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Depression is a common recurrent psychiatric disorder with a high lifetime 
prevalence and suicide rate. At present, although several traditional clinical 
drugs such as fluoxetine and ketamine, are widely used, medications with a high 
efficiency and reduced side effects are of urgent need. Our group has recently 
reported that a single administration of salmon calcitonin (sCT) could ameliorate 
a depressive-like phenotype via the amylin signaling pathway in a mouse model 
established by chronic restraint stress (CRS). However, the molecular mechanism 
underlying the antidepressant effect needs to be  addressed. In this study, 
we  investigated the antidepressant potential of sCT applied chronically and its 
underlying mechanism. In addition, using transcriptomics, we  found the MAPK 
signaling pathway was upregulated in the hippocampus of CRS-treated mice. 
Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, 
and sCT treatment was able only to downregulate the phosphorylation level 
of p38/JNK, with phosphorylated ERK level unaffected. Finally, we  found that 
the antidepressant effect of sCT was blocked by p38 agonists rather than JNK 
agonists. These results provide a mechanistic explanation of the antidepressant 
effect of sCT, suggesting its potential for treating the depressive disorder in the 
clinic.
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1. Introduction

Depression is a complex psychiatric disorder characterized by a 
persistent depressive mood, an abnormal mind, and eating and sleep 
disturbances, frequently leading to attempted suicide and suicide. 
Approximately 280 million people worldwide are diagnosed with 
depression (Evans-Lacko et al., 2017). It is estimated to affect 3.8% of 
the population around the world, including 5.0% among adults 
(Evans-Lacko et al., 2017; Hammen, 2018). However, the etiology of 
depression remains unclear, which raises difficulties for clinical 
diagnosis and treatment outcomes (Ménard et al., 2016). Moreover, 
the range of available drugs in the clinic for treatment and therapy is 
limited, mainly fluoxetine and ketamine. However, they are effective 
for only 30 to 40% of patients (Emmerzaal et al., 2020). Fluoxetine 
shows efficacy after 2–4 weeks of treatment, largely by increasing the 
levels of serotonin (5-HT) and BDNF in the brain, enhancing 
neuroplasticity and promoting neurogenesis, but has limited beneficial 
effects in severe patients (Hirschfeld, 2000; Banerjee et  al., 2013). 
Nonetheless, most antidepressants have severe side effects that often 
outweigh their therapeutic effects, thus hindering prolonged clinical 
application (Pan et  al., 2018). For instance, the induction of 
nervousness and insomnia by some antidepressants leads to poor 
toleration in some patients (Papakostas, 2010; Whiskey and Taylor, 
2013). Taken together, there is an urgent need to identify more 
effective and safer therapies.

Calcitonins are a family of peptide hormones produced in 
vertebrates, including calcitonin, calcitonin gene-related peptide 
(CGRP), amylin and adrenomedullin. The coding sequences of 
calcitonin (32 amino acids) and CGRP (37 amino acids) are located 
in the same gene locus, and two mature peptides are formed by 
alternative splicing (Amara et  al., 1982; Rosenfeld et  al., 1983). 
Calcitonin and CGRP have been widely used in the treatment of 
neuropsychological diseases as small molecule peptides (Schorscher-
Petcu et al., 2009; Hashikawa-Hobara et al., 2015). Animal studies 
have demonstrated that CGRP treatment reduces immobility time in 
the forced swim test (FST) in a mouse model of depression, indicating 
that CGRP has a potential antidepressant effect (Schorscher-Petcu 
et  al., 2009; Hashikawa-Hobara et  al., 2015). Additionally, after 
blocking the CGRP receptor, the antidepressant effect of CGRP 
disappeared (Hashikawa-Hobara et al., 2015). Clinical studies have 
shown that calcitonin in the serum of patients with depression is 
reduced (Mathe et al., 2002). Salmon calcitonin (sCT) has a more 
robust effect and a longer duration of action than mammalian 
calcitonin (Christopoulos et al., 1999). At present, sCT is a commonly 
used drug in the treatment of senile osteoporosis, postmenopausal 
osteoporosis and hypercalcemia caused by bone metastases (Silva and 
Becker, 1973; Ellerington et al., 1996). Recent studies have shown that 
sCT affects alcohol-related behaviors in rodents by modulating 
dopamine release in the brain regions such as lateral dorsal tegmental 
area (LDTg), ventral tegmental area (VTA) and nucleus accumbens 
(NAc) shell (Zakariassen et al., 2020; Kalafateli et al., 2021).

