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Abstract 23 

Background: Neurodegenerative diseases are among the most prevalent and devastating neurological 24 

disorders, with few effective prevention and treatment strategies. We aimed to integrate genetic and 25 

proteomic data to prioritize drug targets for neurodegenerative diseases. 26 

Methods: We screened human proteomes through Mendelian randomization to identify causal mediators 27 

of Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), multiple 28 

sclerosis (MS), frontotemporal dementia, and Lewy body dementia. For instruments, we used brain and 29 

blood protein quantitative trait loci (pQTLs) identified from one GWAS with 376 individuals and another 30 

with 3,301, respectively. Causal associations were subsequently validated by sensitivity analyses and 31 

colocalization. The safety and druggability of identified targets were also evaluated. 32 

Results: Our analyses showed targeting BIN1, GRN, and RET levels in blood, as well as ACE, ICA1L, 33 

MAP1S, SLC20A2, and TOM1L2 levels in brain might reduce AD risk, while ICA1L, SLC20A2, and 34 

TOM1L2 were not recommended as prioritized drugs due to the identified potential side-effects. Brain 35 

CD38, DGKQ, GPNMB, and SEC23IP were candidate targets for PD. Among them, GPNMB was the 36 

most promising target for PD with their causal relationship evidenced by studies on both brain and blood 37 

tissues. Interventions targeting FCRL3, LMAN2, MAPK3 in blood and DHRS11, FAM120B, SHMT1, 38 

TSFM in brain might affect MS risk. The risk of ALS might be reduced by medications targeting DHRS11, 39 

PSMB3, SARM1, and SCFD1 in brain.  40 

Conclusions: Our study prioritized 22 proteins as targets for neurodegenerative diseases and provided 41 

preliminary evidence for drug development. Further studies are warranted to validate these targets.42 
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Introduction 43 

Neurodegenerative diseases, characterized by the progressive loss of vulnerable neurons and brain 44 

function decline, are a group of age-related disorders with highly heterogeneous pathophysiologies and 45 

clinical presentations (1). Since life expectancy has increased dramatically, neurodegenerative diseases 46 

have become more devastating and burdensome than ever before (2). Despite the compelling clinical need, 47 

effective therapeutic and prevention strategies for neurodegenerative diseases are rarely available in 48 

clinical practice. Besides, an incredibly high drug development failure rate was observed for 49 

neurodegenerative diseases (3). Fortunately, it has been shown that drug targets supported by human 50 

genetic evidence are more likely to succeed in clinical trials (4). Mendelian randomization (MR) is an 51 

analytic approach that uses genetic variants as instruments to infer causal relationships between exposures 52 

and outcomes. As genetic variants are randomly allocated at conception, the MR approach is less likely to 53 

be affected by confounding factors and reverse causality than observational studies, thus it has been 54 

considered a “natural” randomized controlled trial (RCT).  55 

Human proteins play direct roles in biological processes and constitute the primary source of drug 56 

targets. Recent proteomic studies have identified an abundance of protein quantitative trait loci (pQTLs) in 57 

both blood and brain, enabling MR analysis at the proteomic level (5, 6). Proteomic data derived from 58 

brain and blood each have their own advantages. The human proteome in brain is more closely associated 59 

with the pathology of neurodegenerative disorders in the central nervous system, and the abundance of 60 

blood proteins is easier to be directly controlled by medications due to the blood-brain barrier. Hence, 61 

taking both brain and blood proteomic data into account would provide new insights into the drug 62 

development. In addition, it has been revealed that pQTLs located in the vicinity of the encoding genes, 63 

namely cis-pQTLs, are more likely to influence the protein level by directly influencing the transcription 64 

or translation. In contrast, trans-pQTLs might influence the protein level via indirect mechanisms (7). 65 

Thus, the use of cis-pQTLs for analysis would substantially minimize the pleiotropy caused by indirect 66 

pathways.  67 

Here, we integrated genetic and proteomic data from the brain and blood to prioritize genetically-68 

supported drug targets for neurodegenerative diseases. By combining state-of-the-art methods, we assessed 69 

the causal relationships between human proteomes and neurodegenerative diseases after taking 70 
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consistency, pleiotropy, confounding, aptamer-binding effect, linkage, and reverse causality into account 71 

(Figure S1). The potential on-target side-effects and druggability of the identified targets were also 72 

evaluated. 73 

Methods and Materials 74 

Study design 75 

This study was based on publicly available summary data of QTLs and neurodegenerative diseases 76 

(Table S1). Data were collected from November 2020 to June 2021 and analyzed in 2021. A flow chart of 77 

the overall study design is presented in Figure 1. Firstly, we selected independent cis-pQTLs from 78 

comprehensive pQTL datasets as instruments and filtered the instruments via consistency and specificity 79 

tests. Secondly, we screened the human proteomes through MR to identify candidate causal mediators of 80 

neurodegenerative diseases. Thirdly, the identified causal relationships were further validated by multi-cis 81 

analysis, as well as the heterogeneity, pleiotropy, and directional tests. Fourthly, we investigated whether 82 

the protein and the disease share a common causal variant by Bayesian colocalization. Fifthly, replication 83 

and correlation analyses were conducted to estimate the consistency of results within and across brain and 84 

blood. Sixthly, we summarized the evidence of causality for all candidate drug targets and expanded our 85 

analysis pipeline to the phenome-wide to evaluate the safety by predicting the side-effects resulting from 86 

targeting the proteins. Finally, the druggability of the prioritized protein targets was checked according to 87 

two large databases. 88 

Data Sources  89 

The discovery brain pQTL data were generated from post-mortem samples of the dorsolateral 90 

prefrontal cortex (dPFC) donated by 376 individuals in ROS/MAP (8). The proteomic profiles included 91 

8,356 proteins labeled by isobaric tandem mass tag peptide and analyzed by liquid chromatography 92 

coupled to mass spectrometry (LC-MS) (9, 10). The discovery blood pQTL data originated from the 93 

INTERVAL study, and the proteomic profiles were generated from 3,301 blood donors and included 3,622 94 

plasma proteins measured by SOMAscan (5). We also obtained two brain and two blood pQTL datasets 95 

from independent cohorts for replication (11, 12), as well as an eQTL data for the analysis of aptamer-96 

binding effects (13). Details of the replication datasets are presented in the Supplementary Methods. 97 
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The summary statistics of GWAS for Alzheimer’s disease (AD, ncases = 75,024, ncontrols = 397,844) 98 

(14), Parkinson’s disease (PD, ncases = 33,674, ncontrols = 449,056) (15), amyotrophic lateral sclerosis (ALS, 99 

ncases = 27,205, ncontrols = 110,881) (16), multiple sclerosis (MS, ncases = 14,802, ncontrols = 26,703) (17), 100 

frontotemporal dementia (FTD, ncases = 2,154, ncontrols = 4,308) (18), and Lewy body dementia (LBD, ncases 101 

= 2,981, ncontrols = 2,173) (19) were obtained from large consortia. All individuals of GWAS included in 102 

this study were of predominantly European descent. No sample overlap between QTL datasets and GWAS 103 

for neurodegenerative diseases was detected. Detailed descriptions of all GWAS used in this study can be 104 

found in Table S1.  105 

Instrument selection and validation 106 

We first mapped the genetic variants to genome build GRCh37/hg19 and selected cis-pQTLs from the 107 

brain and blood proteomes according to Ensembl v104 (http://grch37.ensembl.org). The cis-pQTLs were 108 

defined as genome-wide significant (P < 5 × 10-8) and LD-independent genetic variants fell within 500 kb 109 

upstream or downstream of the transcription start site of the gene encoding the protein. LD clumping was 110 

achieved based on r2<0.001 using the 1000G European reference panel. All rare variants with minor allele 111 

frequency (MAF) less than 0.01 were excluded from further analysis. Variants located within the human 112 

major histocompatibility complex region (chr6:26-34MB) were removed before analysis. 113 

Next, we performed the cross-study consistency and specificity tests to validate the identified 114 

instruments. We checked the LD of sentential cis-pQTLs and the direction of effect estimates to evaluate 115 

the instrument consistency across proteomic studies. For instrument specificity, the number of proteins 116 

associated with each instrument (P < 5 × 10-8) was counted. If an instrument and its proxies (r2 > 0.8) were 117 

associated with more than five proteins, the instrument was considered highly pleiotropic and thus 118 

excluded from further analysis. The PhenoScanner was used to help identify other known genotype-protein 119 

associations in blood (9, 11, 20-23). We manually counted the number of brain proteins associated with 120 

each instrument (6, 9, 24). Specifically, if cis-pQTL data from more than one SOMAmer reagent of a 121 

certain protein were available, we chose the reagent with the highest instrument consistency and 122 

specificity. If different SOMAmers shared the same cis-pQTL, we would select the one with the lowest P-123 

value for the following analysis. Instrument strength was measured by the F-statistic, while an F-statistic of 124 

at least 10 indicates the instrument is not weak (25). 125 
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Mendelian randomization 126 

