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Abstract
Objectives: We evaluated the error detection performance of the DetectDeviatingCells (DDC) algorithm which flags data anomalies at
observation (casewise) and variable (cellwise) level in continuous variables. We compared its performance to other approaches in a simu-
lated dataset.

Study Design and Setting: We simulated height and weight data for hypothetical individuals aged 2e20 years. We changed a propor-
tion of height values according to predetermined error patterns. We applied the DDC algorithm and other error-detection approaches
(descriptive statistics, plots, fixed-threshold rules, classic, and robust Mahalanobis distance) and we compared error detection performance
with sensitivity, specificity, likelihood ratios, predictive values, and receiver operating characteristic (ROC) curves.

Results: At our chosen thresholds error detection specificity was excellent across all scenarios for all methods and sensitivity was high-
er for multivariable and robust methods. The DDC algorithm performance was similar to other robust multivariable methods. Analysis of
ROC curves suggested that all methods had comparable performance for gross errors (e.g., wrong measurement unit), but the DDC algo-
rithm outperformed the others for more complex error patterns (e.g., transcription errors that are still plausible, although extreme).

Conclusions: The DDC algorithm has the potential to improve error detection processes for observational data. � 2023 The Au-
thor(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and aim

Data quality controls in observational studies can be
time-consuming, especially if data verification processes
that involve inspection of the original data sources are
required when anomalies are found during analysis. Ideally,
analysts require error detection methods that correctly
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identify data errors. Implementing such methods is not
straightforward and requires finding a trade-off between
false positives (genuine values flagged as errors) and false
negatives (errors not flagged as such).

Common error detection techniques include visual plots,
computation of descriptive statistics, and measures based
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What is new?

Key findings
� Commonly used multivariable, robust error detec-

tion methods had similar performance for gross er-
ror patterns.

� The DetectDeviatingCells algorithm outperformed
these error detection methods for more complex er-
ror patterns we explored.

What this adds to what was known?
� This finding shows that the DDC algorithm has the

potential to improve error detection approaches for
observational data.

What is the implication and what should change
now?
� The DDC algorithm could be added to the

researcher toolkit for error detection

� The value of the DDC algorithm should be further
explored with real-world data, also considering the
added burden of its implementation.

on distances such as Mahalanobis [1]. Univariable methods
have the advantage of being straightforward to implement
but tend to identify fewer data anomalies than multivariable
approaches, which exploit all information given by the
multivariable correlation structure. One disadvantage of
multivariable approaches is that they often flag an error at
an observation level, without specifying in which variable
the error is likely to be present.

Rousseeuw and Van den Bossche [2] devised an algo-
rithm, DetectDeviatingCells (DDC), that flags data anoma-
lies for continuous variables; it differs from commonly used
multivariable approaches because it flags cellwise outliers,
i.e., values of a variable within an individual, or unit’s data
(a cell) in addition to rowwise outliers (an observation).
The DDC is implemented in commonly used statistical
software, such as R [3], making it easily accessible to ana-
lysts for data cleaning processes.

The aim of this article is to carefully explore the perfor-
mance of the DDC algorithm compared to other data check-
ing approaches in observational data by simulating a
realistic dataset of growth data into which we introduced
different patterns of data errors.
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2. Statistical methods

2.1. Simulated dataset and introduction of errors

We created a simulated dataset of growth data
mimicking 5,000 records for individuals aged
2e20 years, containing data on age- and sex-specific height
and weight values. We generated these four variables using
the Centers for Disease Control and Prevention (CDC)
2000 growth charts [4], available online at https://www.
cdc.gov/growthcharts/percentile_data_files.htm.

The CDC charts provide age and sex specific parameters
to generate height and weight values. We generated data
with equal numbers in each group of age (months) and
sex as outlined in the charts. For each age/sex group, we
randomly drew Z values from a standard normal distribu-
tion, and we computed height measurements according to
the Box-Cox transformation [5], provided by the equation:
height5Mð1þ LSZÞð1=LÞ
where L, M, and S are the age- and sex-specific power
(Ls0), median and generalized coefficient of variation.