Amylin receptors (AMYRs) consist of calcitonin receptor (CTR) 
dimerized with receptor activity-modifying proteins (RAMPs; Hay 
et al., 2018). AMYRs are associated with motivated ingestive behavior 
and alcohol consumption (Mietlicki-Baase et  al., 2017). Small 
molecule AMYR agonists are considered effective therapeutic 
candidates, for they can cross the blood–brain barrier and present 
high specificity (Sonne et al., 2020). In addition, sCT can take effect 
by activating CTR or/and AMYRs (Arans et al., 2021). Similarly, our 

group has recently demonstrated that an acute administration of  
sCT could ameliorate a depressive-like phenotype by activating 
AMYRs (Jiang et al., 2022). However, the mechanism of the sCT’s 
antidepressant effect remains to be elucidated.

The MAPK pathway is one of the most critical regulatory 
pathways in eukaryotic cells. There are at least three distinct MAPK 
signaling modules, including extracellular regulated protein kinases 
(ERK), p38 and c-Jun N-terminal kinase (JNK), transducing 
extracellular signals down to the nucleus where transcription of 
responsive genes are turned on or off (Oliveira et al., 2008). It has been 
reported that stress impairs hippocampal function by inducing the 
expression of MAPK signaling related proteins, leading to activation 
of apoptosis and neuronal cell death (Abarikwu and Sunny, 2014; Park 
et al., 2016). Current studies support that inflammatory cytokines and 
exposure to psychological acute stressors induce the activation of p38/
JNK in the brain, and that pro-inflammatory cytokine signaling 
contributes to the pathogenesis of depression (Chen et al., 2021). As 
downstream effectors of lipopolysaccharide (LPS) stimulation, 
phosphorylation levels of JNK and p38  in the hippocampus were 
increased in mice subjected to chronic unpredictable mild stress (Fu 
et al., 2013; Naeem et al., 2021). Furthermore, the phosphorylated 
ERK can shuttle to the nucleus and initiate a series of transcriptional 
programs, resulting in neuronal damage, which in turn leads to 
depressive symptoms (Lai et al., 2017; Moniruzzaman et al., 2018).

In the present study, we evaluated the antidepressant potential of 
chronic administration of sCT, as well as its antidepressant mechanism. 
Firstly, we  showed that chronic sCT treatment could alleviate 
depressive-like behaviors in CRS-treated mice. Secondly, through 
transcriptomics and Western blotting analysis, we showed that chronic 
sCT administration might exert antidepressant effects via inhibiting 
the JNK/P38 signaling pathway. Finally, via using p38 and JNK 
agonists, we confirmed that p38, but not JNK, could be the branch of 
MAPK pathway responsible for the antidepressant effects of sCT.

2. Materials and methods

2.1. Animals

Mice were housed in a pathogen-free SPFII animal facility in a 
condition-controlled room (23 ± 1°C, 50 ± 10% humidity) at the 
Laboratory Animal Center of Southern University of Science and 
Technology (SUSTech), Shenzhen, China. A 12 h light/dark cycle was 
automatically imposed. Mice were maintained in a group of 6 in each 
ventilated cage and given access to food and water ad libitum. All 
animal experiments were conducted according to the protocols 
approved by the Animal Care Committee at SUSTech. The Animal 
Research: Reporting of In Vivo Experiments (ARRIVE) guidelines 
were followed when animal experimentation was designed and 
performed. Male C57BL/6 J mice were imported from Guangdong 
Laboratory Animal Center, China.

2.2. Chronic restraint stress model

After being acclimated to the facility for a week, mice were subject 
to the procedures of CRS as previously described (Jiang et al., 2022). 
In brief, mice were restrained in flexible cylindrical plastic tubes which 
were fitted to allow them to breathe. Going through the paradigm of 
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CRS, mice were restrained in the tube for 2 h each day and for 14 
consecutive days in total. Mice stayed in their own home cages except 
during the period of CRS.

2.3. Open-field test

Open-field test (OFT) was used to measure voluntary movement 
(Choleris et al., 2001). Distance traveled was recorded for 10 min by 
EthoVision XT software (Noldus Information Technology, Leesburg, 
VA, United States).

2.4. Forced swimming test

The forced swimming test (FST) was performed according to the 
reported protocols (Lee et  al., 2021). A cylindrical container of 
transparent plexiglass was used at a diameter of 11.5 cm and a height 
of 30 cm. A mouse was placed in a container filled with water (water 
temperature: 22–24°C, height: 20 cm). Their behavior was recorded 
for 6 min, while the immobility time in the last 5 min was counted and 
analyzed by the EthoVision XT software.

