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Viewing Channel as Sequence Rather than

Image: A 2-D Seq2Seq Approach for Efficient

MIMO-OFDM CSI Feedback
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Abstract

In this paper, we aim to design an effective learning-based channel state information (CSI) feedback

scheme for the multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing

(OFDM) systems from a physics-inspired perspective. We first argue that the CSI matrix of a MIMO-

OFDM system is in general physically closer to a two-dimensional (2-D) sequence rather than an

image, due to its apparent unsmoothness, non-scalablity and translational variance within both the

spatial and frequency domains. On this basis, we introduce a 2-D long short-term memory (LSTM)

neural network to represent the CSI and propose a 2-D sequence-to-sequence (Seq2Seq) model for

CSI compression and reconstruction. Specifically, one two-layer 2-D LSTM is used for CSI feature

extraction, and another two-layer 2-D LSTM is used for CSI representation and reconstruction. The

proposed scheme can not only fully utilize the unique 2-D characteristics of CSI, but also well preserve

the index information and unsmooth features of the CSI matrix compared with current convolutional

neural network (CNN) based schemes. We show the computational complexity of the proposed scheme

is linear in the number of transmit antennas and subcarriers. Its key performances like reconstruction

accuracy, convergence speed, generalization ability after short-term training, as well as robustness to

lossy feedback are comprehensively compared with existing popular convolutional networks. Experiment

results show that our scheme can bring up to nearly 7 dB gain in reconstruction accuracy under the

same overhead and reduce feedback overhead by up to 75% under the same accuracy compared with

the conventional CNN-based approaches.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) antenna array and orthogonal frequency division mul-

tiplexing (OFDM) are two of the key technologies in the fifth generation (5G) and beyond

communication systems, thanks to their ability in achieving high spectrum efficiency under

wideband transmission conditions [2], [3]. In a MIMO-OFDM system, the base station (BS) re-

quires accurate downlink channel state information (CSI) for beamforming, subcarrier allocation

and power control. Specifically, in the frequency division duplex (FDD) mode, downlink CSI

needs to be estimated at the user equipment (UE) side, which then feedback the CSI to the BS.

Due to the usually very large number of antennas and sub-carriers in a MIMO-OFDM system,

the dimension of the CSI is extremely high, which results in a prohibitive CSI feedback cost.

MIMO-OFDM CSI is mathematically presented as a matrix, of which the row/column index

stands for antenna/subcarrier information. Due to the similarities in transmission paths between

different antennas and subcarriers, there exist some implicit correlations among elements in CSI

matrix. Thus, this makes the whole CSI matrix compressible. How to effectively compress CSI

and reduce feedback cost has become an important topic in wireless communication. Various

works have been done to solve this task, mainly based on signal processing and deep learning

(DL) techniques.

Researchers initially tried pure signal processing-based methods.The works in [4], [5] proposed

CSI reduction techniques based on vector quantization. Nevertheless, the overhead in the vector

quantization scheme scales linearly with system dimensions, which limits the application in

practical MIMO system. In addition, the authors in [6], [7] applied the compressed sensing

(CS) algorithm. However, CS-based approaches rely on the sparsity of CSI data in a certain

transform domain, which may not represent the channel structure accurately for many practical

MIMO scenarios. Besides, CS-based approaches need to solve an optimization problem in the

CSI reconstruction process, which results in high computational complexity.

Recently, DL technology has become widely used in CSI compression task and achieved

significant performance gains, demonstrating the great potential of DL techniques. The current

DL-based CSI compression schemes can be divided into two categories: training a convolutional
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(a) Translational invariance of an image. Translation
leads to similar image information.
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(b) Translational variance of a angular-delay CSI
matrix. Translation leads to totally different CSI char-
acteristics.
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(c) Smoothness of an image and unsmoothness of a
spatial-frequency CSI matrix.
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(d) Grayscale value changes versus the index of pixel
and subcarrier. (Left figure is the cyan dot lines in (c),
right figure is the red dot lines in (c))

Figure 1: Two essential differences between an image and a CSI matrix.

neural network (CNN) on angular-delay domain CSI and training a CNN on space-frequency

domain CSI. In [8], the authors trained a CNN on angular-delay domain CSI named CsiNet

for CSI compression and reconstruction. Further, a series of works [9]–[21] were derived to

expand the CsiNet though adjusting the network structure of CNNs. Some works improved the

accuracy [14]–[17] at the cost of high computational complexity, and some [19]–[21] reduced

the complexity with slight accuracy loss. Unlike the above schemes based on angular-delay

domain channel, a deep CNN based on the space-frequency domain CSI was proposed in [22].

In addition, the authors in [23] proposed a complex network with convolution and long short-term

memory (LSTM) structure for the space-frequency domain channel. All above works [8]–[23]

are all based on viewing CSI merely as an image and applying CNN-based image compression

technology to solving the CSI feedback problem. However, there lacks theorectical physical

support of directly applying CNNs to CSI feedback compression. Although CSI matrix and

image do have similarities in some respects such as adjacent element/pixel correlation, they

have two essential differences, translational variance/invariance and unsmothness/smoothness.

On one hand, the pixel coordinates of the image usually do not represent any exact physical

meaning and the main information contained in the image does not strictly depend on the feature’s
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position. For example, as shown in Fig. 1(a), although the position of apple’s pixels in these two

images are very different, the main information contained in these two images is very similar. In

brief, it is the relative relationship between adjacent pixels, not the coordinates of the pixels, that

mainly determine the image’s meaning. In contrast, as shown in Fig. 1(b), the element index in the

CSI matrix has strict correspondence with the index of angles/time-delays or antennas/carriers,

and any swap or translation will result in a totally different channel characteristic. Thus, the

position coordinates of each element are critical and sensitive information in CSI, which is

different from the piexl coordinates in images. Consequently, the translation invariance [24] of

CNNs, helps to resist the interference of feature position in images, but brings information loss

when CSI flows through CNN.

On the other hand, the adjacent pixels of images are usually numerically similar due to the

high resolution of images, while the adjacent elements of the space-frequency domain CSI matrix

are generally quite numerically different. Fig. 1(c) and Fig. 1(d) show the difference in smooth-

ness between image and space-frequency domain CSI. Such difference makes the convolution

operator’s inherent smoothing effect [25], [26], quite suitable for images, but sometimes become

a burden of CSI representation.

