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A B S T R A C T

This research explored a novel explicit total Lagrangian Fragile Points Method (FPM) for finite deformation
of hyperelastic materials. In contrast to mesh-based methods, where mesh distortion may pose numerical
challenges, meshless methods are more suitable for large deformation modelling since they use enriched shape
functions for the approximation of displacements. However, this comes at the expense of extra computational
overhead and higher-order quadrature is required to obtain accurate results. In this work, the novel meshless
method FPM was used to derive an explicit total Lagrangian algorithm for finite deformation. FPM uses simple
one-point integration for exact integration of the Galerkin weak form since it employs simple discontinuous
polynomials as trial and test functions, leading to accurate results even with single-point quadrature. The
proposed method was evaluated by comparing it with FEM in several case studies considering both the
extension and compression of a hyperelastic material. It was demonstrated that FPM maintained good accuracy
even for large deformations where FEM failed to converge.
1. Introduction

Rubber-like materials such as elastomers and soft tissue are com-
monly modelled under the assumption of a hyperelastic constitu-
tive model where the stress–strain relationship is derived from a
strain energy density function [1]. The Finite Element Method (FEM)
is frequently used to simulate the elastic response of these materi-
als when they undergo a large deformation. Although FEM is the
standard numerical method for finite deformation analysis, it suffers
from low convergence in conditions of large deformation and near-
incompressibility [2]. Even when non-locking elements are utilized,
convergence and overall accuracy are significantly deteriorated [3] due
to the large mesh distortion. A remedy to the mesh distortion problem
is to remesh the deformed geometry during the evolution of the defor-
mation [4]. However, this solution is not time efficient, especially for
soft tissue simulation where results should be generated by taking into
account the time restrictions of the corresponding clinical application.

Over the past several decades, meshless methods have been devel-
oped and demonstrated as being more suitable for finite deformation
compared to FEM. Meshless methods either partially or fully alleviate
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the mesh requirement, avoiding the FEM mesh distortion problem.
Examples of meshless methods include the smoothed particle hydrody-
namics (SPH) [5,6], the meshless local Petrov–Galerkin (MLPG) [7,8],
and the element free Galerkin (EFG) methods [9,10]. The SPH method
has been used successfully to derive a total Lagrangian formulation of
SPH for large deformation simulation in 3D cardiac mechanics [11].
Since gradients of constant and linear functions are not correctly ob-
tained in the standard SPH method, a corrected smoothed particle
method [12] was used to ensure the conservation of linear and angu-
lar momentum. In a similar manner, the reproducing kernel particle
method (RKPM) utilizes a correction function for the kernel approxima-
tion in SPH to meet the reproducing conditions and has been employed
to solve large deformation problems [13–15]. The MLPG is another
method that has been proposed as an alternative to FEM for large
deformation simulations [2,8]. Enriched radial basis functions with a
polynomial basis function were used for constructing the MLPG trial
functions. The polynomial basis function enrichment allowed the exact
imposition of essential boundary conditions. Large deformation was
simulated in a series of 2D benchmark problems demonstrating superior
accuracy for MLPG compared to FEM.
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In a similar manner to SPH and MLPG, the EFG method has been
employed for solving large deformation problems. An EFG-based al-
gorithm, the so-called Meshless Total Lagrangian Explicit Dynamics
(MTLED) algorithm, has been used to a great extent for the simulation
of large deformations in biomechanics [16,17]. The MTLED employs
the EFG method to solve the total Lagrangian formulation explicitly
using a central difference scheme. Initially, the method was introduced
using the Moving Least Squares (MLS) for the approximation of trial
functions [18]. It is well known that MLS do not possess the Kronecker
delta property, and therefore the essential boundary conditions cannot
be imposed directly as in FEM. An efficient algorithm for the impo-
sition of the exact essential boundary conditions in MTLED has been
introduced in [16]. However, the application of such treatments for the
imposition of essential boundary conditions can be avoided by replac-
ing the MLS approximation functions. In [19], the Cell-based Maximum
Entropy (CME) approximants have been proposed as an alternative to
MLS. CME possesses the weak Kronecker delta property that allows
applying essential boundary conditions directly and exactly as in FEM.
An alternative approach is followed in [20], where a regularized weight
function [21] is used for the construction of MLS, rendering the ap-
proximation almost interpolating. Both approaches presented accurate
imposition of essential boundary conditions in several 3D benchmark
problems and were cross-validated against analytical solutions and
FEM [19,20].

The aforementioned meshless methods are valuable alternatives to
FEM for large deformation simulations. However, they possess draw-
backs, including the requirement for complex algorithms to impose the
essential boundary conditions and inexact integration due to the com-
plexity of the approximation functions that lead to the requirement of
high-order integration to improve accuracy [22]. Therefore, although
meshless methods can reduce dramatically the preprocessing time,
their computational cost is usually significantly higher than FEM [23].
Recently, a novel Fragile Points Method (FPM) that inherently avoids
these limitations has been introduced by the groups of Atluri and
Dong [24,25]. In FPM, the problem domain 𝛺 is discretized by dis-
tributing points randomly in its interior and boundary. Following this
step, 𝛺 is partitioned in contiguous and non-overlapping subdomains
that involve a single node, usually at the centroid of the subdomain.
The meshless approximation is then constructed on a compact support
domain that includes the points for which their subdomain shares an
interface with the subdomain of the point of interest. Trial and test
functions which are local, simple, polynomial, and discontinuous are
employed as [26]. Therefore, integration becomes trivial and low-order
integration is sufficient to compute integrals with high accuracy in
contrast to previous meshless methods. Moreover, both essential and
natural boundary conditions are imposed directly as in FEM without
the need for additional treatment. Nevertheless, it should be noted that
deriving the standard Galerkin weak form with the FPM will lead to
inconsistent and inaccurate solutions due to the discontinuity of the
employed trial and test functions. To remedy this issue, interior penalty
numerical flux corrections, which are commonly used in Discontinuous
Galerkin methods [27], are employed to restore the consistency and
accuracy of the FPM-derived Galerkin weak form.

