1	The effect of changing dialysate bicarbonate concentration on serum
2	bicarbonate, body weight and normalised nitrogen appearance rate
3 4 5	<u>Abstract</u>
6	Introduction
7	Most haemodialysis machines deliver a fixed bicarbonate concentration.
8	Higher concentrations may improve acidosis, but risk post-haemodialysis
9	alkalosis, whereas lower concentrations potentially increase acidosis but
10	reduce alkalosis. We reviewed the effects of lowering dialysate
11	bicarbonate.
12	
13	Methods
14	We reviewed peri-dialysis chemistries in patients switching to a lower
15	bicarbonate dialysate at 4 time points over 19 months.
16	
17	<u>Results</u>
18	We studied 126 patients, mean age 63.7±16.3 years, 57.9% males. Post-
19	haemodialysis alkalosis fell from 1.6 to 0.3% sessions, but pre-
20	haemodialysis acidosis increased from 11.9 to 23.8% sessions (p=0.005)
21	reducing dialysate bicarbonate from 32 to 28 mmol/L. After 3 months,
22	pre-haemodialysis serum bicarbonate fell (21.1±2.3 to 19.8±2.2 mmol/L),
23	and post-haemodialysis (24.9±2.1 to 22.5±2.0 mmol/L, p<0.001 with a fall

24	in pre- <mark>haemodialysis</mark> weight from 74.6±20.7 to 71.7±18.2 kg, normalised
25	protein nitrogen accumulation rate 0.8±0.28 to 0.77±0.2 g/kg/day, p<0.05,
26	and serum albumin 39.7±4.2 to 37.7±4.9 g/L, p<0.001. Thereafter, apart
27	from pre- and post-haemodialysis serum bicarbonate, weight and
28	normalised protein nitrogen accumulation stabilised, although albumin
29	remained lower (37.6±4.0 g/L, p<0.001). On multivariate logistic analysis,
30	serum bicarbonate increased more with lower pre-haemodialysis
31	bicarbonate standardised coefficient β 0.5 (95% confidence interval -0.6
32	to -0.42), increased normalised protein nitrogen accumulation β 0.2 (0.96
33	to 2.38), p<0.001, and session time β 0.09, (0.47to 5.98), p<0.022, and less
34	with lower dialysate bicarbonate 023 (-1.54 to -0.74), p<0.001.
35	
36	Conclusion
37	Increases in SE-Bic with haemodialysis, depend on the bicarbonate
38	gradient, session time and nPNA. Lower D-Bic reduces post-haemodialysis
39	alkalosis but increases pre-haemodialysis acidosis and may initially have
40	adverse effects on weight and normalised protein nitrogen accumulation.
41	
42	
43	
44	

- 45 Abbreviations
- 46 CKD chronic kidney disease
- 47 CKD-MBD chronic kidney disease metabolic bone disease
- 48 HD haemodialysis
- 49 Kt/V dialyser urea clearance
- 50 nPNA normalised protein nitrogen accumulation
- 51 PTH parathyroid
- 52 VIF variable inflation factor
- 53 X2 Chi square
- 54 UK United Kingdom
- 55

56	Introduction

58	Patients with progressive chronic kidney (CKD) disease develop a
59	metabolic acidosis, which if untreated increases progression of CKD [1],
60	reduces dietary protein intake, and increases risk of sarcopenia [2] and
61	CKD metabolic bone disease (CKD-MBD), as bicarbonate is released from
62	bone in an attempt to compensate for the acidosis [3]. As such,
63	correction of metabolic acidosis is one of the key objectives of dialysis
64	treatments. Over time, bicarbonate has replaced acetate and lactate as
65	the main source of anionic base in dialysis fluids.

66	Most haemodialysis (HD) machines can only deliver a fixed
67	dialysate bicarbonate, and there has been debate as to the optimum
68	bicarbonate concentration. Observational studies have reported
69	increased mortality for patients with both low and high pre-dialysis serum
70	bicarbonate concentrations [4]. Although there are interventional
71	prospective studies reporting that using higher bicarbonate dialysates
72	leads to increased dietary intake and body weight [5,6], there are also
73	observational reports demonstrating an association with increased
74	mortality [7] and sudden death [8]. Higher bicarbonate dialysates have
75	also been reported to affect calcium mass balance, and potentially
76	increase the risk of vascular calcification compared to lower
77	concentrations over the longer term [9].
78	International and national clinical guideline committees have
79	variously suggested that pre-midweek dialysis serum bicarbonate,
80	measured as total CO2, should be between 19 and 26 mmol/L, and some
81	have also included a post-dialysis target of ≤29 mmol/L [10,11,12].
82	However, whereas there are recommendations for other components of
83	the dialysate, committees have avoided advising on dialysate bicarbonate
84	concentrations [13].
85	Due to concerns over risks of vascular calcification we reduced the

86 delivered bicarbonate concentration from 32 mmol/L to 28 mmol/L and

report on the changes in pre- and post-dialysis serum bicarbonate and
patient weight over 18 months.

