracy in DIOPTRA.
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Table 3. Significant pathways and genes for BRCA.

KEGG Pathway Name No.
Gene Top Genes and Weights 1

Pancreatic secretion 104 CA2 4.36 CPA1 0.72 CHRM3 0.69 PRSS2 0.53 CPA2 0.33
Circadian rhythm 32 RORB 3.24 ROR1 0.78 PRKAA2 0.49 RORA 0.49 CUL1 0.47
Peroxisome 87 AGXT 5.39 HAO2 3.21 ACSL6 0.23 PEX11A 0.10 IDH2 0.08
Chemical carcinogenesis 81 GSTM5 6.07 PTGS2 0.71 GSTA1 0.66 GSTA2 0.44 CYP1A1 0.30
Platinum drug resistance 73 GSTM5 6.71 GSTA2 1.30 GSTA1 0.82 CDKN2A 0.21 GSTT2B 0.15
Drug metabolism cytochrome P450 70 GSTM5 6.33 GSTA1 0.91 GSTA2 0.69 UGT2B11 0.22 FMO2 0.21
Folate biosynthesis 30 TPH1 4.11 PAH 3.88 ALPL 0.79 MOCOS 0.34 FPGS 0.20
Drug metabolism other enzymes 79 GSTM5 5.98 GSTA1 0.93 GSTA2 0.65 XDH 0.55 GSTT2B 0.21
Cocaine addiction 50 SLC18A2 3.56 DRD1 1.16 GRIN2A 0.93 CREB3L3 0.51 SLC18A1 0.41
Carbon metabolism 118 AGXT 3.468 HAO2 2.178 ALDOB 1.962 PHGDH 0.605 PSAT1 0.147

1 The gene weights are summations from 30 model trainings (three ten-fold cross-validations).

4. Discussion
4.1. Computational Efficiency Improvements in DIOPTRA

To demonstrate the improvements in computation efficiency with DIOPTRA, we
summarised the Model Status and the Gap value from all optimisation model solutions.
Both DIOPTRA and DIGS models were solved 30 times for each pathway (three ten-fold
cross-validations), resulting in a total amount of solutions equal to 8370 for each dataset
and each model.

For both datasets, a total of 16,740 MILPs (8370 per dataset) were solved. It was found
that DIOPTRA yields more Optimal and Integer (feasible) solutions than DIGS (660 more
Optimal solutions for COAD and 90 more Integer solutions for BRCA), indicating that
DIOPTRA can achieve a better quality of solutions. The Gap value metric, which indicates
the closeness of the solution achieved to the best possible value, is plotted in histograms
(Supplementary Figure S3), showing that DIOPTRA provides a considerable improvement
in terms of decreasing gap values. For the smaller datasets (COAD), the distribution of
Gap values of DIOPTRA is in the range of [0, 1], and nearly half of the Gap values are
less than 1, while for DIGS nearly all the Gap values are 1. For the more computationally
intensive dataset (BRCA), although most Gap values with both methods are equal to 1, the
number of Gap values less than 1 is larger for DIOPTRA than DIGS.

4.2. Exploration of Top-Ranked Pathways

To validate the pathways that were identified as important Table 3, we looked to the
literature to find the connections between these pathways, genes, and breast cancer. Several
studies have demonstrated the role of Circadian Rhythm as an effective tumour suppres-
sor [55–57]. The development of tumours is triggered by the stimulation or disruption of
signalling pathways at the cellular level as a result of the interaction between cells and
environmental stimuli. The Circadian Rhythm pathway synchronises the timekeeping
in the peripheral tissues by integrating the light–dark input from the environment. The
ROR family of genes, which is highly ranked by DIOPTRA, affect the Circadian Rhythm
pathway regulation through regulating the secondary transcription/translational feedback
loop [57]. Peroxisome protein levels or enzymatic activities of peroxisome metabolism are
largely reduced in breast tumours [58]. The top constituent gene, AGXT, is highly involved
in colorectal cancer [59] and hepatocellular carcinoma [60]. In addition, the relationship
between folate and the risk of breast cancer has been greatly investigated [61,62]. It is
noticeable that the GSTM family genes play a crucial role in chemical carcinogenesis, plat-
inum drug resistance, drug metabolism cytochrome P450, and drug metabolism of other
enzymes pathways. We found that the importance of the GSTM family to the risk of breast
cancer has been verified by several studies [63–66].