2.5. Tail suspension test

Tail suspension test (TST) was performed according to the 
reported protocols (Zhang et  al., 2020; Li et  al., 2021). After 
habituation, the mouse tail was taped onto the iron hook. The 
immobility time was recorded for 6 min with EthoVision XT software 
upon the tail suspension.

2.6. Sucrose preference test

In sucrose preference test (SPT), mice were housed individually 
and habituated to the drinking paradigm in which two water bottles 
were kept for 24 h, and the bottle position was randomly changed. 
After the habituation, mice were deprived of water for 24 h, and then 
two bottles containing water and 1% sucrose, respectively, were 
placed on the grid of the home cage. Mice were allowed to drink 
freely for 2 h, and the bottle position was changed during this period. 
Consumption of water and sucrose solution was measured by 
weighing the bottles. Sucrose preference was calculated by using the 
following equation: [sucrose solution intake (g)/(sucrose solution 
intake (g) + water intake (g))] × 100 (Walker et al., 2019).

2.7. Drug administration

sCT (Tocris Bioscience, Bristol, United Kingdom) was diluted in 
sterile 0.9% saline and injected subcutaneously (s.c.) at 50 IU/kg 
bodyweight for 10 consecutive days before completing all behavioral 
tests. Drug dosage and timing of administration were determined 
based on previous studies (Kwatra et al., 2020; Jiang et al., 2022). A 
JNK agonist, anisomycin (AN, MedChemExpress, United States), and 
a p38 agonist, phorbol 12-myristate 13-acetate (PMA, 
MedChemExpress, United States) were dissolved in sterile 0.9% saline 
and injected intraperitoneally (i.p.) at 0.1 mg/kg, 0.2 mg/kg 

bodyweight, respectively, for 15 consecutive days before completing 
the behavioral tests (Guo et al., 2016; Chen et al., 2022).

2.8. Western blotting assay

Total protein was isolated from the dissected tissues using moderate-
intensity RIPA buffer (Beyotime, Shanghai, China) containing protease 
inhibitor and phosphatase inhibitor (MedChemExpress, New Jersey, 
United States). After being centrifuged at 12,000 rpm at 4°C for 15 min, 
supernatants were collected, and protein concentration was determined 
using Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, MA, 
United States). Proteins were separated by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE), transferred to a 
polyvinylidene fluoride (PVDF) membrane (Merck Millipore, 
Guangzhou, China), and blocked in 5% fat-free milk in 1× PBST (0.1% 
Tween20 in phosphate buffer solution) for 1 h at room temperature. The 
blots were incubated with primary antibodies for p-p38 (Abcam, 
Cambridge, United Kingdom) and ERK1/2, p-ERK1/2, JNK, p-JNK, 
PTEN, p-PTEN, PI3K, p-PI3K, AKT, p-AKT, mTOR, p-mTOR, BDNF, 
PSD95, snap25 and synapsin-1 (Cell Signaling Technology, 
Massachusetts, United States) in a 5% bovine serum albumin (BSA) 
solution overnight at 4°C. On the second day, the blots were washed with 
1× PBST for 3 times and 10 min each, and incubated with 
HRP-conjugated secondary antibodies for 1 h (anti-rabbit IgG, 
ProteinTech Group, Inc., Wuhan, China). Immunodetection was 
performed using a super ECL detection reagent (Yeasen Biotech, 
Shanghai, China), and the signal was detected with a ChemiDoc™ 
Touch Imaging System (Bio-Rad, Shanghai, China).

2.9. mRNA sequencing

The hippocampal tissues from the CRS group and the control 
group were excised. Library preparation and transcriptome 
sequencing were performed at the Shanghai Applied Protein 
Technology Co., Ltd (APTBIO, Shanghai, China). Total RNA was 
extracted from hippocampus using TRIzol reagent (Thermo Fisher 
Scientific, United States). To construct the RNA-seq library, a total 
amount of 2 μg RNA per sample was used as input material for high-
throughput sequencing with the HiSeq  2000 sequencing system 
(Illumina, Shanghai) according to the manufacturer’s 
recommendations. Then, the libraries were then quantified and 
pooled. Paired-end sequencing of the library was performed on the 
HiSeq XTen sequencers (Illumina, San Diego, CA). Raw data were 
processed to filter out reads with low quality and clean data were 
aligned to the mouse genome using HISAT2, and reads numbers 
mapped to each gene were counted by FeatureCounts. DESeq2 was 
used to determine differentially expressed genes (DEGs) between two 
groups. Genes were considered as significantly differentially expressed 
if p value <0.05 and | log2FC (fold change) | > 0.583. The ggplot2 
package and pheatmap package were used to create a volcano plot and 
a heatmap, respectively. Kyoto Encyclopedia of Gene and Genomes 
(KEGG, kegg.jp) pathway analysis were performed on the free online 
website1 (Xu et al., 2019; Wang et al., 2021; Zheng et al., 2021).