89

90 Patients and Methods

91 In March 2020, the dialysate delivered to patients was changed 92 from a bicarbonate of 32 mmol/L and acetate of 3 mmol/L to one of a 93 bicarbonate of 28 mmol/L and acetate of 3 mmol/L. Serum bicarbonate was not measured with every set of monthly blood tests, but in November 94 2019, and then May and July 2020, and May and September 2021. Serum 95 bicarbonate was measured as total CO₂, albumin by bromocresol green 96 method and C reactive protein, parathyroid hormone (PTH) and 97 haemoglobin by standard methods (Roche Cobas, Roche Diagnostics Ltd, 98 99 Burgess Hill, United Kingdom (UK), Haematology systems, Sysmex 100 Corporation, Milton Keynes, UK [14,15]). Patients were dialysed with 101 Fresenius 4008 and 5008 dialysis machines and high flux polysulfone 102 dialysers (Fresenius Medical Company, Bad Homberg, Germany) [16], which were regularly calibrated using conductivity standards [17]. All 103 sessions using ultrapure dialysis quality water and single bolus low 104 105 molecular weight heparin was used for anticoagulation [18]. Dialyser urea 106 clearance (Kt/V) was calculated along with normalised nitrogen appearance rate using standard methods [11]. Lean body mass was 107

108 estimated by calculating the creatinine index [19], and then lean tissue109 index [19].

110

111 <u>Statistical analysis</u>

112 Results are expressed as mean ± standard deviation, or median and 113 interguartile range, or percentage. Standard statistical analyses were used: D'Agostino & Pearson normality test, Chi square (X2), paired t test, 114 Wilcoxon rank sum test, anova or Kruskal-Wallis tests with appropriate 115 post-hoc Bonferroni or Games-Howell correction. Univariate analysis was 116 undertaken by Pearson or Spearman correlation and followed by a 117 multivariable linear model including all variables with an initial univariate 118 association of <0.1, and then variables were excluded in a step-backward 119 model if they were not significant, unless the improved model fit. The 120 model was checked for collinearity and variable inflation factor (VIF). 121 Statistical analysis was performed using Graph Pad Prism (version 9.2, 122 Graph Pad, San Diego, CA, USA), Statistical Package for Social Science 123 version 28.0 (IBM Corporation, Armonk, New York, USA). Statistical 124 significance was taken at or below the 5% level. 125 126

127 <u>Ethics</u>

This audit of a change in clinical practice complied with UK National Research Ethical standards (NRES) for clinical practice development and audit and did not require formal NRES committee approval. All data collected was appropriately anonymised.

132

133 <u>Results</u>

134 126 patients dialysed against a dialysate bicarbonate of 32 and then 28 mmol/L (Figure 1), with peri-dialysis bicarbonate measured during 135 517 dialysis sessions; 391 with a bicarbonate of 28 mmol/L and 126 with 136 32 mmol/L. During the nineteen months of follow-up a total of 42 patients 137 died as a consequence of COVID-19 infection, predominantly during the 138 first wave of the original COVID-19 strain, and then later from the alpha 139 and delta strains, as vaccination only became available in February and 140 141 March 2021. As expected there a significant univariate correlation between the pre-dialysis bicarbonate concentration and increase in serum 142 143 bicarbonate with dialysis (Figure 2) and the dialysate to serum gradient and increase in serum bicarbonate (Figure 3). 144 We then reviewed the effect of changing from a dialysate 145 146 bicarbonate of 32 to 28 mmol/L in a single dialysis centre (Table 1). After 147 lowering the dialysate bicarbonate concentration pre- and post-dialysis serum bicarbonate measurements were lower at all time points. On the 148

first assessment, 2 months after instituting the change, then along with a 149 150 smaller increase in serum bicarbonate, patient pre-dialysis weight was 151 lower, as was estimated dietary protein intake, serum albumin (Table 1). 152 However, estimates of lean body mass, creatinine index and lean tissue 153 index did not change after 2 months, then increased after 4 months, and 154 then stabilised. Similarly, with time, apart from increasing patient age, there were few differences apart from the serum bicarbonate values. 155 To determine whether there was an effect of the duration of the 156 dialysis session, we compared patients dialysing for 180, 210 and 240 157 minutes, patients with different dialysis session times being excluded 158 from analysis. (Table 2). Serum bicarbonate both pre- and post-dialysis 159 were lower for patients dialysing with 28 mmol/L bicarbonate. The change 160 in bicarbonate was only significantly different for those dialysing for 210 161 162 minutes.