Prevalence of errors in observational data varies
across settings and this information is usually not pub-
licly available. For this reason, we set these two levels
of prevalence in our simulations following our personal
experience from data management in observational
studies to reflect a range of plausible settings with low
and high levels of data contamination by errors. We then
contaminated some randomly chosen height values ac-
cording to different scenarios. In the first set of sce-
narios, 10% of randomly selected height measurements
were altered according to four different patterns of data
errors; in the second set, 2% of randomly selected
heights were altered. The four error patterns we used
(described below) were chosen to mimic plausible pro-
cesses that could happen in clinical practice, such as
transcription errors and anomalies generated by measure-
ment instrument miscalibration. We introduced errors in
one variable only to limit the complexity of the scenarios
for evaluation purposes.

We devised the following four error patterns, corre-
sponding to different levels of detection difficulty:

1. Skip last digit: we deleted the last digit of height
measurements;

2. Swap last digits: we swapped the last 2 digits of
height measurements;

3. Add 40 cm: we increased the original height measure-
ment by 40 cm, so the errors corresponded to a shift
in location;

4. Sample from first percentile: we replaced height
values from randomly sampled draws from a trun-
cated Normal distribution from below the first percen-
tile of age-specific height measurements; this would
yield plausible (albeit ‘‘extreme’’) values of height
for a given age, but these values would be relatively
implausible once weight is taken into consideration.

The first two error patterns reflect transcription errors
that can easily happen in practice. The third error pattern
mimics errors such as mis-calibration of the measurement

https://www.cdc.gov/growthcharts/percentile_data_files.htm
https://www.cdc.gov/growthcharts/percentile_data_files.htm


Fig. 1. Outline of the DetectDeviatingCell algorithm.
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instrument and unit conversion mistakes. We chose to in-
crease values by 40 cm because this was approximately
1.5 standard deviations of the height distribution without
errors and, from visual plots, was deemed an acceptable
level of detection difficulty for the purposes of our study.
The fourth error pattern reflects a failure to comply with pa-
tients’ inclusion criteria where, for example, patients with
medical conditions affecting growth have been included
along with healthy controls, resulting in a mixture distribu-
tion of height (or weight).
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2.2. Error detection methods

We applied the DDC algorithm and other error checking
techniques for continuous variables: robust standard devia-
tion scores (SDS), boxplots, bagplots [6], and classical [1]
and robust versions [7e9] of the Mahalanobis distance. We
excluded from the analysis the dichotomous variable sex to
mimic the unmeasurable variability in the data.

The DDC algorithm, as outlined in Figure 1, computes
robust pairwise correlations between variables and com-
putes expected values for each data cell using the informa-
tion from pairs of variables that exceed a predefined
threshold of correlation. Then, the algorithm flags potential
cellwise outliers when robust standardized residuals exceed
another fixed threshold and flags rowwise (i.e., patient) out-
liers when the number and magnitude of cellwise outliers
within a row (patient’s data) exceed a third fixed threshold
(for more detail, see Online Supplement 1). The error
detection performance can be tuned by modifying these
three thresholds.

For the SDS error detection approach, for each variable,
we computed a robust version of the SDS by subtracting the
median from each value and then dividing by the median
absolute deviation (MAD) multiplied by 1.4826 (corre-
sponding to a robust estimate of the standard deviation).
We finally classified as potential outliers cells whose SDS
values were outside the (�2; 2) interval.

Boxplots flag cellwise outliers by identifying values that
fall outside the range defined by ðQ1 �
1:5�IQR; Q3 þ1:5�IQRÞ, where Q1 and Q3 are the first
and third quartiles and IQR is the inter-quartile range.