Despite its recent introduction, FPM has successfully simulated
different problems and provided results in agreement with FEM while
reducing the requirement for a high-quality mesh. In addition, FPM was
validated by solving the patch test and the Poisson equation in 1D and
2D then comparing its convergence to FEM [24]. FPM demonstrated
higher accuracy than FEM when mesh quality was deteriorated due
to mesh distortion. Moreover, FPM has been successful in solving 2D
linear elasticity [25] and heat conduction [28] problems in 2D and
3D. Furthermore, it has been demonstrated as a promising alternative
to FEM for cardiac modelling applications. Results with similar accu-
racy to FEM were obtained for cardiac electrophysiology simulation
through the monodomain reaction–diffusion model [29]. Similarly,
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high correlation of FPM with FEM was obtained when solved the t
Laplace–Dirichlet problem for the determination of cardiac muscle fiber
orientation by [30]. Finally, FPM possesses the ability to model crack
developments in a very simple manner due to the discontinuity of the
trial and test functions. It has been used successfully for modelling
flexoelectric problems with crack propagation [31] and damage as well
as fracture of U-notched structures [32].

In this work, we hypothesize that FPM is a promising alternative
to FEM for finite deformation simulation, especially when large mesh
distortion occurs during deformation. Therefore, FPM is employed to
derive the total Lagrangian formulation to simulate the large deforma-
tion of hyperelastic materials using explicit integration in time as in
MTLED [17,18]. Since FPM allows for direct imposition of essential
and natural boundary conditions as well as accurate approximation
of integrals with low-order integration rules, accurate and efficient
solutions to large deformation problems are expected. The structure
of the remaining paper is as follows. In Section 2, the FPM total
Lagrangian formulation is described, with details provided about the
derivation of the explicit total Lagrangian algorithm, the formulation
of the FPM trial and test functions, and the application of the inte-
rior penalty numerical flux correction. In Section 3, the FPM total
Lagrangian algorithm is evaluated in a series of validation case studies
and the obtained solutions are compared with FEM simulations. Finally,
a discussion about the findings of this work and a conclusion with
future work directions are provided in Sections 4 and 5, respectively.

2. Explicit total Lagrangian fragile points method

2.1. Problem definition

Consider the boundary value problem of an elastomer undergoing
large deformation and governed by the following equations expressed
in the reference configuration (total Lagrangian formulation) [33]:

∇0 ⋅ 𝑷 + 𝜌0𝒃 = 𝜌0�̈� in 𝛺0

𝒖 = �̄� in 𝛤𝑢

𝑷 ⋅ 𝒏0 = �̄� in 𝛤𝑡 (1)

In Eq. (1), 𝑷 denotes the first Piola–Kirchhoff stress tensor, 𝜌0𝒃 the body
forces per unit reference volume, �̈� the second time derivative of the
displacement, and 𝒏0 the outward unit surface normal. The subscript 0
delineates field values expressed in respect with the reference configu-
ration. Therefore, 𝛺0 is the region occupied by the body in its reference
configuration while 𝛤𝑢 and 𝛤𝑡 are the parts of the boundary 𝛤 = 𝛤𝑢

⋃

𝛤𝑡
here boundary conditions are imposed on displacement and traction,

espectively. The weak form of Eq. (1) is obtained by replacing 𝒖
ith a trial function 𝒖ℎ and minimizing the resulting residual through
ultiplication by the test function 𝒗 and integration to obtain:

∫𝛺0

∇0𝑷 (𝒖ℎ) ⋅ 𝒗𝑑𝛺 + ∫𝛺0

𝜌0(𝒃 − �̈�ℎ) ⋅ 𝒗𝑑𝛺 = 0 (2)

pplying the divergence theorem and the traction boundary condition,
he weak form can be rewritten as:

∫𝛺0

𝑺 ∶ 𝑬𝑑𝛺 − ∫𝛺0

𝜌0(𝒃 − �̈�ℎ) ⋅ 𝒗𝑑𝛺 − ∫𝛤𝑡
�̄� ⋅ 𝒗𝑑𝛤 = 0 (3)

here the first Piola–Kirchhoff stress tensor is replaced by the second
iola–Kirchhoff stress tensor (𝑺) through 𝑷 = 𝑭𝑺 and 𝑬 denotes the
reen–Lagrange strain tensor obtained via 𝑬 = 1

2

[

∇𝒗𝑇𝑭 + 𝑭 𝑇∇𝒗
]

with
𝑭 being the deformation gradient tensor. 𝑺 is obtained by differentiat-
ing the material’s strain energy density (𝑊 ) by 𝑬:

𝑺 = 𝜕𝑊
𝜕𝑬

= 𝜕𝑊
𝜕𝐽1

𝜕𝐽1
𝜕𝑬

+ 𝜕𝑊
𝜕𝐽2

𝜕𝐽2
𝜕𝑬

+ 𝜕𝑊
𝜕𝐽3

𝜕𝐽3
𝜕𝑬

(4)

where 𝐽1, 𝐽2, 𝐽3 denote the reduced invariants of the right Cauchy–
reen deformation tensor. In FPM, the reference configuration domain
𝛺0) is discretized by a number of randomly distributed points inside
he domain and on its boundary. The domain is then further partitioned
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Fig. 1. Partitioning of domain 𝛺0. (a) 2D domain partitioning with points distributed inside it and on its boundary. (b) 3D domain partitioning with points distributed inside it.
into contiguous and non-overlapping subdomains of arbitrary shapes
as shown in Fig. 1. Using the same type of trial function 𝒖ℎ and test
function 𝒗 in each subdomain, the discretized Galerkin weak form is
obtained:
∑

𝐸∈𝛺0
∫𝐸

𝑺 ∶ 𝑬𝑑𝛺 −
∑

𝐸∈𝛺0
∫𝐸

𝜌0(𝒃 − �̈�ℎ) ⋅ 𝒗𝑑𝛺 −
∑

𝑒∈𝛤𝑡
∫𝑒

�̄� ⋅ 𝒗𝑑𝛤 = 0 (5)

where ∫𝐸 denotes integration over the subdomain 𝐸 ∈ 𝛺0, and ∫𝑒
denotes integration over the subdomain’s boundary 𝑒 ∈ 𝛤𝑡, which
belongs to the traction boundary. Due to the simplicity of the local dis-
continuous polynomials which are employed as trial functions in FPM,
first order quadrature is applied for integration over the subdomain as
well as its boundary.