1 www.bioinformatics.com
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2.10. Statistics

The data from the behavioral tests and Western blotting, among 
3 or 4 groups, were analyzed with one-way ANOVA followed by 
Tukey’s multiple comparison tests. Behavioral tests between the 
control + saline and control + sCT groups were analyzed by 
unpaired t test. Statistical analysis was performed using GraphPad 
Prism 8 (GraphPad Software, La Jolla, CA, United  States), and 
p < 0.05 was considered statistically significant. All data are 
represented as the mean ± SEM.

3. Results

3.1. The locomotor activity was not 
altered by chronic salmon calcitonin 
treatment in the chronic restraint 
stress-treated mice

To illustrate the therapeutic effect of chronic sCT on 
depression, an animal model of CRS was established. Male mice 
were subject to CRS for 2 weeks. In addition, sCT was 
subcutaneously (s.c.) injected at 50 IU/kg bodyweight for 10 
consecutive days (Figure 1A). To assess and compare any possible 
changes in the locomotor activity, we  performed OFT in the 
CRS-treated mice relative to the control group. As expected, no 
significant changes were found in the total distance traveled 
between the CRS group and the control group. Further, chronic 
sCT administration did not affect the locomotion level in the 
CRS-treated mice (F(2,17) = 0.3662, p > 0.05; Figures 1B,C).

3.2. Chronic salmon calcitonin treatment 
exerts an antidepressant effect on chronic 
restraint stress-treated mice but dose not 
affect non-treatment control mice

Learned helplessness and anhedonia are two main core 
symptoms of depressive disorder. The FST/TST and SPT are 
common paradigms to evaluate the behavioral phenotype of 
learned helplessness and anhedonia, respectively (Martins and 
Brijesh, 2018). Hence, we used TST, FST and SPT to assess the 
antidepressant effect of sCT in CRS-treated mice vs. control group. 
In the FST and TST, immobility time in CRS-treated mice was 
significantly reduced after sCT treatment (F(2, 24) = 8.290, p < 0.01; 
F(2, 18) = 25.98, p < 0.0001; Figures 2A,B). In the SPT, the sucrose 
preference ratio was significantly lowered in CRS-treated mice, 
suggesting the antidepressant effect in mice (F(2, 19) = 8.677, p < 0.01; 
Figure 2C).

Notably, sCT treatment did not change the distance traveled by 
control mice compared to that of saline treatment group (t(11) = 0.607, 
p >  0.05, Supplementary Figure S1A). In the FST and TST, the 
immobility time was not changed after sCT treatment compared with 
the control group (t(11) = 0.6073, p >  0.05; t(12) = 1.049, p >  0.05, 
Supplementary Figures S1B,C). In the SPT, the sucrose preference of 
control mice was not changed after sCT treatment (t(14) = 0.056, 
p > 0.05, Supplementary Figure 1D).

3.3. The PI3K/Akt and MAPK signaling 
pathway were significantly changed in 
chronic restraint stress-treated mice

To elucidate the molecular mechanism underlying the effect of sCT 
on the CRS-treated mice, we  first sought to identify significantly 
changed signaling pathways between CRS-treated mice and control 
mice. Considering that the hippocampus is inextricably involved in the 
pathogenesis of depression (Spalding et al., 2013; Liu et al., 2017), 
we  performed RNA sequencing to compare the hippocampal 
transcriptomic profiling of the two groups of mice. DESeq2 was used 
to analyze the differentially expressed genes (DEGs). The results of 
cluster analysis showed that the mRNA profiles of CRS-treated mice 
were significantly different from those in the control group (Figure 3A). 
With the screening criteria set at p value <0.05 and | log2FC | > 0.583, 
we further found 164 significant DEGs among which 82 genes were 
up-regulated, and 82 genes down-regulated in the CRS-treated mice 
(volcano plot; Figure  3B). KEGG enrichment analysis from 82 
up-regulated genes showed that these genes were involved in signaling 
pathways, including MAPK (scatter plot; Figure 3C). It was reported 
that activation of MAPK pathway could induce phosphorylation of 
NF-κB, leading to neuroinflammation and the subsequent development 
of depression-like behaviors in rodents (Olianas et al., 2019). The ERK/
NF-κB pathway was also reported to be activated in the chronic mild 
stress (CMS) model of depression (Su et al., 2017). Interestingly, KEGG 
enrichment analysis from 82 down-regulated genes showed that these 
genes were involved in signaling pathways, including PI3K/Akt (scatter 
plot; Figure 3D). Similarly, the CRS-treated ICR mice were subjected 
to cognitive deficits with the decreased AKT/mTOR in hipppocampus 
(Huang et al., 2022). The analysis found that the PI3K/Akt and MAPK 
signaling pathway were significantly changed in CRS-treated mice.