Considering the native diference between CSI matrix and image, in this paper, we first

rethink the physical essence of the CSI data and then redesign the learning structure for CSI.

Physically, each element in CSI matrix is a coupling of multipath channel responses. In a practical

communication environment, the difference in channel responses between different antennas and

subcarriers mainly comes from the propagation delay of electromagnetic waves, which brings

about phase differences in each path. Because the adjacent antenna interval is equal and small,

each propagation path’s phase change between adjacent antennas is relatively uniform, which

means that the channel responses have significant sequence characteristics in the spatial domain.

Similarly, the sequence characteristics also exist in the frequency domain due to equal bandwidth

between adjacent subcarriers. The two-dimensional (2-D) sequence characteristics drive us to

reconsider the CSI matrix as a 2-D information sequence instead of an image.

For sequence data, the recurrent neural network (RNN) is commonly recognized as an effective

structure because it can make full use of the dependencies between sequence elements [27].

Thus, we use the RNN with LSTM mechanism extended to the 2-D case named 2-D LSTM

[28], [29] to complete CSI feature extraction and representation tasks, fully utilizing the 2-

D sequence characteristics of CSI. Besides, since 2-D LSTM performs feature extraction and
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representation through sequentially iterative computation, it can accurately capture and utilize the

index information of CSI data and does not have smoothing effect, overcoming the limitations

of CNN-based methods.

Similar with some machine translation tasks [30], [31], the compression and reconstruction of

CSI is essentially a feature extraction and representation task from one 2-D sequence to one 2-D

sequence. Therefore, we propose a 2-D Sequence to Sequence (Seq2Seq) neural network mainly

composed of 2-D LSTMs for the CSI feedback task. The main contributions of this paper are

summarized as follows:

• Through modeling and mathematical derivation of the downlink physical transmission pro-

cess in MIMO-OFDM systems, we reveal the unique 2-D sequence characteristics of the

MIMO-OFDM CSI and propose a new scheme of viewing CSI as a 2-D sequence to design

learning structure, which is more physically reasonable than regarding CSI as an image.

• For effectively processing the CSI data, we introduce a 2-D LSTM neural network to

perfectly match our research on the mathematical structure of the CSI. Moreover, we give

a sub-block division method, which can be a referential data preprocessing approach for

applying 2-D LSTM to CSI data.

• We analyze the framework of the CSI feedback task, which can be analogized to a machine

translation task from one 2-D sequence to one 2-D sequence. Further, we propose a 2-D

Seq2Seq model for CSI feedback and evaluate the computational complexity.

• Experiment results demonstrate that the proposed scheme outperforms the CNN-based

reconstruction accuracy under the same computational complexity. Moreover, the proposed

scheme has a fast convergence speed and strong robustness to meet demanding communi-

cation requirements.

The remainder of this paper is organized as follows. In Section II, we introduce the system

model, including channel model, CSI feedback process, and the overall neural network structure.

Then, our proposed 2-D Seq2Seq model and analysis are presented in Section III. Section IV

shows the performance evaluation of our proposed model from various aspects. Section V draws

the conclusion.

II. SYSTEM MODEL

In this section, we first introduce the channel model of MIMO-OFDM system. Then, we

describe the CSI feedback process. Finally, the overall structure for DL-based CSI feedback, an
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autoencoder neural network, is presented.

A. Channel Model

We consider a MIMO-OFDM system, where a BS with Nt ≫ 1 antennas in the form of

uniform linear array (ULA) serves a single-antenna UE adopting OFDM modulation with Nc

subcarriers, as shown in Fig. 2. The channel between the BS and the user is assumed to be

consist of P paths, which can be expressed as [32]

h(f) =
P∑

p=1

αpe
−j2πfτp+jϕpa(θp), (1)

where f is the carrier frequency, αp is the attenuation, τp is the propagation delay, ϕp is the

initial phase shift and θp is the angle of departure (AoD) of the p-th path. Futhermore, a(θp) is

the array vector defined as

a (θp) =
[
1, e−jχ cos θp , · · · , e−jχ(Nt−1) cos θp

]T
, (2)

where χ = 2πdf/c, d is the antenna spacing, and c is the speed of light. Thus, the overall

channel matrix H ∈ CNt×Nc between the BS and the user can be expressed as

H = [h(f1),h(f2), · · · ,h(fNc)], (3)

where fi = f0 + (i − 1)∆f, (i = 1, 2, · · · , Nc), fi is the i-th subcarrier frequency, f0 is the

lowest subcarrier frequency and ∆f is the bandwith of each subcarrier. This channel matrix H

is referred to as the CSI in the literature.

B. CSI Feedback Process

For efficient transmission, the BS needs to acquire the downlink CSI for performing resource

allocation, including beamforming designing and power allocation. In FDD mode, to this end,

UE feeds back the estimated downlink CSI matrix H to the BS. However, considering the

limited transmission resources in real scenarios, the excessive overhead of CSI feedback becomes

prohibitive, especially in MIMO-OFDM systems.

As shown in channel model, the CSI of different subcarriers and antennas is correlated due

to the similarity of propagation paths. Hence, we use this internal correlation to compress the



7

BS

d

MIMO

OFDM

other paths

phase change 

between antennas

phase change 

between subcarrier

UE

-  

Figure 2: The MIMO-OFDM channel from BS to a user and the phase change of p-th path between different
antennas and subcarriers.

CSI matrix. Specifically, we design a pair of matching functions fen and fde to complete the

compression and reconstruction process of CSI, respectively, i.e.,

hcom = fen(H), (4)

Ĥ = fde(hcom), (5)

where hcom is the compressed CSI, a low-dimensional vector and Ĥ is the recovered CSI

matrix [8]. With the help of fen function, the UE transforms the CSI matrix H into a low-

dimensional vector hcom and the BS generates the reconstructed CSI matrix Ĥ from received

feedback information hcom based on fde function. In this way, UE only needs to feedback a

compressed low-dimensional vector hcom instead of the whole CSI matrix H, which greatly

reduces the feedback cost.