After validation of the genetic instruments, we extracted the effect estimates of the same variants or 127 

their proxies in GWAS of neurodegenerative diseases for data harmonization. The primary MR analysis 128 

was performed using the Wald ratio or inverse-variance weighted (IVW) method, depending on the 129 

number of independent cis-pQTLs for each protein. Bonferroni correction for the number of proteins was 130 

conducted to control multiple comparisons (Bonferroni threshold: 0.05/608 for brain and 0.05/613 for 131 

blood). 132 

MR results with a single instrument of a protein might be distorted if the instrument was an outlier. 133 

To address this concern and boost statistical power, we next conducted the multi-cis MR analysis using 134 

cis-acting genome-wide significant instruments in weak LD (r2 < 0.6) for the associations identified by 135 

primary analysis (clumping at r2 < 0.001) (26). Multiple MR analytical approaches, including IVW, Egger, 136 

weighted median, and weighted mode were applied for validation, of which IVW was chosen as the 137 

primary approach according to the recommendation (27). The heterogeneity was quantified by the IVW Q 138 

statistic, and the pleiotropy was evaluated by the MR-Egger intercept. The causal direction was assessed 139 

by two analytical approaches, the Steiger filtering and the reverse MR. Reverse MR could only be 140 

performed with blood proteins due to data accessibility. In the validation, heterogeneity, pleiotropy, and 141 

directional analyses, uncorrected P-values less than 0.05 were considered significant. All MR analyses 142 

were undertaken with the “TwoSampleMR” package in R (28). 143 

Sensitivity analysis considering the aptamer-binding effects 144 

As the blood proteins were measured by SOMAmers and were susceptible to aptamer-binding effects, 145 

we looked up the function of blood pQTL variants and their proxies in HaploReg v4.1 (29). Sensitivity 146 

analysis was performed after excluding all missense variants and variants in high LD (r2 > 0.8) with 147 

missense variants. Subsequently, we performed a transcriptional level MR using blood eQTL to validate 148 

the association. eQTL data measured by RNA sequencing are less likely to be confounded by aptamer-149 

binding effects. 150 

Replication and correlation analyses 151 
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To understand the consistency of MR estimates within brain and blood tissues, we performed 152 

replication MR analyses using replication datasets. Gene and protein names in different datasets were 153 

aligned by UniPort ID. We also conducted beta-beta correlation analyses of MR estimates within and 154 

across tissues using the Pearson test via “cor.test” function implemented in R. The correlation analyses 155 

were first undertaken in all proteins and then limited to proteins at the nominal significance level (P < 156 

0.05). 157 

Bayesian colocalization 158 

Bayesian colocalization was performed to further strengthen the evidence of causality by calculating 159 

the posterior probability (PP) that the protein and disease share the same causal signal (H4). A posterior 160 

probability for H4 (PP.H4) of at least 50% suggests likely to colocalize, and a PP.H4 of at least 80% 161 

suggests highly likely to colocalize (7). Colocalization analysis was conducted within a 1-MB window on 162 

either side of the sentinel variant by the “coloc” package in R software. 163 

Drug target prioritization 164 

After systematically operating the above analytical pipeline, we prioritized the identified drug targets 165 

by their strength of causal evidence, considering the consistency, heterogeneity, pleiotropy, directionality, 166 

and colocalization. Notably, targets with conflicting evidence in multi-cis or replication analysis, evidence 167 

of aptamer-binding effects, or not likely to colocalize were rated as having a low level of causality and 168 

were not considered credible targets. 169 

Assessment of safety and druggability 170 

Finally, we expanded our analytical pipeline to the phenome-wide to assess the safety of targets by 171 

predicting on-target side-effects. Potential side-effects were extracted from the MRC IEU OpenGWAS 172 

Project (28, 30) with European or predominantly European ethnicity. If the same phenotype was available 173 

in more than one GWAS, we chose the one with the largest sample size to reduce the multiple testing 174 

burden. Similar but not identical phenotypes were retained because the consistent results from similar 175 

phenotypes would gain more confidence in the existence of side-effects. The overall level of safety was 176 

approximated by the sum PP.H4 of all adverse effects passed the Bonferroni correction. The druggability 177 

of each prioritized target was checked according to Finan’s criteria (31) and the DrugBank database (32). 178 
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Results 179 

Characterizing genetic instruments of protein abundance in brain and blood 180 

After applying the prescribed quality control criteria, 616 brain cis-pQTLs for 608 proteins and 840 181 

blood cis-pQTLs for 611 proteins were available for MR analysis (Tables S2-3). The instruments across 182 

brain pQTL studies showed remarkable consistency, as 92.0% and 71.8% of sentinel cis-pQTLs in 183 

ROS/MAP were in high LD (r2 > 0.8) with that in the two replication datasets (Table S4). For the blood 184 

proteome, the sentinel cis-pQTLs of 60.1% and 58.8% proteins in INTERVAL were in high LD (r2 > 0.8) 185 

with that in two replication cohorts (Table S5). The F-statistic of all instruments ranged from 30 to 1704 186 

(Table S3 and Table S5). 187 

Mendelian randomization and colocalization in the brain proteome 188 

After Bonferroni correction for multiple testing, our primary MR analysis identified 18 proteins 189 

whose abundance in brain was associated with risks of neurogenerative diseases (Figure 2A, Figure 3A, 190 

and Table S6). Genetically determined higher levels of brain EPHX2 (OR = 1.42, P = 2.72×10-13), 191 

TOM1L2 (OR = 3.85, P = 2.72×10-5), and MAP1S (OR = 2.36, P = 3.17×10-5) were associated with 192 

greater risks of AD, while the genetically determined higher levels of ICA1L (OR = 0.38, P = 1.57×10-5), 193 

SLC20A2 (OR = 0.45, P = 4.17×10-5) and ACE (OR = 0.55, P = 5.76×10-5) were associated with lower 194 

risks of AD. The abundance of brain SCFD1 (OR = 5.42, P = 1.02×10-14) and PSMB3 (OR = 2.24, P = 195 

5.76×10-5) might increase and SARM1 (OR = 0.31, P = 8.27×10-9) and DHRS11 (OR = 0.58, P = 196 

2.16×10-5) might decrease ALS risk. In addition, five proteins in brain would elevate the risk of MS, 197 

including TSFM (OR = 4.87, P = 1.38×10-10), GALC (OR = 1.65, P = 1.01×10-7), SHMT1 (OR = 1.94, P 198 

= 1.20×10-5), DHRS11 (OR = 2.22, P = 3.02×10-5), and FAM120B (OR = 4.40, P = 5.10×10-5). 199 

Genetically predicted high levels of GPNMB (OR = 1.46, P = 2.48×10-8) and SEC23IP (OR = 7.88, P = 200 

2.45×10-5) were associated with an increased PD risk, while high levels of CD38 (OR = 0.32, P = 6.99×10-201 

14) and DGKQ (OR = 0.14, P = 1.97×10-9) were associated with a decreased PD risk. All protein-disease 202 

associations showed the correct causal direction in the Steiger filtering analysis (Table S7). Meanwhile, we 203 

found that the results in multi-cis MR were in accordance with the primary analysis and consistent among 204 

multiple MR approaches (Table S8). No pleiotropy was observed, while heterogeneity was detected in 205 

three protein-disease pairs (EPHX2-AD, DHRS11-ALS, and GALC-MS). Bayesian colocalization analysis 206 
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showed that all protein-disease associations except EPHX2-AD and GALC-MS were likely to be driven by 207 

the same causal SNP (Table S9). 208 

Mendelian randomization and colocalization in the blood proteome 209 

After screening the human blood proteome through primary MR analysis, 16 proteins for five diseases 210 

passed the Bonferroni correction (Figure 2B, Figure 3B, and Table S10). No reverse causation was 211 

observed in either the Steiger filtering or reverse MR analysis (Tables S11-12). Seven proteins for AD 212 

were identified in the primary MR, but only four of them showed evidence of colocalization (BIN1, OR = 213 

1.87, P = 1.46×10-23, PP.H4 = 69.6%; GRN, OR = 0.83, P = 2.99×10-6, PP.H4 = 99.5%; CD33, OR = 214 

1.06, P = 3.69×10-5, PP.H4 = 99.8%; RET, OR = 1.18, P = 7.87×10-5, PP.H4 = 74.7%). Notably, we 215 

observed high heterogeneity (P = 1.64×10-5) and pleiotropy (P = 5.54×10-4) regarding circulating CD33 216 

levels for AD risk (Table S13). For all FTD subtypes, only the protein WISP1 survived the Bonferroni 217 

correction but did not pass the Bayesian colocalization (Table S14). Circulating α-synuclein (encoded by 218 

SNCA) was highly associated with LBD and PD risks in MR analyses. However, the colocalization results 219 

(PP.H4 = 17.2% and 0.0%) suggested the identified association might be a product of LD but not causality 220 

