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Abstract: The need for a greener and more sustainable energy system evokes a need for more
extensive energy system transition research. The penetration of distributed energy resources and
Internet of Things technologies facilitate energy system transition towards the next generation of
energy system concepts. The next generation of energy system concepts include “integrated energy
system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy
systems can integrate multiple energy carriers with autonomous intelligent decision making. There
are noticeable trends in using the agent-based method in research of energy systems, including
multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy
system management with multi-agent system (MAS) modeling. The need for a comprehensive
review of the applications of the agent-based method motivates this review article. Thus, this
article aims to systematically review the ABM and MAS applications in multi-energy systems with
publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications
based on the details of agent implementations. MAS application papers in building energy systems,
district energy systems, and regional energy systems are reviewed with regard to energy carriers,
agent control architecture, optimization algorithms, and agent development environments. ABM
application papers in behavior simulation and policy-making are reviewed with regard to the agent
decision-making details and model objectives. In addition, the potential future research directions
in reinforcement learning implementation and agent control synchronization are highlighted. The
review shows that the agent-based method has great potential to contribute to energy transition
studies with its plug-and-play ability and distributed decision-making process.

Keywords: integrated energy system; multi-energy system; multi-agent system; agent-based
modeling; systematic literature review; optimization; muti-agent reinforcement learning

1. Introduction

In the context of global warming and fossil fuel depletion, energy system transitions
play an important role in future sustainable societies [1]. Thus, energy systems are experi-
encing fundamental evolutions, including transitioning to multi-energy carrier integration
and Internet of Things (IoT) penetrations. From the perspective of the organizational
structure, planning and operations of energy sub-sectors are usually performed in an inde-
pendent nature with consideration to only simple interactions [2]. In fact, technological
advancements in energy generation, conversion, and storage lead to strong interactions
with multiple energy sub-sectors. Some examples of such technologies include combined
heat and power (CHP) [3] or heat pumps (HP) [4,5]. The increasingly tight interactions
among energy subsectors sparked a novel method of integrating multiple energy sectors
for more comprehensive planning and operation of energy systems. Such energy systems
have also been termed as “multi-energy systems” in some studies [6,7]. A multi-energy
system (MES) represents a single holistic system integrated with multi-energy-carrier pro-
duction, conversion, and consumption. Figure 1 illustrates an example of a typical MES
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with key multi-energy technologies, including distributed generation units, CHP, and HP.
In addition, the term “integrated energy system” is also noted in some research [8–10] to
describe an energy system with multiple energy carriers.
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In comparison to traditional single energy carrier systems, MESs have three advan-
tages [7]: (1) encouraging renewable energy sources (RES) consumption with energy
conversion and storage ability, where excess energy generated by renewable resources
could be stored not only in electricity but also in other energy carriers; (2) accommodating
centralized and distributed energy sources (DER) through effective market interactions;
and (3) increasing system flexibility and resilience as it does not rely on a single energy
carrier, with the ability to shift to other energy carriers to meet the demand in the case of
an energy emergency.

Apart from integrating multiple energy carriers, there is also a trend of enabling
the intelligence of energy systems by deploying IoT technologies. Subsequently, such
energy systems are named “smart energy systems” [11,12]. IoT technologies enable fast and
bidirectional communication between energy system components, such as DER producers,
consumers, and storage units [13]. As a result, IoT technology penetration encourages the
decentralization of the decision-making process [14]. In this context, agent-based methods,
including multi-agent system (MAS) modeling and agent-based modeling (ABM), are
essential modeling frameworks for decision-making decentralization, as both MAS and
ABM utilize the concept of decentralized intelligent agents. The core concepts of intelligent
agents are discussed in Section 2.

There are existing articles published on the MAS applications in micro-grid control,
such as Tanjimuddin et al. [15], Priyadarshana et al. [16], and Coelho et al. [17], as well as
ABM application in the socio-technical transition of energy systems by Hansen et al. [18].
Nevertheless, there is a gap in comprehensively examining both MAS and ABM appli-
cations from the viewpoint of MES transitions. Thus, this gap motivates the need for a
systematic literature review. This article is particularly interested in the current appli-
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cations of agent-based methods in the energy transition process toward a multi-energy
system. This review has adopted a systematic literature review method, which utilizes
predefined protocols to systematically search literature in predefined databases with the
help of predefined inclusion and exclusion criteria [19–21]. The review question to be
answered include:

1. What is an intelligent agent?
2. What are the state-of-the-art applications of agent-based methods in MES transitions?
3. What are the sources, temporal, and thematic distributions of current research?
4. What are the key research topics?
5. How do agents make decisions?
6. How did current studies implement agent-based decision making?
7. What are future research directions?

To answer the above four review questions, this review will be organized into sev-
eral sections. Section 2 will discuss the core concepts of intelligent agents to answer
question 1. Section 3 will illustrate the systematic literature review methodology, including
the inclusion and exclusion criteria protocols. Sections 4 and 5 will demonstrate literature
distribution in journal source, publication date, and thematic distribution to answer ques-
tion 2 to 5. Section 6 will evaluate the agent-based methods in MES research to answer
question 6. Section 7 will discuss future research trends to answer question 7. Finally,
Section 8 will offer a summary and concluding remarks.

