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Abstract

In split machine learning (ML), different partitions of a neural network (NN) are executed by

different computing nodes, requiring a large amount of communication among them. On the other hand,

over-the-air computing (OAC) can efficiently implement all or part of the computation at the same time

of communication. In this paper, we propose to deploy split ML in a wireless multiple-input multiple-

output (MIMO) communication system by exploiting the MIMO-based OAC capability. In particular, we

show that the inter-layer connection in a NN of any size can be mathematically decomposed into a set

of linear precoding and combining transformations over the MIMO channels. Therefore, the precoding

matrix at the transmitter and the combining matrix at the receiver of each MIMO link, as well as the

channel matrix itself, can jointly serve as a fully connected layer of the NN. In such a split ML system,

the precoding and combining matrices are regarded as the parameters to be trained, while the MIMO

channel matrix is regarded as unknown (implicit) parameters. By exploiting the channel reciprocity

between the transmitter and the receiver and properly casting the backward propagation (BP) process

through the MIMO channel, the explicit channel estimation process is eliminated, thus greatly saving

the system costs and/or further improving its overall efficiency. Finally, we extend the proposed scheme

to the widely used convolutional neural networks and demonstrate its effectiveness under both the static

and quasi-static memory channel conditions with comprehensive simulations.
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Index Terms

Over-the-air computing (OAC), multiple-input multiple-output (MIMO), split machine learning,

neural network

I. INTRODUCTION

A. Motivation

In future sixth-generation (6G) wireless communication systems, human-like intelligence will

be brought everywhere in networking systems [1]. The rapid development of artificial intelligence

leads to booming mobile machine learning (ML) applications and requires vast data transmission.

Split ML is a common method to distribute a NN to several devices to ease the computation

burden on each device. Each device calculates the intermediate results in a split ML system and

transmits it to the next device in order. Each device passes the intermediate gradient in backward

order when casting backward propagation. The system can be applied in cloud networks, net-

of-things, or even the deep learning-based joint source-channel coding (JSCC) problem [2].

However, split ML requires frequent information exchange among edge devices, which increases

the communication burden for wireless communications. For the specific structure of the split

ML system, we can reduce the communication overhead cost by coupling communication and

computation.

To realize dual-functional communication and computation, over-the-air computation (OAC)

has been proposed as an alternative to the traditional digital communication structures [3]. By

using the characteristics of wireless channels, OAC enables wireless communication systems to

compute some large-scale but simple calculation tasks [4]. Through OAC, a float number can be

transmitted by an analog symbol instead of several binary symbols, sharply reducing the number

of symbols. Previous work [5] shows that if a group of devices transmits analog modulated

signals simultaneously, the receiver directly obtains an aggregated signal, which can be directly

applied to the typical federated learning (FL) network. However, traditional OAC works only

consider the weighted sum of multiple edge users’ messages and do not suit the split ML system

directly.

To fit the structure of split ML, OAC can also be applied in the general wireless communication

systems besides the time-synchronized multiple access systems. In the widely-applied multiple-

input multiple-output (MIMO) systems, a group of antennas on the transmitter send different
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signals simultaneously, and another group of antennas on the receiver collect the transmitted

signal. On the receiver side, each antenna can individually receive the aggregated signal from

multiple antennas on the transmitter. Due to different channel gains, each antenna on the receiver

side can perform individual computation tasks. In particular, the MIMO channel can be viewed

as a multiplication-and-addition procedure on the transmitted analog signals, which is widely

used in NNs.

Due to MIMO channels’ characteristics, there is an intricate interplay between MIMO OAC

and NN. A MIMO channel can provide full connection between the inputs and the outputs and

can be viewed as a weighted sum calculator. Unlike fully connected layers in NNs, which can be

viewed as controlled weighted sums, the weights in MIMO systems are determined by the channel

matrices, which is uncontrollable in reality. To control the weight in the equivalent system, we

can introduce the beamforming and combining procedure to our system. Both beamforming

and combining are controllable linear transformations on the signal and are necessary parts of

MIMO systems. With the help of them, we can control the parameters in the equivalent weighted

sum of the overall system. Simply implementing the MIMO OAC in split ML introduces two

fundamental issues: the forward and backward channels are different and may not be accurately

known, and the analog transmission in OAC results in unavoidable noise.

To deal with the uncertainty issue of the MIMO channel, we find that the mathematical

operation is similar to the forward-backward propagation of a NN and channel reciprocity of a

wireless communication network (see Section II-B for details). Thus, deploying a NN through

MIMO OAC can lead to correct gradients even without any priori knowledge about the MIMO

channel according to reciprocity and quasi stability of the channel. Moreover, in most NNs, we

cannot accurately interpret the intermediate results, but the systems can work well after proper

training. The unexplainably in NNs inspires us that casting a deterministic linear transformation,

i. e., a MIMO channel, on the intermediate results of a NN through the whole training and

execution period may not intensively deteriorate the performance.

The other issue about the noise in wireless communication is not fatal in NNs. From the

perspective of information theory, both digital and analog communication can be optimal in

wireless communications such as sensor networks [6]. However, the digital communication sys-

tem can reduce transmission errors by employing error detecting and correcting codes, whereas

transmission errors can only be restricted but never eliminated in analog communication. The

unavoidable noise in analog communication has strongly restricted its development. However, it
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is found that noise is tolerable and sometimes even becomes a training trick in NNs [7]. Since the

devices transmit intermediate results of the NN in split ML systems, the advantage of progressive

error-free does not exist in such applications. Based on the above finding, Jankowski et al. [2]

also show similar results that analog communication performs better than digital communication

in the deep learning-based JSCC problem, which is a particular case of split ML.

B. Related Works

In communication systems, OAC is usually used in multiple access systems to compute the

weighted sum or some easy mathematical operations such as geometric mean, polynomial, and

Euclidean norm [4]. Hence most OAC works are mainly used in FL, where the weighted sum is

widely deployed. For example, the authors in [5] optimize the number of simultaneous accesses,

which may improve the efficiency of FL. Besides, Zhu et al. apply broadband analog aggregation

to improve OAC in FL with multiple bands [8], while Shao et al. consider FL with misaligned

OAC [9].