C. The Overall Structure for DL-based CSI Feedback

Since CSI is a complex coupling of multipath channel responses, the internal correlation

between elements in the CSI matrix, brought by the single path similarity, is often implicit.

Meanwhile, user location and scatter distribution are often unknown in the practical commu-

nication environment, which results in that the BS can not directly obtain specific single-path
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Figure 3: The overall autoencoder structure for CSI feedback.

information. Therefore, it is generally hard to directly extract the correlation through traditional

signal processing algorithms. However, due to large-scale historical CSI data and the excellent

ability in extracting implicit features of the deep neural network, we can use DL technology to

explore the implicit correlation for efficient CSI compression.

As shown in Fig. 3, the overall deep learning structure for CSI feedback is an autoencoder

neural network. The encoder part which compresses H into hcom implements the feature extrac-

tion and compression of CSI, completing the fen function in equation (4), while the decoder part

which reconstructs Ĥ from hcom performs channel representation and reconstruction, completing

the fde function in equation (5).

The neural network structure is a crucial parameter which largely determines the fitting and

generalizing ability on the current task. If the physical characteristics of the CSI data can be

fully integrated into the structure of the autoencoder, the neural network’s feature extraction

and representation capabilities on the CSI data will be greatly improved, hence parameter

redundancy will be significantly reduced. Recalling Section II-A, MIMO-OFDM CSI has an

elegant mathematical structure and contains unique physical properties. This elegant structure in

CSI motivates us to redesign the learning structures in a similar structure. In the next section, we

will introduce our mathematical derivation about the physical properties of CSI and the learning

structures designed to match these properties.

III. PROPOSED 2-D SEQ2SEQ MODEL AND ANALYSIS

This section first analyzes the limitations of the CNN-based CSI feedback method, which is an

important motivation for us to redesign the neural network. Then, we analyze the 2-D sequence

characteristic of MIMO-OFDM CSI. Next, we introduce the 2-D LSTM neural network in detail.

Finally, the proposed 2-D Seq2Seq model for CSI feedback is presented.
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A. The Limitations of CNN-based CSI Feedback

Since both image and CSI can be mathematically represented by a matrix, and the adjacent

matrix elements are correlated, the image and CSI have format similarities. Further, the CNNs

widely used in image processing are adopted by current DL-based CSI feedback works thanks

to these similarities. However, as shown in Fig. 1, there are several essential differences between

CSI and images, which indicates CNN is not the best choice to deal with CSI feedback.

There are two main reasons that CNN works for image related tasks. On one hand, the

convolution operator mainly extracts image features through template matching. Image features

similar to the intensity distribution of the convolution kernel generate strong responses after being

convolved. Then, these responses are aggregated after pooling or fully connected to judge the

image’s features. However, pooling or fully connected aggregation blurs the position information

of features and finally makes the whole CNN insensitive to the position of image features.

Therefore, CNN can effectively eliminate the interference of feature position [33], [34].

On the other hand, the convolution operator is essentially a neighborhood weighting algorithm

[35]. Neighborhood weighting brings an interpolation effect and makes the convolved result

smooth, protecting the continuity between adjacent pixels of the image. Thus, CNN is suitable

for image generation tasks such as image denoising [26] and image super-resolution completion

[25].

Next we analyze the limitations of CNN on CSI feedback task based on the working principle

of CNN. CSI feedback task includes feature extraction and representation of CSI. In CSI feature

extraction and compression, the relationship between each element value and the corresponding

position index in the CSI matrix tends to lose when CSI flows into a CNN because CNN is

insensitive to feature’s position. In CSI representation and reconstruction, due to the lack of a

unique design for position information, it is difficult for the convolution operator to generate

the feature to the corresponding position accurately. Meanwhile, the numerical change between

adjacent elements of the CSI matrix is a complex multipath coupling offset with significant

discontinuity. Thus smoothness of the convolution operator brings some difficulties to the CSI

expression.

As a DL method, CNN undoubtedly has excellent data fitting ability. Therefore, the CNN-based

CSI feedback method can also work well with sufficient data and network scale. The limitations

noted above are to indicate that CNN’s property does not precisely match the CSI feedback task,
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which makes the CNN-based approach not very efficient. Thus, it is of importance to design

proper learning network structure suitable for CSI feedback, which can potentially achieve good

performance with low complexity.

B. 2-D Sequence Characteristic of MIMO-OFDM CSI

CNN has an excellent performance in image processing because it conforms to the physical

characteristics of images, which drives us to turn to the physical properties of CSI for inspiration

in designing more suitable neural networks. Next,we show the unique 2-D sequence characteristic

of MIMO-OFDM CSI in the following lemma.

Lemma 1 There exists a function gH(·), making the CSI matrix H expressed as:

H =


gH(Nt, 1) gH(Nt, 2) · · · gH(Nt, Nc)

...
... . . . ...

gH(2, 1) gH(2, 2) · · · gH(2, Nc)

gH(1, 1) gH(1, 2) · · · gH(1, Nc)

 , (6)

where the complexity of function gH(·) is independent with Nt and Nc.

Proof: Based on the channel model in Section II-A, we can obtain the CSI of the n-th antenna

and the m-th subcarrier, which is also the element of the n-th row and the m-th column of the

CSI matrix H, as follows:

Hn,m =
P∑

p=1

αpe
−j2π(f0+(m−1)∆f)τp+jφpe−jχ(n−1) cos θp

=
P∑

p=1

αpe
−j2πf0τp+jφpe−j[χ(cos θp)(n−1)+2π∆fτp(m−1)]. (7)

Among the parameters in equation (7), the attenuation αp, the propagation delay τp, the initial

phase shift ϕp, the AoD θp of each p-th path, the lowest subcarrier frequency f0, the bandwith

of each subcarrier ∆f , and the antenna spacing related parameter χ, are mainly determined by

the setting of the transmission system such as the BS and the user’s location, the scattering

environment information. The transmission system determined parameters do not change with

which antenna or subcarrier is used for transmission. Thus, the variables αp, τp, ϕp, θp and the

coefficient f0,∆f, χ on the right side of equation (7), are all independent of n and m.
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Then, we can define a function gH(x, y) as follows,

gH(x, y) =
P∑

p=1

αpe
−j2πf0τp+jφpe−j[χ cos θp(x−1)+2π∆fτp(y−1)], (8)

where function gH(·) is composed of the parameters αp, τp, ϕp, θp (p = 1, 2, · · · , P ) and f0, ∆f ,

χ. The complexity of the function gH(·) is completely determined by the above path or system

variables and independent with Nt and Nc. Then, since Hn,m = gH(n,m), we can obtain that

H =


HNt,1 HNt,2 · · · HNt,Nc

...
... . . . ...