2. Background on Intelligent Agent Concepts

The intelligent agent concept emerged from artificial intelligence research [22–24]. In
the book, Artificial Intelligence: A Modern Approach, Russel and Norvig [23] (p. 38, third
edition) outlined the definition of an agent: “An agent is anything that can be viewed as
perceiving its environment through sensors and acting upon that environment through
actuators”. The environment is where an agent exists, containing information external
to the agent. The agent is able to observe the environment (perceiving) and alter the
environment (acting). The reasoning process after an agent perceives the environmental
information is the key part of artificial intelligence creation. Russell and Norvig named
such a process “rationality”. A rational agent should be able to maximize its performance
by selecting the appropriate actions based on its knowledge. Similarly, another valuable
publication in agent theory is by Wooldridge and Jennings [22], where an intelligent agent
possesses the following four attributes:

(1) Reactivity: agents are able to collect external environmental information or datasets
and execute timely responses to environmental changes with predefined actions.

(2) Autonomy: agents can operate on their own without direct human intervention.
(3) Pro-activeness: agents have an objective function or goal to guide their actions. Such

objective-oriented behavior indicates the dynamic behavior of an intelligent agent to
fulfill the objective in a dynamic environment.

(4) Social ability: agents are able to communicate with other agents through agent commu-
nication languages such as Knowledge Query and Manipulation Language [25] and
Foundation for Intelligent Physical Agent—Agent Communication Language [26].

For the sake of consistency, this review has adopted the definition of intelligent agents
by Wooldridge and Jennings [22] to describe the agents with rigorous reasoning ability.
The structure of such intelligence is shown in Figure 2. An intelligent agent comprises
of six modules: a data collection module, a goal module, a knowledge base module,
a communication module, a decision-making module, and an implementation module.
The decision-making module is the core module, as it is responsible for processing the
information provided by the data collection module (information from the environment),
the knowledge-based module (prior precept information), and the communication module
(information from other agents).
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The definition of a multi-agent system is straightforward: a system that consists of
multiple intelligent agents. The intelligent agents are distributed in the environment,
working on their individual objectives with predefined behavior programs. The distributed
nature of an MAS reveals its potential to solve complex problems by dividing global
problems into local problems. Intelligent agents will communicate with other agents
and use their respective knowledge bases to solve local problems. The division process
will result in a lower-cost solution than a centralized power entity solving the complex
global problem [27].

The distributed nature of MASs drew the attention of practitioners and researchers in
a wide range of disciplines. For example, MASs have been used in cloud computing [28–31]
and robotics [32–34]. Considering MAS applications in power systems, the IEEE Power
Engineering Society’s Intelligent System Subcommittee published a two-part publication
that evaluated the potential of MAS applications in power systems and outlined the
general guidance of MAS implementation [35,36] in the first part. In the second part,
McArthur et al. emphasized the importance of the Foundation for Intelligent Physical
Agents (FIPA) specification [37], as it could enhance MAS interoperability with other
systems or technological tools [38].

Similar to MASs, agent-based modeling (ABM) also utilizes the concept of the intel-
ligent agent with the decision-making ability to simulate the system. Bale, Varga, and
Foxon [39] examined energy systems through the lens of complex adaptive system (CAS)
theories and highlighted the great potential of using ABM in energy system research.
Another review which was written by Hansen, Liu, and Morrison [18] investigated the
socio-technical interaction with ABM in the energy transition process. The literature men-
tioned above has demonstrated the great value of ABM in energy system research. In the
literature, the term “agent-based modeling” and “multi-agent system” are sometimes used
interchangeably, as shown in reference [40]. Ringler, Keles, and Fichtner [41] discussed
the terminologies of agent-based methods in their review on ABM in smart electricity
grids and markets. They highlighted that ABM research focuses on understanding the
interactions within a CAS and the emergence pattern of the CAS. Therefore, the term
“agent-based modeling” and “multi-agent system” cannot be considered interchangeable
in this review article.
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3. Review Methodology

This review has evaluated articles on multi-energy system research using an agent-
based approach, including MASs and ABM. The Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) review protocol has been followed, with inclusion
of a checklist and a flow diagram [42]. Figure 3 shows the identification, screening, and
inclusion process of this review.
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3.1. Literature Identification

A preliminary review of related literature determined keywords used in the search
query. The search query had the form:

Boolean expression: A and {B and C or D}

where A, B, and C are search terms shown in Table 1.

Table 1. Search query keywords.

A B C D

Modeling method Primary energy carrier Other energy carrier System description

agent-based electricity Heat * multi-energy

multi-agent power gas integrated energy
“Heat *” indicate that it is a wildcard word for searching. Scopus and WoS search tool will return records with the
word “heat” and “heating”.
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The Boolean expression was applied to Scopus and Web of Science (WoS), as these
two databases are comprehensive and multi-disciplinary. The search request was per-
formed until the end of 2021 on both database websites. The query was conducted in
the TITLE-ABS-KEY search in Scopus and Topic Search (TS) in WoS, where records that
match the search query in title, abstract, and keywords were returned. The article search
returned 807 records, as shown in Table 2. Records with data entries authors, title, year,
source, publisher, article URL, type, and abstract were exported to EXCEL. After removing
duplicate records, there were 590 records that were passed to screening.

Table 2. Articles search results.

Web of Science Scopus

Search results 353 642
Records after removing duplicates 590

3.2. Literature Screening

The first step of screening removed conference proceedings, conference reviews, letters,
and book chapters, leaving peer-reviewed studies in the review database. The second step
was to remove records not written in English. The inclusion and exclusion criteria are
shown in Table 3

Table 3. Inclusion and exclusion criteria for records type and language.

Inclusion Exclusion

Records type Peer-reviewed journal articles Conference review, conference
proceedings, letter, book chapter

Language English Non-English

In the next step, an eligibility check is done. A total of 4 records were removed due to
paywalls, and 173 records were removed due to being off-topic after full-text review—the
inclusion and exclusion criteria in off-topic screening is shown in Table 4. Six studies were
added to the review database as they were identified in the references of review database
articles. The final database contained 80 articles.