Bagplots are a bivariate extension of boxplots proposed
by Rousseeuw et al. [6]; they use the halfspace depth pro-
posed by Tukey [10] to plot the ‘‘bag’’, an area containing
at most 50% of the data points, and an outer ring called the
‘‘fence,’’ obtained by inflating the bag by a factor (usually
3); values outside the fence are flagged as outliers. Online
supplement 2 shows an example of a bagplot for the data
used in this study.

We also applied three multivariable methods based on
distances, which flag rowwise outliers by identifying obser-
vations that exceed a fixed multi-dimensional distance from
the centroid of the data. The first was the classical Mahala-
nobis distance [1]. However, this is well known to be
affected by masking, a phenomenon where outliers are
not detected because they can adversely affect the estimates
of location and spread used to calculate the distance of an
observation from the centre of the data. For this reason, we
also computed two robust versions of the Mahalanobis dis-
tance: the minimum covariance determinant (MCD) algo-
rithm [7,8] and the minimum volume ellipsoid (MVE)
estimator [7,9], which use robust approaches to compute
the centre of the data and its variability. Table 1 outlines
the thresholds we used to classify observations as outliers
and other method-specific settings.
2.3. Performance evaluation

We evaluated outlier detection performance by sensi-
tivity (probability of a true error being flagged as such),
specificity (probability of a genuine value not being flagged
as error), positive likelihood ratios (LR)þ, probability of a
true error being flagged as such divided by the (probability
of a genuine value being flagged as an error), and positive
predictive values ([PPV] probability of a flagged error be-
ing a true error). All performance measures were computed
at cell level, given we introduced errors in one variable
only.

Direct comparison of method performance is chal-
lenging for two reasons. First, it is difficult to translate
the threshold for outlier classification used by one method
into an equivalent threshold used by another method. Sec-
ond, some methods have ‘‘tuning factors’’ that do not have
an equivalent in other methods. For example, the DDC al-
gorithm computes expected values using variables that
show a robust correlation coefficient higher than a prede-
fined threshold (0.5 as default in the R implementation).
This does not have a counterpart in the other error detection
methods used in the study.

To address these problems we compared the receiver
operating characteristic (ROC) curves for each method
across the four patterns of data errors. This allowed us to
evaluate error detection performance across different
thresholds giving a more comprehensive picture of error
detection performance. We also computed sensitivity and
specificity associated with the cutoff defined by the Youden
index [11] to further inform error detection performance
across methods using a shared optimum criterion: the You-
den index, defined as J5 Sensitivity þ Specificity� 1, is
equivalent to the maximum vertical distance between the
ROC curve and the diagonal line of no discrimination
and it occurs at the cutoff point where the number of
correctly classified individuals is maximized [12]. It is
worth emphasizing that we computed the Youden index
to evaluate the different methods’ error detection perfor-
mance in an ‘‘equal setting’’ i.e., where sensitivity and
specificity are equally important; in fact, each method
yielded different values of sensitivity and specificity at
the ‘‘default’’ threshold values, making the comparison of
error detection performance difficult. In some settings,
maximizing sensitivity might be more important than
maximizing specificity, or vice versa, in which case one
might wish to allocate different weights to these two
components.

We carried out data management and statistical analysis
with R version 4.0.3, using packages cellWise (v2.2.5; Ja-
kob Raymaekers and Peter Rousseeuw, 2021), epiR
(v2.0.26 Mark Stevenson, 2021), aplpack (v190512, Hans
Peter Wolf, 2019), heplots (v1.3-9, John Fox and Michael
Friendly and Georges Monette, 2021), pROC (Xavier
Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti,



Table 1. Thresholds and settings for outlier classification used in this article

Method Details Rule for outlier classification

Robust SDS SDSrob5
x �medianðxÞ

MADðxÞ whereMADðxÞ5 1:4826 �medianðjx �medianðxÞjÞ SDSrob !�2 or O2

Boxplot Q1 5 first quartile;
Q3 5 third quartile;
IQR 5 interquartile range

Height ! Q1� 1:5 � IQR
or O Q3þ 1:5 � IQR

Bagplot Bag: an area containing at most 50% of the data points in a bivariate
distribution;

Fence: an outer ring, obtained by inflating the bag by a factor of 3; values
outside the fence are flagged as outliers.