The increase in serum bicarbonate following dialysis was associated with nPNA, serum creatinine, albumin, and negatively with pre-dialysis bicarbonate and age (Table 3). In a multivariable model, only nPNA and session duration remained independently associated with the change in serum bicarbonate, and negatively with pre-dialysis bicarbonate (Table 4). The post-dialysis serum bicarbonate was ≥29 mmol/L in 1.6% of dialysis sessions with a bicarbonate of 32 mmol/L and 0.3% of sessions

170	with a bicarbonate of 28 mmol/L (X2 2.9, p=0.09). The pre-dialysis serum
171	bicarbonate was < 19 mmol/L prior to 11.9% of sessions with a dialysate of
172	32 and 23.8% of those with a dialysate of 28, X2 10.6, p=0.005. A pre
173	dialysis bicarbonate of < 19 mmol/L was more common with dialysis
174	sessions of < 3 hours (21.4%) compared to 3 hours (19.1%), 3.5 hours
175	(22.5%) and 4 hours (19.0%), X2 19.9, p=0.011. Patients with a pre-dialysis
176	bicarbonate of < 19, had higher nPNA (0.88±0.20 vs 0.78±0.18 g/kg/day),
177	p<0.001, pre-dialysis serum creatinine (798 (589-1012 vs 700 (543-888)
178	umol/L, p=0.03, and phosphate (1.84 ±0.55 vs 1.71 ±0.5 mmol/L), p=0.05.
179	

180 Discussion

As the generation of acids depends on nutritional intake, physical 181 activity and body composition, then ideally, dialysate bicarbonate should 182 be individualised [20]. However, very few dialysis machines allow any 183 individualisation, and as such centres have to opt for one concentration 184 185 for all patients, leading to low pre-HD serum bicarbonate in some patients and overshooting post-HD in others. Prior to switching to a lower 186 dialysate bicarbonate dialysate, we had almost 12% of sessions with 187 patients starting HD with a low serum bicarbonate and 1.6% overshooting 188 post HD. Due to concerns over a potential positive calcium balance by 189 using a higher bicarbonate dialysate [21], we changed from a combination 190

191 of 32 mmol/L bicarbonate and 3 mmol/L acetate to 28 mmol/L

192 bicarbonate and 3 mmol/L acetate.

193	We followed a cohort of 126 patients who had at least one or more
194	measurements of pre- and post-HD serum bicarbonate using both
195	dialysate compositions. There was strong association between the
196	increase in serum bicarbonate post-HD and the dialysate to serum
197	gradient. Compared to previous short-term studies we followed patients
198	for just over 18 months. After 3 months patients had lost weight,
199	associated with a reduction in estimated dietary protein intake as
200	assessed by nPNA, pre-dialysis serum albumin and creatinine, with no
201	change in dialysis session times, Kt/V or ultrafiltration volumes. The
202	lower pre-HD bicarbonate led to an absolute greater increase in
203	bicarbonate with HD. The changes in weight and diet would be in keeping
204	with reports of the catabolic effect of acidosis contributes on muscle
205	wasting and malnutrition of HD patients [22]. Acidosis also potentially
206	increases bicarbonate release from bone [23], with reports of correcting
207	acidosis reducing parathyroid hormone (PTH) levels [24]. However, we
208	found no effect on PTH following the change in dialysate bicarbonate,
209	however reports from other studies have varied with both increased and
210	decreased PTH observed [20,21]. However, a few months later although
211	pre-HD bicarbonate remained lower, there were now no differences in