2.2. Derivation of FPM trial and test functions

In each subdomain, trial and test functions are constructed by
defining local discontinuous polynomial displacement vectors 𝒖ℎ and 𝒗.
Following the formulation in [25] and assuming that 𝛺0 is defined in
R2, the trial function 𝒖ℎ ≡ 𝒖ℎ(𝑥, 𝑦) on the subdomain 𝐸0, which encloses
the point 𝑃0, can be obtained by:

𝒖ℎ(𝑥, 𝑦) =
[

𝑢ℎ𝑥
𝑢ℎ𝑦

]

=

⎡

⎢

⎢

⎢

⎣

𝑢0𝑥 +
𝜕𝑢𝑥
𝜕𝑥

|

|

|

|𝑃0
(𝑥 − 𝑥0) +

𝜕𝑢𝑥
𝜕𝑦

|

|

|

|𝑃0
(𝑦 − 𝑦0)

𝑢0𝑦 +
𝜕𝑢𝑦
𝜕𝑥

|

|

|

|𝑃0
(𝑥 − 𝑥0) +

𝜕𝑢𝑦
𝜕𝑦

|

|

|

|𝑃0
(𝑦 − 𝑦0)

⎤

⎥

⎥

⎥

⎦

(𝑥, 𝑦) ∈ 𝐸0 (6)

where (𝑥0, 𝑦0) denote the coordinates of 𝑃0, [𝑢0𝑥 𝑢0𝑦]
𝑇 denote the value

of 𝒖ℎ at 𝑃0, and the symbol
|

|

|

|𝑃0
denotes function evaluation at the point

𝑃0. The column vector
[

𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑦

𝜕𝑢𝑦
𝜕𝑥

𝜕𝑢𝑦
𝜕𝑦

]𝑇
|

|

|

|𝑃0
collects the unknown

derivatives which are computed using the generalized Finite Difference
Method [26]. The support domain for 𝑃0 is defined as the group of
points 𝑃1, 𝑃2, … , 𝑃𝑚 that are involved in the subdomains 𝐸1, 𝐸2, … ,
𝐸𝑚, which share an interface with subdomain 𝐸0 (see Fig. 1). We define
the weighted discrete 𝐿2 norm (𝑱 ) given in matrix form by:

𝑱 = (𝑨𝜶 + 𝒖0 − 𝒖𝑚)𝑇𝑾 (𝑨𝜶 + 𝒖0 − 𝒖𝑚) (7)

where

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1 − 𝑥0 𝑦1 − 𝑦0 0 0
0 0 𝑥1 − 𝑥0 𝑦1 − 𝑦0

𝑥2 − 𝑥0 𝑦2 − 𝑦0 0 0
0 0 𝑥2 − 𝑥0 𝑦2 − 𝑦0
⋮ ⋮ ⋮ ⋮

𝑥𝑚 − 𝑥0 𝑦𝑚 − 𝑦0 0 0
0 0 𝑥𝑚 − 𝑥0 𝑦𝑚 − 𝑦0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜶 =
[

𝜕𝑢𝑥 𝜕𝑢𝑥 𝜕𝑢𝑦 𝜕𝑢𝑦
]𝑇

|

|

|
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𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
|𝑃0
𝒖0 =
[

𝑢0𝑥 𝑢0𝑦 𝑢0𝑥 𝑢0𝑦 … 𝑢0𝑥 𝑢0𝑦
]𝑇

1×2𝑚

𝒖𝑚 =
[

𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 … 𝑢𝑚𝑥 𝑢𝑚𝑦
]𝑇

𝑾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1
𝑥 0 0 … 0
0 𝑤1

𝑦 ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 𝑤𝑚

𝑥 0
0 … 0 0 𝑤𝑚

𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎦

In the above matrices, (𝑥𝑖, 𝑦𝑖) denote the coordinates of point 𝑃𝑖;
[

𝑢𝑖𝑥 𝑢𝑖𝑦
]𝑇

is the value of 𝒖ℎ at 𝑃𝑖,
[

𝑤𝑖
𝑥 𝑤𝑖

𝑦

]𝑇
is the value of the weight

function at 𝑃𝑖, 𝑖 = 1, 2,… , 𝑚. The derivatives vector 𝜶 is derived by
solving the stationarity of 𝑱 (Eq. (7)) to obtain:

𝜶 = (𝑨𝑇𝑾𝑨)−1𝑨𝑇𝑾 (𝒖𝑚 − 𝒖0) (8)

By expressing 𝒖𝑚 − 𝒖0 as:

𝒖𝑚 − 𝒖0 = [𝑰1 𝑰2]𝒖𝐸 (9)

where

𝒖𝐸 =
[

𝑢0𝑥 𝑢0𝑦 𝑢1𝑥 𝑢1𝑦 … 𝑢𝑚𝑥 𝑢𝑚𝑦
]𝑇

𝑰1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0
0 −1
−1 0
0 −1
⋮ ⋮
−1 0
0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦2 𝑚×2

𝑰2 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
0 1 ⋱ ⋮
⋮ ⋮ ⋱ 0
0 … 0 1

⎤

⎥

⎥

⎥

⎥

⎦2 𝑚×2𝑚

(10)

we can rewrite vector 𝜶 as:

𝜶 = 𝑪𝒖𝐸 (11)

where

𝑪 = (𝑨𝑇𝑾𝑨)−1𝑨𝑇𝑾 [𝑰1 𝑰2] (12)

Finally, by substituting Eq. (12) in Eq. (6), we obtain:

𝒖ℎ = 𝑵𝒖𝐸 (13)

where the matrix 𝑵 is the shape function of 𝒖ℎ in 𝐸0 and is given by:

𝑵 =
[

𝑥 − 𝑥0 𝑦 − 𝑦0 0 0
0 0 𝑥 − 𝑥0 𝑦 − 𝑦0

]

𝑪 + 𝑰3

𝑰3 =
[

1 0 0 … 0
0 1 0 … 0

]

2×(2𝑚+2)

(14)

Since the presented FPM is based on the Galerkin weak form, the

test function 𝑣 is derived in a similar manner to the trial function
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𝑢ℎ. As there are no continuity requirements at the interfaces of the
subdomains, the trial and test functions are discontinuous point-based
simple and local polynomials. Due to the discontinuity, the Galerkin
weak form leads to inconsistent and inaccurate solutions if continuity
is not restored. It should be noted that instead of deriving the unknown
derivatives by using the generalized Finite Difference Method, one may
also employ the Differential Quadrature Method as was used in [31].

2.3. Interior penalty numerical flux correction

To solve the inconsistency problem, an interior penalty numerical
flux correction is introduced, which is similar to discontinuous Galerkin
FEM. The interior penalty numerical flux correction is commonly used
in discontinuous Galerkin FEM to retrieve the continuity at the element
interfaces [27]. Similarly, consistency and accuracy in FPM are ensured
by applying the interior penalty numerical flux correction to modify
the Galerkin weak form in Eq. (5). This treatment can be viewed as
applying a corrective internal force which acts on the interior interface
𝑒 ∈ 𝛤ℎ of subdomain 𝐸 and its neighbour, where 𝛤ℎ denotes the interior
part of 𝛤 . Therefore, Eq. (5) is modified as:
∑

𝐸∈𝛺0
∫𝐸

𝑺 ∶ 𝛿𝑬𝑑𝛺 −
∑

𝐸∈𝛺0
∫𝐸

𝜌0(𝒃 − �̈�ℎ) ⋅ 𝒗𝑑𝛺

−
∑

𝑒∈𝛤𝑡
∫𝑒

�̄� ⋅ 𝒗𝑑𝛤 −
∑

𝑒∈𝛤ℎ
∫𝑒

𝒕∗ ⋅ [[𝒗]]𝑑𝛤 = 0 (15)

The numerical flux correction is defined using the incomplete interior
penalty Galerkin (IIPG) method as in [32], which has an explicit
physical meaning as the traction acting on the interior interface. The
interior interface traction 𝒕∗ is obtained by:

𝒕∗ = { 𝒕ℎ} − 𝜷[[𝒖]]

𝒕ℎ = 1
2
(

𝑷 +𝒏+0 + 𝑷 −𝒏−0
)

− 𝜷[[𝒖]]
(16)

where [[ ]] and { } are the jump and average operators, respectively.
For any interior interface 𝑒 ∈ 𝜕𝐸+ ⋂

𝜕𝐸− shared by the neighbouring
subdomains 𝐸+ and 𝐸−, the operators act on an arbitrary quantity 𝑤
as:

[[𝑤]] = 𝑤|

𝐸+
𝑒 −𝑤|

𝐸−
𝑒 , {𝑤} = 1

2

(

𝑤|

𝐸+
𝑒 +𝑤|

𝐸−
𝑒

)

(17)

In Eq. (16), 𝜷 is a second-order penalty tensor used to weakly enforce
displacement continuity across the interior interfaces. It is defined as a
diagonal matrix:

𝜷 =
𝑝𝐸
ℎ𝑠

𝑰 (18)

here 𝑝 denotes a penalty coefficient, 𝐸 the Young’s modulus, and
𝑠 the subdomain characteristic length. 𝑷 +, 𝑷 − denote the first Piola–
irchhoff stress tensors for the two neighbouring subdomains, while 𝒏+0 ,
−
0 are the outward normal vectors to the interface of the neighbouring
ubdomains at the reference configuration. The penalty tensor 𝜷 is
iewed as the interfacial stiffness. Therefore, the term 𝜷[[𝒖]] in Eq. (16)
ontrols the contribution of separation between the neighbouring sub-
omains, and 𝒕∗ can be viewed as the exact traction acting on each
nterior interface, considering both the stress in the subdomains and
he separation across the internal interface.

.4. Explicit integration in time

The consistent Galerkin weak form in Eq. (15) can be written in
atrix form as:

�̈� + 𝑭 𝒊𝒏𝒕 = 𝑭 𝒆𝒙𝒕 (19)

here 𝒖 denotes the displacements vector, 𝑴 the mass matrix, 𝑭 𝒊𝒏𝒕 the
nternal forces, and 𝑭 𝒆𝒙𝒕 the external forces (including body and trac-
ion forces). Applying mass lumping to diagonalize 𝑴 allows solving
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i

q. (19) explicitly using the central difference time integration scheme.
herefore, at each integration time step 𝑘, we obtain:

𝑘+1 = 𝒖𝑘 + 𝑑𝑡𝑘+1�̇�𝑘 +
1

2𝑑𝑡2𝑘+1
�̈�𝑘, (20)

�̇�𝑘+1 = �̇�𝑘 +
1

2𝑑𝑡2𝑘+1
(�̈�𝑘+1 + �̈�𝑘), (21)