Table 4. Inclusion and exclusion criteria for topic screening.

Inclusion Exclusion

Topic screening

subject: multi-energy system or
integrated energy system
method: multi-agent
methodology

subject: energy systems with only
one energy carrier
methods: methods other than the
multi-agent methodology

4. Article Source and Temporal Distributions

Section 4 reports the source and temporal distributions of the selected articles. The
sources revealed the key journals that could be considered publication outlets for future
research. The temporal distribution demonstrated the development of this research topic.

4.1. Article Source Distribution

The selected 80 studies were sourced from 36 journals, as shown in Table 5. The major
publication source was Applied Energy (10), Energies (6), the International Journal of Electrical
Power & Energy Systems (6), and Renewable and Sustainable Energy Reviews (4). The reminder
of the journals were sources for fewer than three selected studies.
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Table 5. Selected article source distribution.

2007 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Total

AIMS Energy 1 1
Applied Energy 1 2 2 3 1 1 10
Applied Science (Switzerland) 1 1
Applied Thermal Engineering 2 2
Building and Environment 1 1
Building Services Engineering Research and Technology 1 1
Building Simulation 1 1 1 3
Computers and Chemical
Engineering 1 1

Computers Environment and
Urban Systems 1 1

Ecological Economics 1 1
Electric Power Components and
Systems 1 1

Electric Power Systems Research 1 1 2
Energies 1 2 3 6
Energy 1 1 1 3
Energy and Buildings 1 1 1 3
Energy Conversion and
Management 1 1 1 3

Energy Policy 1 1 2
Environmental Impact Assessment
Review 1 1

Futures 1 1
IEEE Journal of Emerging and Selected Topics in Power Electronics 1 1
IEEE Transactions on Control
Systems Technology 1 1

IEEE Transactions on Industrial
Informatics 1 1

IEEE Transactions on Industry
Applications 1 1

IEEE Transactions on Smart Grid 1 1
IEEE Transactions on Sustainable
Energy 1 1 2

IET Generation, Transmission and Distribution 1 1
IET SMART GRID 1 1
International Journal of Electrical
Power and Energy Systems 1 1 1 3 6

Journal of Cleaner Production 2 1 3
Journal of Physical Agents 1 1
Proceedings of the IEEE 1 1
Renewable and Sustainable Energy
Reviews 1 2 1 4

Renewable Energy 1 1
Sensors 1 1
Sustainability (Switzerland) 2 2
Sustainable Cities and Society 1 1

4.2. Article Temporal Distribution

The earliest article was from Jackson in 2007 [43] in Energy Policy. Figure 4 shows
a noticeable trend in the publication of ABM and MAS applications in MESs, where the
number of publications has increased significantly in recent years. Due to the recent
advancements in IoT technologies, the distributed system is gaining popularity among
researchers. MAS is a valuable method for distributed energy system management. The
years 2020 and 2021 were notable for the agent-based method publications, with 16 and
20 articles published, respectively.
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5. Article Thematic Distribution

The energy system is a hierarchical system, where an energy system could be part
of a bigger energy system [44]. In the system hierarchy definition of Skyttner [45], parts
assemble into units that form components. The components further create a sub-system
which is a part of a system that is a portion of a macro-system. Figure 5 shows the
hierarchical nature of energy systems. The components, such as space heating and lighting,
build a system (building energy system) that is a part of a macro-system (a district energy
system). To extend this concept further, the district energy system could be a part of a
larger macro-system (a regional energy system). In this review, system boundaries are
based on spatial boundaries. The building energy system contains a single building, such
as a residential or commercial building, where the system boundaries stop at the building’s
exterior walls. The boundary of a district energy system or regional energy system stops
at the administrative district or regional boundaries. The MAS can be applied to manage
every level of the MES, such as home energy system automation, micro-grid design and
scheduling, and coordination of regional multi-energy networks. The difference is that the
agents represent different system components. Thus, the studies have been categorized
based on the level of the model’s spatial resolution, as it is systematic to report study
themes and model characteristics.

As discussed in Section 2, the agent-based methods considered in this review include
MAS and ABM. To reiterate, although both MAS and ABM research utilize intelligent
agent concepts, the respective research objectives are different. MAS research aims to
realizing distributed decision making. ABM research aims to study the emergence pattern
of complex adaptive systems. Therefore, the selected studies were allocated to one of
the two main categories: MAS applications or ABM applications, based on how authors
implement the agent-based method. There are two sub-categories for ABM: (1) behavior
simulation and (2) policymaking; and three sub-categories for MASs: (1) building energy
system management, (2) district energy system management, and (3) regional energy
system management. Figure 6 shows the theme classification process, in which each
selected study should be categorized with one of the sub-category topics. For instance, if a
study uses MAS to investigate the multi-energy micro-grid control, this study should be
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allocated to multi-agent system applications (main category)—district energy management
(sub-category). Figure 7 shows the temporal distribution of the themes from 2007 to 2021.
MAS-based energy system management in all three spatial resolution levels is gaining
popularity among the academic community.
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Figure 7. Temporal distribution of themes.

The review articles in the database are shown in Table 6. These review articles focus
on MAS applications in specific energy system spatial resolutions, such as building energy
systems (HVAC systems) or district energy systems (micro-grid systems). Thus, there is a
need for a comprehensive review of agent-based methods, including both MASs and ABM,
in various energy system spatial resolutions.

Table 6. Review articles in the database.