3.4. Chronic salmon calcitonin treatment 
selectively blocks the p38/JNK signaling 
pathway in chronic restraint stress-treated 
mice

Considering our finding that the ERK1/2 signaling pathway analysis 
was significantly up-regulated in the CRS-treated mice, as well as 
literature that activation of the ERK/p38/JNK pathway was involved in 
the neuroinflammatory regulation of depression (Liu et  al., 2018), 
we focused on ERK/p38/JNK pathway in this study. Western blotting 
analysis showed that compared with control mice, the ratios of p-ERK/
ERK, p-JNK/JNK and p-p38/p38 were significantly increased in 
CRS-treated mice (F(2,8) = 12.13, p <  0.05; F(2,8) = 9.699, p <  0.05; 
F(2,9) = 4.602, p < 0.05; Figure 4A), suggesting an overall induction in the 
phosphorylation level of the MAPK signaling pathway. However, the 
ratio of p-PTEN/PTEN, p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR 
were not significantly changed between CRS-treated mice and control 
mice (F(2,9) = 0.7067, p >  0.05; F(2,9) = 0.6413, p >  0.05; F(2,9) = 2.146, 
p > 0.05; F(2,9) = 3.488, p > 0.05; Figure 4B). In addition, the expression of 
BDNF, PSD95, synapsin-1, snap25 were not changed (F(2,9) = 1.483, 
p >  0.05; F(2,9) = 3.093, p >  0.05; F(2,9) = 2.222, p >  0.05; F(2,9) = 0.7261, 
p > 0.05; Figure 4C). Strikingly, after sCT treatment, the phosphorylation 
levels of JNK and p38 in the hippocampus of CRS-treated mice were 
significantly decreased to a level near the control group (F(2,8) = 9.699, 
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p < 0.05; F(2,9) = 4.602, p < 0.05; Figure 4A), whilst the phosphorylation 
of ERK1/2, PTEN, PI3K, AKT, mTOR, and the expression of BDNF, 
PSD95, synapsin-1, snap25 were remained unchanged (Figures 4A–C). 
Taken together, our results indicated that chronic sCT primarily acted 
on the p38/JNK signaling pathway in CRS-treated mice.

3.5. Chronic salmon calcitonin exerts 
antidepressant effects in the chronic 
restraint stress model by decreasing 
phospho-p38

To investigate whether the antidepressant effect of chronic sCT 
is dependent on the JNK/p38 signaling pathway in vivo, a JNK 

agonist, AN, a p38 agonist, PMA or saline, as a negative control was 
injected intraperitoneally for 15 consecutive days prior to sCT 
treatment as described above (Figure 5A). We found that AN or 
PMA did not affect the locomoter activity of CRS-treated mice with 
sCT treatment (F(3, 34) = 2.703, p > 0.05; Figure 5B). However, the 
TST results showed that the immobile time of mice was significantly 
prolonged upon AN or PMA perturbation, compared to that of the 
saline treatment group, indicating that the anti-depressant effect of 
sCT on CRS-treated mice could be abolished by AN or PMA (F(3, 

43) = 8.960, PMA, p < 0.01, AN, p < 0.01; Figure 6A). Intriguingly, the 
results of FST and SPT showed that PMA, but not AN, effectively 
blocked the antidepressant function of sCT (F(3, 50) = 7.661, PMA, 
p < 0.01, AN, p > 0.05; Figure 6B; F(3, 48) = 5.974, PMA, p < 0.01, AN, 
p > 0.05; Figure 6C). Collectively, these results delineated that sCT 

A

B

C

FIGURE 1

Locomotion level did not change in CRS-treated mice. (A) Schematic diagram showing experimental procedures of the CRS-treated mice model. (B) The 
distance traveled in OFT did not change in CRS-treated mice (Control + saline: n = 7; Depression + saline: n = 7; Depression + sCT: n = 6). (C) Representative 
images of movement trace in OFT. The data were analyzed by one-way ANOVA with Tukey’s multiple comparison tests. ns, no significance.
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may exert its antidepressant effects selectively through the p38 
rather than the JNK signaling pathway.