(Table S14). Other drug targets both passed MR and colocalization analysis including GPNMB (OR = 221 

1.51, P = 1.80×10-7, PP.H4 = 55.6%) and FCGR2A (OR = 1.06, P = 4.72×10-5, PP.H4 = 92.4%) for PD, 222 

and FCRL3 (OR = 0.83, P = 8.93×10-9, PP.H4 = 94.1%), MAPK3 (OR = 0.56, P = 4.94×10-6, PP.H4 = 223 

71.4%), AHSG (OR = 0.88, P = 2.37×10-5, PP.H4 = 96.4%), and LMAN2 (OR = 1.56, P = 7.19×10-5, 224 

PP.H4 = 83.4%) for MS.  225 

As the blood pQTL studies measured proteins by aptamer-based approaches, we next investigated 226 

whether the MR results were confounded by aptamer-binding effects (Table S15). The instruments for 227 

CKM, FCRL3, BAG3, and parts of instruments for CD33 and FCGR2A were known missense variants or 228 

in high LD with missense variants, which were susceptible to aptamer-binding effects. We did a sensitivity 229 

analysis after excluding missense variants in CD33 and FCGR2A, and both analyses yielded non-230 

significant results. As not all proteins had enough instruments for sensitivity analysis, transcriptional level 231 

MR of blood mRNA abundance was conducted for further validation. We found the increased abundance 232 

of blood FCRL3 mRNA level could also decrease the MS risk (OR = 0.75, P = 1.03×10-8, PP.H4 = 97.9%, 233 
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Table S15). As the transcriptional level results aligned with the protein level, we considered the association 234 

between FCRL3 protein abundance and MS risk less likely to be confounded by aptamer-binding effects. 235 

Consistency of results within and across brain and blood 236 

All replication analyses of brain proteins using external replication datasets showed consistent results 237 

with the primary analysis. For drug targets identified through MR with blood proteins, AHSG for MS was 238 

not replicated, and RET for AD was only partially replicated (Table S16). Additionally, GPNMB for PD 239 

was replicated in a second brain region, the parietal lobe cortex (OR = 1.51, P = 1.80×10-7, PP.H4 = 240 

95.0%). Other replication analyses for different brain regions were not conducted due to the lack of 241 

eligible instrumental variables.  242 

The correlation analysis showed robust within-tissue consistency. For MR estimates of all brain 243 

proteins, the correlation coefficients were 0.84 (P<0.001) and 0.95 (P<0.001) between the discovery 244 

dataset and two replication datasets (Figure S2). For MR estimates of all blood proteins, the correlation 245 

coefficients were 0.75 (P<0.001) and 0.72 (P<0.001). We also observed greater consistency of MR 246 

estimates across studies in proteins whose instruments were in higher LD (Figures S2-4). However, only a 247 

weak correction of MR estimates between brain and blood proteins was detected (r2 = 0.16, P = 0.002), 248 

although the coefficient increased (r2 = 0.50, P = 0.002) when the analysis was limited to proteins with at 249 

least nominal significance in MR analysis (Figure S4). 250 

Drug target prioritization and phenome-wide Mendelian randomization (phe-MR) 251 

Finally, we prioritized 16 brain-based and seven blood-based proteins as drug targets for 252 

neurodegenerative disorders, given the evidence of medium to high levels of causality. Remarkably, high 253 

GPNMB abundance in both brain and blood increased the risk of PD (Table 1). We selected 826 254 

phenotypes as potential side-effects from the MRC IEU OpenGWAS Project (28, 30) and performed 255 

phenome-wide MR in combination with colocalization analysis among the prioritized drug targets (Table 256 

S17). Encouragingly, targeting brain PSMB3, SARM1, DGKQ, and circulating BIN1, RET, MAPK3, and 257 

GPNMB protein levels to reduce disease risk did not exhibit any significant adverse side-effect, indicating 258 

the general safety of the hypothetical on-target interventions (Table S18). Besides, we found that 12 of 22 259 

prioritized proteins are druggable, and their related approved drugs or candidates in clinical development 260 
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are listed in Table S19 (31). The overall causality, safety, and druggability of each prioritized target are 261 

illustrated in Figure 4.  262 

Discussion 263 

In this study, we prioritized 22 proteins that had possible causal relationships with neurodegenerative 264 

diseases and showed little bias due to confounding, pleiotropy, linkage, or reverse causation. We assessed 265 

the target-disease linkage, as well as the safety and druggability of targets, which were key aspects 266 

highlighted in the GOT-IT recommendations for drug development (33). Given the enormous cost of 267 

measuring thousands of proteins before disease onset in studies with large samples, findings from our 268 

integrative analysis would substantially promote the cost-optimization and efficiency in drug development 269 

for neurodegenerative disorders. 270 

Our analysis prioritizes five proteins (ACE, ICA1L, MAP1S, SLC20A2, and TOM1L2) in brain and 271 

three proteins (BIN1, GRN, and RET) in blood for AD. ACE is an established genetic locus contributing to 272 

AD risk (14, 34). Our study further indicated that interventions to increase the abundance of protein ACE 273 

in brain might decrease the AD risk yet elevate the blood pressure. This finding was supported by a recent 274 

network meta-analysis that the ACE inhibitors showed significantly lower efficacy in reducing the risk of 275 

dementia than other classes of antihypertensive drugs (35). ICA1L, SLC20A2, and TOM1L2 were not 276 

recommended as prioritized drugs due to their potential side-effects indicated by the phe-MR analysis. The 277 

effect of brain TOM1L2 on cognition might be dynamic, which needs to be validated in future studies with 278 

patients in different stages across the AD continuum. Progranulin (encoded by GRN) is a promising target 279 

for AD. Previous mouse models had demonstrated the reduced amyloid plaque burden, downregulated 280 

beta-secretase 1, and enhanced amyloid phagocytosis of microglia after the intrahippocampal injection of 281 

progranulin (36). However, psychiatric side-effects should be considered when targeting circulating 282 

progranulin to prevent or treat AD. Medications targeting circulating BIN1 and RET levels to reduce AD 283 

risk may be generally safe, while the underlying mechanisms need to be further elucidated in the future. 284 

GPNMB is an attractive drug target for PD, given that the increased protein levels in both blood and 285 

brain were associated with the higher lifetime PD risk in our analysis. Targeting GPNMB would be 286 

technically feasible due to its druggability, and the medications would be generally safe according to the 287 

phe-MR analysis. A recent paper showed that plasma GPNMB levels were elevated in PD patients and 288 
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associated with the disease severity (37). In a post-mortem study, GPNMB protein levels were elevated in 289 

the substantia nigra in PD patients compared to healthy controls (38). Cell models also indicated that 290 

GPNMB might confer PD risk through the interaction with a-synuclein (37). The mechanisms and clinical 291 

utility of other protein targets (CD38, DGKQ, and SEC23IP) for PD warrant further exploration by 292 

experimental studies. 293 

We also prioritized seven targets (DHRS11, FAM120B, FCRL3, LMAN2, MAPK3, SHMT1, and 294 

TSFM) for MS and four targets (DHRS11, PSMB3, SARM1, and SCFD1) for ALS. The safety of these 295 

targets is generally acceptable, though there is still a lack of investigations at the protein level by 296 

observational and experimental studies. An observational study at the transcriptional level reveled 297 

downregulated FCRL3 expression in blood samples of MS patients compared to healthy controls, 298 

consistent with our findings (39). It was suggested that FCRL3 might inhibit the secretion of inflammatory 299 

factors by promoting IL-10 expression in B cells (39). Surprisingly, protein DHRS11 was identified as a 300 

drug target for both ALS and MS. As DHRS11 is involved in steroid biosynthesis and most MS cases are 301 

steroid responsive (40, 41), our findings could provide novel insights into the therapeutic strategy for ALS. 302 

Compared with previous integrative studies (9, 42, 43), our study highlights the comparison of results 303 

between different tissues at the protein level. The consistent results derived from brain and blood data 304 

would support the effectiveness of targeting peripheral proteins to prevent or treat brain disorders through 305 

non-invasive or minimally invasive approaches. Nonetheless, only one protein–disease linkage (GPNMB-306 

PD) was identified in both tissues in the current study, largely because of the lack of proteins with eligible 307 

genetic instruments in both brain and blood. This issue could be addressed with the increased sample size 308 

of proteomic studies in the future. Meanwhile, we only observed a significant but weak correlation of MR 309 

estimates between brain and blood, indicating that findings from one tissue should not be directly 310 

generalized to other tissues. The weak correlation could be explained by the existence of the blood-brain 311 

barrier as well as the different protein expression patterns between the brain and blood. Other advantages 312 

of this study include the standardized workflow for screening candidate causal targets, as well as the 313 

assessment of safety and druggability, which would help promote the development of efficient drugs. 314 