H2,1 H2,2 · · · H2,Nc

H1,1 H1,2 · · · H1,Nc

 =


gH(Nt, 1) gH(Nt, 2) · · · gH(Nt, Nc)

...
... . . . ...

gH(2, 1) gH(2, 2) · · · gH(2, Nc)

gH(1, 1) gH(1, 2) · · · gH(1, Nc)

 , (9)

which completes the proof. □

Remark 1 Lemma 1 shows that the whole CSI matrix can be expressed as a 2-D sequence

whose each element is only a function gH(·) of its index. Besides, due to the path sparsity in

high frequency communication, the complexity of function gH(·) linear grows with the number

of multiple paths, which is much smaller than the value of NtNc.

According to Lemma 1, each element in the CSI matrix is a function of its row and column

indexes, i.e., CSI has strong 2-D sequence characteristic. Next, we explain the essence of the 2-D

sequence characteristic by analyzing the physical tranmission process in MIMO-OFDM system.

Consider a specific m-th column of the CSI matrix, i.e., CSI on the m-th subcarrier, H1,m,H2,m,

· · · ,HNt,m, which corresponds to the 1-st antenna to the Nt-th antenna. For any two adajcent an-

tennas, the only difference in CSI is a fixed phase change χ cos θp for each p-th(p = 1, 2, . . . , P )

path. Thus, when the antenna index n goes from 1 to Nt, the response component of the p-th path

forms a complex-valued proportional sequence. Further, the column Hn,m(n = 1, 2, ..., Nt) is a

sum of P complex-valued proportional sequences. It means that the CSI matrix has significant

sequence characteristics in each column, which falls in the spatial domain. Similarly, consider

a fixed n-th row of the CSI matrix, i.e., CSI on the n-th antenna, Hn,1, Hn,2, · · · ,Hn,Nc ,

which corresponds to the 1-st carrier to the Nc-th carrier. The only difference of the p-th

path between any two adjacent subcarriers is also a fixed phase change 2π∆fτp. Thus, the

sequence Hn,m(m = 1, 2, ..., Nc) is also a sum of P complex-valued proportional sequences. It
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Figure 4: The graphical representation of 1-D abd 2-D RNNs.

means that the CSI matrix has significant sequence characteristics in each row, which belongs to

the frequency domain. Fig. 2 shows the phase changes between different carriers and different

antennas.

Lemma 1 and the above physical analysis show the 2-D sequence properties of the MIMO-

OFDM channel in both spatial and frequency domains, which inspire us to regard the CSI matrix

H as a 2-D information sequence.

C. 2-D RNN and 2-D LSTM Mechanism for MIMO-OFDM CSI

To deal with sequence-dependent data, RNN shows superior advantage due to its recurrent

calculation structure. For data with multi-dimensional (M-D) sequence-dependence, the authors

in [28], [29] introduced M-D RNN and M-D LSTM as a generalization of standard RNN and

standard LSTM, respectively. Through using a M-D recurrent calculation structure, M-D RNN

can overcome the limitation of one-dimensional (1-D) RNN, which can only utilize 1-D sequence

dependence. Thus, M-D RNN has achieved good performance on some complex tasks [36]–

[40], such as handwriting recognition and speech signal processing. However, due to different

application purposes, each M-D RNN in the above works [36]–[40] has unique designed structure

and settings corresponding to solving its own task. In this paper, we use the 2-D structure for

handling MIMO-OFDM CSI data. Meanwhile, by analyzing the requirements of the MIMO-

OFDM system, we propose the unique structure and settings in 2-D LSTM, that can be suitable

for CSI. The designed structure and detailed setting are introduced as follows.

1) From 1-D RNN to 2-D RNN: 1-D RNN is one of the most popular and famous neural

networks, including traditional RNN without gate structure and various variants represented by

LSTM. The structure of 1-D RNN is shown in Fig. 4(a). In 1-D RNN, the input of each cell
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includes two parts, its own information and state information from previous cell. Based on the

input, this cell computes the state information and output. Then, the state information of this

cell will contribute to the input of the next cell. This design enables the network to make full

use of the sequence dependence between different cells. The structure of 2-D RNN is designed

in a similar way, as shown in Fig. 4(b). In 2-D RNN, the input of each cell includes three parts,

its own information and state information from two adjacent cells in left and below directions.

Based on the input, this cell computes the state information and output. Then, the computed state

information will flow to the input of the next two adjacent cells in right and above directions.

In this way, the neural network can utilize sequence dependence in both horizontal and vertical

directions. What’s more, similar to 1-D RNN, the parameters of all cells in a 2-D RNN are

commonly shared, which leads to a lightweight level of a 2-D RNN.

2) Internal Structure of a 2-D LSTM Cell: The scale of antennas and subcarriers in the MIMO-

OFDM system is usually large, making CSI a long 2-D sequence. Using traditional 2-D RNN

to process CSI may degrade performance due to the long-range processing difficulty. Therefore,

we use a 2-D RNN with 2-D LSTM mechanism to process CSI data instead of directly using

traditional 2-D RNN structure. In the 1-D case, the LSTM mechanism adds input gate, forget

gate, output gate, and cell memory to the traditional RNN cell for storing long-term memory.

Introducing a lambda gate to the 1-D LSTM can form a 2-D LSTM for averaging weight from

two adjacent cell memories in left and below directions. Fig. 5 shows the internal structure of

a 2-D LSTM cell. In this figure, the black part stands for a 1-D LSTM cell, and the blue part

is the supplementary part of extending a 1-D LSTM cell to a 2-D LSTM cell.