212	weight, nPNA, serum albumin or creatinine. Sessional weight loss was less
213	and haemoglobin higher. The first pandemic wave of COVID-19 came in
214	early March 2020 [25], and as such some of the weight loss, reduced
215	nPNA and serum creatinine observed in May 2020 may have additionally
216	been due to COVID-19 infections, government lockdowns and restrictions
217	on leaving the house and social activities, then followed by some
218	improvement as COVID-19 infections decreased. This potential effect of
219	COVID-19 would be supported by no apparent reduction in estimates of
220	lean body mass [19] after 2 months of using the lower bicarbonate
221	dialysate. Although later review after 15 and 19 months showed that the
222	serum albumin remained lower with the lower dialysate bicarbonate, albeit
223	estimates of lean body mass did not differ.
223 224	estimates of lean body mass did not differ. Comparing dialysis sessions of different duration, then patients
224	Comparing dialysis sessions of different duration, then patients
224 225	Comparing dialysis sessions of different duration, then patients using the lower dialysate bicarbonate had lower pre- and post-HD serum
224 225 226	Comparing dialysis sessions of different duration, then patients using the lower dialysate bicarbonate had lower pre- and post-HD serum bicarbonate values whether they dialysed for 3.0,3.5- or 4.0-hour
224 225 226 227	Comparing dialysis sessions of different duration, then patients using the lower dialysate bicarbonate had lower pre- and post-HD serum bicarbonate values whether they dialysed for 3.0,3.5- or 4.0-hour sessions. Bicarbonate transfer from the dialysate depends on the
 224 225 226 227 228 	Comparing dialysis sessions of different duration, then patients using the lower dialysate bicarbonate had lower pre- and post-HD serum bicarbonate values whether they dialysed for 3.0,3.5- or 4.0-hour sessions. Bicarbonate transfer from the dialysate depends on the gradient between dialysate and plasma, which falls during the first phase
 224 225 226 227 228 229 	Comparing dialysis sessions of different duration, then patients using the lower dialysate bicarbonate had lower pre- and post-HD serum bicarbonate values whether they dialysed for 3.0,3.5- or 4.0-hour sessions. Bicarbonate transfer from the dialysate depends on the gradient between dialysate and plasma, which falls during the first phase of dialysis, and as such longer HD sessions might be expected to result in

233 longer HD sessions may account for finding no differences with the three
234 specified session times.

In keeping with other studies, the change in serum bicarbonate on 235 236 univariate analysis was associated with factors associated with nutrition 237 and muscle mass [28,29], and dialysis session duration [27]. Whereas a 238 lower gradient and increasing age, presumably due to smaller appetite, less muscle and physical activity led to a smaller increase in serum 239 bicarbonate [30]. Thus, on multivariable analysis the increase in serum 240 bicarbonate was dependent upon nPNA, the gradient between pre-HD 241 serum bicarbonate and dialysate bicarbonate concentration and then 242 duration of HD session. 243

Changing patients to a lower dialysate bicarbonate reduced post-244 HD high serum bicarbonate from 1.6 to 0.3% of sessions but increased 245 low pre-HD bicarbonate measurements doubled from around 12 to 24%. 246 However, patients with lower bicarbonate values had higher nPNA and 247 serum creatinine and phosphate, potentially suggesting that this may have 248 been due to increased acid production due to better diet and physical 249 activity [31]. It has to be recognised that low bicarbonate laboratory 250 251 values may not always reflect metabolic acidosis, as errors in sampling, air retained in blood tubes and delays in measurement can all lead to a lower 252 laboratory result [27,33]. So, despite using vacutainers designed to 253

254	minimise blood-air contact, we cannot guarantee the accuracy of all of the
255	lower bicarbonate values. As patient weights and nPNA have stabilised we
256	suspect that patients have adapted to the lower dialysate bicarbonate,
257	whether this policy results in a lower incidence of calciphylaxis, or risks
258	increased bone fracture rates will require a much longer follow-up.
259	Ideally, dialysate bicarbonate should be individualised, but until such
260	technology becomes generally available then clinicians have to decide on a
261	one size fits all approach. As shown by our change in clinical practice
262	opting for a lower bicarbonate dialysate reduces high post-HD values, but
263	significantly increases low bicarbonate pre-HD values. Whether all such
264	patients should then be prescribed oral bicarbonate to correct acidosis
265	remains to be determined.
266	
267	
268 269 270	Declarations
271 272	Funding - None
273 274	Conflicts of interest/Competing interests - None
275 276 277	Availability of data and material - data held UCL Department of Nephrology V drive, data availability upon reasonable request and within NHS guidelines
277 278 279	Code availability - Not applicable
280 281	Authors' contributions SL collected data, tabulated and analysed data