𝒊𝒏𝒕 =
∑

𝐸∈𝛺
𝑭𝐸

𝑘 −
∑

𝑒∈𝛤ℎ

�̃� 𝑒
𝑘 =

∑

𝐸∈𝛺
∫𝐸

𝑩𝑇𝑺𝑘𝑑𝛺 −
∑

𝑒∈𝛤ℎ
∫𝑒

[[𝑵]]𝑇 𝒕∗𝑘𝑑𝛤 , (22)

1
𝑑𝑡2

𝑴𝒖𝑘+1 = 𝑹𝑘 −
∑

𝐸∈𝛺
𝑭𝐸

𝑘 − 1
𝑑𝑡2

𝑴(𝒖𝑘−1 − 2𝒖𝑘) (23)

where 𝑩𝑘 is the strain–displacement matrix at step 𝑘. It should be noted
that there is no need to assemble the stiffness matrix 𝑲 as Eqs. (20)–
(23) are solved explicitly. Internal forces are computed at the level of
the non-overlapping subdomains. However, since explicit methods are
only conditionally stable, an adequately small integration time step 𝑑𝑡
must be selected to ensure the stability of the solution. An estimation
of the critical stable time step is derived as in [34]:

𝑑𝑡𝑐𝑟𝑖𝑡 = 𝑚𝑖𝑛𝑗

⎛

⎜

⎜

⎜

⎝

2
√

𝜆𝑚𝑎𝑥𝑗

⎞

⎟

⎟

⎟

⎠

(24)

where 𝜆𝑚𝑎𝑥𝑗 is the maximum eigenvalue of the stiffness matrix. The
upper bound at a node 𝑗 enclosed by subdomain 𝐸𝑗 is calculated by:

𝜆𝑚𝑎𝑥𝑗 ≤ 𝑚𝑗𝑐
2
‖𝑪‖

2
𝐹 (25)

where 𝑚𝑗 is the number of neighbouring points in the support domain
of point 𝑗 and 𝑐2 = 𝜆+2𝜇

𝜌0
is the dilatation wave speed squared with 𝜆.

In this instance, 𝜆, 𝜇 are the Lamé parameters and ‖𝑪‖

2
𝐹 is the square

of the Frobenius norm of the FPM derivatives matrix 𝑪 from Eq. (12).
It should be noted that the numerical flux correction term affects the
numerical high-frequency eigenmodes [35]. Therefore, the critical time
step stability criterion must be modified. As described in [35], reducing
the critical stable time step by the square root of the penalty coefficient
is required. Therefore, Eq. (24) is updated to:

𝑑𝑡𝑐𝑟𝑖𝑡 =
1
√

𝑝
𝑑𝑡𝑐𝑟𝑖𝑡, 𝑝 > 0 (26)

3. Validation case studies

In this section, the explicit total Lagrangian FPM was employed to
solve several validation case studies encompassing both 2D and 3D
domains. The proposed method was evaluated in simulations of finite
deformation at different levels of extension and compression. This type
of finite deformation is typically expected in biomedical applications
(i.e., catheter ablation, robotic surgery) which are the main applications
in our interest. In all simulations, hyperelastic material behaviour was
considered using the standard neo-Hookean constitutive model with
near-incompressibility. The strain energy density of this model was
given in terms of the reduced invariants by:

𝑊 (𝐽1, 𝐽3) =
𝜇
2
(𝐽1 − 3) + 𝐾

2
(𝐽3 − 1)2 (27)

here 𝜇 is the material’s shear modulus, 𝐾 denotes its bulk modulus,
nd 𝐽1, 𝐽3 denote the first and third reduced invariants. The solu-
ions obtained from FPM were compared with solutions obtained from
EM using nodally-integrated simplicial elements to avoid volumetric
ocking [36]. To ensure a one-to-one comparison, the nodes of the
EM meshes were used for the FPM discretization. The discretization
ubdomains were generated using a dual polyhedral mesh generation
lgorithm [37,38]. Comparison was performed measuring the normal-
zed root mean square error (𝑁𝑅𝑀𝑆𝐸) of the obtained displacements
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Fig. 2. Deformation of a 2D hyperelastic material using the explicit total Lagrangian Fragile Points Method (FPM) without interior penalty numerical flux correction (𝑝 = 0). The
inconsistency of the solution is evident due to the discontinuity of the FPM trial and test functions.
.

from both FPM and FEM, which is given by:

NRMSE =

√

√

√

√

√

√

𝑛
∑

𝑗=1

(

𝑢ℎ𝑗 − 𝑢𝑟𝑒𝑓𝑗

)2

𝑛
max
𝑗

𝑢𝑟𝑒𝑓𝑗 − min
𝑗

𝑢𝑟𝑒𝑓𝑗

(28)

where 𝑢ℎ denotes the numerical solution obtained either by FPM or
FEM, 𝑢𝑟𝑒𝑓 the reference solution, and 𝑛 the number of nodes of the
discretization. Furthermore, the convergence rate (𝑞) was obtained for
both FPM and FEM by calculating the slope of the log–log plot of the
𝐿2 norm of the error against the space resolution ℎ. The same time
integration step was used for both FPM and FEM simulations. In each
case it was set equal to the critical time step given by Eq. (24). All
simulations were performed on a laptop with Intel® Core™ i9-12900H
CPU and 32 GB RAM.

3.1. Penalty coefficient effect on interior penalty numerical flux correction

In this case study, the effect of the penalty coefficient (𝑝) on
the interior penalty numerical flux correction was evaluated. Two
simulation scenarios of a 2D neo-Hookean material with dimensions
10 × 4 m (nodes: 125) undergoing 20% extension and 20% compression
were considered. Material density 𝜌 = 1000 kg∕m3, Young’s modulus
YM = 3 kPa, and Poisson’s ratio 𝜈 = 0.495 were set. The material was
constrained at 𝑥 = 0 m applying zero displacement conditions 𝑢𝑥 = 0
m, 𝑢𝑦 = 0 m. At 𝑥 = 10 m, the displacement condition 𝑢𝑥 = 2 m
was applied for the case of constrained extension, while 𝑢𝑥 = −2 m
was applied for constrained compression. Simulations were performed
using 𝑝 = {0, 10, 20, 50, 100}, where the obtained solution for 𝑝 = 100
was considered as the reference solution. When 𝑝 = 0, the solution was
discontinuous at the subdomain interfaces, leading to the inconsistency
problem observed in Fig. 2.