Moreover, in Fig. 5, the subscript p, q of each variable corresponds to the owning cell, s is

the state information, x is the input information, i is the input gate, o is the output gate, f is

the forget gate, λ is the lambda gate, c is the cell memory, c̃ is the work memory of current

cell, σ(·) is the sigmoid function, and g(·) is the activation function. In this work, we choose

tanh(·) as the activation function g(·). The internal calculation process of a 2-D LSTM cell can
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Figure 5: The internal structure of a 2-D LSTM cell.

be presented as follows:

ip,q = σ (Wixp,q +Uisp−1,q +Visp,q−1 + bi) , (10a)

fp,q = σ (Wfxp,q +Ufsp−1,q +Vfsp,q−1 + bf ) , (10b)

op,q = σ (Woxp,q +Uosp−1,q +Vosp,q−1 + bo) , (10c)

λp,q = σ (Wλxp,q +Uλsp−1,q +Vλsp,q−1 + bλ) , (10d)

c̃p,q = g (Wc̃xp,q +Uc̃sp−1,q +Vc̃sp,q−1 + bc̃) , (10e)

cp,q = fp,q ◦ [λp,q ◦ cp−1,q + (1− λp,q) ◦ cp,q−1] + ip,q ◦ c̃p,q, (10f)

sp,q = op,q ◦ g (cp,q) , (10g)

where ◦ is the Hadamard product, W,U,V and b are parameters of the neural network and the

subscript i, f, o, λ, c̃ of W,U,V,b represents which gate or the cell memory computation this

parameter participates, respectively.

3) Forward and Backward Propagation of a 2-D LSTM: The whole 2-D LSTM layer is

composed of sequentially computed 2-D LSTM cell steps, whose unfloded view is shown in

Fig. 6. The numbers of vertical and horizontal cell steps of the 2-D LSTM layer are respectively

denoted by Lver and Lhor and there is a total number of LverLhor cell steps to be calculated. Since

the calculation of each cell step only depends on its previous cell steps in the horizontal and

vertical directions, the cells distributed on the same diagonal can be calculated simultaneously.

In wireless communication scenarios, the immediacy of CSI feedback is vital. Therefore, it
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Figure 6: The unfloded view of a 2-D LSTM layer.

is necessary to use the parallel algorithm to reduce the computation time of the 2-D LSTM.

The forward propagation of the whole 2-D LSTM is completed through calculating from the

first diagonal cell to to the (Lver + Lhor − 1)-st diagonal cell. This parallel computation can

significantly boost the calculation speed and even reduce the calculation time from O(LverLhor)

to O(Lver + Lhor).

To train the 2-D LSTM, we just need to use the backpropagation through time (BPTT)

algorithm over two dimensions. Thus, 2-D LTSM neural networks can be directly deployed

on all kinds of mainstream DL platforms. The backpropagation gradients pass in the reverse

order of forwarding propagation, carring out iterative backtracking. Due to limited page, the

detailed derivations of the backpropagation gradients can be found in [28].

Considering the 2-D sequence characteristic of CSI data and the excellent ability of 2-D

LSTM in processing 2-D sequence data, it is very reasonable to apply the 2-D LSTM for CSI

data feature extraction and representation. Furthermore, the CSI feedback task requires three

processes, i.e., feature extraction, compression and representation reconstruction for CSI data.

Thus, for CSI feedback task, we propose a 2-D Seq2Seq model, an autoencoder whose enoder

and deocoder are both mainly composed of 2-D LSTMs.

D. Proposed 2-D Seq2Seq Model

We first introduce the whole structure of our proposed 2-D Seq2Seq model, as shown in Fig.

8. In this model, the encoder contains a two-layer 2-D LSTM, a fully connected layer, and

a tanh(·) activation function, where the two-layer 2-D LSTM performs feature extraction and
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2DLSTMH 2DLSTM

Spatial

Domain

Frequency

Domain

Reshape

+FC+Tanh

FC

+Reshape
2DLSTM 2DLSTM H

Encoder Decoder

A sub-block of H The corresponding cell The corresponding cell A sub-block of H

Figure 8: Overall structure of the proposed 2-D Seq2Seq model.

the fully connected layer realizes feature compression. The decoder is almost symmetrical with

the encoder, consisting of a fully connected layer and a two-layer 2-D LSTM, where the fully

connected layer reconstructs the compressed feature to the original CSI dimension size and the

two-layer 2-D LSTM implements CSI representation. In addition, the two-layer 2-D LSTM is

stacked two 2-D LSTM layers and the state information sizes of the two layers are equal. The

size of the state information, also called the number of hidden-layer neurons, is a hyperparameter

that can adjust the computational complexity of neural networks. Besides, to make 2-D LSTM

extract the information behind CSI more effectively, based on assessing the approximate path

information of CSI, we propose a sequence division preprocess for CSI data.

Specifically, we divide the CSI matrix into several sub-blocks, and all sub-blocks are arranged
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sequentially to form a 2-D sequence, as shown in Fig. 7. When the whole CSI matrix is entered

into the 2-D LSTM, each sub-block is fed into the corresponding cell of the 2-D LSTM.

Similarly, when using the 2-D LSTM’s output to reconstruct the CSI matrix, each cell obtains a

reconstructed sub-block, and these sub-blocks are spliced in the order of the corresponding cell

to form the reconstructed CSI matrix.

The reason for dividing CSI into some sub-blocks instead of some single CSI elements is that

the path information contained in a single CSI element is often not obvious. Therefore, each

sub-block requires several CSI elements to ensure that each cell’s input information is relatively

sufficient. Here we use a language sentence to make an analogy. A sub-block is similar to a

word, while each CSI element is like a character. Only a complete word can contain enough

information to participate in the semantics of the sentence. Instead, a character usually does not

have sufficient meaning, and understanding sentences character by character is difficult.

Remark 2 In CSI data preprocess, the sub-block size is a hyperparameter. On one hand, if

the number of elements in a sub-block is too small, the information transmitted to each cell

will be too poor. As a result, it is difficult for 2-D LSTM to obtain enough information from

each sub-bock. On the other hand, if the number of elements in the sub-block is too large,

the information sent to each cell will be too rich, making the information capacity of each cell

relatively insufficient, and the correlation between different sub-blocks will also decrease, making

the overall sequence characteristics weakened.