Source Year Review Focus

Labeodan et al. [38] 2015 MAS applications in the building energy management
system

Ahmad et al. [46] 2016 Computational intelligence in HVAC systems

Howell et al. [47] 2017 Energy system transitions and multi-agent
management

Khan and Wang [48] 2017 MAS control and optimization in micro-grids
Coelho et al. [17] 2017 MAS applications in micro-grids

Vázquez-Canteli and Nagy [49] 2019 Reinforcement learning applications in demand
response program

Priyadarshana et al. [16] 2019 MAS applications in micro-grids

Ma et al. [50] 2019 The MAS application of ontologies in the energy
system

5.1. Multi-Agent System Applications

Section 5.1 is organized as follows: Section 5.1.1 reviews the applications of MASs in
building energy system management; Section 5.1.2 reviews applications of MASs in district
energy systems management; Section 5.1.3 reviews the applications of MASs in regional
system management. The term management is used as an umbrella term to describe the
systems’ design, plan, and control of the systems.

5.1.1. Building Energy System Management

The building energy system is a multi-energy system, as occupants demand electricity,
heating, and cooling services. The key components of a building energy system usually
include appliance components (such as washing machines, dishwashers, and refrigerators),
HVAC components, and a gas boiler for domestic hot water usage. The smart building or
smart home concepts promote IoT adoption for intelligent control of distributed energy
resources and household appliances.



Energies 2023, 16, 2456 11 of 36

The earliest published article on building energy system management was by Conte
et al. [51] in 2009. Conte et al. proposed a framework for the cognitive construction of
agents in the building energy management system. In 2013, Zhao, Suryanarayanan, and
Simoes [52] designed a MAS control strategy with three agents: an electricity agent, a
heating agent, and a cooling agent responsible for optimizing each energy carrier service,
respectively. The decision making of the heating agent and the cooling agent is based on
energy cost minimization with the responding energy carrier. The decision making of elec-
tricity agents includes two objectives: minimizing the peak load and communicating with
grids (electricity grid and natural gas grid) for price updating. The agents’ optimizations
are achieved by the CAPLEX solver [53]. Wang et al. [54] proposed a MAS-based control
method for a building energy system with a combined cooling, heating, and power (CCHP)
system. The CCHP system contains thermal energy storage (chilled water storage tank)
to balance supply and demand mismatches. Ahrens, Kern, and Schmeck [55] adopted
the MAS-based building energy management system to improve the resilience of the
distribution grid by utilizing the multi-energy flexibility offered by smart home appliances.

Demand response (DR) or demand-side management (DSM) is a popular research
field in energy system management. DR or DSM is a management strategy to manage the
demand load based on the availability of the electricity supply. The selected articles show
that an MAS is a valuable approach to implementing the DR or DSM. Devia, Agbossou,
and Cardenas [56] adopted distributed co-evolutionary optimization algorithms with
agent-based architectures to reduce consumption profiles. The control strategy is divided
into two phases. The first phase is to extract and store energy use information in every
room along with temperature variance. The second phase is to control every heating
device in the house with distributed optimization. Other than cost reduction, the results
also show that the inclusion of thermal storage units could increase the overall system’s
efficiency. Vanhoudt et al. [57] conducted a lab test on the MAS-controlled residential
heat pump. This lab test aimed to examine the performance of heat pumps on peak load
shaving and self-consumption of renewable energy. The lab test results showed that the
peak load was reduced by 2% to 5%. However, due to more installation of switching, the
electricity consumption increased by 8% to 12%. In addition, the MAS control strategy
did not encourage renewable energy consumption, which requires further investigation.
Franceschelli, Pilloni, and Gasparri [58] proposed a MAS control architecture DSM on
thermostatically controlled loads (TCLs). The MAS enabled anonymous communication of
TCL agents via a network to retain the privacy of TCL internal temperatures. The MAS
optimization was based on a dynamic consensus algorithm.

The HVAC control strategy is one of the key research areas in building energy system
control. In the selected articles, a number of distributed control strategies were proposed
based on MASs. Yu et al. [59] developed a multi-agent deep reinforcement learning HVAC
control system for multi-zone commercial buildings to control the total energy cost with
consideration for random zone occupancy, thermal comfort, and indoor air quality. This
energy cost control problem was reformulated to a Markov problem which was solved by
multi-agent deep reinforcement learning with a multi-actor–attention–critic approach. Yu
et al. remarked that the simulation with real-world data demonstrated this algorithm’s
effectiveness, robustness, and scalability. González-Briones et al. [60] proposed a multi-
agent building temperature management system to increase energy usage efficiency. On the
physical side, the authors deployed temperature monitoring and occupancy data sensors
with wireless sensor networks to gather data for system optimization. On the logic side,
the multi-agent system processes collected data and returns an optimized HVAC system’s
control strategy. The case study showed that such a control strategy could achieve an aver-
age energy savings of 41%. Cai et al. [61] proposed a general multi-agent control approach
for the HVAC system. This approach consists of an agent definition framework and control
optimization procedure. The agents are required to define a collection of objective functions
and constraints based on the framework guidelines. The framework then formulates the op-
timization problem based on the consensus algorithms, including the sub-gradient method
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and alternating direction multiplier method (ADMM) [62]. Cai et al. [61] also pointed out a
potential issue in implementing the consensus-based algorithm, in which the intermediate
iterations could be con-consensus. Thus, the algorithm could not reach a consensus point
when the decision time had been reached. Li, Li, and Wang [63] developed a multi-agent
control scheme for HVAC system on an IoT-based wireless sensor network. This scheme
balances the HVAC optimization performance and power consumption of battery-powered
sensors by solving the multi-objective optimization problem with ADMM. The power
consumption of the sensors is reduced by using the event-driven control approach rather
than the time-driven optimization approach.