By increasing 𝑝, the discontinuity of the solution between the sub-
domains was reduced. For 𝑝 > 0, the consistency and accuracy were
restored as shown in Fig. 3. From the NRMSE evaluation of the solu-
tions with 𝑝 = 0 − 50 compared to the solution with 𝑝 = 100, accurate
results were obtained for 𝑝 ≥ 20. For the case of constrained extension,
NRMSE was found in the range [6.48e−5, 1.54e−2], while for constrained
compression, the NRMSE was found in the range [5.32e−5, 7.01e−2].
Recall from Eq. (26) that as 𝑝 increases, the critical stable time step is
reduced by

√

𝑝. In order to ensure good accuracy and efficiency in the
following examples, simulations were performed using 𝑝 = 20 as it was
found to be a good trade-off value between accuracy and computational
efficiency.
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Table 1
𝑁𝑅𝑀𝑆𝐸 and execution time report for Fragile Points Method (FPM) and Finite Element
Method (FEM) solutions for the unconstrained compression of a 3D hyperelastic block

Nodes h (m) NRMSE𝐹𝑃𝑀 t𝐹𝑃𝑀
a NRMSE𝐹𝐸𝑀 t𝐹𝐸𝑀

a

1639 1.09e−2 13.979e−4 1.39 2.416e−7 1
3843 8.02e−3 8.650e−4 3.81 1.907e−7 1.92
13144 5.19e−3 5.036e−4 19.93 1.317e−7 10.17
34064 3.73e−3 3.855e−4 83.2 0.969e−7 37.62

aFPM execution time (t𝐹𝑃𝑀 ) and FEM execution time (t𝐹𝐸𝑀 ) were normalized with
respect to t𝐹𝐸𝑀 = 2.84 s, obtained from the FEM solution of the mesh resolution with
h = 1.09e−2 m.

3.2. Unconstrained compression of a 3D hyperelastic block

In this case study, the unconstrained compression problem was
solved for a 3D hyperelastic block with dimensions 0.1 × 0.1 × 0.1
m3. Unconstrained compression was simulated applying the following
boundary conditions. 𝑢𝑥 = 0 m at 𝑥 = 0 m, 𝑢𝑦 = 0 m at 𝑦 = 0 m,
𝑢𝑧 = 0 m at 𝑧 = 0 m, and 𝑢𝑧 = 0.04 m at 𝑧 = 0.1 m. The block was
modelled as a neo-Hookean material with 𝜌 = 1000 kg∕m3, YM = 3 kPa,
and 𝜈 = 0.495. The problem was solved using FPM with 𝑝 = 20 and
FEM for four different mesh resolutions with h = 1.09e−2 – 3.73e−3,
where h was the average nodal spacing (see Table 1). The NRMSE of the
displacement was evaluated for both FPM and FEM solutions compared
to the reference analytical solution 𝑢𝑟𝑒𝑓 = −0.4𝑧, where 𝑧 denotes the
Z-component of the nodes coordinates at the reference configuration.
A qualitative comparison as well as the NRMSE convergence plots
for FPM and FEM solutions are provided in Fig. 4. The NRMSE for
the different mesh resolution levels and the execution time for the
computation of the FPM (t𝐹𝑃𝑀 ) and FEM (t𝐹𝐸𝑀 ) solutions as well as
the convergence rate 𝑞 are reported in Tables 1 and 4, respectively.. The
execution time was normalized with respect to the execution time of the
FEM solution for mesh resolution with ℎ = 1.09e−2 m (t𝐹𝐸𝑀 = 2.84 s).

3.3. Constrained extension of a 3D hyperelastic block

In this case study, the constrained extension of the 3D neo-Hookean
block in Section 3.2 was considered. Zero displacement boundary con-
ditions, 𝑢𝑥 = 0 m, 𝑢𝑦 = 0 m, 𝑢𝑧 = 0 m, were applied at 𝑧 = 0 m to
fully constrain the bottom surface of the block. The top surface was
constrained at 𝑋− and 𝑌− directions applying 𝑢𝑥 = 0 m and 𝑢𝑦 = 0
m at 𝑧 = 0.1 m. A fixed displacement 𝑢𝑧 = 𝑔, where 𝑔 = 0.06, 0.1, 0.2 m
was applied at 𝑧 = 0.1 m to simulate the extension of the block by 60%,
100%, and 200% of its initial height, respectively. FPM solutions were
obtained using 𝑝 = 20 and compared to solutions obtained from FEM
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Fig. 3. Deformation of a 2D hyperelastic material at 20% extension (top) and 20% compression (bottom) using the explicit total Lagrangian FPM with interior penalty numerical
flux correction with penalty coefficient (a) 𝑝 = 20 and (b) 𝑝 = 100. (c) 𝑁𝑅𝑀𝑆𝐸 for solutions with 𝑝 = 0 − 50 compared to a solution with 𝑝 = 100 for 20% extension (red square)
and 20% compression (blue bullet).
Fig. 4. (a) 40% unconstrained compression of a 3D hyperelastic material using FPM (triangle) and FEM (square) for mesh with h = 1.09e−2 m. (b) 𝑁𝑅𝑀𝑆𝐸 of the displacement
(𝑢𝑧) obtained by FEM (black bullet) and FPM (blue square) for meshes with h = 1.09e−2 – 3.73e−3 m compared to the analytical solution 𝑢𝑧 = −0.4𝑧, where 𝑧 denotes the z
coordinate of the mesh nodes at the reference configuration.
for all the mesh refinement levels. Since an analytical solution was not
available for this problem, the NRMSE for both FPM and FEM solutions
was computed compared to a reference solution for a dense mesh with
80220 nodes and h = 2.79e−3 m. Prior to the NRMSE calculation,
the FPM and FEM solutions for all the mesh refinement levels were
mapped to the dense reference mesh using the Moving Least Squares
approximation [39]. The NRMSE convergence plots are provided in
Fig. 5.