OAC for multiple access systems still has significant drawbacks. Firstly, OAC requires strict

synchronization among all transmitters, which is hard to realize. Moreover, OAC does not support

backward communication, which is rarely considered in previous works as far as we know.

Furthermore, the above works [4], [5], [8], [9] do not consider the MIMO system, which is

widely used in practical scenarios. The multiple antennas of the transmitter in a MIMO system

can be viewed as a group of transmitters in the multiple access scheme, which overcomes the

drawbacks above. The authors of [10] apply MIMO OAC to multimodal sensing. However, in

[10], the scenario is still a multiple access system where all channels are MIMO channels, and

the task of OAC is still the weighted sum, which can be regarded as a direct expansion of

previous designs in [4], [5], [8], [9]. Besides, the implementation of [10] is strictly limited to

FL applications, which is not suitable for split ML.

OAC have also provided an alternative to traditional NNs by realizing parts of NNs with

acoustic [11], optical [12], and RF [13] signals. The authors in [11]–[13] use the characteristics

of the target systems similar to NNs, and employ the target systems as part of a NN. OAC

systems calculate aggregated results of multiple inputs from different transmitters or time slots by

moderating the environments or some parts of the system. Recently, in wireless communications,

Sanchez et al. also realize NNs with the help of multiple paths and reconfigurable intelligent

surfaces [14]. Their system transmits the intermediate output of NNs via time sequential signals
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and uses the delay of multiple paths to realize one-dimensional convolution. However, in this

paper, we use MIMO channels to realize fully connected layers through multiplexed signals.

To realize NNs over MIMO channels, we utilize the structure of split ML. Split ML is a

method where multiple computation nodes cooperatively execute an ML application. In such

a system, the ML model is split into multiple parts allocated to different computation nodes.

Each node executes a part of the ML model in order and transmits the intermediate results to

the next one. When training the NN, the nodes also execute backward propagation in backward

order. Most of the existing works [15]–[17] on split ML focus on how to distribute the model

on the nodes in a way to minimize the total communication and computation delay. There are

also some other works bringing up specialized NN structures for split ML [18]–[20]. Recent

work also tries to deploy a proper NN architecture on a given communication network [21].

Their framework utilizes the neural architecture search method to meet latency and accurate

requirements. However, the above works [15]–[21] all consider ideal communication among the

computing nodes, which ignores the communication scheme design.

C. Contributions

The main contributions of this paper are summarized as follows:

• A split ML framework is proposed for wireless MIMO networks by exploiting the MIMO’s

OAC capability, which not only enables high-throughput and efficient wireless transmission,

but also reduces the overall computation load by synergistically incorporating the split ML

process with the wireless transmission procedure rather than just taking it as a bit pipe.

• By exploiting the reciprocity of MIMO channel in the forward and backward propagation

procedures in the proposed framework, we find it unnecessary to conduct explicit channel

estimation as otherwise indispensable in conventional communication systems, thus further

improving the overall communication and computation efficiency.

• We also provide some design rules for the proposed system so as to apply it to a fully

connected layer of any size in a FCN or a convolutional layer of any size in a CNN.

Simulation results show that the proposed scheme is efficient under both static and slowly-

varying memory channel conditions.

The remainder of the paper is organized as follows. We first introduce the proposed system

in Section II. We then mathematically provide some principles and propose a training algorithm
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Fig. 1: The considered split ML system based on MIMO-based OAC scheme.

in Section III. The proposed system is extended to convolutional NNs in IV. Numerical results

are provided in Section V. Section VI concludes the paper and provides future directions.

II. SYSTEM MODEL

In this section, we first briefly introduce the considered system model and then propose a

MIMO OAC-based approach to accelerate the communication in split ML.

A. MIMO OAC Model

Consider a MIMO OAC-based split ML system with multiple base stations, as shown in

Fig. 1. Each base station is equipped with multiple antennas, and the MIMO channels among

base stations are quasi-stable. A deep NN is split into several small NN, each of which is deployed

on one specific base station. The base stations progress the forward computation and backward

propagation of the NN. For simplicity, unless otherwise stated, we consider the considered split

ML system with only one splitting point since we can decompose split ML systems with multiple

splitting points to a set of single split points. To simplify the description, we use “transmitter”

and “receiver” to refer to the transmitter and receiver with Nt and Nr antennas in the forward

transmission.
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Assume that the channel between the transmitter and the receiver is a quasi-stable MIMO

channel with reciprocity, i. e., the forward channel is H ∈ CNr×Nt , and the backward channel is

HT . We do not make any further priori hypotheses of the channel as the split ML applications

may be deployed in different scenarios. When designing the system, we assume that the rank of

channel H is known to be r, which determines the maximum amount of dataflows transmitted

simultaneously under H. We note that although knowing the accurate value of r is impossible

without channel estimation, we can get r roughly from the wireless communication scenario.

Some small singular values, which are below a threshold, can be regarded as zeros in the

aspect of engineering. Hence, the rank r can be underestimated in some cases. In designing

the system, we assume that r is accurately known, and we show the cases where there exists a

mismatch numerically in the simulations. Besides, to better realize OAC, we may apply other

techniques such as using reconfigurable intelligent surfaces to obtain a channel with a higher

rank or applying the orthogonal frequency division multiplexing technique to realize multiple

transmissions simultaneously. However, we do not consider those techniques since they do not

affect the principles we use in the paper and can be easily combined with the proposed system.

B. OAC for Split Machine Learning

We consider a two-node split ML system, where the original NN is split into two parts, i. e.,

the former and latter parts, which are respectively deployed on the transmitter and the receiver.

A fully connected layer between the transmitter and the receiver is realized through the OAC

technique. The transmitter can be regarded as a federation of several synchronized single-antenna

transmitters in MIMO systems. Hence OAC still works similarly with multiple access systems.

We will later discuss how to extend the proposed system to convolutional layers in Section IV-A.

In particular, a fully connected layer in a NN can be represented by

xnext = φ(Wx+ b), (1)

where x ∈ CNi∗1 is the input of the considered layer, W ∈ CNo∗Ni and b ∈ CNo∗1 are the network

parameters, φ(·) is the element-wise activation function, and xnext is the output.