Point lies outside the fence

Mahalanobis distance (classic) Distance5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xnÞ0S�1

n ðxi � xnÞ
q

where xn is the sample mean and Sn the sample covariance matrix of the
data.

Distance2 O c2
3: 0:99

Mahalanobis distance (MCD) Robust estimates of location and covariance are computed from an ‘‘outlier-
free’’ subset of the data, obtained by identifying the subset of the
observations with smallest determinant.

Distance2 O c2
3;0:99

Mahalanobis distance (MVE) Robust (MVE) estimates of location and covariance are computed, by
identifying the ellipsoid with minimal volume covering at least h points,
with h prespecified ([n/2] þ 1 � h � n).

The Mahalanobis distance is computed using these estimates of location and
covariance.

Distance2 O c2
3:0:99

DDC The DDC algorithm consists of these steps:

1. Computation of robust pairwise correlations between variables;
2. Computation of expected values for each data cell using the information

from pairs of variables that exceed a predefined threshold of correlation;
3. Flagging of potential cellwise outliers when robust standardized residuals

exceed another fixed threshold;
4. Flagging of potential rowwise (i.e., patient) outliers when the number and

magnitude of cellwise outliers within a row (patient’s data) exceed a third
fixed threshold.

��rij
��O c 5

ffiffiffiffiffiffiffiffi
c2
1;p

q
aOther settings were:
Corrlim 5 0.5
tolProb 5 0.99

Abbreviations: DDC, DetectDeviatingCells; MCD, minimum covariance determinant; MVE, minimum volume ellipsoid; SDS, standard deviation
scores.

a corrlim 5 when computing expected values, the algorithm uses variables for which the pairwise robust correlation exceeds these thresholds;
all other variables are considered standalone and treated on their own; TolProb5 tolerance probability, which determines the threshold for flagging
outliers in several steps of the algorithm. See Appendix for more detailed explanation of c, Corrlim and TolProb.
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Fr�ed�erique Lisacek, Jean-Charles Sanchez and Markus
M€uller, 2011).
3. Results

Summary statistics for the variables age, weight, and
height are given in Table 2. The distribution of weight
was highly skewed and we applied a log transformation
to make it more symmetrical because standard boxplots
work better for symmetrical data [13,14] and because the
DDC algorithm performs better for normally distributed
data [2].

Figure 2 shows scatterplots of height vs. age and weight
(with error-free values shown in black), for each error
pattern. The plots highlight how the variables age, height,
and weight are highly correlated. They also illustrate the
different challenges posed by the error patterns: some er-
rors (e.g., ‘‘skip last digit’’) are easily detected by visual in-
spection and summary statistics (Table 2), whereas others
(e.g., ‘‘sample from first percentile’’) are not.
Sensitivity of error detection varied considerably across
methods and scenarios. In the set of scenarios where error
prevalence was 2%, all methods correctly flagged as errors
all values where the last digit was skipped (Fig. 3,
Supplement 3.1). For the other error patterns, the univari-
able methods (SDS, boxplots) performed worse than multi-
variable methods (bagplots, Mahalanobis distance, DDC):
sensitivity was at most 4.6% (95% confidence interval
[CI]: 1.5, 10.5) for SDS and 2.8% (95% CI: 0.6, 7.9) for
boxplots. Overall, the DDC algorithm had a comparable
performance to the two robust Mahalanobis distance
methods across the different patterns of error, being
64.8% (95% CI: 55.0, 73.8) vs. 66.7% (95% CI: 56.9,
75.4) for both MVE and MCD methods in the ‘‘swap last
digits’’ pattern, and 93.5% (95% CI: 87.1; 97.4) vs.
96.3% (95% CI: 90.8; 99.0) for both MVE and MCD
methods in the ‘‘add 40 cm’’ pattern.