Several limitations should be addressed in this study. First, although MR has competitive advantages 315 

over traditional observational studies and trials, the results could only provide evidence for but not prove 316 
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causation. Second, since GWAS used in this study were based on lifetime risks of neurodegenerative 317 

diseases at the group level, the translation to risk prediction, prevention, and prognosis monitoring at the 318 

individual level still needs more investigation. Third, our analytical pipeline was not able to identify every 319 

protein implicated in neurodegenerative disorders. As we had set stringent quality control criteria to 320 

improve the reliability of identified targets, proteins without eligible instruments were not included in the 321 

final analysis. Fourth, MR results derived from a single instrumental variable should be taken with caution, 322 

especially for those whose sensitivity and replication analyses were not able to perform. Fifth, our analyses 323 

were based on European samples, so the generalization to non-European ancestries needs to be validated in 324 

the future. 325 

In conclusion, this study prioritized 22 proteins whose abundance in brain or blood was associated 326 

with lifetime risks of neurodegenerative diseases. Some proteins, such as GPNMB, not only demonstrated 327 

a causal linkage to neurodegenerative diseases but also showed robust on-target safety and technical 328 

feasibility, representing promising targets for current drug discovery. Future experimental studies are 329 

warranted to assess the effectiveness and safety of the identified targets and decipher their underlying 330 

biological mechanisms. 331 

332 
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Figure legends 499 

Figure 1. Flow diagram of the study design.  500 

First, selected independent cis-pQTLs from comprehensive pQTL datasets as genetic instruments and 501 

filtered the instruments via consistency and specificity tests. Next, we screened the human brain and blood 502 

proteomes through MR to identify candidate drug targets. Third, by applying multiple MR approaches, the 503 

causal relationships between the identified targets and diseases were further validated. Fourth, we 504 

investigated whether the protein and the disease share a common causal variant via Bayesian 505 

colocalization. Fifth, replication and correlation analyses were conducted to estimate the consistency of 506 

results within and across brain and blood. Sixth, we summarized the evidence of causality and expanded 507 

our analysis pipeline to the phenome-wide to evaluate the safety of targets by predicting side-effects. 508 

Finally, the druggability of the prioritized protein targets was checked. 509 

 510 

Figure 2. Manhattan plots for the primary MR analysis of the brain and blood proteomes.  511 

By screening the human brain and blood proteomes, 19 protein-disease associations in brain (A) and 17 512 

protein-disease associations in blood (B) were identified. Each point represents a single MR test ordered 513 

by chromosomal position of the sentinel cis-pQTL on the X axis and −log10 P value on the Y axis. The red 514 

dotted lines represent the Bonferroni multiple testing thresholds (0.05/608 for brain and 0.05/611 for 515 

blood). Proteins that survived the Bonferroni threshold are colored by their associated diseases. 516 

 517 

Figure 3. Heatmap for the causal relationship assessment of the identified drug targets.  518 

The causal relationships of identified drug targets from brain (A) and blood (B) with neurodegenerative 519 

diseases were further validated by the replication and multi-cis analyses, the heterogeneity, pleiotropy, and 520 

directional tests, as well as sensitivity analysis regarding aptamer-binding effects. The depths of blue and 521 

orange represent the size of P values in MR analyses, and the depth of green denotes the posterior 522 

probability of colocalization. Targets with consistent evidence in all analyses were rated as a high level of 523 

causality, while targets with conflict evidence in either replication or multi-cis analysis, evidence of 524 
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aptamer-binding effects, or not likely to colocalize were rated as a low level of causality and thus were not 525 

considered as credible targets. 526 

 527 

Figure 4. Overall assessment of drug targets for neurodegenerative diseases.  528 

This figure illustrates three critical assessment aspects of drug targets: causality (X-axis), safety (Y-axis), 529 

and druggability (in bold). Incredible targets are not depicted in this figure. The evidence of causality was 530 

rated according to six analyses and each contributes one point: 1) consistent in multi-cis MR 2) no 531 

evidence of heterogeneity 3) no evidence of pleiotropy 4) true causal direction 5) replicated in other 532 

datasets, and 6) highly likely to colocalize. The evidence of safety was approximated by the sum PP.H4 of 533 

all adverse effects passed the Bonferroni correction. A target was rated druggable if identified in any 534 

druggable tier according to Finan's criteria or had any related drug in the DrugBank database. Diamonds 535 

refer to brain-based proteins and discs represent blood-based proteins. Proteins are colored according to 536 

their associated diseases. Notably, the genetic association between protein GPNMB and PD risk was 537 

identified in both brain and blood tissues. 538 

 539 
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Table 1. Prioritized drug targets for neurodegenerative diseases. 

Disease Protein  OR (95% CI)  P value PP.H4 Druggabilitya On-target adverse side-effects 

identified by phe-MR analysisb 

Brain proteome           

AD ACE 0.55 (0.41-0.74) 5.76E-05 96.7% Tier 1 (A/V/I/E) SBP↑, DBP↑ 

  ICA1L 0.38 (0.24-0.59) 1.57E-05 98.1% NA CAD↑, MI↑, DBP↓ 

  MAP1S 2.36 (1.58-3.55) 3.17E-05 95.7% NA CAD↑, MI↑, lean mass↓ 

  SLC20A2 0.45 (0.31-0.66) 4.17E-05 93.2% NA (A) Hemoglobin↓, lean mass↓ 

  TOM1L2 3.85 (2.09-7.11) 1.53E-05 88.8% NA CP↓, WP↓, MI↑, prostate cancer↑ 

ALS DHRS11 0.58 (0.45-0.74) 2.16E-05 56.6% NA (E) MS↑ 

 PSMB3 2.24 (1.51-3.33) 5.76E-05 97.0% Tier 3 (E) None 

 SARM1 0.31 (0.20-0.48) 8.27E-08 100.0% NA None 

 SCFD1 5.42 (3.53-8.32) 1.02E-14 98.3% NA Lung function↓ 

MS DHRS11 2.22 (1.52-3.22) 3.02E-05 71.5% NA (E) ALS↑ 

  FAM120B 4.40 (2.15-9.03) 5.10E-05 95.8% NA SBP↓, DBP↓ 

  SHMT1 1.94 (1.44-2.61) 1.20E-05 98.0% NA (A/V/N/I/E) Triglycerides↑, HDL cholesterol↓ 

  TSFM 4.87 (3.00-7.89) 1.38E-10 96.0% NA 25(OH)D↓, hemoglobin↓ 

PD CD38 0.32 (0.24-0.42) 6.99E-14 100.0% Tier 1 (A/I) Lung function↓ 

  DGKQ 0.14 (0.07-0.26) 1.97E-09 87.9% NA (A/V/N) None 

  GPNMB 1.46 (1.28-1.67) 2.48E-08 98.4% Tier 1 (I) Grip strength↓ 

  SEC23IP 7.88 (3.02-20.56) 2.45E-05 98.5% NA SBP↑ 

Blood proteome           

AD BIN1 1.87 (1.66-2.12) 1.46E-23 69.6% NA None 

  GRN 0.83 (0.77-0.90) 2.99E-06 99.5% Tier 3 Worry↑, mood swings↑, 

neuroticism↑ 
  RET 1.18 (1.09-1.28) 7.87E-05 74.7% Tier 1 (A/I/E) None 

MS FCRL3 0.83 (0.79-0.89) 8.93E-09 94.1% Tier 3 Hypothyroidism↑ 

  LMAN2 1.56 (1.25-1.95) 7.19E-05 83.4% NA Sleep duration↓, red blood cell↓ 

  MAPK3 0.56 (0.44-0.72) 4.94E-06 71.4% Tier 1 (A/I/E) None 

PD GPNMB 1.51 (1.30-1.77) 1.80E-07 55.6% Tier 1 (I)  None 

 

aThe druggability was checked according to Finan’s criteria (druggable tiers) and the DrugBank database (drug relations). Briefly, 

tier 1 included targets with approved drugs or drugs in clinical trials. Tier 2 contained targets with drug-like binding partners or 

those in high identity with approved drug targets. Tier 3 was composed of targets encoding extracellular proteins and members of 

major drug target families. Approved drugs (A) are officially accepted for commercialization, while vet-approved drugs (V) are 

only accepted to be used in animals. Nutraceuticals (N) have demonstrable nutritional effects and are regulated and processed at a 

pharmaceutical grade. Investigational drugs (I) have entered clinical trials and are being researched for a determinate condition. 

Experimental drugs (E) are experimentally proven but have not reached clinical trials. bOn-target adverse side-effects that survive 

the correction for multiple testing (P<0.05/824) with evidence of colocalization (PP.H4≥50%) are displayed here. Abbreviations: 

ALS, amyotrophic lateral sclerosis; CAD, coronary artery disease; CP, cognitive performance; DBP, diastolic blood pressure; 

HDL, high-density lipoprotein; MI, myocardial infarction; MS, multiple sclerosis; NA, not available; phe-MR, phenome-wide 

Mendelian randomization; PP.H4, posterior probability of colocalization; SBP, systolic blood pressure; WP, walking pace.    