Considering the procedure of OAC, the transmitted and received signals may be amplified.

Rather than using amplified parameters, we can adopt a batch normalization (BN) layer to

remain the other parameters in a reasonable range and accelerate training [22]. A BN layer

casts an element-wise linear transformation to the forward propagated data and normalizes
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Fig. 2: The relationship between channel reciprocity and backward propagation

them to a predetermined mean and variation. The BN layer normalizes the intermediate output

calculated by OAC to a reasonable range and can counteract the widely existing amplifications

in communication systems, making it suitable for the considered system. With the BN layer, the

output becomes

xnext = φ(BN(y + b)) = φ(BN(Wx+ b)), (2)

where y = Wx is calculated through OAC and xnext is calculated on the receiver by the received

y. In the remaining parts of this paper, we only consider the OAC part of the system, i. e., how

to calculate y from x, since other parts have been well studied in traditional NNs. Below, we

discuss the mathematical similarity between the channel reciprocity and the forward-backward

propagation in NNs, which is also shown in Fig. 2.

1) Forward Computation: For each intermediate result, we conduct K times of OAC for

each forward computing. In the k-th OAC, the precoding and combining matrices are denoted

by Pk ∈ Cr∗Ni and Ck ∈ Cr∗No , respectively. Hence, the k-th OAC can be described as

xt,k = Pkx, (3)

yr,k = Hxt,k + nk, (4)

yk = CH
k yr,k, (5)
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corresponding to the precoding, transmitting, and combining procedures, respectively, where

nk ∼ CN (0, σ2I) is the Gaussian white noise vector with variance of σ2 of the forward

transmission. The receiver then combines all the K received signals and the result of OAC

becomes:

y =
K∑
k=1

yk =
K∑
k=1

CH
k HPkx+ nk. (6)

2) Backward Propagation: Here, we consider the gradient backward propagation of our

system. Let the gradient of y be gy , ∂loss/∂y. According to (3)-(5) and the principle of

gradient backward propagation, we can easily obtain that:

gCk
= yt,kg

H
y , (7)

gxt,k = HHCkgy, (8)

gPk
= xgHxt,k , (9)

gx =
K∑
k=1

PH
k gxt,k . (10)

All above equations can be easily calculated by either the receiver or the transmitter except

for (8). Equation (8) can be calculated with noise through OAC, where the receiver acts as a

transmitter in OAC and transmits g∗y with beamforming matrix C∗k. For the backward propagation,

the received signal at the transmitter becomes:

g̃xt,k = HTC∗kg
∗
y + ñk = g∗xt,k + ñk, (11)

where ñk ∼ CN (0, σ2I) is the Gaussian white noise vector of the backward channel. Equation

(11) reveals that channel reciprocity ensures that the backward OAC is identical to backward

propagation in NNs if we transmit the conjugation of the gradient and ignore the noise.

III. THEORETICAL ANALYSIS AND ALGORITHM DESIGN

In this section, we first provide theoretical findings for split ML based on fully connected

layers over wireless networks. We then formulate the optimization problem and propose the

training algorithm for the proposed system.

A. Theoretical Findings in the Proposed System

Here, we only consider the matrix multiplication in the fully connected layer, i. e., y = Wx.

To ensure that the split ML system can work well, we must guarantee that the OAC system can
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be equivalent to any parameter W of the fully connected layer. Hence, we have the following

feasible condition for noiseless channels.

To realize the function of a fully connected layer, condition (12) should have at least a

feasible solution (Pk,Ck), k = 1, · · · , K for any channel H ∈ CNr∗Nt with rank r and parameter

W ∈ CNo∗Ni , where Ni and No are the dimensions of the input and the output, respectively.

W =
K∑
k=1

CH
k HPk. (12)

From feasible condition (12), we can obtain the following lemma.

Lemma 1. If the rank of G , (CH
1 H, · · · ,CH

KH) is at least No and Pk can take any values

from CNt×Ni , then feasible condition (12) always holds. Symmetrically, if the rank of G′ ,

(PH
1 HH , · · · ,PH

KHH)H is at least Ni and Ck can take any values from CNr×No , then feasible

condition (12) always holds.

Proof. We first prove the first part. Since G , (CH
1 H, · · · ,CH

KH), we have
∑K

k=1 CH
k HPk =

G(PH
1 , · · · ,PH

K)H . Due to the fact that the rank of G is at least No, we can easily observe that

for arbitrary W ∈ CNo×Ni , let Pi, k = 1, · · · , K be the submatrix consisting the (kr − k + 1)-

th to the (kr)-th rows of G−1W. Then, W =
∑K

k=1 CH
k HPk, which completes the first part

of Lemma 1. The second part of Lemma 1 is symmetric to the first part, hence Lemma 1 is

proved.

Based on Lemma 1, we further obtain the requirement for the time K of OAC and the rank

r of H that can satisfy(12).

Theorem 1. Under the condition that Pk and Ck can take any values from CNt×Ni and CNr×No

respectively, feasible condition (12) holds if and only if Kr ≥ min{Ni, No}.

Proof. We first provide the necessary condition. Since rank(CH
k HPk) ≤ rank(H) = r, we have

rank

(
K∑
k=1

CH
k HPk

)
≤ Kr. (13)

Hence if Kr < min{Ni, No}, for any W with rank min{Ni, No}, feasible condition (12) does

not hold.

Then, we provide the sufficient condition. We know rank(IK ⊗H) = Kr, where ⊗ denotes

the Kronecker product and IK denotes the K ×K identity matrix. If Ni ≥ No, we can easily

know that there exist some Ck, k = 1 · · · , K, such that rank(G) = Kr > No, where G is
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defined in Lemma 1. From the first part of Lemma 1, feasible condition (12) holds. Similarly,

if Ni < No, we can still find some Pk, k = 1 · · · , K, which satisfy the condition of the second

part of Lemma 1, and hence feasible condition (12) also holds.

As a result, Theorem 1 is proved.