5.1.2. District Energy System Management

The district energy system consists of distributed energy generation, energy con-
version, and energy storage systems of a district or a community (building complexes,
universities) [7]. For example, the multi-energy micro-grid [64–66] is a type of district
energy system that has gained increasing attention from researchers.

• District energy system design

The studies in district energy system design focus on the design optimization of district
energy systems. In 2013, Kyriakarakos et al. [67] developed an energy management system
for optimal component sizing of poly-generation micro-grids, which can meet the con-
sumers’ needs in remote areas with potable water, hydrogen, space heating, space cooling,
and electricity. Multi-agent-based DSM is embedded in the management system for load
shedding when generation capacities cannot meet the demands. The MAS is designed in a
hierarchical manner. The components in a building, such as lighting and refrigeration, are
controlled by the intelligent agents which are supervised by an upper-level building control
agent. The component control agents are responsible for disconnecting the virtual power
lines when load shedding is required. In 2015, Karavas et al. [68] further developed the
agent-based poly-generation micro-grid management system from a hierarchical architec-
ture to a decentralized architecture. Decentralization means that the optimization does not
require a supervisory agent for central optimization. The component agents communicate
with each other to update the system parameters, such as surplus power, consumed power,
or remaining capacity (battery agent). The energy management system aims to minimize
net present cost (optimal design) and optimize fuzzy cognitive map weights (optimal con-
trol). The system optimization results compared with a centralized management system,
showing that the decentralized approach presented a 2% lower net present cost than the
centralized approach. Later in 2017, Karavas, Arvanitis, and Papadakis [69] investigated
the multi-agent decentralized management of the poly-generation micro-grid with game
theory. The previous decentralized management system is a cooperative case where agents
work cooperatively to minimize the global cost function. However, the agents could have
conflicting interests, so agents interact with each other in a non-cooperative way. Thus,
Karavas, Arvanitis, and Papadakis used a non-cooperative game model with Nash equilib-
rium [70] to simulate the competitiveness between electrolyze agent and desalination agent
as both of them compete to consume more power. Another cooperative game is modeled
with fuel cell and battery agents since these two agents aim to meet corporations’ load
demand. Compared to the previous purely cooperative management system, the results
showed that the game theory-based approach lowered the cost by 1.62%.

Wang et al. [71] proposed a game theory-based optimal component sizing method for
the multi-energy district energy system. In the district energy system configuration, Wang
et al. used compressed air energy storage (CAES) for electricity and thermal storage instead
of using batteries and thermal tanks. Each component agent’s utility function is defined
by the net present value function in both cooperative games and non-cooperative games.
The Shapley value [72] and Nash equilibrium were used to solve the cooperative and non-
cooperative game models, respectively. The results showed that coalition formation results
in better economic outcomes for individual agents and the system. Jin et al. [73] proposed
a game theory-based component optimization method for a multi-energy micro-grid. The
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main contribution of the proposed method is the incorporation of uncertainties in the
renewable energy generation with a probability density function. Moreover, the utility
function of agents was set as annualized economic profit during the whole life cycle. It has
also been noted that future research could focus on incomplete information games when
information asymmetry occurs.

• Fully decentralized district energy system control

The fully decentralized control approach does not require a central agent for op-
timization or management. The optimization work is achieved by each agent solving
their objective function. In 2015, Harb et al. [74] introduced a decentralized day-ahead
scheduling strategy for a multi-energy micro-grid for cost minimization with Mixed-Integer
Linear Programming (MILP). The global MILP problem is decomposed into a series of
local problems with Dantzig–Wolfe decomposition [75]. The local problems are, in fact, the
local objective function for each agent, which are solved by the iterative column generation
procedure [76]. After comparing the decentralized control with a centralized scheduling
approach, it has been showed that the centralized approach offers a better solution than
the decentralized approach. Nonetheless, the centralized approach computation time
increases exponentially with the increasing number of agents. Thus, the decentralized
approach has distinctive advantages in system scalability as the decentralization reduces
the computation time required. Blaauwbroek et al. [77] proposed a multi-agent-based
decentralized algorithm with mixed-integer quadratic programming (MIQP) to balance
the distributed energy resources and flexible appliances, such as HP and CHP. Li et al. [78]
proposed a decentralized control method for coupled heat and power systems. This control
method involves two first-order consensus protocols [79] for heat supply optimization and
electricity supply optimization. The optimization is carried out in an alternating iterative
way so that electricity supply and heat supply converge to optimal solution alternatingly.
The decentralized method results in a better solution than the centralized method with
Langrangian relaxation [80].

Nguyen and Ishihara [81] proposed decentralized management for household clusters
with fuel cells (FCs) and CHP with peer-to-peer trading architecture. The non-convexity
problem of fuel cell operation is addressed by linearization of the FC consumption and
production. As a result, the peer-to-peer trading problem could be solved with the ADMM
algorithm. Alishavandi and Moghaddas-Tafreshi [82] presented a decentralized operation
strategy for multi-energy micro-grids with interactive clearing energy prices. The clearing
price is determined by agent communication between generation agents and consumption
agents. In each time step, the clearing price is used in calculating each agent’s profit
function and the system’s social welfare. In addition, the gradient projection method [83]
was used for profit function and social welfare optimization. The results showed that
this decentralized method had slightly better performance in cost reduction than the
centralized method as PV agents tended to maximize their own profit. However, social
welfare decreased when an individual agent’s profit increased. Shabani and Moghaddas-
Tafreshi [84] presented a similar decentralized approach with interactive clearing prices
to optimize a multi-energy system micro-grid. The agents were programmed to optimize
the social welfare at the first stage, then to optimize their own profit. The results agreed
with Ref. [82] in that the fully decentralized approach had lower social welfare but higher
individual profits than the centralized approach. Shabani and Moghaddas-Tafreshi [84]
also observed that the demand response program was able to increase both system social
welfare and agent profit. Moreover, an investigation of the peer-to-peer trading scheme in
a decentralized model was suggested for future research.