For all methods, the worst performance was for the
‘‘sample from below first percentile’’ pattern. The DDC al-
gorithm and the robust Mahalanobis distance methods per-
formed best, but the sensitivity of each method was very



Table 2. Descriptive statistics (n 5 5,000 observations) for age, weight (log-transformed variable), and height (cm) from the simulated dataset
without errors (‘‘error free’’) and with 10% prevalence of errors in four error patterns

Statistic Age (mo) Weight (log kg)

Height (cm)

Error free Skip last digit Swap last digits Add 40 cm
Sample from
1st percentile

Mean 131.5 3.7 144 130 144 149 143

SD 63.1 0.6 28.5 48.7 29.5 31.0 28.4

MAD 80.8 0.7 32.6 40.0 34.1 32.6 32.6

Minimum 23.7 2.2 80 8 19 80 78

1st Percentile 25.3 2.5 88 10 86 88 87

5th Percentile 33.9 2.7 96 14 95 96 95

10th Percentile 44.6 2.9 102 17 102 104 102

25th Percentile 76.9 3.2 121 109 120 124 120

Median 131.6 3.8 149 142 148 153 147

75th Percentile 185.8 4.2 168 166 168 172 166

90th Percentile 219.2 4.4 179 178 180 185 178

95th Percentile 230.0 4.6 184 184 186 197 184

99th Percentile 238.9 4.9 194 194 196 218 194

Maximum 240.5 5.4 209 209 209 235 209

Abbreviations: MAD, median absolute deviation; SD, standard deviation.
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low: 28.7% for the MVE approach (95% CI: 20.4, 38.2) and
27.8% (95% CI: 19.6, 37.2) for DDC and MCD
approaches.

The results from the scenarios with 10% error prevalence
mirrored the results we described for error prevalence 2%
(Figure 3, Supplement 3.2). The classical Mahalanobis dis-
tance suffered from masking even in the ‘‘skip last digit’’
pattern, where errors could be identified by visual inspec-
tion: sensitivity was 5.4% (95% CI: 3.6, 7.6) compared to
100% (95% CI: 99.3, 100) for both MCD and MVE
methods. The DDC algorithm also appeared to suffer from
masking in the ‘‘add 40 cm’’ pattern: sensitivity dropped
from 93.5% (95% CI: 87.1, 97.4) to 72.2% (95% CI: 68.2,
76.0) when we increased error prevalence from 2% to 10%.

Specificity of error detection exceeded 90% across all
scenarios for all methods irrespective of error prevalence,
although it was systematically lower for MVE and MCD
robust Mahalanobis distance methods and DDC algorithm
compared to the other approaches.

The robust MVE and MCD Mahalanobis distances and
DDC algorithm yielded lower PPVs than other methods
across all scenarios, although the DDC algorithm yielded
higher PPVs than the MVE and MCD robust Mahalanobis
distances. Overall, the PPVs were higher for the scenarios
with error prevalence set to 10% than 2%.
3.1. Receiver Operating Characteristic curves

Figure 4 and Table 3 show the results from the ROC
analysis. All methods had comparable performance in the
‘‘skip last digit’’ pattern, where the ROC curves overlap.
In the other error patterns, the SDS method performed
poorly with a highest area under the curve (AUC) of 0.64
(95% CI: 0.61, 0.66) in the ‘‘add 40 cm’’ pattern with
10% error prevalence.

For the error patterns ‘‘swap last digits’’ and ‘‘add
40 cm’’, the curves for DDC and robust Mahalanobis dis-
tances are very close, suggesting that these methods have
a similar performance. The classical Mahalanobis distance
performed worse than the robust version for error patterns
with a 10% error prevalence. For the pattern ‘‘sample from
below the first percentile,’’ the robust versions of the Maha-
lanobis distance outperformed the classical one, and the
DDC algorithm performed better than the other methods
in both prevalence scenarios.