Table 1 Click here to access/download;Table;Table 1.doc
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https://www.editorialmanager.com/bps/download.aspx?id=1262796&guid=c52a9a43-e0fe-4a41-b714-d12e49b96ec9&scheme=1


Blood proteome
Discovery dataset: INTERVAL

Replication datasets: AGES Reykjavik and KORA

Brain proteome
Discovery dataset: ROSMAP

Replication datasets: BANNER and ROSMAP-NCI

Instrument selection and instrument validation
Criteria: 1. cis-acting pQTLs not in the MHC region
2. Strong (p<5×10-8) and independent (r2<0.001) 

3. No evidence of highly pleiotropic effect

Data harmonization and LD proxy search
AD ALS FTD LBD MS PD

Bayesian colocalization
PPH4>0.5 for likely to co-localize, PPH4>0.8 for highly likely to co-localize

 

Replication and comparison among different tissues
Replication MR analysis via replication datasets

Correlation analysis of effect sizes within and across blood and brain

Drug target prioritization
Overall rating of MR, colocalization and aptamer-binding effects

Mendelian randomization
Single-cis and multi-cis analyses

Sensitivity, heterogeneity, pleiotropy and directional tests

On-target side-effect prediction
Phenome-wide MR and followed by colocalization analysis

Druggability annotation
Finan's criteria and the DrugBank database

Figure 1
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Supplementary Methods 

Human brain and blood-derived pQTL data 

The discovery brain pQTL data were generated from post-mortem samples of the dorsolateral 

prefrontal cortex (dPFC) donated by 376 individuals in ROS/MAP (1). The proteomic profiles 

included 8,356 proteins labeled by isobaric tandem mass tag (TMT) peptide and analyzed by liquid 

chromatography coupled to mass spectrometry (LC-MS) (2, 3). As the full discovery dataset 

included cognitively impaired participants, we used the same dataset restricted to 144 cognitively 

normal individuals for replication (4). Another brain pQTL data derived from 149 donors from the 

Banner Sun Health Research Institute were used for cross-study replication (5). The proteomic data 

in the Banner study were profiled using similar approaches to ROS/MAP (4). Besides, the 

Washington University cohort has identified brain pQTLs in the parietal lobe cortex recently, and 

the pQTL data were used for the replication analysis of different brain regions in this study (6).  

The discovery blood pQTL data originated from the INTERVAL study, which was nested in an 

RCT of varying blood donation intervals and comprised around 50,000 generally healthy 

participants (7). The proteomic profiles of the INTERVAL study were generated from 3,301 blood 

donors and included 3,622 plasma proteins measured by SOMAscan. We leveraged pQTL data from 

two independent SOMAmer–based blood proteomic datasets (AGES Reykjavik, n = 3,200 and 

KORA, n = 997) for cross-study replication (8, 9). The INTERVAL study was utilized for the 

primary analysis owing to its large sample size and availability of the complete summary data. 

Additionally, blood expression quantitative trait loci (eQTLs) from the Genotype-Tissue Expression 

(GTEx) project were used for target validation considering the aptamer-binding effects (10). Further 

details of all QTL studies are listed in Table S1. 

Principal assumptions of MR 

The MR approach builds upon principal assumptions (Figure S1). The three fundamental 

assumptions of MR analysis are: 1) the instruments must be truly associated with the exposure, 2) 

the instruments should not be associated with confounders, and 3) the instruments affect the 

outcome only through the exposure (11). To satisfy assumption 1, we selected instruments only 

strongly (P < 5 × 10-8) associated with the protein abundance and later conducted a sensitivity 

analysis considering the aptamer-binding effect. For assumption 2, we checked the instrument 

specificity and excluded all variants (and their proxies) associated with more than five proteins 



3 

before performing MR analysis. Additionally, we only selected cis-acting pQTLs for analysis to 

reduce the horizontal pleiotropy (violation of assumption 3) and further tested the existence of 

horizontal pleiotropy by Egger intercept. Although the second and third assumptions could not be 

fully validated in MR practice, our endeavors would minimize the bias due to violations of the above 

assumptions. 

Hypotheses of Bayesian colocalization  

Bayesian colocalization was performed to strengthen the evidence of causality by calculating 

the posterior probability (PP) that the protein and disease share the same causal signal (H4). It is 

opposed to other hypotheses: 1) no causal signal (H0), 2) only one causal signal for either the protein 

or the disease (H1/H2), and 3) two distinct causal signals were identified in the region (H3). A 

posterior probability for H4 (PP.H4) of at least 50% (i.e., the highest among all five hypotheses) 

suggests likely to colocalize, and a PP.H4 of at least 80% suggests highly likely to colocalize (12). 
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Figure S1. MR assumptions and possible explanations for the observed associations between 

pQTL and neurodegenerative diseases 

 

The three basic assumptions of MR analysis are: 1) the instruments must be truly associated with 

the exposure, 2) the instruments should not be associated with confounders, and 3) the instruments 

affect the outcome only through the exposure (A). If the risk of a neurodegenerative disease is 

affected by the abundance of a protein only through the instrument, it is known as causality (B). 

Aptamer-binding effects indicate that the protein-altering variants (PAVs) in aptamer-based 

proteomic studies may yield artifactual pQTLs by influencing the molecular structure of the protein 

and then the binding affinity instead of the protein abundance. In this case, the causal association 

identified by MR analysis based on the PAVs might be attributed to different protein isoforms but 

not the protein abundance (C). Violation of assumption 2 often occurs when there are confounders 
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(e.g., ancestry) of the associations between instruments and outcome (D). Instruments associated 

with large amounts of proteins are more likely to affect the disease risk through indirect pathways, 

which was a manifestation of horizontal pleiotropy (E). Reverse causality may occur when the 

instrument has a stronger association with the outcome than the exposure (F). In some cases, SNP 

associated with the protein is in linkage disequilibrium with another SNP that independently 

influences the neurodegenerative disease (G). 

  



7 

Figure S2. Correlation analysis of MR estimates within brain proteomes

 

The correlation analyses of MR estimates indicated remarkable consistency within brain pQTL 

datasets. The correlation coefficient was 0.84 (P<0.001) between ROS/MAP and BANNER (A), 

and 0.95 (P<0.001) between the discovery dataset and same the dataset limited in the normal 

cognition (B). Restricting the analyses to proteins with at least nominal significance yielded 

similar correlation coefficients (C and D). Proteins with instruments in higher LD showed greater 

consistency of MR estimates across studies. 
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Figure S3. Correlation analysis of MR estimates within blood proteomes

 

Strong consistency was also identified in the correlation analyses of MR estimates within blood 

pQTL datasets. The correlation coefficient was 0.75 (P<0.001) and 0.72 (P<0.001) between 

INTERVAL and two replication datasets (A and B). Restricting the analyses to proteins with at 

least nominal significance would lead to stronger correlations (C and D). Proteins with 

instruments in higher LD showed greater consistency of MR estimates across studies. 
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Figure S4. Correlation analysis of MR estimates between brain and blood

 
Only a weak correction of MR estimates between brain and blood proteins was detected (correlation 

coefficient=0.16, P=0.002) (A), although the coefficient increased (correlation coefficient=0.50, 

P=0.002) when the correlation analysis was limited in proteins with at least nominal significance 

in MR analysis (B). Instruments of brain and blood proteins were generally in low LD. 
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Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona 

Parkinson's Disease Consortium) and the Michael J. Fox Foundation for Parkinson's Research. 

 

The Washington University cohort 

We thank the authors for sharing summary data. The summary statistics (pQTL) data are available 

by emailing niagads@pennmedicine.upenn.edu. Individual-level data are accessible through formal 

data request. Both summary statistics and individual-level data have been uploaded to the National 

Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site repository at 

https://www.niagads.org/datasets/ng00102 for multiple tissues from the Knight ADRC dataset for 

discovery. This work was supported by grants from the National Institutes of Health (NIH) 

(R01AG044546 (C.C.), P01AG003991 (C.C. and J.C.M.), RF1AG053303 (C.C.), RF1AG058501 
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(C.C.), U01AG058922 (C.C.), R01NS118146 (B.A.B.) and R01AG057777 (O.H.)) and the 

Alzheimer Association (NIRG-11-200110 (C.C.), BAND14-338165 (C.C.), AARG-16-441560 

(C.C.) and BFG-15-362540 (C.C.)). This work was supported by access to equipment made possible 

by the Hope Center for Neurological Disorders and the Departments of Neurology and Psychiatry 

at Washington University School of Medicine. The recruitment and clinical characterization of 

research participants at Washington University were supported by NIH P50AG05681 (J.C.M.), 

P01AG03991 (J.C.M.) and P01AG026276 (J.C.M.). 