282	And approved final version
283	AD conceived audit, wrote the 1 st draft manuscript
284	
285	Additional declarations - retrospective audit complied with UK National
286	Research Ethics guidelines approval
287	
288	Ethics approval - retrospective audit submitted to UK National Research Ethics
289	Services (NRES) did not require ethics committee approval
290 291	Consent to participate - Not applicable
291	consent to participate - Not applicable
292	Consent for publication Not applicable
294	
295	Funding - None
296	
297	The authors have no conflict of interest
298	
299	References
300	
301	1. Kramer H. Diet and Chronic Kidney Disease. Nutr. 2019;10 (Suppl
302	4):S367-S379
303	2. Chalupsky M, Goodson DA, Gamboa JL, Roshanravan B. New insights
304	into muscle function in chronic kidney disease and metabolic
305	acidosis. Curr Opin Nephrol Hypertens. 2021;30(3):369-376
306	3. Arnett TR. Acidosis, hypoxia and bone. Arch Biochem Biophys.
307	2010; 503(1):103-9.
308	4. Bommer J, Locatelli F, Satayathum S, Keen ML, Goodkin DA, Saito
309	A, Akiba T, Port FK, Young EW. Association of predialysis serum
310	bicarbonate levels with risk of mortality and hospitalization in the
311	Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J
312	Kidney Dis. 2004;44(4):661-7
313	5. Williams AJ, Dittmer ID, McArley A, Clarke J. High bicarbonate
314	dialysate in haemodialysis patients: effects on acidosis and
315	nutritional status. Nephrol Dial Transplant 1997;12(12):2633-7
316	6. Hefzollah F, Boushehri SN, Mahmudpour M. Effect of high
317	bicarbonate hemodialysis solution on biochemical parameters and
318	anthropometric indices. Hemodial Int. 2020;24(3):317-322.
319	7. Tentori F, Karaboyas A, Robinson BM, Morgenstern H, Zhang J,
320	Sen A, Ikizler TA, Rayner H, Fissell RB, Vanholder R, Tomo T, Port
321	FK. Association of dialysate bicarbonate concentration with

322	mortality in the Dialysis Outcomes and Practice Patterns Study
323	(DOPPS). Am J Kidney Dis. 2013;62(4):738-46.
324	8. Fresenius Medical Services Medical Office. Dialysate bicarbonate,
325	alkalosis, and patient safety. 2011.
326	<u>http://graphics8.nytimes.com/packages/pdf/</u> business/fresenius-
327	memo.pdf or
328	http://www.renalweb.com/writings/alkalosis/WithinFMC.htm.
329	9. Havlin J, Vankova S. Intradialytic alkalinization is a neglected
330	factor affecting calcium mass balance and parathyroid hormone
331	level during haemodiafiltration. Clin Kidney J. 2019;12(1):149-156.
332	10. Levey AS, Coresh J, Bolton K, Balk E, Kausz AT, Levin A,
333	Steffes MW, Hogg RJ, Perrone RD, Lau J, Eknoyan G. K/DOQI
334	clinical practice guidelines for chronic kidney disease: evaluation,
335	classification, and stratification. Am J Kidney Dis 2002; 39(2 Suppl
336	1): S1-S266
337	11. Ashby D, Borman N, Burton J, Corbett R, Davenport A, Economication K, Elowang K, Estheringham T, Andrea Eax DN, Enanklin
338 339	Farrington K, Flowers K, Fotheringham J, Andrea Fox RN, Franklin G, Gardiner C, Martin Gerrish RN, Greenwood S, Hothi D, Khares A,
339 340	Koufaki P, Levy J, Lindley E, Macdonald J, Mafrici B, Mooney A,
340 341	Tattersall J, Tyerman K, Villar E, Wilkie M. Renal Association
341 342	Clinical Practice Guideline on Haemodialysis. BMC Nephrol. 2019 ;
342 343	20(1):379
344	12. Fouque D, Vennegoor M, ter Wee P, Wanner C, Basci A,
345	Canaud B, Haage P, Konner K, Kooman J, Martin-Malo A, Pedrini L,
346	Pizzarelli F, Tattersall J, Tordoir J, Vanholder R. EBPG guideline on
347	nutrition. Nephrol Dial Transplant. 2007;22 Suppl 2:ii45-87
348	13. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA,
349	McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet
350	MG, Leonard MB. Diagnosis, Evaluation, Prevention, and Treatment
351	of Chronic Kidney Disease-Mineral and Bone Disorder: Synopsis of
352	the Kidney Disease: Improving Global Outcomes 2017 Clinical
353	Practice Guideline Update. Ann Intern Med. 2018;168(6):422-430
354	14. Booth J, Pinney J, Davenport A. N-terminal proBNPmarker
355	of cardiac dysfunction, fluid overload, or malnutrition in
356	hemodialysis patients? Clin J Am Soc Nephrol. 2010;5(6):1036-40
357	15. Booth J, Pinney J, Davenport A. Changes in red blood cell
358	size and red cell fragmentation during hemodialysis. Int J Artif
359	Organs. 2010;33(12):900-5
360	16. Tangvoraphonkchai K, Riddell A, Davenport A. Platelet
361	activation and clotting cascade activation by dialyzers designed for