When we used the same criterion for cutoff choice (You-
den index), the DDC algorithm and Mahalanobis distances
had comparable values of sensitivity and specificity across
all scenarios (Supplement 3.3, Supplement 3.4, Supplement
3.5), and error detection performance measures showed the
same pattern observed in Figure 3: robust methods per-
formed better than classical ones; the DDC algorithm had
similar performance to other robust methods; all methods
performed worse in harder-to-spot scenarios (‘‘sample from
the first percentile’’).

As shown in Supplement 3.6, LR þ ranged from around
4 (95% CI: 3.4, 4.7 for error pattern ‘‘sample from first
percentile’’ detected by Mahalanobis distance using MCD)
to over 600 (95% CI: 158.1, 2558.4 for error ‘‘add
40 cm’’ detected by bagplots), without a clear pattern across
scenarios.
4. Discussion

We found that the performance of the DDC method is
similar to, or better than, commonly used error-detection



Fig. 2. Scatterplot of height vs. age and height vs. (log-transformed) weight, for each error pattern (error prevalence 10%). Errors are in red.
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methods. In particular, the ROC plots showed its perfor-
mance was similar, or better, performance to other multi-
variable robust methods. In the harder-to-detect error
patterns (such as ‘‘sample from the first percentile’’), the
ROC curve for the DDC algorithm was considerably higher
than the other curves, and the AUC was significantly
bigger, suggesting that the DDC algorithm might have a
better error detection ability in circumstances when data
anomalies are not so clear-cut.
We observed that nonrobust multivariable measures are
prone to masking. In the scenarios with a 10% error prev-
alence, the classical Mahalanobis distance failed to detect
errors that are easily detectable by visual inspections, such
as last digit skipping. This re-enforces the common advice
to include appropriate data visualization techniques as a
preliminary step to data analysis, as illustrated in a seminal
article by Anscombe [15] and, more recently, by the ‘‘Data-
saurus Dozen’’ dataset [16].



Fig. 3. Performance measures for error detection for variable height according to different error detection approaches using thresholds in Table 1.
Abbreviations: SDS, robust standard deviation scores; box, boxplot; age.hgt.bag, bagplot of age vs. height; hgt.wgt.bag, bagplot of height vs. weight;
maha.C, classic Mahalanobis distance; maha.MCD, Mahalanobis distance computed using the MCD approach; maha.MVE, Mahalanobis distance
computed using the MVE approach; DDC, DetectDeviatingCells algorithm.
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As expected, robust methods performed better than clas-
sical ones, being less prone to the problem of masking; this
makes a case for the use of robust measures of the centre
and spread of the data when computing distances to flag po-
tential errors. Robust approaches can be easily applied by
using the median instead of the arithmetic mean and the
MAD instead of the standard deviation. Boxplots can also
be adapted to account for skewness in the data (see, for
example, the adjusted [13] and the generalized boxplots
[14], which adapt the computation of the thresholds for
defining potential errors according to the expected propor-
tion of values falling outside a range, given the underlying
skewed/heavy-tailed distribution).

The DDC algorithm has some advantages over the
other methods. Firstly, in comparison to other multivari-
able methods, it computes expected values for each data
cell, and can therefore be used as a single (conditional
mean) imputation method when data are missing.
Further work should examine whether these expected
values have the potential for the algorithm to be a data
correction method. Rousseeuw and Van den Bossche [2]
report that the algorithm is less efficient than the EM al-
gorithm [17] for normally distributed data without out-
liers, but it is more robust when cellwise outliers are
present. The evaluation of the DDC algorithm for impu-
tation and data correction is outside the scope of this
article.