4. Discussion

Depression is a common debilitating neuropsychiatric disorder 
with an increased incidence year on year (Hammen, 2018). Our group 

has recently demonstrated that a single administration of sCT could 
ameliorate a depressive-like phenotype probably via the amylin 
signaling pathway (Jiang et  al., 2022). The potential role of the 
calcitonin-AMYR axis in depression has been delineated by exploiting 
both agonists (e.g., sCT) and inhibitors/antagonists of AMYR (e.g., 
AC187; Hay et al., 2005; Jiang et al., 2022). However, the mechanism 
of its long-term action remains largely unclear. In this study, 
we evaluated the anti-depressant potential of chronic sCT treatment. 
Strikingly, we found that the immobility time of CRS-treated mice was 
significantly decreased in the FST and TST, and the sucrose preference 
rate was significantly increased in SPT after chronic application of 
sCT, while the locomoter activity in CRS-treated mice was not affected 
(Figures  1, 2), suggesting the profound antidepressant effects of 
chronic sCT on the CRS-treated mice. Nonetheless, chronic sCT did 
not affect the aforementioned behaviors of the control mice 
(Supplementary Figure S1). Further, we sought for the underlying 
mechanism on the altered molecular networks between the 
CRS-treated mice and the control group. Our RNA-seq analysis 
between these two groups revealed significantly enriched 
transcriptomic profiles, such as MAPK signaling pathway (Figure 3). 
To validate our findings, Western blotting analysis showed that the 
phosphorylation level of ERK/p38/JNK molecules was increased in 
the hippocampus of CRS-treated mice relative to the control group; 
however, chronic sCT treatment could only reverse the 
phosphorylation status of p38/JNK in the hippocampus of CRS-treated 
mice (Figure 4). Notably, the p38 agonist, PMA, rather than JNK 
agonist, could potently abrogate the antidepressant effects of sCT 
(Figures 5, 6).

In recent years, a growing number of studies have found that sCT 
plays an important role in regulating the physiological functions of the 
central nervous system (Zakariassen et  al., 2020; Kalafateli et  al., 
2021). Taskiran and Filiz showed that sCT had antiepileptic activity in 
Pentylenetetrazole (PTZ)-induced epileptic seizures in rats through 
excitatory-inhibitory, oxidative stress and neuroinflammation 
pathways. After PTZ induced epileptic seizures, sCT even displayed 
neuroprotective effects on hippocampal neurons (Taskiran et al., 2020; 
Filiz and Karabulut, 2022). Moreover, sCT can regulate the alcohol 
intake of mice by activating the mesolimbic dopamine system 
(Kalafateli et al., 2021). In this study, we focused on chronic calcitonin 
treatment that significantly rescued the depressant behaviors of our 
depression mouse model (Figure 2), reminiscent of the finding of our 
previous study on the acute calcitonin administration (Jiang et al., 
2022). However, sCT did not affect the immobility time of the healthy 
control mice in TST and FST, as well as sucrose preference rate in SPT 
(Supplementary Figure S1), suggesting that chronic calcitonin 
administration could be a safe therapeutic strategy, not generating 
anti-or pro-depressant behaviors to healthy peers. Further, 
we found that sCT treatment did not affect the locomoter activities 
of  both CRS-treated and non-treatment mice (Figure  1; 
Supplementary Figure S1), partially in keeping with existing literature 
on that sCT treatment for 5 days did not affect locomotor activity in 
wild-type mice (Kalafateli et al., 2020), and also suggesting that the 
antidepressant effect of calcitonin is highly likely to be through the 
central nervous system, but not via muscle or bone.

In humans and various animal models of depression, the middle 
prefrontal cortex and hippocampus are two core regions associated 
with the pathophysiology and progression of depression (Belleau et al., 
2019). Subsequent alterations of signaling pathways often occur here, 
such as MAPKs, encompassing at least ERK, p38, and JNK branches. 