high volume online hemodiafiltration. Hemodial Int. 2018; 22 (2): 192-200 363 Shendi AM, Davenport A. The difference between delivered 364 17. and prescribed dialysate sodium in haemodialysis machines. Clin 365 Kidney J. 2020 ;14(3):863-868 366 Davenport A. Low-molecular-weight heparin as an alternative 18. 367 anticoagulant to unfractionated heparin for routine outpatient 368 haemodialysis treatments. Nephrology (Carlton). 2009;14(5):455-61 369 370 19. Canaud B, Ye X, Usvyat L, Kooman J, van der Sande F, Raimann J, Wang Y, Kotanko P. Clinical and predictive value of 371 372 simplified creatinine index used as muscle mass surrogate in endstage kidney disease haemodialysis patients-results from the 373 international MONitoring Dialysis Outcome initiative. Nephrol Dial 374 375 Transplant. 2020;35(12):2161-2171 376 20. Montagud-Marrahi E, Broseta J, Rodriguez-Espinosa D, Lidia R, Hermida-Lama E, Xipell M, Arias-Guillén M, Fontseré N, Vera M, 377 Bedini JL, Rico N, Maduell F. Optimisation of dialysate bicarbonate 378 in patients treated with online haemodiafiltration. Clin Kidney J. 379 2020;14(3):1004-1013 380 381 21. Havlin J, Vankova S. Intradialytic alkalisation affects calcium balance and PTH level. Semin Dial. 2019;32(1):85-86 382 383 22. Jenkins D, Burton PR, Bennett SE, Baker F, Walls J. The metabolic consequences of the correction of acidosis in uraemia. 384 385 Nephrol Dial Transplant 1989; 4(2): 92-95 Green J, Kleeman CR. Role of bone regulation of systemic 23. 386 acid-base balance. Kidney Int 1991; 39(1): 9-26 387 Graham KA, Hoenich NA, Tarbit M, Ward MK, Goodship TH. 24. 388 Correction of acidosis in hemodialysis patients increases the 389 sensitivity of the parathyroid glands to calcium. J Am Soc Nephrol. 390 391 1997;8(4):627-31. Goodlad C, Collier S, Davenport A. Spread of Covid-19 in 392 25. hemodialysis centres; the effects of ventilation and communal 393 394 transport. Artif Organs. 2022 Jul 15:10.1111/aor.14361. doi: 10.1111/aor.14361. PMID: 35837860 395 Locatelli F, La Milia V, Violo L, Del Vecchio L, Di Filippo S. 396 26. Optimising haemodialysate composition. Clin Kidney J 2015; 8(5): 397 398 580-589 399 Misra M, Pro: Higher serum bicarbonate in dialysis patients 27. 400 is protective. Neprol Dial Transplant 2016;31(8):1220-4 401 Louden JD, Roberts RR, Goodship TH. Acidosis and nutrition. 28. Kidney Int Suppl. 1999;56: Suppl 73:585-8 402

403	29. Canaud B, Ye X, Usvyat L, Kooman J, van der Sande F,
404	Raimann J, Wang Y, Kotanko P. Clinical and predictive value of
405 406	simplified creatinine index used as muscle mass surrogate in end- stage kidney disease haemodialysis patients-results from the
400 407	international MONitoring Dialysis Outcome initiative. Nephrol Dial
408	Transplant. 2020;35(12):2161-217
409	30. Chauveau P, Claire Rigothier C, Combe C. Con: Higher serum
410	bicarbonate in dialysis patients is protective. 2016; 31(8):1226-
411	1229
412	31. Heguilén RM, Sciurano C, Bellusci AD, Fried P, Mittelman G,
413	Rosa Diez G, Bernasconi AR. The faster potassium-lowering effect
414	of high dialysate bicarbonate concentrations in chronic
415	haemodialysis patients. Nephrol Dial Transplant 2005; 20(3): 591-
416	59
417	32. Bandi ZL. Estimation, prevention, and quality control of
418	carbon dioxide loss during aerobic sample processing. Clin Chem.
419	1981;27(10):1676-1681
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	Figure 1. Consort flow diagram of patient numbers studied
438	
439	
440	Figure 2. Univariate correlation between pre-dialysis serum bicarbonate
441	and change in serum bicarbonate with dialysis. For patients dialysing with
442	a dialysate bicarbonate of 28 mmol/L, then r = -0.62, p<0.001; and for