Samadi, Badri, and Ebrahimpour [85] proposed a decentralized management strategy
with reinforcement learning (RL). The optimal agent behavior policy was evaluated with
the action–value function (Q-function) [86,87]. The agents are able to find the optimal be-
havior by interacting with each other in a competitive environment. The trade-off between
exploration and exploitation is an important consideration for an agent to determine the
best action. Thus, Samadi, Badri, and Ebrahimpour [85] compared three action selection
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methods, including soft-max, epsilon-greedy, and upper confidence bound methods [87].
They showed that the soft-max method had the best performance over the other methods.
Kumari and Tanwar [88] extended the Q-leaning-based RL management on micro-grids
with blockchain communication. The communication and agreement among the stakehold-
ers are achieved based on blockchain encrypted smart contracts to ensure privacy. Instead
of using the discrete Q-learning method, Dong et al. [89] proposed multi-energy micro-grid
management with the asynchronous advantage actor–critic algorithm based on deep RL,
which was first introduced by Mnih et al. [90]. The result shows that the asynchronous
algorithm could shorten the training time by 30% compared with the deep Q network.

• Multi-energy micro-grid management

The multi-energy micro-grid management is a trendy research field where researchers
investigate the optimal management strategies. Anvari-Moghaddam et al. [91] proposed
an optimal control scheme for a building-integrated micro-grid with distributed generation
units and demand response. Micro-CHP, building energy storage, and radiant floor heat-
ing/cooling systems are the constituents of building energy systems. A mixed objective
function was formulated to optimize the energy operation cost and convenience level by
building agents. At the micro-grid level, a central grid battery is responsible for compensat-
ing for the energy mismatch. The central battery agent was optimized with the Bayesian
reinforcement learning (BRL) algorithm [92]. The proposed BRL method was compared
with Q learning [93] and time-based reinforcement learning [94]. The results showed
that the proposed BRL method leads to faster learning and higher reward than the other
methods. Kolen et al. [95] also proposed a control scheme with the building and micro-grid
combined bi-level optimization. The building level optimization aims to minimize the total
number of switch events. The operation functions (peak-to-valley distance) on the grid
level are optimized with decentralized agent interactions by updating the local energy fluc-
tuation function. The optimization work is carried out by the CPLEX optimization studio
from IBM [53]. The performance of the proposed bi-level scheme is a trade-off between
building-level optimization and grid-level optimization due to the narrowed search space.
Hutty, Dong, and Brown [96] investigated the feasibility of reversible solid oxide cells in
the microgrid operation with multi-agent simulation in the UK and Texas. The authors
suggested that, in future research, simulated battery and reversible solid oxide cells as a
hybrid energy storage system could be considered and also how hybrid storage systems
perform compared to traditional battery storage systems could be investigated.

Moghaddas-Tafreshi et al. [97] proposed a multi-energy micro-grid optimal operation
scheme considering uncertainties in renewable energy generation and energy demand, as
well as a demand response program. The uncertainties in renewable energy generation
were modeled with a Weibull distribution [98] of wind speed in wind turbine agents. The
load agents simulated uncertainties of the electrical and thermal load with the normal
distribution function. Both wind turbine and load agents generate 1000 scenarios in a Monte
Carlo simulation each hour to evaluate the micro-grid performance. The demand response
program from [99] is implemented in the load agent program. Li et al. [100] established a
three-layer control model for microgrid management with the improved particle swarm
optimization algorithm. Li et al. combined the adaptive weight and chaotic search into the
PSO algorithm to avoid the optimal local solution. The results showed that the proposed
algorithm had a much smaller computation standard deviation than the original PSO and
chaotic search PSO. Liu, Li, and Ge [101] proposed a hierarchical control scheme for a multi-
energy micro-grid considering the multi-agent game. In the first layer (decision layer),
the generation agents participate in a static cooperative game with complete information
to maximize their own profit. The Nash equilibrium point of the cooperative game is
solved by the evolutionary game theory combined Q-learning method [102]. Khan, Wang,
and Xiong [103] proposed a hierarchical multi-agent control architecture on the multi-
energy micro-grid with three layers. In formulating the optimization problem, harmful
gas emissions and multi-energy generation costs were considered in the objective function.
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Farinis and Kanellos [104] proposed a micro-grid management system with a building
system operator with consideration of plug-in EVs as energy storage components.

Two of the selected articles investigated the operation strategy of an energy hub.
Lin et al. [105] proposed a multi-agent energy hub operation control considering EV
penetration rate and EV behavior simulation. EV agents simulated the travel patterns and
charging patterns, including the uncontrolled, rapid patterns. The behavior simulation
result then was passed to the energy hub control system as electricity demands. The
vehicle-to-grid (V2G) technology was considered in operation optimization by adding
the V2G cost function to the global optimization function. The results showed that the
demand brought by increased EV penetration could be met with gas turbines. Moreover,
the electricity and cooling prices were lower because of the V2G technology in the reference
case. Zeng et al. [106] proposed an optimal dispatch scheme of an energy hub considering
the integrated demand response program. The demand response program is achieved by
designing the user agents’ objective function, which minimizes the cost of electric, thermal,
cooling load, and EV cost. The EV charging and discharging behaviors are considered
with a random variable to indicate the charging state of the EV. The optimal dispatch
of the energy hub was formulated into a multi-objective optimization problem which
includes minimization of user cost, maximization of generator profit, and maximization
of operating income. Zeng et al. used the non-dominated sorting genetic algorithm-III as
elaborated in Ref. [107], to find the Pareto frontier. The optimal solution of each agent in
the Pareto frontier was obtained with the technology for order preference a, similar to the
ideal solution method [108].