 

The INTERVAL study 

Participant-level genotype and protein data, and full summary association results from the genetic 

analysis, are available through the European Genotype Archive (accession number 

EGAS00001002555). Summary association results are also publicly available at 

http://www.phpc.cam.ac.uk/ceu/proteins/, through PhenoScanner 

(http://www.phenoscanner.medschl.cam.ac.uk) and from the NHGRI-EBI GWAS Catalog 

(https://www.ebi.ac.uk/gwas/downloads/summary-statistics). We thank INTERVAL study 

participants; staff at recruiting NHSBT blood donation centres; and the INTERVAL Study Co-

ordination team, Operations Team (led by R. Houghton and C. Moore) and Data Management T 

eam (led by M. Walker). This research was supported as follows. The Cardiovascular Epidemiology 

Unit at the University of Cambridge: UK MRC (G0800270), BHF (SP/09/002), UK NIHR 

Cambridge Biomedical Research Centre, ERC (268834), and European Commission Framework 

Programme 7 (HEALTH-F2-2012-279233); B.B.S.: Cambridge School of Clinical Medicine MB-

PhD programme and MRC/Sackler Prize PhD Studentship (MR/K50127X/1); J.E.P.: a BHF 

Cambridge Centre of Excellence Research Fellowship [RE/13/6/30180] and a UK Research 

Innovation Fellowship (MR/S004068/1). P.S.: a Rutherford Fund Fellowship (MR/S003746/1); 

D.S.P. and D.S.: the Wellcome Trust (105602/Z/14/Z); N.S.: the Wellcome Trust (WT098051 and 

WT091310), the EU FP7 (EPIGENESYS 257082 and BLUEPRINT HEALTH-F5-2011-282510); 

J.A.T: the Wellcome Trust (091157) and JDRF (9-2011-253); K.S.: the Biomedical Research 

Program at Weill Cornell Medicine in Qatar via the Qatar Foundation; J.D.: BHF Professor, 

European Research Council Senior Investigator, and NIHR Senior Investigator; the INTERVAL 

study: NHSBT (11-01-GEN) and the NIHR-BTRU in Donor Health and Genomics (NIHR BTRU-
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2014-10024) at the University of Cambridge in partnership with NHSBT. Data analysis was partly 

supported by the Cambridge Substantive Site of Health Data Research UK. This study was partially 

funded by Merck Sharp & Dohme Corp. The views expressed are those of the authors and not 

necessarily those of the NHS, the NIHR, the Department of Health of England, or NHSBT. 

 

The AGES Reykjavik study 

Sentinel blood pQTL data are available in the supplementary materials of the pQTL study (doi: 

10.1126/science.aaq1327). Data from the AGES Reykjavik study are available through 

collaboration (AGES_data_request@hjarta.is) under a data usage agreement with the IHA. We 

thank the staff at SomaLogic (CO) for performing the assays to measure protein levels, and P. 

MacNamara and G. Joyce of the Genomics Institute of the Novartis Research Foundation (GNF) 

for their leadership in supporting this work. We thank J. Loureiro, V. Swaroop, S. Abubucker, and 

F. Mapa of NIBR Cambridge for their contributions in support of the mass spectrometry workflow. 

We thank K. Bjarnadóttir, S. Gunnarsdóttir, and A. Hauksdóttir at the Icelandic Heart Association 

(IHA) for all specimen handling. The work was supported by Novartis Institute for Biomedical 

Research (NIBR), IHA, and in part by the intramural research program at the National Institute of 

Aging (N01-AG-12100 and HHSN271201200022C), the Althingi (the Icelandic Parliament), and 

the Icelandic Centre for Research (RANNIS) grant 141101-051. 

 

The Cooperative Health Research in the Region of Augsburg (KORA) study 

Blood pQTL data are available in the supplementary materials of the pQTL study (doi: 

10.1038/ncomms14357) and accessible online on an integrated web-server at 

http://proteomics.gwas.eu. Data for KORA are available upon request from KORA-gen 

(http://epi.helmholtz-muenchen.de/kora-gen). Requests are submitted online and are subject to 

approval by the KORA board. This work was supported by ‘Biomedical Research Program’ funds 

at Weill Cornell Medicine in Qatar, a program funded by the Qatar Foundation. The statements made 

herein are solely the responsibility of the authors. M. Arnold was supported by the Helmholtz cross-

program topic ‘Metabolic Dysfunction’. D. Mook-Kanamori was supported by Dutch Science 

Organization (ZonMW-VENI Grant 916.14.023). The KORA study was initiated and financed by 

the Helmholtz Zentrum Mu ¨nchen—German Research Center for Environmental Health, which is 
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funded by the German Federal Ministry of Education and Research (BMBF) and by the State of 

Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences 

(MC-Health), Ludwig-Maximilians-Universita ¨t, as part of LMUinnovativ. The KORA-Study 

Group consists of A. Peters (speaker), J.Heinrich, R.Holle, R.Leidl, C.Meisinger, K.Strauch and 

their co-workers, who are responsible for the design and conduct of the KORA studies. We gratefully 

acknowledge the contribution of all members of field staff conducting the KORA F4 study. We 

thank the staff from HMC dermatology department and WCM-Q clinical research core for their 

contribution to QMDiab. We thank Brian Sellers from SomaLogic for support with measuring the 

QMDiab samples at WCM-Q. We acknowledge free access to summary statistics provided by the 

GWAS consortia listed in Supplementary Data 4. We thank Jenine Davidson for the design of Figure 

1a. Most of all, we thank all study participants of KORA and QMDiab for their invaluable 

contributions to this study. 

 

The Genotype-Tissue Expression (GTEx) project 

GTEx can be accessed at https://gtexportal.org/home/datasets (GTEx Analysis V6) or in BESD 

format through https://cnsgenomics.com/software/smr/#eQTLsummarydata. The Genotype-Tissue 

Expression (GTEx) project was supported by the Common Fund of the Office of the Director of the 

National Institutes of Health (http://commonfund.nih.gov/GTEx). Additional funds were provided 

by the National Cancer Institute (NCI), National Human Genome Research Institute (NHGRI), 

National Heart, Lung, and Blood Institute (NHLBI), National Institute on Drug Abuse (NIDA), 

National Institute of Mental Health (NIMH), and National Institute of Neurological Disorders and 

Stroke (NINDS). Donors were enrolled at Biospecimen Source Sites funded by Leidos Biomedical, 

Inc. (Leidos) subcontracts to the National Disease Research Interchange (10XS170) and Roswell 

Park Cancer Institute (10XS171). The Laboratory, Data Analysis, and Coordinating Center 

(LDACC) was funded through a contract (HHSN268201000029C) to The Broad Institute, Inc. 

Biorepository operations were funded through a Leidos subcontract to the V an Andel Institute 

(10ST1035). Additional data repository and project management were provided by Leidos 

(HHSN261200800001E). The Brain Bank was supported by a supplement to University of Miami 

grant DA006227. J.R.D. is supported by a Lucille P. Markey Biomedical Research Stanford 

Graduate Fellowship. J.R.D., Z.Z., and N.A.T. acknowledge the Stanford Genome Training Program 
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(SGTP; NIH/NHGRI T32HG000044). Z.Z. is also supported by the National Science Foundation 

(NSF) GRFP (DGE-114747). L.F. is supported by the Stanford Center for Computational, 

Evolutionary, and Human Genomics (CEHG). D.G.M. is supported by a “la Caixa”-Severo Ochoa 

pre-doctoral fellowship. D.M. is supported by NIH grants U54DK105566 and R01GM104371. 

B.J.S is supported by NIH training grant T32GM007057. E.K.T is supported by a Hewlett-Packard 

Stanford Graduate Fellowship and a doctoral scholarship from the Natural Science and Engineering 

Council of Canada. T.S. is supported by a National Science Foundation Graduate Research 

Fellowship (DGE-1656518). A.B. is supported by the Searle Scholars Program and NIH grant 

R01MH109905. A.B., C.D.Bu. and S.B.M are supported by NIH grant R01HG008150 (NHGRI; 

Non-Coding Variants Program). S.B.M. and C.D.Bu. are supported by NHGRI grants 

U01HG007436 and U01HG009080. A.B., C.D.Bu., E.T.D., S.E.C., T.L, and S.B.M. are supported 

by NIH grants R01MH101814 (NIH Common Fund; GTEx Program). C.D.Br., Y.P., B.J., G.G., and 

B.E.E. are supported by NIH grant R01MH101822. B.E.E. is supported by NIH grants 

R00HG006265, R01MH101822 and U01 HG007900 and a Sloan Faculty Fellowship. G.L., A.B.N, 

J.J.P., A.S., Y -H.Z., and F.A.W. are supported by NIH grants R01MH101819, R01HG009125, and 

R21HG007840. T.L. and P.M. are supported by NIH grant R01MH106842. T.L. is supported by the 

NIH grant UM1HG008901. T.L. and S.E.C. are supported by NIH contract HHSN2682010000029C. 