443 444	those dialysing with a dialysate bicarbonate of 32 mmol/L, then r = 0.56, p<0.001.
445	p.0.001.
446	
447	Figure 3. Univariate correlation between dialysis to serum bicarbonate
448	gradient and change in serum bicarbonate with dialysis. For patients
449	dialysing with a dialysate bicarbonate of 28 mmol/L, then r = 0.62,
	p<0.001; and for those dialysing with a dialysate bicarbonate of 32
450	
451	mmol/L, then r = 0.56, p<0.001.
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	Table 1. Dialysis session data and standard mid-week pre-dialysis laboratory
475	results for patients dialysing with a bicarbonate of 32 and 28 mmol/L. Dialysate
476	bicarbonate (bicarbonate), pre-dialysis serum bicarbonate mmol/L (PreBic) and
477	post-dialysis (Post Bic), and change in serum bicarbonate (Δ Bic), pre-dialysis
478	weight (Weight), percentage weight loss with dialysis session (% Wt loss),
479 480	sessional dialyser urea clearance (Kt/V), normalised nitrogen appearance rate g/kg/day (nPNA), dialysis session time minutes (Session time), haemoglobin (Hb),
480 481	C reactive protein (CRP), serum calcium and phosphate both mmol/L, and
482	creatinine umol/L, parathyroid hormone (PTH, creatinine index (CI), lean tissue
483	index (LTI).) Data expressed as integer, percentage, mean ±standard deviation,

485 with dialysate bicarbonate of 32 mmol/L

486

487

	N 2010		T L 2020	44 2021	C 1 2021
variable	Nov 2019	May 2020	July 2020	May 2021	Sept 2021
bicarbonate	32	28	28	28	28
patients	126	119	110	88	75
% male	57.9	60.2	59.6	53.4	54.7
Age years	63.7 <u>+</u> 16.3	63.7±16.5	62.7±16.5***	64.7±16.8***	65.9±16.4***
Pre Bic	21.1±2.3	19.8 <u>+</u> 2.2***	20.0 <u>+</u> 2.3***	20.5±2.1***	19.4 <u>+</u> 2.7***
Post Bic	24.9±2.1	22.5±2.0***	23.0±2.1***	23.9 <u>+</u> 2.8***	23.1±1.8***
∆ Bic	4(2-5)	3(1-4)***	3(1.3-5)	4(2-5)	4(2-5)
mmol/L					
Weight kg	74.6 <u>+</u> 20.7	71.7±18.2*	73.5±20.1	73.7±21.1	75.0±21.3
% Wt loss	2.3±1.2	2.3±1.4	1.5±0.8*	2.1 <u>+</u> 1.1	2.6±1.5
Kt/V	1.37 <u>+</u> 0.36	1.34±0.34	1.36±0.37	1.41±0.31	1.45±0.3*1
nPNA	0.82 <u>+</u> 0.18	0.77±0.2*	0.79±0.29	0.78±0.19	0.81±0.16
Session	210(180-	210(180-	210(180-	210(180-	225(180-
time	240)	240)	240)	240)	240)
Hb g/L	107 <u>+</u> 13	106±12	111 <u>+</u> 10*	108±13	108±13
Albumin	39.7±4.2	37.7±4.9***	39.3±4.3	38.7±3.5*	37.6±4.0***
g/L					
CRP mg/L	7(3-18)	8(3-17)	7.5(3-14)	6(2-15.3)	7(3-17)
Calcium	2.34±0.17	2.30±0.18	2.30±0.23	2.34±0,17	2.31±0.18
Phosphate	1.74 <u>+</u> 0.49	1.76±0.50	1.74 <u>+</u> 0.53	1.73±0.48	1.67±0.55
PTH pmol/L	32(17-	34(20-60)	354(21-54)	41(25-59)	40(20-57)
	54)				
Creatinine	710(553-	674(527-	738(556-	755(578-	742(589-
	893)	883)*	967)	866)	924)
CI	19.7±3.5	19.9±3.6	23.8±3.1***	19.1±3.0	19.0±1.3
mg/kg/day					
LTI kg/m ²	17.8 <u>+</u> 4.5	17.3±4.5	20.4±5.3***	17.4±4.7	17.6±3.9