• District energy management with district heating system and heating clusters

The following two paragraphs cover the selected articles which focused on studying
the district management with district heating systems and clusters of TCLs. In 2017, Haque
et al. [109] proposed a unified multi-agent control strategy to manage the district electricity
distribution network congestion and voltage limit with PVs and HPs. Bünning et al. [110]
proposed a distributed control method for bidirectional low-temperature networks (BLTN).
BLTN is a new district heating and cooling network concept that promises more network ef-
ficiency. The temperature set point is optimized by the simplex Nelder-Mead method [111]
in Python. The consumer and producer agents are distributed in the network, tracking
the local set point. Based on the difference between the optimized set point, the agents
calculate the local cost functions and make proposals to the markets. The centralized broker
evaluates all the proposals and chooses the most cost-efficient combination to implement.
The results showed that the BLTN with the proposed control method could reduce energy
consumption by more than 50% in comparison to conventional district heating systems.

Claessens et al. [112] proposed an optimization control approach for TCL-connected
district heating systems. This approach combined reinforcement learning and a market-
based multi-agent system. After aggregating the TCL cluster state information, the TCLs
select the optimal action under the action policy with the Fitted Q-Iteration batch reinforce-
ment learning algorithm [113]. Then, the optimized actions were dispatched to the cluster
of TCLs with a market-based multi-agent system. Claessens et al. [112] highlighted a future
research direction to investigate autonomous feature extraction techniques. Behboodi [114]
introduced a transactive load control scheme for TCLs in real-time retail market energy
prices. Each TCL is aggregated with an agent to bid in the retail market based on tempera-
ture and anticipated energy price state information. This scheme requires less accuracy in
price forecasting than a demand profile scheme since the proposed scheme only requires
the mean and volatility of energy price in a specific time window. The summary of the
district energy management is shown in Table 7.
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Table 7. Summary of characteristics of district energy system studies.

Author Year
Energy Carrier Storage Type Focused Topic Approach PlatformElectricity Heating Cooling Gas Hydrogen EV

District level design

Kyriakarakos et al. [67] 2013 X X X X
Electric storage
and hydrogen
storage

Optimal design of
multi-energy micro-grid
with demand-side
management

PSO
TRNSYS,
MATLAB, and
GenOpt

Karavas et al. [68] 2015 X X
Electric storage
and hydrogen
storage

Decentralized energy
management and
component sizing of
multi-energy micro-grid

PSO
TRNSYS,
MATLAB and
GenOpt

Karavas et al. [69] 2017 X X
Electric storage
and hydrogen
storage

Game theory-based
multi-energy micro-grid
optimal component
sizing

PSO
TRNSYS,
MATLAB and
GenOpt

Wang et al. [71] 2021 X X
Electric storage
and thermal
storage (CAES)

Game theory-based
capacity optimization of
multi-energy district
system with CAES

PSO Not mentioned

Jin et al. [73] 2021 X X None

Game theory-based
component optimization
method for multi-energy
micro-grid

PSO Not mentioned

Decentralized control

Blaauwbroek et al. [77] 2015 X X X
Electric storage
and thermal
storage

Decentralized
multi-energy microgrid
control

Mixed-integer
quadratic
programming

JADE, MATLAB

Harb et al. [74] 2015 X X Thermal storage Decentralized control of
multi-energy micro-grid Gurobi optimizer JADE

Li et al. [78] 2016 X X
Electric storage
and thermal
storage

Decentralized control of
electricity and heating
coupled system

Consensus theory Not mentioned

Alishavandi and
Moghaddas-Tafreshi
[82]

2019 X X X X
Electric storage
and thermal
storage

Decentralized
multi-energy micro-grid
management for cost and
emission minimization

Gradient projection Anylogic
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Table 7. Cont.

Author Year
Energy Carrier Storage Type Focused Topic Approach PlatformElectricity Heating Cooling Gas Hydrogen EV

Shabani and
Moghaddas-Tafreshi
[84]

2019 X X X

Electric storage,
thermal storage,
and hydrogen
storage

Fully decentralized
multi-energy micro-grid
control with an
interactive clearing price

Gradient projection
algorithm Anylogic

Samadi et al. [85] 2020 X X
Electric storage
and thermal
storage

The decentralized control
of multi-energy
micro-grid with
reinforcement learning

Q-learning MATLAB

Nguyen and Ishihara
[81] 2021 X X X X Hydrogen storage Distributed P2P trading

with fuel cells ADMM MATLAB

Kumari and Tanwar
[88] 2021 X X X X None

Multi-energy micro-grid
management with
blockchain-based
communication

Q-Learning Not mentioned

Dong et al. [89] 2021 X X X
Electric storage,
thermal storage,
and gas storage

Multi-energy micro-grid
optimization

Asynchronous
advantage
actor-critic algorithm

Open AI

Micro-grid management

Anvari-Moghaddam
et al. [91] 2017 X X

Electric storage
and thermal
storage

Optimal management of
building integrated
micro-grid

BRL JADE and
MATLAB

Kolen et al. [95] 2017 X X X Thermal storage

Decentralized control for
clusters of
electro-thermal heating
devices for switch event
and peak-to-valley
distance optimization

CPLEX MESCOS

Yang et al. [115] 2018 X X Thermal storage Optimal dispatch of CHP
units Newton–Raphson MATLAB

Lin et al. [105] 2018 X X X X X Electric storage EV impact on EH
management Taboo search Anylogic

Moghaddas-Tafreshi
et al. [97] 2019 X X X X

Electric storage,
thermal storage,
and hydrogen
storage

Multi-energy micro-grid
optimization PSO MATLAB



Energies 2023, 16, 2456 18 of 36

Table 7. Cont.