According to the above analysis, we need to properly design the sub-block size in order to

effectively apply 2-D LSTM to process CSI data. In particular, the influence of various sub-block

size is shown in simulation results.

Next, we introduce the calculation process of the 2-D Seq2Seq model. In the encoder part,

we first divide the original CSI matrix into several sub-blocks and each sub-block is entered

into the corresponding two-layer 2-D LSTM cell. The output size of each cell in the second

2-D LSTM layer is set as the sub-block size. Following the two-layer 2-D LSTM, we splice

the output of all cells into a Nt × Nc-size matrix according to the corresponding cell order,

and reshape the matrix into a NtNc-length vector. Then we forward the NtNc-length vector

to the fully connected layer to generate a vector with the same length as hcom. Considering

the quantization in practical applications, we use the tanh(·) function to activate the output of

the fully connected layer, obtaining the final feedback vector hcom, whose elements are all in
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(−1, 1). In the decoder part, we first input the feedback vector hcom to the fully connected layer

to generate a NtNc-length vector and reshape the vector to a Nt × Nc-size matrix. Then, the

matrix is divided into a 2-D sequence in the same way as the original CSI matrix, and each

sub-block is input into the corresponding 2-D LSTM cell, respectively. The output size of each

cell in the second 2-D LSTM layer is also set to the sub-block size. Finally, we splice the

output of all cells into a Nt × Nc-size matrix according to corresponding orders, which is the

reconstructed CSI matrix Ĥ.

To train the 2-D Seq2Seq model, we apply end-to-end learning to the whole autoencoder

neural network. We denote the network parameter set by Θ= {Θen,Θde}, then Ĥ = f(H; Θ) =

fde(fen(H; Θen); Θde). Mean square error (MSE) is used as the loss function of the neural

network, which can be written as

Loss(Θ) =
1

N

N∑
n=1

∥∥∥Ĥn −Hn

∥∥∥2

2
, (11)

where N is the number of channel samples in the training set and ∥ · ∥2 is the Euclidean norm.

In addition, the parameter set Θ can be updated though the existing gradient descent based

optimizers such as the adaptive momentum estimation (Adam) optimizer [41].

E. Parameter Scale and Computational Complexity

We analyze our proposed model’s parameter scale and computational complexity in this

subsection. We set the number of hidden-layer neurons in each 2-D LSTM cell as S, and the

feedback length is L. Then, the number of total parameters in the whole 2-D Seq2Seq model is

O
(
2

(
5NtNcS

LverLhor

+ 25S2 +
NtNcS

LverLhor

+NtNcL

))
=O

(
12NtNcS

LverLhor

+ 50S2 + 2NtNcL

)
, (12)

where NtNc

LverLhor
is the size of each sub-block in the CSI marix, 5NtNcS

LverLhor
is the number of connection

parameters for inputting H into the two-layer 2-D LSTM of the encoder, the term 25S2 is the

internal parameter of the two-layer 2-D LSTM in the encoder, the NtNcS
LverLhor

is the number of

connection parameters that the 2-D LSTM cell in the encoder generates an output with the sub-

block size, the NtNcL is the number of parameters of the fully connected layer in the enocoder

and multiplying 2 is due to the symmetry between the encoder and the decoder.
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Besides, the computational complexity is

O
(
2

(
LverLhor

(
5NtNcS

LverLhor

+ 25S2 +
NtNcS

LverLhor

)
+NtNcL

))
=O

(
12NtNcS + 50LverLhorS

2 + 2NtNcL
)
, (13)

where multiplying 2 is also due to the symmetry between the encoder and decoder, and the term

LverLhor

(
5NtNcS
LverLhor

+ 25S2 + NtNcS
LverLhor

)
is the total computation of LverLhor two-layer cells in the

encoder and NtNcL is the computation of the fully connected layer in the enocoder.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed scheme. We first introduce the

datasets and the performance indices. Then, we compare our scheme with two typical DL-based

CSI feedback schemes regarding channel reconstruction accuracy, convergence, and robustness.

Finally, we analyze the impact of sub-block size, a hyperparameter mentioned in Section III-D,

on the performance of the 2-D Seq2Seq model.

A. Datasets and Performance Indices

In this work, considering that the massive MIMO systems are mainly deployed in high-

frequency outdoor communication scenarios, we use DeepMIMO datasets [42], [43] at 3.5GHz

for training and testing. Moreover, we use two different outdoor scenarios ‘O1’ and ‘O1_B’ as

communication environments, to solid the evaluation. Fig. 9(a) shows scenario ‘O1’, a common

urban outdoor environment with two streets and one intersection. We set the BS 3 equipped

with a ULA to serve the users in the red box area of Fig. 9(a), where we sample the channel

data. Adding ‘O1’ scenario with a block wall and two reflective surfaces generates scenario

‘O1_B’, which is a more complicated communication scenario. Some users in ‘O1_B’ scenario

only rely on the reflective path to communicate with the BS without the line of sight (LOS)

path, as shown in Fig. 9(b). Compared to ‘O1’ scenario, the scattering environment information

in ‘O1_B’ scenario is more complex, which brings more challenges to all schemes. The user

areas and BSs in ‘O1’ and ‘O1_B’ are the same. Table I shows the detailed simulation settings

for DeepMIMO datasets. In both ‘O1’ and ‘O1_B’ scenarios, we both randomly sample 60,000

channel data and divide them into the training set, validation set, and testing set with the ratio

of 4:1:1.
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(a) ‘O1’ scenario

(b) ‘O1_B’ scenario

Figure 9: Experimental scenarios in DeepMIMO dataset [42].

We use normalized MSE (NMSE) and cosine correlation ρ [8] as the performance indices,

which are defined as follows:

NMSE = E


∥∥∥H− Ĥ

∥∥∥2

2

∥H∥22

 , (14)

and

ρ=E

{
1

Nc

Nc∑
m=1

|ĥH
mhm|

||ĥm||2||hm||2

}
, (15)

where the hm/ĥm is the CSI of m-th subcarrier, i.e. the m-th columon of the CSI matrix H/Ĥ.

Moreover, Floating-point operations (FLOPs) is used to represent the computational complexity

of the neural networks.