Lemma 1 and Theorem 1 give the sufficient and necessary conditions to feasible condition

(12). Theorem 1 shows that to satisfy feasible condition (12), we should at least conduct

min{Ni, No}/r times of transmissions. The proof to Theorem 1 also guides us that we must

follow the conditions in Lemma 1 to reach the bound. We will later show how to design the

system with minimum transmission times following the conditions above.

In practical communication systems, there exist noise in both forward and backward com-

munications, and the maximum transmitting powers for both transmissions are also limited.

However, the influence of the noise on the forward and backward channels are not the same.

In the forward channel, the noise directly takes part in the forward computation and results

in worse performance on the task. However, the noise only affects the gradient calculation in

the backward channel. The well-known stochastic gradient descent (SGD) [23] algorithm uses

gradients on random parts of the total dataset instead of the entire dataset and still works well

since the expectation of the stochastic gradient equals the actual gradient. Since the expectation

of the gradient added with zero-mean noise still equals to the real gradient, the noise in the

backward channel may not destroy the learning performance.

Besides, we note that all NNs consist of only two components, i.e., linear layers and nonlinear

activation functions. Since the activation functions are always unary, the backward propagation

procedures of both types of components are linear. Hence the backward propagation from the

output of the NN to any parameter is linear. The only nonlinear part when training NNs may

lie in the loss function at the output. Hence if the noise at the backward receiving antenna is

Gaussian, as shown in Fig. 3, compared with the corresponding centralized NN, the gradient for

any parameter should be either noiseless or with Gaussian noise.

Inspired by SGD, we know that the white noise in the backward channel does not have obvious

significance in convergence, which can also be theoretically shown in the following Theorem 2.

Before introducing Theorem 2, we define the following notations. Denote h(x;θ) as the model,

where x represents the input and θ stands for the parameters. With the SGD algorithm, the loss
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of the t-th batch can be written by

ft(θ) ,
B∑
b=1

` (h (xb,t;θ) , yb,t) , (14)

where B represents the batch size, `(·, ·) is the loss function, xb,t and yb,t represent the b-th input

data and the corresponding label of the t-th batch, respectively. Now, it is ready to provide the

following theorem about convergence with noise in the backward channel.

Theorem 2. If each loss function ft(θ) is convex, all the parameters and the gradients are

bounded, i. e. ‖ft(θ) − ft(θ′)‖ ≤ D and ‖gt‖ ≤ G for any θ and θ′, where gt = ∇ft(θ), the

SGD algorithm converges in O(σ2T−1/2) even with noise n. However, the coefficient in the

convergence time increases linearly with noise power.

Proof. Please refer to Appendix A.

Theorem 2 indicates that the introducing of Gaussian white noise in the backward propagation

will not affect the order in convergence rate of SGD. Besides, the noise power only linearly

changes the coefficient of the convergence rate.

Another problem comes from the amplification. In wireless communication systems, due to

the effect of noise and limited budget of the transmitting power, we must apply amplification

for both forward and backward transmissions to match the transmit power, which may have

an influence on the performance of NNs. Hence, in the following, we discuss how to realize

arbitrary amplification in the forward computation and backward propagation without scarifying

the performance of NNs significantly.

In the forward computation, we can apply a simple power normalization before transmitting, i.

e., transmit Pkx/A instead of Pkx, where A =
√

E(xHPH
k Pkx), as shown in Fig. 3. Since the

normalization layer amplifies all the transmitted signals and there is a BN layer at the receiver

to offset the effect of power amplification, it will not significantly affect the NN’s result.

In the backward propagation, normalizing the power of the gradient of the backward propa-

gation will only cause the gradient of the subsequent calculation to be amplified on the same

scale. To overcome this, we can use optimizers insensitive to the magnitude of the gradient, such

as the Adam optimizer [24].
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Fig. 3: Two transmitter parameterized implements of the proposed MIMO OAC-based split ML system. In this

illustration, batch size B = 3, the rank of the channel is r = 3, the input and output sizes are Ni = No = 6, and

the numbers of antennas at the transmitter and the receiver are Nt = Nr = 4.

B. The Implementations for Fully Connected NNs

Since the channel does not change over time, the optimum beamforming matrix should be the

same among the transmissions. Hence we can always construct a receiving combining matrix

C ∈ CNr×r such that matrix HHC is of rank r. As a result, the receiver can simultaneously

decode r independent data streams, i.e,

Ck = (0Nr×(k−1)r,C,0Nr×(K−k)r), k = 1, · · · , K. (15)

According to Lemma 1 and Theorem 1, the Ck above can satisfy feasible condition (12) with

the least number of transmissions K when Ni ≥ No. The procedure above is symmetric between

Pk and Ck that we can also use the same precoding matrix P ∈ CNt×r such that HP is of rank

r, and Pk = (0Nt×(k−1)r,P,0Nt×(K−k)r) for k = 1, · · · , K to satisfy feasible condition (12) with

the least K when Ni ≤ No. We refer to the former ones as receiver parameterized designs, and

the later ones as transmitter parameterized designs, respectively. Based on the symmetry, we can

only discuss the receiver parameterized designs in this section.
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According to Lemma 1, a straightforward implementation is to directly set all the Pks to

be trainable parameters as shown in Fig. 3. However, the straightforward implementation does

not take advantage of the fact that the structure of the precoding beamforming matrices should

also be determined by the channel H to a certain degree. It is more desirable to separate the

precoding matrices from the other parameters, i. e.,

Pk = W0(0Nr×(k−1)r,P,0Nr×(K−k)r), k = 1, · · · , K, (16)

where P plays a similar role in the precoding matrices comparing to C in the receiving combining

matrices, and W0 is corresponding to the remaining NN parameters. The system is also illustrated

in Fig. 3. In this paper, as shown in Fig. 3, we refer to the former implementation as the combined

design and the latter as the separated design, respectively. The detailed comparisons among the

implementations are given in Section IV-B.

C. Problem Formulation

We first analyze the receiver parameterized and separated design for full-connected layers.

From equations (6), (15), and (16), the sum of the received signals of the forward transmissions

y can be represented by

y =


CHHPx̄1 + CHn1

...