The two highly ranked pathways in Table 3, namely, pancreatic secretion and chemical
carcinogenesis, are not found to have a direct association with breast cancer in the literature.
Moreover, their top-ranked genes are not found to be directly related to cancers. However,
the ranking of the pathways is the result of the synergistic action of all the member genes.
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Therefore, using protein–protein interaction (PPI) networks to find the genes that are
physically close to the top-ranked genes is another way to understand the pathways.
To understand the functions of these two pathways, we performed further analysis by
reconstructing and clustering their corresponding PPI networks. In this study, the PPI data
were collected from the STRING database [67], and the MCL algorithm [68] was used for
clustering. The clusters were visualised in Supplementary Figure S4 using Cytoscape [69],
where the size of the nodes is proportional to their weight as identified by DIOPTRA and the
edges are proportional to the interaction confidence score. In principle, proteins in the same
cluster are either part of the same protein complex or perform a similar molecular function.

For the pancreatic secretion pathway, the gene with the highest weight, CA2, is the
most active enzyme found in nature [70]. The cluster shows that CA2 interacts with a large
number of SLC family member genes in the PPI network. Therefore, it can be assumed
that the role of SLC family genes is essential for high ranking in the pancreatic secretion
pathway, while the SLC gene family is found to be highly correlated with breast cancer [71].
For the chemical carcinogenesis pathway, the previously described GSTM family genes are
abundantly present in the GSTM5-centered cluster. The ADH and ALDH gene families that
appear in this cluster are risk factors for many types of cancer, and have abnormal activity
in stage IV breast cancer [72].

Furthermore, the top 30 pathways identified by SHAP are presented in Supplementary
Figure S5; the top ten pathways for each molecular subtype are presented in Supplementary
Figures S6 and S7. From the results, significant pathways identified by the DIOPTRA model
overlap highly with pathways that have a significant impact on the RF classifier. Over half
of the top 30 pathways from SHAP overlap with the top 70 pathways of the DIOPTRA path-
way ranking list. In addition, SHAP identifies other highly relevant pathways for BRCA,
such as the Wnt Signaling pathway, AMPK signaling pathway, and Breast Cancer pathway,
which means that the other way of explanation for the pathway activity values inferred by
DIOPTRA can provide more information on revealing the disease pathway markers.

5. Conclusions

Integrating reliable pathway information into analysis of high-throughput omics
data has been implemented in various studies. Such approaches have become popular
in disease classification tasks using bulk profiling data, and have attracted attention in
the field of single-cell RNA-Seq analysis. Most of the existing pathway activity inference
methods face limitations in either not being applicable for multi-classification scenarios or
lacking biological interpretability. Our previous work introduced a mathematical model,
DIGS [23], which to the best of our knowledge is the only optimisation-based model that
infers pathway activity values in a supervised manner and is suitable for multi-class tasks.
The strong performance of the DIGS model motivated us to expand it by further improving
its accuracy and interpretability. Therefore, in this work we present an MILP mathematical
programming model, called DIOPTRA, that has better optimisation solution qualities and
is more computationally efficient.

DIOPTRA either outperforms or performs on par with other widely used pathway
activity inference methods. We evaluated the pathway activity methods using multiple
metrics in both binary and multi-class scenarios, and additionally performed survival
and robustness analyses. DIOPTRA shows competitive performance on these evaluation
metrics, achieving particularly outstanding results in multi-class scenarios. The strong
performance of DIOPTRA on multi-class problems, including sample classification, model
robustness, validation, and survival analysis, highlights its advantages over other existing
methods, particularly for multi-class problems. A key property of modelling in DIOPTRA
is its interpretable nature in deriving rules that enable pathway and gene prioritisation. The
application of DIOPTRA to RNA sequencing data for breast and colon cancers permitted the
identification of accurate diagnostic and prognostic models for these clusters based on their
assessment using stratified cross-validation. Despite the fact that these models outperform
other pathway inference based methods as well as the method using all genes as input
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to classification models, further exploration via application of these or similar models for
diagnostic and prognostic purposes in independent retrospective and prospective datasets
remains instrumental in validating their translational potential in clinical settings.
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for Pathway Activity Inference Methods; Figure S2: tSNE dimension reduction scatters plots and
Hierarchical clustering map of significant pathways in COAD; Figure S3: Computational efficiency
Comparison between DIGS and DIOPTRA; Figure S4: Protein-protein interaction network for pan-
creatic secretion and chemical carcinogenesis; Figure S5: Top 30 pathway from SHAP for BRCA
and COAD; Figure S6: Top 10 pathways from SHAP for each subtype of BRCA; Figure S7: Top 10
pathways from SHAP for each subtype of COAD; Table S1: Classification Metrics Comparison of RF
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