B.J. is supported by NIH grant 2T32HG003284-11. C.B.P. and C.S. are supported by NIH grant 

R01MH101782. D.F.C. is supported by NIH grant R01MH101810. E.R.G and N.J.C are supported 

by NIH grants R01MH101820 and R01MH090937A. We thank A. Nellore and C. Wilks for 

assistance with TCGA data, K. Small for discussions, J. T. Leek for suggestions on the manuscript, 

N. L. Cyr for drawing the body map in Fig. 1a, and A. Kundaje and O. Ursu for input on Hi-C 

analysis. 

 

GWAS of Alzheimer’s disease by Schwartzentruber et al. 

The summary statistics from the meta-analysis are available through the National Human Genome 

Research Institute-European Bioinformatics Institute GWAS catalog under accession nos. 

GCST90012877 and GCST90012878 (https://www. ebi.ac.uk/gwas/downloads/summary-statistics). 

This work was funded by Open Targets (OTAR037). We thank J. Barrett for guidance during the 

initiation of the project and K. Alasoo for early access to the eQTL Catalogue. We thank A. Ruiz for 
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support in using the summary results from the GR@ACE study. We thank the participants and 

investigators of the FinnGen study and UK Biobank. R.J.M.F. is supported by grants from the UK 

Multiple Sclerosis Society (MS 50), the Adelson Medical Research Foundation and a core support 

grant from the Wellcome Trust and Medical Research Council (MRC) to the Wellcome-MRC 

Cambridge Stem Cell Institute (no. 203151/Z/16/Z). A.M.H.Y. is supported by a Wellcome Trust 

PhD for Clinicians fellowship. 

 

GWAS of Lewy body dementia by Chia et al. 

Individual-level sequence data for the resource genomes have been deposited at dbGaP (accession 

no. phs001963.v1.p1 NIA DementiaSeq). The GWAS summary statistics have been deposited in the 

GWAS catalog: https://www.ebi.ac.uk/gwas/home. We thank contributors who collected samples 

used in this study, as well as patients and families, whose help and participation made this work 

possible. We would like to thank Ms. Cynthia Crews for her technical assistance with DNA 

extractions. This research was supported in part by the Intramural Research Program of the National 

Institutes of Health (National Institute on Aging, National Institute of Neurological Disorders and 

Stroke; project numbers: 1ZIAAG000935 [PI Bryan J. Traynor, MD PhD], 1ZIANS003154 [PI 

Sonja W. Scholz, MD PhD], 1ZIANS0030033 and 1ZIANS003034 [David S. Goldstein, MD PhD]). 

Drs. Sidransky, Lopez and Tayebi were supported by the Intramural Research Program of the 

National Human Genome Research Institute. We would like to thank members of the International 

Parkinson’s Disease Genomics Consortium for providing genotyping data from 100 random 

Parkinson’s disease cases; these data are publicly available on dbGaP (phs00918.v1.p1). Dr. Besser 

gratefully acknowledges support from the National Institutes of Health (NIA K01AG063895). The 

American Genome Center is supported by the Department of Defense award: HU0001-18-20038 

and in part by an NHLBI grant: IAA-A-HL-007.001. The opinions and assertions expressed herein 

are those of the author(s) and do not necessarily reflect the official policy or position of the 

Uniformed Services University or the Department of Defense, or the Henry M. Jackson Foundation 

for the Advancement of Military Medicine, Inc. or the U.S. Government. The American Genome 

Center receives administrative and programmatic support from the Henry Jackson M. Foundation 

for the Advancement of Military Medicine. This paper represents independent research partly 

funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South 
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London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are 

those of the author and not necessarily those of the NHS, the NIHR or the Department of Health. 

The study used samples from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (Sant Pau 

Hospital, Barcelona, Spain). We gratefully acknowledge the Knight ADRC grant P50 AG05681 (PI 

J.C. Morris), and its affiliated program project grant Healthy Aging and Senile Dementia P01 

AG03991 (PI J.C. Morris) and its affiliated program project grant Healthy Aging and Senile 

Dementia P01 AG03991 (PI J.C. Morris). Dr. Kaufmann and Dr. Palma acknowledge support from 

the NIH (NINDS R01NS107596, U54NS065736, and the Michael J. Fox Foundation (MJFF grant 

11355). Dr. Calvo acknowledges that this study was performed under the Department of Excellence 

grant of the Italian Ministry of Education, University and Research to the “Rita Levi Montalcini” 

Department of Neuroscience, University of Torino, Italy. Dr. Huw R. Morris reports that the 

Progressive Supranuclear Palsy-Corticobasal Syndrome-Multiple System Atrophy (PROSPECT) 

study is supported by grants from the PSP Association UK, CBD Solutions, the MSA Trust, and the 

NIHR UCLH Biomedical Research Centre. We would like to thank the University of Toronto Brain 

Bank for providing DNA specimens, and we thank the Canadian Consortium on Neurodegeneration 

in Aging. We acknowledge the Oxford Brain Bank, supported by the Medical Research Council, 

Brains for Dementia Research (Alzheimer’s Society and Alzheimer’s Research UK), Autistica UK, 

and the National Institute for Health Research Oxford Biomedical Research Centre. Dr. St. George-

Hyslop gratefully acknowledges support from the Canadian Institutes of Research (Foundation 

Grant and Canadian Consortium on Neurodegeneration in Aging Grant), Wellcome Trust 

Collaborative Award 203249/Z/16/Z, ALS Canada Project Grant and ALS Society of Canada/Brain 

Canada 499553, Alzheimer Research UK, Alzheimer Society UK, and US Alzheimer Society Zenith 

Grant ZEN-18-529769 (PHStGH). Dr. Kevin Morgan gratefully acknowledges support by the 

Alzheimer’s Research UK (ARUK) Consortium. We are grateful to the Rush Alzheimer’s Disease 

Center for providing brain tissue and DNA samples, which was supported by the grants P30 

AG10161, R01 AG15819, R01 AG17917, U01 AG46152, U01 AG61356. We thank the Dublin 

Brain Bank, Oregon Health & Science University Brain Bank (with support of the ADC grant 5 P30 

AG008017), Duke University School of Medicine ADRC Brain Bank and Biorepository, Virginia 

Commonwealth University Brain Bank, Georgetown University Brain Bank, Manchester University 

Brain Bank, NIH NeuroBioBank, the New York Brain Bank at Columbia University, and the 
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Department of Pathology and Laboratory Medicine at the University of Kansas School of Medicine 

for contributing tissue specimens. We are grateful to Dr. Bernardino Ghetti from the Department of 

Pathology and Laboratory Medicine at Indiana University for providing tissue samples. The 

biospecimens from the University of California, Irvine ADRC used in this project were supported 

by the NIH/NIA grant P50 AG016573. Samples from the National Centralized Repository for 

Alzheimer’s Diseases and Related Dementias (NCRAD), which receives government support under 

a cooperative agreement grant (U24 AG021886) awarded by the National Institute on Aging (NIA), 

were used in this study. The National Alzheimer’s Coordinating Center (NACC) database is funded 

by the NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 

AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott 

Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, 

PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 

AG005134 (PI Bradley Hyman, MD, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P50 

AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 

(PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, 

MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), 

P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 

AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI 

Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John 

Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, 

MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 

AG005136 (PI Thomas Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P50 

AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD). Data used 

in the preparation of this article were obtained from the AMP PD Knowledge Platform. For up-to-

date information on the study, https://www.amp-pd.org. AMP PD – a public-private partnership – is 

managed by the FNIH and funded by Celgene, GSK, the Michael J. Fox Foundation for Parkinson’s 

Research, the National Institute of Neurological Disorders and Stroke, Pfizer, Sanofi, and Verily. 

Clinical data and biosamples used in preparation of this article were obtained from the Fox 

Investigation for New Discovery of Biomarkers (BioFIND), the Harvard Biomarker Study (HBS), 

the Parkinson’s Progression Markers Initiative (PPMI), and the Parkinson’s Disease Biomarkers 
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Program (PDBP). BioFIND is sponsored by The Michael J. Fox Foundation for Parkinson’s 

Research (MJFF) with support from the National Institute of Neurological Disorders and Stroke 

(NINDS). The BioFIND Investigators have not participated in reviewing the data analysis or content 

of the manuscript. For up-to-date information on the study, visit michaeljfox.org/biofind. The 

Harvard Biomarker Study (HBS) is a collaboration of HBS investigators (a full list of HBS 

investigators can be found at https://www.bwhparkinsoncenter.org/biobank) and funded through 

philanthropy and NIH and Non-NIH funding sources. The HBS Investigators have not participated 

in reviewing the data analysis or content of the manuscript. Data used in the preparation of this 

article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database 

(www.ppmiinfo.org/data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI 

– a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s 

Research and funding partners, including Abbvie, Allergan, Avid Radiopharmaceuticals, Biogen, 

BioLegend, Bristol-Myers-Squibb, Celgene, Jenali, GE Healthcare, Genentech, GlaxoSmithKline, 

Lilly, Lundbeck, Merck, Meso Scale Discovery, Pfizer, Piramal, Prevail Therapeutics, Roche, 

Sanofi Genzyme, Servier, Takeda, Teva, ucb, Verily, Voyager Therapeutics, Golub Capital. The 

PPMI investigators have not participated in reviewing the data analysis or content of the manuscript. 