CHHPx̄K + CHnK

 , (17)


x1

...

xK

 = W0x/A, (18)

where A denotes the power normalization parameter, i. e., A = E‖W0,((k−1)r:kr−1,:)x‖2. Hence

the signal-noise ratio (SNR) of the (k − 1)r + t-th element of y can be represented as

SNRf,(k−1)r+t = Ex(‖CH
(t,:)HPsk‖2)Nr/Pn, (19)

where CH
(t,:) denotes the t-th row of CH and Pn is the total power of noise.

Symmetrically, the SNR of the backward transmission can be written by

SNRb,(k−1)r+t = Ex(‖PT
(t,:)H

TC∗gy,k‖2)Nt/(A
′Pn), (20)
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where A′ is the power normalization parameter of backward communication.

Then, we briefly show the relationship among different implementations of our system. The

transmitter parameterized designs are symmetric to the corresponding receiver parameterized

designs, and the only difference is that the precoding matrices or the combining matrices are

more complicated for combined designs. From the definition of SNR and the structure, SNRf

and SNRb can be obtained similarly following the procedure above.

Naturally, the goal of MIMO communication is to maximize the SNR of the worst used

equivalent subchannel, i. e.,

arg max
P,C

min{min
k,t

SNRf,(k−1)r+t,min
k,t

SNRb,(k−1)r+t}. (21)

In the optimal solution to (21), each row of P and C is the singular vector corresponding

to the largest singular value of channel matrix H, i. e., both transmitter and receiver allocate

full power on the optimal beamforming vector. We remark that our system is a joint design

of communication and split ML. Hence we should consider the constraints of split ML, i. e.,

the conditions of Lemma 1 and Theorem 1 hold. Based on this fact, we show how to translate

problem (21) to the loss of NN in the following.

D. Training Method of the Proposed System

In this section, we introduce a method to translate (21) to the loss of NN. As explained above,

simply considering the goal of (21) leads to a obviously unreasonable solution. However, it gives

us inspiration that in the optimal system, only some of the best subchannels should be used.

Based on this inspiration, we can find conditions for suboptimal solutions of (21) that

H = UΣVH , (22)

PV:,−r: = 0, (23)

CU:,−r: = 0, (24)

where (22) is the SVD decomposition of H, and V:,−r: denotes the last r columns of V, i. e.,

the singular vectors corresponding to the smallest r singular values.

The conditions mainly come from Lemma 1 that r is the minimum value that ensures the

conditions of Lemma 1 and the conditions above could be satisfied simultaneously. Under the

conditions above, the columns of the matrices Pk and Ck are constrained to a linear space of

dimension r, respectively. According to the basic linear algebra theory, there exist Pks and Cks
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Algorithm 1: Training Split ML via OAC

1 {Forward Computation}

2 for n = 1 to N do

3 if n = 1 then

4 Sample a batch of input data x

5 y0 ← x

6 else

7 Receive signal y by antennas from multiple transmissions

8 Calculate the covariance matrix: Rf,n−1 ← E(yyH)

9 Update the time averaged covariance matrix: R̄f,n−1 ← αR̄f,n−1 + (1− α)Rf,n−1

10 Obtain yn−1 with the combining matrices as shown in Fig. 3

11 Do local forward computation with yn−1, and outputs xn for transmitting

12 if n = N then

13 Output xn as the final prediction

14 else

15 Transmit sn with the precoding matrices as shown in Fig. 3

16 Calculate the loss ` of the main task.

17 {Backward Propagation}

18 for n = N to 1 do

19 if n 6= N then

20 Receive signal gs by antennas from multiple transmissions

21 Calculate the covariance matrix: Rb,n ← E(gxg
H
x )

22 Update the time averaged covariance matrix: R̄b,n ← αR̄b,n + (1− α)Rb,n

23 Cast SVD decomposition on R̄b,n: R̄b,n = UΣVH

24 Add the goal of communication: gx ← gx + (1/2B2)∂‖xH
n V(:, Nt − r + 1 : Nt)‖22/∂x

25 Obtain gx,n with the precoding matrices as shown in Fig. 3

26 Employ backward propagation from gx,n, and obtain gy,n−1

27 else

28 Employ backward propagation from `, and obtain gy,n−1

29 if n 6= 1 then

30 SVD decomposition on R̄f,n−1: R̄f,n−1 = UΣVH

31 Transmit gy with the combining matrices as shown in Fig. 3

32 Add the goal of communication: gC ← gC + ∂‖CU(:, Nr − r + 1 : Nr)‖22/∂C

33 Each node updates local parameters based on the calculated gradients.
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that satisfy both constraints. We note that in the final trained NNs, the ranks Pk and Ck may

not always be r. However, they are brought by the sparsity of NN parameters [25], which does

not mean a mistake in our design.

In real systems, we cannot directly obtain H directly. However, we can still realize the

constraints with the help of self-adaptive beamforming. In simple self-adaptive beamforming

algorithms, we use the covariance matrix of the received signal to estimate the singular vectors

of the channel H, and hence obtain the optimal beamforming vector. Similarly, we can use the

singular vectors of the covariance matrix of the received signal to estimate the singular vectors

and then compute the loss by (23) and (24). Combining (23), (24), and the training algorithm

of centralized NNs, we obtain the detailed training algorithm for a batch as shown in Alg. 1.

IV. GENERALIZATION AN COMPARISON

In this section, we generalize the proposed MIMO OAC-based split ML system to convolu-

tional NNs. We also analyze and compare different implementations for the proposed system.

A. Extension to Convolutional NNs

For the considered convolutional layer, the size of the input and the output images are Nwi×Nhi

and Nwo ×Nho with Nci and Nco channels, respectively. The size of the convolutional kernel is

Nk ×Nk.
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Fig. 4: Illustration of the rearrangement in Fig. 3 for both full-connected (left) and convolutional (right) layers.

Here, we show how to extend the implementations to convolutional layers. The calculation in

a convolutional layer can be described as:
Y1

...

YNci

 =


K1 · · · K1

... . . . ...

KNco · · · KNco

 ∗


X1

...

XNci

 , (25)
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where Xn, Yn, Kn represent the n-th input channel, the n-th output channel, and the n-

th convolutional kernel, respectively. The symbol ∗ represents convolution operation, and its

calculation rules between matrices are the same as matrix multiplication, except that convolution

replaces multiplication.