Another feature of the DDC algorithm is its ability to
flag errors both at a record level (rowwise) and at a data
point level (cellwise). This is a highly desirable character-
istic because data quality controls often require verification
through clinical notes, which is a time-consuming task. The
ability to flag potential errors cellwise in addition to row-
wise could be a time-saving advantage, especially in big
datasets.

Another advantage of the DDC algorithm is its flexi-
bility. By modifying some parameters that are readily avail-
able in the algorithm implementation (e.g., in R), it can be
tuned to use more (or less) strongly correlated variables to
compute expected values (and therefore residuals, which
are used to flag errors). It can also be tuned to favour sensi-
tivity over specificity (or vice versa) by modifying the



Fig. 4. ROC analysis: ROC curves for different error detection methods, Abbreviations: SDS, robust standard deviation scores; Maha.C, classic Ma-
halanobis distance; Maha.MCD, Mahalanobis distance computed using the MCD approach; Maha.MVE, Mahalanobis distance computed using the
MVE approach; DDC, DetectDeviatingCells algorithm. Note: for error ‘‘skip last digit’’ most of the ROC curves overlap, and are shown in pink.
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default settings in the algorithm implementation; this aspect
is appropriate in settings where sensitivity and specificity
do not have equal importance. However, before it can be
implemented as a more or less automated error screening
framework, pilot studies tailored to specific contexts are
needed to tune parameters.

This study has some limitations. First, the study evaluated
different methods with different tuning parameters (some-
times not comparable across methods), thus making a com-
parison of their performance more difficult. Moreover, the
adoption of fixed thresholds, tailored to each method, further
hindered comparisons. We mitigated this by carrying out an
ROC analysis, which allowed us to evaluate method perfor-
mance across different thresholds. We also computed the
Youden index to assess sensitivity and specificity at a
threshold chosen according to the same criterion.

The second limitation is that, although we simulated
realistic data using CDC growth charts and included
common examples of data anomalies found in clinical prac-
tice, we devised simplistic scenarios with 3 variables and
errors present in only one variable according to two levels
of prevalence. This allowed us to evaluate the performance
of each method in a controlled environment, but the sce-
narios do not fully capture the complexity of most real-
life processes that could lead to data errors. For this reason,
we suggest that the added value of the DDC should be thor-
oughly explored with real data; it could be implemented af-
ter the data cleaning processes already in place, and its
added detection ability could be verified through data veri-
fication procedures. This would also offer the advantage of
estimating the added burden of the DDC implementation
and evaluating its justification.

The DDC algorithm can be a valuable addition to the er-
ror detection toolbox for analysts, although some diffi-
culties need to be overcome before it can be routinely
used in a wide range of data quality settings. Firstly, it



Table 3. Receiver operating characteristic analysis: area under the curve for different error detection methods

Method

AUC (95% CI) for error prevalence 2%

Skip last digit Swap last digits Add 40 cm First percentile

SDS 1.000 (1.000; 1.000) 0.481 (0.542; 0.603) 0.538 (0.608; 0.677) 0.452 (0.518; 0.584)

Mahalanobis distance (classic) 1.000 (1.000; 1.000) 0.825 (0.868; 0.911) 0.992 (0.994; 0.997) 0.596 (0.654; 0.711)

Mahalanobis distance (MCD) 1.000 (1.000; 1.000) 0.840 (0.878; 0.917) 0.974 (0.981; 0.988) 0.672 (0.716; 0.761)

Mahalanobis distance (MVE) 1.000 (1.000; 1.000) 0.843 (0.881; 0.920) 0.977 (0.984; 0.990) 0.678 (0.723; 0.768)

DDC 1.000 (1.000; 1.000) 0.842 (0.883; 0.924) 0.985 (0.990; 0.995) 0.780 (0.821; 0.861)