A

B

C

FIGURE 2

Chronic sCT treatment had an antidepressant effect in CRS-treated 
mice. (A) In FST, the immobility time of CRS-treated mice was 
increased and was decreased after sCT treatment (Control + saline: 
n = 7; Depression + saline: n = 10; Depression + sCT: n = 10). (B) In 
TST, the immobility time of CRS-treated mice was also significantly 
increased and was decreased after sCT treatment (Control + saline: 
n = 7; Depression + saline: n = 7; Depression + sCT: n = 7). (C) In SPT, 
the sucrose preference of CRS-treated mice was decreased 
significantly and was increased after sCT treatment (Control + 
saline: n = 8; Depression + saline: n = 7; Depression + sCT: n = 7). The 
data were analyzed by one-way ANOVA with Tukey’s multiple 
comparison tests. *p < 0.05, **p < 0.01.
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Upon activation of upstream kinases, the different subfamilies regulate 
the expression of multiple pro-inflammatory mediators and apoptotic 
signals (Wang and Mao, 2019; Falcicchia et al., 2020; Behl et al., 2022). 
Stress induces the activation of the MAPK signaling pathway, 

furthering the activation of apoptosis, resulting in neuronal cell death, 
and thereby impairing hippocampal function (Duman et al., 2007; 
Villas Boas et al., 2019). In this study, our transcriptomic profiling 
revealed the enrichment of MAPK signaling pathways (Figure 3) and 

A

C D

B

FIGURE 3

mRNA expression profile analysis of the hippocampus in control mice and CRS-treated mice. (A) The heatmap of DEGs between Control mice and 
CRS-treated mice. (B) The volcano map of genes between Control mice and CRS-treated mice. (C,D) The KEGG enrichment analysis of up-regulated 
genes (C) and down-regulated genes (D).
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our Western blotting analysis confirmed that the phosphorylation level 
of ERK1/2, p38 and JNK was significantly increased in the CRS-treated 
mice (Figure 4). In keeping, Bravo et al. (2009) showed the augmented 
level of ERK phosphorylation in the hippocampus of CRS-treated rats. 

In addition, studies utilizing other common depression paradigms also 
reported the increased phospho-ERK in the hippocampus of chronic 
unpredictable mild stress (CUMS) rats (Yuan and Yuan, 2022), chronic 
water immersion restraint stress (CWIRS) mice (Mao et al., 2020), and 

A

B

C

FIGURE 4

sCT treatment blocked the p38/JNK signaling pathway in the hippocampus of CRS-treated mice. (A) The phosphorylation levels of ERK/p38/JNK in the 
hippocampus of control mice, CRS-treated mice and CRS-treated mice with sCT treatment. (B) The phosphorylation levels of PTEN/PI3K/AKT/mTOR 
in the hippocampus of control mice, CRS-treated mice, and CRS-treated mice with sCT treatment. (C) The expression of BDNF/PSD95/synapsin-1/
snap25 in the hippocampus of control mice, CRS-treated mice and CRS-treated mice with sCT treatment. The data were analyzed by one-way ANOVA 
with Tukey’s multiple comparisons tests. *p < 0.05, **p < 0.01.
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even mice acutely exposed to FST and TST (Galeotti and Ghelardini, 
2012). Nonetheless, decline in phospho-ERK was observed using a 
similar restraint stress model (Abe-Higuchi et al., 2016; Cui et al., 
2023). This discrepancy could possibly due to the modeling time that 
was manipulated differently in such restraint stress models. Further, 
we postulate that the dynamics of phospho-ERK levels might come 
down to the presence of the multi-subtypes and stages of the major 
depression disorder clinically. Albeit the outcome of ERK 
phosphorylation is fickle, hippocampal ERK activation is thought to 
be inextricably involved in the induction of pro-depressant behavior in 
rodent models (Bravo et al., 2009; Galeotti and Ghelardini, 2012).

Increasing evidence revealed the indispensable roles of the other 
two members of the MAPK family, p38 and JNK, in regulation of 
depression (Ménard et al., 2016). Consistent with our observations, 
some reports indicated that the phosphorylation levels of JNK and p38 
were significantly increased in the hippocampus of rodent models 
after exposure to restraint stress (Tan et al., 2017; Salehpour et al., 
2019), chronic mild stress (Martins and Brijesh, 2018) or swim stress 
(Shen et al., 2004; Bruchas et al., 2007). Inhibition of the activity of 
JNK and p38 in wild-type mice could result in antidepressant-like 
behavior (Galeotti and Ghelardini, 2012), indicative their role in 
induction of depression. Notably, some therapeutic drugs or 
compounds may relieve depressive symptoms via p38 or JNK 