Since the convolution operation can be seen as a particular multiplication with specific rules,

it is still a linear operation. Hence the associative law still holds. Introducing an arbitrary matrix

W, we have (W ⊗ INk×Nk
)


K1 · · · K1

... . . . ...

KNco · · · KNco


 ∗


X1

...

XNci



=(W ⊗ INho×Nho
)




K1 · · · K1

... . . . ...

KNco · · · KNco

 ∗


X1

...

XNci


 .

(26)

Equation (26) shows that multiplying a matrix (W⊗INk×Nk
) after convolution is equivalent to

multiplying the matrix on the kernels or applying another convolutional layer with 1×1 kernels,

i. e., 
K′1 · · · K′1

... . . . ...

K′Nco
· · · K′Nco

 = (W ⊗ INk×Nk
)


K1 · · · K1

... . . . ...

KNco · · · KNco

 . (27)

Hence, for convolution layers, we only need to replace the rearranging method in Fig. 3. The

difference between the rearranging methods of full-connected and convolutional layers is shown

in Fig. 4. We note that, in Fig. 4, only the intermediate output corresponding an input data is

shown, whereas a batch of outputs is transmitted each time in practice.

B. Comparisons Among the Implementations

In this section, we compare all the proposed implementations in terms of the amounts of

parameters, calculation, and communication. The amount of parameters is described by the

number of complex parameters, and that of communication is described by the number of forward

transmissions per batch. The amount of calculation is described by the number of complex

multiply-accumulate operations (MACs). A MAC operation is to calculate a ← a + b × c by
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TABLE I: The amounts of parameters, computation, and communication of all designs per batch of data. (“FC” is

for fully connected layers, and “Conv” is for convolutional layers. B represents the batch size.)

Implementation Parameters MACs Transmissions

FC

Transmitter parameterized,

combined design
NiNoNt/r +Nrr BNo(Nr +NiNt/r) BNo/r

Transmitter parameterized,

separated design
NiNo + (Nt +Nr)r BNo(Ni +Nt +Nr) BNo/r

Receiver parameterized,

combined design
NiNoNr/r +Ntr BNi(Nt +NoNr/r) BNi/r

Receiver parameterized,

separated design
NiNo + (Nt +Nr)r BNi(No +Nt +Nr) BNi/r

Conv

Transmitter parameterized,

combined design
NcoN

2
kNt/r +Nrr

BNciNcoNwoNhoN
2
kNt/r

+BNcoNwoNhoNr

BNcoNwoNho/r

Transmitter parameterized,

separated design
NcoN

2
k + (Nt +Nr)r

BNciNcoNwoNhoN
2
k

+BNcoNwoNho(Nt +Nr)
BNcoNwoNho/r

Receiver parameterized,

combined design
NcoN

2
kNr/r +Ntr

BNciNcoNwoNhoN
2
kNr/r

+BNciNwiNhiNt

BNciNwiNhi/r

Receiver parameterized,

separated design
NcoN

2
k + (Nt +Nr)r

BNciNcoNwoNhoN
2
k

+BNciNwiNhi(Nt +Nr)
BNciNwiNhi/r

a multiplier–accumulator unit, which is widely used in hardware. We show the comparison in

Table I.

From Table I, since there is always r ≤ min{Nr, Nt} and r may be far smaller than min{Nr, Nt}

if the channel is sparse, we can find that for most cases, although the separated designs require

one more time of matrix multiplication, it uses fewer parameters and costs less in computation.

Whether the transmitter parameterized designs or the receiver parameterized designs are better

depends on the relationship between the input and output sizes. If the input size is larger than

the output size, the receiver parameterized designs are better, and vice versa.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of the proposed system, and provide

numerical results based on the well-known CIFAR-10 image classification dataset.

A. Experimental Settings

1) Communication System Settings: We consider simple MIMO communication settings,

where the channel is composed of Np different paths, the gain, transmission direction angle
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Fig. 5: The NN structure used for numerical results.

and arrival direction angle of each path are independently and randomly generated by uniform

distribution, i. e.,

H =

Np∑
n=1

an(1, ejθn , · · · , ej(Nr−1)θn)H(1, ejφn , · · · , ej(Nt−1)φn), (28)

where θn ∼ U(−π, π), φn ∼ U(−π, π), |an| ∼ U(0.5, 1.5), and angle(an) ∼ U(−π, π) for each

n.

The total transmitting power of each transmission is normalized to 1, the noise power of each

receiving antenna is the same, and the SNR is defined by

SNR = ‖H‖2Nr/Pn, (29)

where Pn is the total noise power.

We consider the following settings in this section. Firstly, we consider a 2-node complex

channel setting, where Nt = Nr = 16 and Np = 20 such that the channel is with full rank.

We also consider a 3-node sparse channel setting, where Nt = Nr = 16 and Np = 4 for both

channels. Considering the massive MIMO settings in reality, we consider a massive MIMO

setting where there are 3 nodes, and for both channels, Nt = Nr = 64 and Np = 8. Finally, we

consider a 3-node moving setting where Nt = Nr = 16 and Np = 4 for both channels. To ensure

fairness, the channels of all settings are pre-generated, and remain the same in all experiments.

2) NN Settings: We use the 16-layer complex ResNet to evaluate the performance of our

proposed system and algorithms in this section. The NN structure follows that proposed in [26],

and is shown in Fig. 5. In Fig. 5, “Conv3 ∗ 3 ∗Nc, stride=2” refers to a convolutional layer with
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Nc kernels with size 3 ∗ 3 and stride 2, and stride is 1 if not written. “Downsampling” refers

to cast downsampling such that the outputs of the shortcut connection and the convolutional

layers have the same size, which is realized by convolutional layer with 1 ∗ 1 kernels. “Average

pooling” and “Linear” stand for the corresponding layer with the following parameters. Each

layer except the pooling layer is followed by a BN layer. For 2-node settings, the NN is split at

the 9th layer, and for 3-node settings, the NN is split at the 5th and 13th layer. We use batch size

64 and Adam optimizer [24] with learning rate 0.005 to train the NN, and set α = 0.99. Since

the output sizes of the convolutional layers are no more than the corresponding input sizes, we

use the receiver parameterized designs. According to Table I, we choose separated design for

r < 16, and combined design for r = 16 for the minimum computation and storage cost.