B. Performance Comparisons

In this subsection, we compare our scheme with current DL-based CSI feedback schemes.

As we introduced in Section I, current schemes can be divided into two categories: training

a CNN on angular-delay domain CSI or space-frequency domain CSI. In each category, we
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Table I: Parameters setting for DeepMIMO datasets

Parameters Value

Frequncy band 3.5GHz
Bandwidth 100MHz
Base station BS 3
Antenna ULA
Number of antennas (Nt) 32
Number of subcarriers (Nc) 256
Number of paths (P ) 25
User area R701 - R1400

Table II: Parameters setting for all neural networks

Parameters Value

Batch size 256
Learning rate 1 × 10−3 (multiply by 0.2 every 100 epochs

after the 400th epoch)
Training epochs 800
Loss function MSE
Optimizer Adam [41]
FLOPs ≈ {60million, 120million, 240million}
Length of feedback vector 128 by default
Number of training samples 40000
Number of testing samples 10000

choose a typical method as the benchmark. In particular, one benchmark is the CsiNet [8]

which uses a residual CNN to compress angular-delay domain CSI, a typical method of the first

category. Another benchmark is a scheme that uses an autoencoder network named AE_CNN

whose encoder and decoder are two symmetric CNNs to compress space-frequency domain CSI,

representing the second category. All schemes are trained individually on the ‘O1’ and ‘O1_B’

training sets. Meanwhile, for all simulations about 2-D Seq2Seq in this subsection, the sub-

block size is set as 1 antenna × 32 subcarriers. Before providing simulation results, we make

the following explanations.

• To ensure fair comparison, we select the same training strategy for all neural networks, as

shown in Table II and compare performance under the same computational complexity.

• To comprehensively evaluate the performance, we train CsiNet, AE_CNN and 2-D Seq2Seq

under various feedback lengths and various computational complexity by adjusting three

hyperparameters: the width of the bottleneck layer, the number of convolutional kernels in

CsiNet or AE_CNN, and the number of hidden-layer neurons in 2-D Seq2Seq.
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Table III: The cosine correlation ρ under various feedback lengths.

O1
AE_CNN CsiNet 2-D Seq2Seq

Feedback
length

FLOPs
60m

FLOPs
120m

FLOPs
240m

FLOPs
60m

FLOPs
120m

FLOPs
240m

FLOPs
60m

FLOPs
120m

FLOPs
240m

64 0.8506 0.8282 0.9147 0.9702 0.9609 0.9762 0.9592 0.9609 0.9963
128 0.9241 0.9605 0.9238 0.9778 0.9880 0.9911 0.9986 0.9989 0.9989
256 0.9735 0.9915 0.9885 0.9814 0.9880 0.9921 0.9994 0.9995 0.9995
512 0.9894 0.9964 0.9962 0.9856 0.9865 0.9942 0.9995 0.9996 0.9996

O1_B
AE_CNN CsiNet 2-D Seq2Seq

Feedback
length

FLOPs
60m

FLOPs
120m

FLOPs
240m

FLOPs
60m

FLOPs
120m

FLOPs
240m

FLOPs
60m

FLOPs
120m

FLOPs
240m

64 0.7117 0.4471 0.7262 0.9482 0.9296 0.9135 0.9233 0.9420 0.9598
128 0.8123 0.6471 0.7962 0.9582 0.9495 0.9434 0.9810 0.9864 0.9892
256 0.8920 0.9118 0.9159 0.9565 0.9738 0.9733 0.9904 0.9938 0.9950
512 0.9305 0.9336 0.9451 0.9549 0.9761 0.9768 0.9946 0.9959 0.9961

• The legends in the figures and table represent which scheme and the computational com-

plexity. For example, ‘2DSeq2Seq-FLOPs60m’ means the 2DSeq2Seq scheme with about

60 million FLOPs.

1) The Accuracy of Reconstructed CSI: The accuracy of the reconstructed CSI is a crucial

performance evaluation indicator. Fig. 10(a), Fig. 10(b) and Table III show the comparisons

among different methods in terms of reconstruction accuracy under various settings of feedback

lengths. To be specific, Fig. 10(a) and Fig. 10(b) show the NMSE between the reconstructed

CSI and the original CSI. Table III shows the cosine correlation ρ between reconstructed CSI

and original CSI. The highest value of ρ in each feedback length is marked in bold font in

Table III. Besides, we present the grayscale visualization of an original CSI and corresponding

reconstructed CSI based on all schemes in Fig. 11, when the feedback length is 128 and the

computational complexity of all schemes is about 240 million FLOPs.

According to the Fig. 10(a), Fig. 10(b) and Table III, our proposed method always provides

lower NMSE and higher cosine correlation ρ compared to the benchmarks. Moreover, especially

when the feedback information is relatively sufficient, the CSI reconstruction of 2-D Seq2Seq

can be of very high quality, demonstrating the proposed scheme’s superiority. Meanwhile, the

performance of all schemes in ‘O1_B’ scenario degrades compared to ‘O1’ scenario, where

AE_CNN degrades most significantly. What’s more, when the feedback length is 64 or 128,

the generalize performances of the AE_CNN under different FLOPs have a relatively signif-
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(b) ‘O1_B’ scenario

Figure 10: The NMSE under various feedback lengths.

icant difference in the ‘O1_B’ scenario, which rarely appears in other schemes or scenarios.

The significant performance degradation and unstable generalization capability indicate that the

AE_CNN scheme is inadequate for the CSI compression task in the ‘O1_B’ scenario. The reason

is due to the fact that the CSI in ’O1_B’ scenario without LOS has complex unsmooth features

and CNN cannot capture the highly unsmooth characteristics of spatial-frequency domain CSI.

From the visualization results shown in Fig. 11, we can intuitively observe that the proposed

2-D Seq2Seq method maintains the 2-D sequence characteristics of CSI very well and achieves

extremely high-quality CSI reconstruction. Though comparing the CSI reconstructed by CsiNet
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Figure 11: Grayscale visualization of the original CSI and reconstructed CSI.

and the original CSI in the angular-delay domain, we can find that the CSI reconstructed by

CsiNet loses some channel power extension components in the angular-delay domain, which

causes some distortions when the CSI is transferred to the space-frequency domain. This phe-

nomenon reflects that the CNN-based CSI feedback method may lead to feature loss at the edge

area of channel power extension components in angular-delay domain, which can verify the

analysis in Section III-A. By comparing the CSI reconstructed by AE_CNN and the original

CSI in the space-frequency domain, we can see that the CSI reconstructed by AE_CNN is over-

smooth, which indicates that the CNN-based CSI feedback method can break some unsmooth

features in CSI which we have also pointed in Section III-A.