AUC (95% CI) for error prevalence 10%

Skip last digit Swap last digits Add 40 cm First percentile

SDS 1.000 (1.000; 1.000) 0.552 (0.526; 0.579) 0.636 (0.609; 0.664) 0.568 (0.539; 0.596)

Mahalanobis distance (classic) 0.984 (0.981; 0.986) 0.802 (0.779; 0.825) 0.959 (0.953; 0.964) 0.618 (0.590; 0.647)

Mahalanobis distance (MCD) 1.000 (1.000; 1.000) 0.853 (0.833; 0.872) 0.985 (0.982; 0.988) 0.707 (0.684; 0.730)

Mahalanobis distance (MVE) 1.000 (1.000; 1.000) 0.857 (0.837; 0.877) 0.991 (0.989; 0.993) 0.677 (0.651; 0.702)

DDC 1.000 (1.000; 1.000) 0.873 (0.854; 0.892) 0.967 (0.960; 0.974) 0.802 (0.781; 0.822)

AUC, area under the curve; DDC, DetectDeviatingCells; MCD, the minimum covariance determinant; MVE, minimum volume ellipsoid; SDS,
standard deviation scores.
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can be implemented only on continuous variables. It cannot
use potentially explanatory information from noncontin-
uous variables (e.g., when there are known differences be-
tween men and women), which could improve the DDC
error detection ability. This issue could be addressed in
simple settings by stratifying the analysis by groups defined
by the categorical variables.

Another feature that would make the DDC more adapt-
able to routine use is the possibility to analyze and visualize
results according to group blocks of rows of varying size:
for example, the DDC algorithm could be used in conjunc-
tion with heatmaps to visualize error detection patterns; the
function cellMap{CellWise} in R marks in red unusually
large cell values and in blue unusually low cell values. This
is a useful application when data have a temporal or spatial
dimension, for example with panel data where the same in-
formation is collected at different points in time. Changes
in the pattern of error detection over time can be suggestive
for example of change in variables definitions, or changes
in measurement instruments, or issues with instrument cali-
bration. At the moment, the cellMap function has the option
to combine in one block a fixed number of rows, to be
plotted in the heatmap. Expanding this option to allow this
number to vary would have a wider application, for
example in cases where blocks are defined by health care
providers, which typically have a varying number of pa-
tients registered.

In our simulations, we evaluated the use of the DDC
algorithm as an addition to the error detection toolkit,
but in some scenarios (e.g., sample from the first percen-
tile), sensitivity of error detection was low. It is worth
highlighting that error detection processes consist of a
set of tools that complement each other. Univariate
methods such as graphical displays (e.g., histograms
and boxplots) and descriptive statistics (e.g., range, high,
and low percentiles) are quick and easy to implement
methods to identify obvious errors in measurement units
and typos; they therefore are a valuable first step in error
detection processes. The DDC can be implemented as a
second step, along with other multivariable methods,
such as visual plots (e.g., scatterplots and mosaic plots),
methods based on robust distances or methods based on
regression techniques (e.g., analysis of residuals and
influential statistics). Hadi et al. [18] and Hodge et al.
[19] provide useful overviews of error detection methods.
The choice of the most appropriate method and strategy
depends on many factors: availability through commonly
used software, ease of implementation, trade-off between
costs and benefits, and the likely impact of errors on
research output. Different methods could also be imple-
mented iteratively in an integrated approach, but the effi-
ciency of this strategy needs to be trialled in and tailored
to specific settings.
5. Conclusions

Our simulation study found that use of the DDC algo-
rithm has the potential to improve error detection processes
for observational data. The implementation of the DDC al-
gorithm incorporates a type of imputation as part of the error
detection process, thereby raising the possibility of the DDC
algorithm not only detecting errors, but also providing a
mechanism for correcting them. Such a use of the algorithm
deserves further methodological exploration.

Areas for further development of the DDC algorithm
include the extension to its implementation for categorical
variables and the generalization to clustering settings.
Again such an extension would need further evaluation in
real data with real error patterns.
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