B. Performance Comparison

We use the straightforward algorithms below to verify the proposed system and algorithm.

The first is the centralized algorithm, where the NN is trained in a centralized manner. We

also use traditional split ML and MIMO-based split ML, where the communication in split

ML is conduct by traditional MIMO. We note that both split ML systems are identical to the

centralized algorithm in performance since in such systems, communication is just a tube. The

last comparison algorithm is called the ideal case where the channel is assumed to be perfectly

known. Hence, from (22)-(24), we can use the following precoding and combining matrix:

PH = V:,:Nr−r, (30)

CH = U:,:Nr−r, (31)

where the matrices are calculated by (22). When training NNs, the matrices P and C is

determined by the channel, and is not trainable in the whole progress.

The costs of all considered algorithms are compared in Table II. In Table II, the smallest

value in each column is marked as bold font. We assume that 16 QAM modulation is used

in digital systems. Hence a 64-bit complex float number is represented by 16 digital symbols

or an analog symbol. Moreover, digital communication systems require channel coding and

retransmissions according to channel quality. Thus, analog communication requires no more

than 1/16 times of transmission comparing to digital communication. In Table II, CNN, CTrans,

and CCE are defined as the total cost of calculating the NN (in terms of MACs), transmission

(in terms of communication rounds), and channel estimation (in terms of times) in traditional
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TABLE II: Cost comparisons among different algorithms.

Computation Transmission Channel Estimation

Traditional Split ML CNN CTrans CCE

MIMO-Based Split ML CNN + CMIMO CTrans/r CCE/r

Ideal Case CNN + CMIMO at most CTrans/(16r) at most CCE/(16r)

Proposed CNN + CMIMO at most CTrans/(16r) 0

split ML, respectively. CMIMO represents the total native computation cost by the MIMO system

(precoding and combining, in terms of MACs) in traditional ML. According to the calculation

in Table I, we always have CMIMO << CNN. We emphasize that our MIMO-based OAC design

greatly reduces the transmission cost compared to traditional split ML without OAC. It also saves

the system costs and/or improve its overall efficiency by eliminating explicit channel estimation

when comparing with the ideal case. According to Table II, the proposed algorithm yields the

lowest cost, which reflects high communication and transmission efficiency of the considered

MIMO-based OAC structure.

C. Results Under Stable Complex Channel

In this section, we consider the 2-node complex channel setting. In the setting, the channel is

almost of full rank since there are 20 independent randomly generated paths. We suppose the

pre-estimation of the rank r to be 4, 8, 12, or 16 to verify the performance of the algorithms.

Fig. 6 shows the convergence trend of various algorithms. In this figure, we consider high

quality channel, where SNR = 35 dB and r = 16. In Fig. 6, both the ideal case and the

proposed algorithm do not show significant difference in terms of convergence rate, but with a

slight performance loss, which verifies our analysis that the proposed system implementation is

equivalent to the centralized ML system if there is almost no noise.

In Figs. 7 to 9, we present the effect of SNR with different pre-estimation r. We can find that

the trends of all the curves are similar that the accuracy increases as SNR increasing and obtain

almost centralized performance when the channel is of high quality, which is intuitive.

For the same method with different rs, although the pre-estimation r = 16 is the most accurate,

smaller r lead to better performance. This is because when using smaller r, smaller data size is

transmitted per transmission and fewer subchannels is used, both equivalent to higher SNR.
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We note that when r = 16, all possible subchannels are used and hence the optimization for

communication does not valid. For other values of r, we can find that the proposed algorithm

performs better with low SNR whereas the ideal case performs better with high SNR. This is

mainly because when the channel is well, the best strategy is to simply transmit all the outputs

to the receiver, hence the ideal case performs better. However, when the channel becomes poor,

the best strategy becomes to stress on transmitting only a part of the outputs to obtain a higher

quality. This strategy can make sense mainly because the output of NNs is usually sparse [25],

and the performance loss caused by the reduce of width is smaller than that by the increase of

the noise on the intermediate output.
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Fig. 6: The convergence curve of different algorithms.
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Fig. 7: The performance of different algorithms with different rs under stable complex channel.
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Fig. 8: The performance the ideal case with different rs under stable complex channel.
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Fig. 9: The performance the proposed algorithm with different rs under stable complex channel.

D. Results Under Stable Sparse Channels

In this section, we consider the 3-node sparse channel setting. In the setting, the channel is of

rank 4. We suppose the pre-estimation of the rank r to be 4 or 8 to verify the performance of

the algorithms. In Fig. 10, we show the performance of different algorithms and different pre-

estimations of r. The results and conclusions are similar with those of complex channel, however,

it is counterintuitive that the performance when r = 8 does not decline sharply although it does

not satisfy Theorem 1. This phenomenon is mainly caused by the sparsity of NNs [25]. All the

preconditions are derived by the suppose that the parameters W can take any values in CNi×No ,



25

whereas W is usually sparse in reality, which may explain the small performance loss.
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Fig. 10: The performance of different algorithms with different rs under stable sparse channels.
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Fig. 11: The performance of different algorithms under stable massive MIMO channels.

E. Results Under Stable Massive MIMO Channels

We show the results under stable massive MIMO channels with r = 8 in Fig. 11, which

does not show apparent discrimination comparing to Fig. 10, showing the effectiveness of our

proposed system in massive MIMO scenarios. However, in Fig. 11, the proposed algorithm

cannot outperform the ideal case, which is mainly caused by that the proposed algorithm brings

much error when the dimension becomes larger.
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Fig. 12: The performance of different algorithms under moving MIMO channels.