2) Convergence and Generalization after Short-term Training: Fast and stable convergence

is also very important for neural networks. Since the initial value of the training loss curve is

significantly affected by network parameter initialization, it lacks clear significance to compare

the loss curve under different schemes or settings. Therefore, here we only show the convergence

curve of 2-D Seq2Seq with about 60 million FLOPs in Fig. 12, where the length of feedback

vector is 128. The convergence speed of our proposed model is rapid. Furthermore, although

the mini-batch gradient descent method is used, which brings some randomness to the gradient

descent process, the overall convergence process is generally stable.

We pay more attention to whether the neural network can achieve excellent generalization after

short-term training, directly determining the training time and cost. In the actual deployment,

we consider broadcasting the network after short-term training to the users for carrying out

CSI compression task and further optimizing it through online learning, in order to deploy the
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Figure 12: The loss function value of training 2-D Seq2Seq.

neural network faster. Here we compare the generalization ability of the networks on the test set

after various training epochs. We set the feedback vector length as 128 in all schemes, and the

simulation results are shown in Fig. 13(a) and Fig. 13(b). It should be noted that the network

has application value only when NMSE is less than 1. Meanwhile, after the training of each

epoch, we do not directly adopt the model after this epoch’s training, but the best model in all

previous epochs including this epoch, to evaluate the generalization ability, i.e., the best model’s

NMSE during training shown in Fig. 13. This choice prevents the training process randomness

from interfering with the actual deployment performance.

As shown in Fig. 13, under both datasets and all computational complexity, the proposed

2-D Seq2Seq can obtain the best generalization ability after a short-term train, significantly

outperforms than benchmarks, indicating that the proposed 2-D Seq2Seq can best meet the

requirements of actual deployment. Furthermore, fast convergence and excellent generalization

ability reflect that the proposed network structure fits the CSI feedback task well, again indicating

the effectiveness of integrating CSI physical properties into neural network structure.

3) Robustness to Lossy Feedback: As introduced in Section II-B, users need to feed the

compressed feedback vector hcom back to the BS through the uplink channel. In the practical

feedback process, hcom may be polluted due to the uplink channel noise, which challenges

the robustness of the neural networks. Here we evaluate the robustness to lossy feedback of

the proposed scheme. Different from the above simulation that supposes ideal feedback vector

hcom, we add disturbance with different intensity to the hcom to evaluate the robustness of the
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(a) ‘O1’ scenario
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(b) ‘O1_B’ scenario

Figure 13: The best model’s NMSE during training.

proposed scheme and compare it with that of benchmarks. Specifically, we add noise to hcom

by multiplying a Gaussian random variable of N (1, σ2) to the hcom, where varying σ indicates

various pollution levels. Here, as an example, we set the length of the feedback vector as 128 and

select the ‘O1’ scenario. Fig. 14 depicts the NMSE versus the intensity level of noise disturbance.

From this figure, at low disturbance intensity (σ ≤ 0.2), the proposed 2-D Seq2Seq shows the

best NMSE performance and strong robustness. At high disturbance intensity (σ > 0.2), the

CsiNet shows slightly lower NMSE than the proposed scheme. This phenomenon reflects that
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Figure 14: The NMSE under different disturbance σ in ‘O1’ scenario.
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Figure 15: The NMSE under various sub-block sizes.

our proposed scheme inevitably loses some robustness while achieving high accuracy.

C. Tradeoff on the Sub-block Size

In Section III-D, we indicate that there is a tradeoff on the sub-block size. Different from the

fixed sub-block size used in Section IV-B, here we change the number of the subcarriers in a

sub-block and fix the antenna number as 1 to compare the CSI reconstruction accuracy under

different sub-block sizes. We fix the feedback length as 128 and the number of hidden neurons

as 60. Fig. 15 shows the NMSE under different sub-block sizes.
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As the number of subcarriers in a sub-block decreases, NMSE of the 2-D Seq2Seq model first

decreases and then increases. Moderate subcarrier number setting yields the best performance.

This is consistent to our analysis finding in Remark 2, which shows too rich or too poor

information in a sub-block both results in performance degradation. Therefore, there is a tradeoff

on the sub-block size. Meanwhile, the network is not very sensitive to the size of the sub-blocks

due to its good adaptive ability. As shown in Fig. 15, the network can both achieve excellent

performance when the number of subcarriers is 16 and 32. Therefore, when applying a 2-D

LSTM to the CSI data, we only need to avoid adopting too extreme sub-block size to obtain

high-quality CSI reconstruction without a harsh CSI division scheme.

V. CONCLUSION

In this paper, we proposed a novel learning structure for CSI feedback. To address the

limitations of current CNN-based CSI compression methods, we analyzed the physical essence

of CSI, and proposed a new method for CSI feature extraction and representation using 2-D

LSTM neural networks. Then, we designed a 2-D Seq2Seq model mainly composed of 2-D

LSTMs for CSI compression and reconstruction to reduce CSI feedback cost. Simulation results

show that the proposed 2-D Seq2Seq scheme outperforms other DL-based CSI compression

schemes under various communication scenarios and various feedback requirements. Besides, in

hyperparameter setting of 2-D Seq2Seq, it is revealed that the sub-block size should be chosen

as a moderate number.

In our work, rather than directly designing the neural network structure for the CSI feedback

task, we first rethought the physical essence and unique properties of CSI data, and proposed

a reasonable perspective to view the MIMO-OFDM channel and a appropriate neural network

structure to process CSI data on the above basis. Since this new perspective is closer to the

physical essence of CSI, it may bring performance gains for more CSI data-related problems

including CSI feedback task. We hope that our work can provide some inspirations for further

exploring the applications of DL technology in MIMO-OFDM systems.
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