From the obtained NRMSE values for the different mesh refinement
levels (see Table 2), the NRMSE convergence of FPM solution was in
closer agreement with FEM compared to Section 3.2. This was mainly
due to the increased mesh distortion in this example leading to numer-
ical accuracy deterioration in the FEM solution. The convergence rate
for both methods is given in Table 4. In Fig. 6, the mean strain energy
density (SED) for the FPM and FEM simulations are provided where
it is observed that SED is decreasing as the discretization resolution
increases for both simulation methods. In Fig. 7a the stress distribution
for FPM and FEM solutions is given for the case of 100% extension.
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Table 2
𝑁𝑅𝑀𝑆𝐸 report for FPM and FEM solutions for the constrained extension of a 3D
hyperelastic block at 60%, 100%, and 200% of its initial height.

h (m) NRMSE𝐹𝑃𝑀 NRMSE𝐹𝐸𝑀

60% 100% 200% 60% 100% 200%

1.09e−2 1.11e−2 1.28e−2 1.63e−2 9.25e−3 1.01e−2 1.08e−2
8.02e−3 7.95e−3 9.63e−3 1.37e−2 6.29e−3 6.86e−3 7.29e−3
5.19e−3 3.68e−3 4.46e−3 7.28e−3 2.86e−3 3.22e−3 3.75e−3
3.73e−3 1.35e−3 1.64e−3 2.95e−3 1.15e−3 1.28e−3 1.55e−3

FPM stress values are higher from FEM by up to 15%. However, as can
be seen in Fig. 7b, as the extension level increases the max stress of
FEM becomes larger than the max stress of FPM.

3.4. Constrained compression of a 3D hyperelastic block

In this case study, the setup of Section 3.3 was used to simulate
constrained compression of 20%, 40%, and 60% of the initial height
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Fig. 5. (a) 100% constrained extension of a 3D hyperelastic material using FPM (triangle) and FEM (square) for mesh with h = 1.09e−2 m. (b) 𝑁𝑅𝑀𝑆𝐸 of the displacement
field (𝒖) obtained by FEM (black bullet) and FPM (blue square) for meshes with h = 1.09e−2 – 3.73e−3 m compared to the solution for the reference mesh with h = 2.79e−3 m
at 60%, 100%, and 200% extension of the block’s initial height.
Fig. 6. Mean strain energy density (SED) for (a) 60%, (b) 100%, (c) 200% constrained extension obtained by FEM (black bullet) and FPM (blue square) for meshes with h =
1.09e−2 – 3.73e−3 m.
by applying the fixed displacement boundary condition 𝑢𝑧 = −𝑙, where
𝑙 = 0.02, 0.04, 0.06 m and 𝑧 = 0.1 m at the top surface. The same material
properties and zero displacement boundary conditions as in Section 3.3
were applied in this scenario. Similarly, NRMSE and mean SED were
computed for FPM and FEM solutions, as well as the convergence rate;
NRMS convergence and SED plots are provided in Figs. 8 and 9.

NRMSE values for FPM and FEM solutions of the constrained com-
pression problem are given in Table 3, while the convergence rate is
reported in Table 4. It is shown that the error has the same order of
magnitude for FPM and FEM solutions for the cases of 20% and 40%.
However, as can be seen in Fig. 8a, the FEM solution at 40% compres-
sion leads to highly distorted elements, especially at the corners of the
geometry (square markers out of the deformed geometry). For 60%
compression, FPM continues producing a smooth deformation state,
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see Fig. 10. However, NRMSE increases by one order of magnitude
compared to the 20% and 40% compression cases. However, it should
be noted that FEM solutions could not be obtained for 60% since FEM
could not converge for a compression rate higher than 40%.

4. Discussion

Meshless methods have demonstrated their suitability compared
to FEM for the large deformation of hyperelastic materials since the
latter suffers from accuracy deterioration due to mesh distortion [2,3].
However, common meshless methods are usually more computationally
expensive than FEM and require additional treatment for the exact
imposition of boundary conditions. In this work, the Fragile Points
Method (FPM) was considered for large deformation simulations as it
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Fig. 7. (a) Stress distribution at 100% constrained extension for FPM (left) and FEM (right) simulations, (b) max stress plot for FPM (blue) and FEM (black) for 60%, 100%, and
200% constrained extension.
Fig. 8. (a) 40% constrained compression of a 3D hyperelastic material using FPM (triangle) and FEM (square) for mesh with h = 1.09e−2 m. (b) 𝑁𝑅𝑀𝑆𝐸 of the displacement
field (𝒖) obtained by FEM (black bullet) and FPM (blue square) for meshes with h = 1.09e−2 – 3.73e−3 m compared to the solution for the reference mesh with h = 2.79e−3 m
at 20%, 40%, and 60% compression of the block’s initial height. Note that FEM is unable to converge for compression larger than 40%.
Table 3
𝑁𝑅𝑀𝑆𝐸 report for FPM and FEM solutions for the constrained compression of a 3D
hyperelastic block at 20%, 40%, and 60% of its initial height. Note that FEM failed to
converge for 60% constrained compression.

h (m) NRMSE𝐹𝑃𝑀 NRMSE𝐹𝐸𝑀

20% 40% 60% 20% 40% 60%

1.09e−2 8.59e−3 1.34e−2 7.44e−2 9.03e−3 1.27e−2 –
8.02e−3 5.28e−3 8.74e−3 7.36e−2 6.18e−3 9.51e−3 –
5.19e−3 2.59e−3 4.39e−3 6.76e−2 3.17e−3 5.54e−3 –
3.73e−3 1.14e−3 2.11e−3 5.43e−2 1.46e−3 2.64e−3 –

delivers the advantages of meshless methods while overcoming their
limitations. FPM is a novel meshless method which employs simple
polynomials, which are local and discontinuous, as trial and test func-
tions. Compared to other meshless methods, it has the advantage of
simple and exact imposition of boundary conditions as in FEM. More-
over, the approximation is performed on compact support domains
with simple trial and test functions that allow for accurate results with
low-order integration. Therefore, the computational overhead of other
meshless methods is significantly reduced for FPM. However, due to
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Table 4
Convergence rate 𝑞 for FPM and FEM solutions for
validation case studies 3.2–3.4.