pathways. Tan et al. found that ketamine alleviated depressive-like 
behaviors via abrogating the activated p38 signaling pathway in the 
CRS model (Tan et al., 2017). A few studies reported that fluoxetine 
could improve depression-like behavior by inhibiting the p38/JNK 
signaling pathway in the depression-like mice (Moretti et al., 2016; 
Athira et al., 2018). Hesperidin, as a major dietary bioflavonoid that 
could cross the blood–brain barrier (Youdim et al., 2003), has been 
shown to exhibit antidepressant effects on CRS-and LPS-treated mice 
by inhibiting JNK/p38 signaling pathway (Kwatra et al., 2020, 2021). 
In keeping, we showed that sCT treatment could block the augmented 
levels of phospho-p38/JNK in the CRS model, while the 
phosphorylation levels of ERK1/2 were not changed significantly 
(Figure 4A), possibly due to the antidepressant effects of chronic sCT 
largely depending on suppressing the p38 or JNK signaling pathway. 
Strikingly, PMA, as a p38 agonist that could penetrate the blood–brain 
barrier (Guo et al., 2016), presented more effective blockade of the 
antidepressant effect of sCT compared to that of the JNK agonist AN 
(Chen et al., 2022; Figure 6). Of note, PMA and AN did not affect the 
locomotor activity of mice (Figure 5).

Furthermore, a plethora of studies showed that the PTEN/AKT/
mTOR or BDNF/synaptophysin pathway was not changed in a variety 
of depression models compared to that of the control group (Ju et al., 
2022; Olave et al., 2022; Yang et al., 2022). Likewise, we found that the 

A

B

FIGURE 5

Locomotion level did not change in CRS-treated mice after AN or PMA treatment. (A) Timeline of CRS exposure, sCT, AN, PMA administration, and 
behavioral tests. (B) The distance traveled in OFT did not change in CRS-treated mice after AN or PMA treatment (Depression + saline: n = 9; Depression 
+ sCT + saline: n = 9; Depression + sCT + AN: n = 10; Depression + sCT + PMA: n = 10). The data were analyzed by one-way ANOVA with Tukey’s multiple 
comparison tests. ns, no significance.
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phosphorylation levels of the PTEN/PI3K/AKT/mTOR pathway 
(Figure  4B) or the expression levels of BDNF/PSD95/synapsin1/
snap25 pathway (Figure  4C) remained unchanged between 
CRS-treated mice and the non-treatment peers. However, there were 
reports showing that the AKT or BDNF/PSD95 pathway was inhibited 
in the CRS-treated mice and other depression models (Cunha et al., 
2016; Ludka et  al., 2016; Song et  al., 2020; Li et  al., 2020a,b). 
Nonetheless, data from this study suggested that these aforementioned 
pathways were neither involved in CRS-treated mice, nor changed by 
sCT treatment.

Here, we  showed activation of the three branches of MAPK 
signaling pathway (ERK/p38/JNK) in the CRS mouse model, and 

demonstrated that chronic sCT treatment alleviated the depression-
like behaviors of the mice by mainly inhibiting p38 phosphorylation 
in the hippocampus. Our findings may pave the way for future studies 
to determine the detailed mechanisms underlying sCT in regulation 
of the p38 signals, and shed light on potential targeted therapeutic 
strategies for depression.
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FIGURE 6

PMA treatment could block the antidepressant effect of sCT in CRS-
treated mice. (A) In TST, the immobility time of CRS-treated mice 
with sCT treatment was increased after PMA or AN treatment 
(Depression + saline: n = 14; Depression + sCT + saline: n = 15; 
Depression + sCT + AN: n = 10; Depression + sCT + PMA: n = 8). (B) In 
FST, the immobility time of CRS-treated mice with sCT treatment 
was increased after PMA treatment (Depression + saline: n = 17; 
Depression + sCT + saline: n = 19; Depression + sCT + AN: n = 9; 
Depression + sCT + PMA: n = 9). (C) In SPT, the surose preference of 
CRS-treated mice with sCT treatment was decreased significantly 
after PMA treatment (Depression + saline: n = 16; Depression + 
sCT + saline: n = 16; Depression + sCT + AN: n = 10; Depression + 
sCT + PMA: n = 10). The data were analyzed by one-way ANOVA with 
Tukey’s multiple comparison tests. ns, no significance, *p < 0.05, 
**p < 0.01.
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