F. Results Under Time-Varying Channels

We show the results under dynamic channel settings here. In this setting, both the channel

matrices vary according to the following memory model:

an,t+1 = (1− ρ)an,t + ρân, (32)

θn,t+1 = (1− ρ)θn,t + ρθ̂n, (33)

φn,t+1 = (1− ρ)φn,t + ρφ̂n, (34)

where an, θn, and φn are the value of the corresponding values in (28) at t-th time slot,

respectively. ân, θ̂n, and φ̂n are generated randomly following the way in (28), and ρ indicates the

changing rate. The channel Ht at each time slot is also generated by (28). In Fig. 12, we can find

that both the ideal case and the proposed algorithm perform well even under moving channels.

In the ideal case, both the precoding and the combining matrices suddenly changes when the

channel changes, while the proposed algorithm can learn to adapt the change of channel. Hence,

the proposed algorithm outperforms the ideal case with smooth channel change, while performs

poor when the channel changes fiercely because the changing can not be learnt well.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a MIMO-based OAC system for implementing split ML over

wireless networks, which significantly improves communication efficiency. In the proposed
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system, the precoder and combiner design, together with the implicit MIMO channel matrix,

contribute to a trainable layer, which can be natively integrated into a NN. We theoretically

found the inherit equivalent procedure between the reciprocity of MIMO channels and the

training process of NNs. Based on this finding, explicit channel estimation process is eliminated

in our system, which can improve the system efficiency. Besides, we provided basic principles

of implementing the proposed system such that the proposed structure can be mathematically

equivalent to any fully connected or convolutional layer in NNs. Numerical results show that the

proposed system has a similar converge rate with slight performance degradation under high-

quality channels compared to the centralized algorithm. We also observed that our algorithm

could work well under various channels and is robust to slowly varying channels.

In this paper, we considered channel reciprocity and the extension to natural channels without

strict reciprocity remains to be a future direction. The proposed MIMO OAC-based split ML

structure can play an essential role in native distributed learning problems for wireless commu-

nications such as distributed sensing, channel estimation and prediction, location estimation and

prediction, distributed network optimization, interference coordination, etc.

APPENDIX A

PROOF OF THEOREM 2

Proof. To prove Theorem 2, we introduce the regret to analyze the performance of the learning

algorithm [27]. In particular, the regret is defined as

R(T ) =
T∑
t=1

ft
(
θ(t)
)
−

T∑
t=1

ft(θ
∗), (35)

where θ∗ is the optimal parameter set. Since function ft(θ) is convex, we have

ft(θ
(t))− ft(θ∗) ≤ 〈gt,θ(t) − θ∗〉, (36)

which shows that

R(T ) ≤
T∑
t=1

〈gt,θ(t) − θ∗〉. (37)

According the update procedure of SGD with noise, we have

θ(t+1) = θ(t) − ηt(gt + Λtnt), (38)
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where Λt is a non-negative diagnose matrix, each element of which is no more than ξ, and

nt ∼ N (0N∗1, σIN∗N) is the noise. Hence, we have

‖θ(t+1) − θ∗‖22

=‖θ(t) − θ∗ − ηt(gt + Λtnt)‖22

=‖θ(t) − θ∗‖22 − 2ηt〈gt,θ(t) − θ∗〉+ η2t ‖gt‖22

+ η2t |Λt|2‖nt‖22 − 2ηt〈Λtnt,θ
(t) − θ∗〉+ 2ηt〈Λtnt, gt〉.

(39)

According to (39), we can obtain

〈gt,θ(t) − θ∗〉 =
1

2ηt
(‖θ(t) − θ∗‖22 − ‖θ(t+1) − θ∗‖22)

+
ηt
2
|Λt|2‖nt‖22 +

ηt
2
‖gt‖22

− 〈Λtnt,θ
(t) − θ∗〉+ ηt〈Λtnt, gt〉

≤ 1

2ηt
(‖θ(t) − θ∗‖22 − ‖θ(t+1) − θ∗‖22)

+
ηtξ

2
‖nt‖22 +

ηtG
2

2
− 〈Λtnt,θ

(t+1) − θ∗〉,

(40)

where the last inequality comes from the fact that ‖gt‖22 ≤ G. Since there are always many

parameters in a neural network, i. e., N is very large, we can approximately get ‖nt‖22 ≈ Nσ2

based on the law of large numbers. Substituting (40) to (37), we have

R(T ) ≤
T∑
t=1

1

2ηt
(‖θ(t) − θ∗‖22 − ‖θ(t+1) − θ∗‖22)

+
ξ‖nt‖22

2

T∑
t=1

ηt −
T∑
t=1

〈Λtnt,θ
(t+1) − θ∗〉.

(41)

Due to the fact that the parameters are bounded and learning rate is decreasing over time, we

have
T∑
t=1

1

2ηt
(‖θ(t) − θ∗‖22 − ‖θ(t+1) − θ∗‖22)

=
1

2η1
‖θ(1) − θ∗‖22 −

1

2ηT
‖θ(T+1) − θ∗‖22

+
T∑
t=2

(
1

2ηt
− 1

2ηt−1
)‖θ(1) − θ∗‖22

≤ 1

2η1
D2 +

T∑
t=2

(
1

2ηt
− 1

2ηt−1
)D2

=
D2

2ηT
.

(42)
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Since nt follows a standard Gaussian distribution, we can obtain expectation E{1/T
∑T

t=1

〈Λtnt,θ
(t) − θ∗〉} = 0 and standard deviation σ{1/T

∑T
t=1〈Λtnt,θ

(t) − θ∗〉} = O(σT−1/2).

When we choose ηt = C/t1/2, we have

R(T )/T ≤ D2

2CT 1/2
+
C(ξ‖nt‖22 +G2)

2T

T∑
t=1

t−1/2

− 1

T

T∑
t=1

〈Λtnt,θ
(t) − θ∗〉.

(43)

In the right hand of (43), the first item is of O(T−1/2), the second item is approximately by

O(σ2T−1/2), and the third item is a random item with zero expectation and standard deviation

of O(σT−1/2). Hence, the convergence rate of the algorithm is O(σ2T−1/2). Comparing (43)

with the regret of SGD provided in [27] that

R(T )/T ≤ D2

2CT 1/2
+
CG2

T

T∑
t=1

t−1/2, (44)

we can easily observe that noise power has a linear effect on the convergence rate of SGD with

noise. Theorem 2 is proved.
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