Deformation 𝑞𝐹𝑃𝑀 𝑞𝐹𝐸𝑀

Unconstrained
compression,
3.2

40% 1.79 2.03

Constrained
extension, 3.3

60% 2.02 2.03
100% 1.96 1.98
200% 1.81 1.61

Constrained
compression,
3.4

20% 1.91 1.74
40% 1.83 1.42
60% 0.75 –
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Fig. 9. Mean strain energy density (SED) for (a) 20%, (b) 40%, (c) 60% constrained compression obtained by FEM (black bullet) and FPM (blue square) for meshes with h =
1.09e−2 – 3.73e−3 m. Note that FEM solution is not available for 60% compression since FEM is unable to converge for compression larger than 40%.
Fig. 10. 60% constrained compression of a 3D hyperelastic material using FPM
(triangle) for mesh with h = 1.09e−2 m. Note that FEM fails to produce a solution for
this amount of compression.

the discontinuity of trial and test functions in FPM, it is necessary to
apply an interior penalty numerical flux correction to obtain consistent
and accurate results. Since explicit time integration was used for the
formulation of the total Lagrangian algorithm, the critical stable time
step had to be reduced by the square root of the penalty coefficient (𝑝)
to ensure stability. Therefore, the value of 𝑝 should be chosen carefully
to obtain accurate results without significantly reducing efficiency. In
Section 3.1, different values of 𝑝 = 0−100 were investigated and 𝑝 = 20
was found to be a good trade-off value between accuracy and efficiency.

The computational time of FPM compared to FEM was evaluated
in Section 3.2. It was found that 𝑡𝐹𝑃𝑀 = 𝛾𝑡𝐹𝐸𝑀 , with 𝛾 ∈ [1.39, 2.2]
being the FPM computational overhead which was mainly due to the
evaluation of the first Piola–Kirchhoff stress tensor twice at each inter-
face (𝑷 +, 𝑷 −) during the computation of the interior penalty numerical
flux correction at each integration time step. It should be noted that
FPM execution time was compared with FEM execution time for FEM
simulations employing simplicial elements. It is expected that if higher
order elements were to be used, the FPM computational overhead
should be lower compared to FEM. Therefore, it can be claimed that
FPM is an efficient meshless method for large deformation simulation
of hyperelastic materials.
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In terms of accuracy, the performed experiments verified our initial
hypothesis that FPM is a promising alternative to FEM when large mesh
distortion occurs during deformation. Computing the normalized root
mean square error and the convergence rate 𝑞, it was observed in case
study 3.2 that FEM had superior convergence compared to FPM for the
simple case of the unconstrained compression of a hyperelastic block.
This was expected as the mesh distortion was not severe in this case.
However, when cases with higher mesh distortion were considered,
e.g. case studies 3.3 and 3.4, the NRMSE convergence of FEM was
significantly reduced by four orders of magnitude. In contrast, the
same order of magnitude was maintained for FPM convergence in all
case studies. Most importantly, the FPM convergence was maintained
even for the extreme cases of 200% extension and 60% compression
of the initial height of the hyperelastic block. However, FEM failed to
converge for compression rates larger than 40%.

The simple neo-Hookean constitutive model was used in each case
study despite it not being suitable for very large deformations. Nev-
ertheless, FPM was able to produce smooth solutions even for the
extreme deformation cases at 200% extension and 60% compression.
The obtained results from this study demonstrated the capacity of
the FPM implementation of the explicit total Lagrangian algorithm to
simulate large deformations even for cases where large mesh distortion
was involved and FEM failed to provide an accurate solution.

5. Conclusion

In this work, the Fragile Points Method (FPM) was employed to
derive the explicit total Lagrangian algorithm and simulate the defor-
mation of hyperelastic materials undergoing large deformation. Vali-
dation case studies were performed to evaluate the method against the
standard Finite Elements Method (FEM). The results revealed that when
mesh distortion is involved, FEM accuracy is deteriorated as expected,
but FPM retains its accuracy. Moreover, FPM has minimal computa-
tional overhead and it leads to smooth solutions even for extreme
deformation scenarios where FEM fails to converge. Therefore, we can
conclude that FPM is a suitable meshless alternative to FEM for finite
deformation of hyperelastic materials, especially for the simulation of
severe deformation.

In future work, the proposed algorithm will be used to simulate soft
tissue deformation during cardiac surgery procedures (e.g., catheter
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ablation) and cardiac electromechanics. It is also expected the proposed
algorithm will be evaluated with more sophisticated constitutive ma-
terials such as the Holzapfel–Gasser–Ogden [40] and Guccione [41]
constitutive models. In the context of soft tissue simulation where time
restrictions of the corresponding clinical application may apply, the
work presented in [42] is of great interest. The use of neural networks
as function approximators was proposed to accelerate the explicit total
Lagrangian algorithm by allowing the use of a time step up to 20
times larger than the critical stable time step. It is expected that by
using the explicit total Lagrangian FPM for training data generation,
the neural network could generate accurate results for a wide range of
deformations.
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