488

489

490

Table 2. Comparison of dialysis sessions of 180-, 210- and 240-minutes duration 491 and using a dialysate bicarbonate of 32 of 28 mmol/L. Dialysate bicarbonate 492 493 (dialysate), pre-dialysis serum bicarbonate mmol/L (Pre Bic) and post-dialysis 494 (Post Bic), and change in serum bicarbonate (Δ Bic), pre-dialysis weight (Weight), percentage weight loss with dialysis session (% Wt loss), sessional dialyser urea 495 496 clearance (Kt/V), normalised nitrogen appearance rate g/kg/day (nPNA), dialysis 497 session time minutes (Session time), β2 microglobulin (β2M), haemoglobin (Hb), C reactive protein (CRP), serum calcium and phosphate both mmol/L and creatinine 498 umol/L. Data expressed as integer, percentage, mean ±standard deviation, or 499

501 dialysate bicarbonate of 32 mmol/L

Session	180 m	inutes	210 r	ninutes	240 minutes	
dialysate	Bic 32	Bic 28	Bic 32	Bic 28	Bic 32	Bic 28
sessions	23	188	50	110	31	115
Age years	66.3±11.8	65.8±15.1	65.7 <u>+</u> 17	63.7±15.9	61.6±14.1	62.4 <u>+</u> 15.3
Pre Bic	21.4±2.3	20.3±2,3*	21.2±2.3	19.2±2.5***	21.7 <u>+</u> 1.8	20.02.3***
Post Bic	24.6±2.0	23.5 <u>+</u> 1.9**	25.1 <u>+</u> 1.9	22.7 <u>+</u> 2.1***	25.4 <u>+</u> 2.0	23.3±2.0***
∆ Bic	3(1-5)	3(2-5)	4(2-6)	3(1-5)**	4(3-5)	4(2-5)
Pre Wt kg	65.8±19.5	69.8±18.2	67.4 <u>+</u> 18.8	71.9±21.1	78.2±20.8	77.5±19.3
% ∆ W†	1.4±0.7	1.5±0.7	1.8±0.8	1.7±0.1.2	2.2 <u>+</u> 0.8	2.0 <u>+</u> 0.8
Kt/V	1.33±0.35	1.30±0.32	1.42±0.34	1.35±0.32	1.48±0.32	1.39±0.35
nPNA	0.79±0.21	0.76±0.19	0.83 <u>+</u> 0.20	0.78 <u>+</u> 0.19	0.89±0.17	0.78±0.17
Hb g/L	105±15	108±14	107 <u>+</u> 12	107±12	109±12	108±12
Albumin	39.5±4.3	37.7±4.6*	38.7±5.4	37.6±4,2	39.5±4.5	38.3±3.9
g/L						
CRP mg/L	9(4-20)	6(2-14.5)	7(2-19)	8(3-15)	6(4-13)	7(3-15)
Calcium	2.39±0.19	2.33±0.17	2.35±0.17	2.29 <u>+</u> 0.20	2.31±0.18	2.30±0.17
Phosphate	1.66±0.4	1.83±0.58	1.79±0.62	1.72V0.54	1.67±0.42	1.72±0.53
Creatinine	616(512-	633(509-	716(505-	689(565-	742(560-	776(596-
	817)	819)	957)	868)	925)-	982)

515 Table 3. Variables associated with change in serum bicarbonate on univariate

- 516 analysis. Biochemical variables are pre-dialysis.

variable	r	р
Serum bicarbonate mmol/L	-0.58	<0.001
Normalised protein nitrogen accumulation g/kg/day	0.34	<0.001
Serum creatinine umol/L	0.26	<0.001
Serum albumin g/L	0.13	0.005
Age years	-0.09	0.042

Table 4. Multivariable step-backward logistic model of variables independently associated with an increase in serum bicarbonate with dialysis. Standard error β (StE β), standardised coefficient (StandCoEff β). Pre-dialysis serum bicarbonate mmol/L (PreBic), normalised protein nitrogen accumulation g/kg/day (nPNA), dialysate bicarbonate 28 mmol/L vs 32 mmol/L (Dial 28), log dialysis session duration minutes (time). Model r² = 0.39

variable	β	StE ß	StandCoEff	Т	95% confidence	р
			β	statistic	intervals	
PreBic	-0.51	0.05	-0.5	-11.3	-0.60 to -0.42	<0.001
nPNA	1.67	0.36	0.2	4.6	0.96 to 2.38	<0.001
Dial 28	-1.13	0.21	-0.23	-5.3	-1.54 to -0.74	<0.001
time	3.22	1.40	0.09	2.3	0.47 to 5.98	0.022