For up-to-date information on the study, visit www.ppmiinfo.org. Parkinson’s Disease Biomarker 

Program (PDBP) consortium is supported by the National Institute of Neurological Disorders and 

Stroke (NINDS) and the National Institutes of Health. A full list of PDBP investigators can be found 

at https://pdbp.ninds.nih.gov/policy. The PDBP Investigators have not participated in reviewing the 

data analysis or content of the manuscript. We would like to thank the South West Dementia Brain 

Bank (SWDBB) for providing DNA samples for this study. The SWDBB is part of the Brains for 

Dementia Research Programme, jointly funded by Alzheimer’s Research UK and Alzheimer’s 

Society, and is supported by BRACE (Bristol Research into Alzheimer’s and Care of the Elderly) 

and the Medical Research Council. We are grateful to the Banner Sun Health Research Institute 

Brain and Body Donation Program of Sun City, Arizona, for the provision of human brain tissue (PI: 

Thomas G. Beach, MD). The Brain and Body Donation Program is supported by the National 

Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource 

for Parkinson’s Disease and Related Disorders), the National Institute on Aging (P30 AG19610 

Arizona Alzheimer’s Disease Core Center), the Arizona Department of Health Services (contract 



19 

211002, Arizona Alzheimer’s Research Center), the Arizona Biomedical Research Commission 

(contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease Consortium) and the 

Michael J. Fox Foundation for Parkinson’s Research. This study was supported in part by an 

Alzheimer’s Disease Core Center grant (P30 AG013854) from the National Institute on Aging to 

Northwestern University, Chicago, Illinois. We gratefully acknowledge the assistance of the 

Neuropathology Core. The Alzheimer’s Disease Genetics Consortium supported the collection of 

samples used in this study through the National Institute on Aging (NIA) grants U01 AG032984 and 

RC2 AG036528 and data were prepared by the National Institute on Aging Alzheimer’s Disease 

Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689). This study used 

samples from the NINDS Repository at Coriell (https://catalog.coriell.org), as well as clinical data. 

Samples and data from patients included in this study were provided by the Biobank Valdecilla 

(PD13/0010/0024), integrated into the Spanish National Biobank Network, and they were processed 

following standard operating procedures with the appropriate approval of the Ethics and Scientific 

Committees. Data included in this manuscript has been generated with support of the grans 

PI16/01861 – Accion Estrategica en Salud integrated in the Spanish National I+D+P+I Plan and 

financed by Instituto de Salud Carlos III (ISCIII) – Subdireccion General de Evaluacion and the 

Fondo Europeo de Desarrollo Regional (FEDER – “Una Manera de Hacer Europa”). We thank the 

Mayo Clinic Brain Bank for contributing DNA samples and data from patients with Lewy body 

dementia, which is supported by U54 NS110435 (PI Dennis W. Dickson, MD), U01 NS100620 (PI 

Kejal Kantarci, MD) and The Mangurian Foundation Lewy Body Dementia Program. Sample 

collection and characterization is also supported by the Mayo Clinic Functional Genomics of LBD 

Program, NINDS R01 NS78086 (PI Owen Ross, PhD), Mayo Clinic Center for Individualized 

Medicine, and The Little Family Foundation. Mayo Clinic is an American Parkinson Disease 

Association (APDA) Mayo Clinic Information and Referral Center, an APDA Center for Advanced 

Research and the Mayo Clinic Lewy Body Dementia Association (LBDA) Research Center of 

Excellence. Dr. Zbigniew Wszolek is partially supported by the Mayo Clinic Center for 

Regenerative Medicine, the gifts from The Sol Goldman Charitable Trust, and the Donald G. and 

Jodi P. Heeringa Family, the Haworth Family Professorship in Neurodegenerative Diseases fund, 

and The Albertson Parkinson’s Research Foundation. We thank the Paris NeuroCEB Brain Bank (C. 

Duyckaerts) for contributing DNA samples. We would like to thank the Baltimore Longitudinal 
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Study of Aging for providing DNA samples (www.blsa.nih.gov). Tissue samples were provided by 

the Johns Hopkins Morris K. Udall Center of Excellence for Parkinson’s Disease Research (NIH 

P50 NS38377 [PI Ted M. Dawson]; U01NS097049 [PD Ted M. Dawson]) and the Johns Hopkins 

Alzheimer Disease Research Center (NIH P50 AG05146). This study used tissue samples and data 

provided by the Michigan Brain Bank, the Michigan Alzheimer’s Disease Center (P30 AG053760), 

and the Protein Folding Disorders Program. We are indebted to the IDIBAPS Biobank (Barcelona, 

Spain) for sample and data procurement. Dr. Trojanowski gratefully acknowledges support by the 

grant # P30 AG10124 and U19 AG06241801A1. Tissue for this study was provided by the 

Newcastle Brain Tissue Resource, which is funded in part by a grant from the UK Medical Research 

Council (G0400074), by NIHR Biomedical Research Centre Newcastle awarded to the Newcastle 

upon Tyne NHS Foundation Trust and Newcastle University, and as part of the Brains for Dementia 

Research Programme jointly funded by Alzheimer’s Research UK and Alzheimer’s Society. 

Samples from the NIND BioSend, which receives government support under a cooperative 

agreement grant (U24 NS095871) awarded by the National Institute of Neurological Disorders and 

Stroke (NINDS), were used in this study. We thank contributors who collected samples used in this 

study, as well as patients and their families, whose help and participation made this work possible. 

This study was supported in part by the Dementia with Lewy Bodies Consortium (grant #: U01 

NS100610). This study acknowledges the National Institute of Neurological Disorders and Stroke 

(NINDS) supported Parkinson’s Disease Biomarkers Program Investigators 

(https://pdbp.ninds.nih.gov/sites/default/files/assets/ PDBP_investigator_list.pdf). A full list of 

PDBP investigators can be found at https://pdbp.ninds.nih.gov/policy. Data and biospecimens used 

in the preparation of this manuscript were obtained from the Parkinson’s Disease Biomarkers 

Program (PDBP) Consortium, part of the National Institute of Neurological Disorders and Stroke at 

the National Institutes of Health. Investigators include: Roger Albin, Roy Alcalay, Alberto Ascherio, 

Thomas Beach, Sarah Berman, Bradley Boeve, F. DuBois Bowman, Shu Chen, Alice Chen-Plotkin, 

William Dauer, Ted Dawson, Paula Desplats, Richard Dewey, Ray Dorsey, Jori Fleisher, Kirk Frey, 

Douglas Galasko, James Galvin, Dwight German, Lawrence Honig, Xuemei Huang, David Irwin, 

Kejal Kantarci, Anumantha Kanthasamy, Daniel Kaufer, James Leverenz, Carol Lippa, Irene Litvan, 

Oscar Lopez, Jian Ma, Lara Mangravite, Karen Marder, Laurie Ozelius, Vladislav Petyuk, Judith 

Potashkin, Liana Rosenthal, Rachel Saunders-Pullman, Clemens Scherzer, Michael Schwarzschild, 
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Tanya Simuni, Andrew Singleton, David Standaert, Debby Tsuang, David Vaillancourt, David Walt, 

Andrew West, Cyrus Zabetian, Jing Zhang, and Wenquan Zou. The PDBP Investigators have not 

participated in reviewing the data analysis or content of the manuscript. Dr. Leverenz acknowledges 

funding from the National Institutes of Health (grant #: P30 AG063762), GE Health Care for 

imaging studies of participants enrolled in the Dementia with Lewy Bodies Consortium (UO1 

NS100610), the Lewy Body Dementia Association for the Cleveland Clinic Research Center of 

Excellence, the Jane and Lee Seidman Fund, and the Douglas Herthel DVM Memorial Fund. We 

thank members of the North American Brain Expression Consortium (NABEC) for providing DNA 
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GWAS of frontotemporal dementia and its subtypes by the International Multiple Sclerosis 

Genetics Consortium (IMSGC) 
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the Oxford National Institute for Health Research (NIHR) Bioresource for their participation. The 
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GWAS of Parkinson’s disease by the International Parkinson’s Disease Genomics Consortium 
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Neurodegenerative diseases are among the most prevalent and devastating neurological 

disorders, but few effective prevention and treatment strategies are available. Through 

integrating genetic and proteomic data, Ge et al. systematically screened and validated 

the causal relationships between proteomes and risks of neurodegenerative diseases and 

assessed the safety and druggability of targets. They prioritized 22 potential targets 

associated with lifetime risks of neurodegenerative diseases. These findings will 

facilitate the development of novel drugs for neurodegenerative diseases. 
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