Author Year
Energy Carrier Storage Type Focused Topic Approach PlatformElectricity Heating Cooling Gas Hydrogen EV

Zeng et al. [106] 2019 X X X
Electric storage
and thermal
storage

Optimal dispatch scheme
of an energy hub with
integrated demand
response

NSGA-III Not mentioned

Li et al. [100] 2020 X X
Electric storage
and thermal
storage

Multi-energy micro-grid
optimization Chaotic search PSO JADE and

MATLAB

Liu et al. [101] 2020 X X X X X
Electric storage
and thermal
storage

Hierarchical control of
multi-energy micro-grid
with RL

Q-learning Not mentioned

Hutty et al. [96] 2020 X X Hydrogen storage
Feasibility study with
reversible solid oxide
cells

Greedy algorithm Anylogic

Khan et al. [103] 2021 X X X X X Electric Storage Multi-energy micro-grid
optimization

Generalized pattern
search algorithm

JADE and
MATLAB

Farinis and Kanellos
[104] 2021 X X X X

Electric storage
and EV

Multi-energy micro-grid
optimization PSO Not mentioned

With heating network and clusters

Haque et al. [109] 2017 X X None Network congestion and
voltage control

Active power
curtailment
mechanism

JADE and
MATLAB

Claessens et al. [112] 2018 X X None
Optimal control of TCL
and district heating
network with RL

Batch reinforcement
learning Not mentioned

Behboodi et al. [114] 2018 X X None Transactive control of
TCL with DR Market bidding Not mentioned

Bünning et al. [110] 2018 X X X None

Distributed control of
bidirectional
low-temperature
network

Simplex
Nelder–Mead
method and market
bidding

Python and
Modelica
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5.1.3. Regional Energy System Management

The regional energy system is a macro-system to the district energy systems, which consists
of multiple district energy systems or clusters of micro-grids. Gao and Ai [116] proposed a three-
layer control scheme for MESs with the integration of microgrids. In this hierarchical scheme,
agents include regional system layer agents (top), micro-grid cluster layer agents (middle), and
component layer agents (bottom). Top-layer agents are responsible for regional energy network
optimization. Upon receiving top-layer optimization results, middle-layer agents will check
with network limits and coordinate micro-grid clusters. The bottom components agents are
responsible for each unit’s voltage and frequency control. Zhang and Yu [117] introduced a
real-time control strategy for multi-area MESs. The control strategy is based on the Stackelberg
game, where a global IES behaves as a leader and the rest local MES are followers. The top layer
global MES is responsible for improving the response performance of the entire system, whereas
the bottom layer local IES is responsible for cost optimization. The Stackelberg game is solved
with Q-learning. The results showed that the proposed learning methods computed faster than
common heuristic algorithms, including genetic algorithms, particle swarm optimization, and
differential evolution.

In 2007, Geidl and Andersson [118,119] introduced the concept of the energy hub (EH)
to model the multi-energy flow on the regional level energy network. The EH concept was
soon welcomed by academics. The following selected articles adopted the MAS to manage
EHs. Durana et al. [120] developed a multi-agent, multi-energy flow calculation framework
for the EH network. The other energy carriers’ flow, such as natural gas and water, mimic the
electricity power flow calculation. The multi-energy flow problem was solved with the classic
Gauss–Seidel algorithm [121]. Loose et al. [122] used a similar concept with unified agents for
both district heating and electricity network simulation, while the calculation was done using the
Newton–Raphson algorithm. Skarvelis-Kazakos et al. [123] proposed hierarchical management
of networked EHs. Each EH agent is responsible for optimizing internally, then participating
in the energy market via a centralized commercial agent. The authors also conducted a lab
experiment to evaluate the technical feasibility of agent-based control with a micro-CHP rig.
The experiment showed that the agent-based control was technically feasible with cost-efficient
equipment, such as a personal laptop. Zhang et al. [124] proposed a consensus-based control on
the EH network with adaptive dual control to ensure operational security and cost minimization.
Farshidian, Rajabi-Ghahnavieh, and Haghi [125] formulated the multi-EH planning problem as
a competitive game between the hubs. Mohamed, Jin, and Su [126] provide a distributed energy
management scheme for smart islands, consisting of networked multi-energy micro-grids, EHs,
and plug-in EVs. The optimization is achieved with the primal-dual method of multipliers,
which showed a better accuracy and convergence time than the ADMM method [127].

Xi et al. [128] proposed an automated generation control scheme combined with the
double deep Q network and action discovery algorithm. The proposed scheme showed
a faster convergence rate than the traditional Q-learning method. Wang and Zhang [129]
proposed a two-layer multi-EH coordination strategy with micro-grid clusters. Each layer
was formulated with the cooperated game. The two-layer optimization problem was solved
by the deep deterministic policy gradient algorithm. Li et al. [130] proposed a multi-agent
reliability evaluation method for the multi-energy network considering the uncertainties of
wind generation. This method adopted the Smart Agent Communication algorithm [131] to
achieve system reconstruction automation. Kou et al. [132] proposed a reliability evaluation
model that considers the data privacy of each energy sub-system. The reliability evalua-
tion model was designed in a distributed architecture with agent communication. Kou
et al. [133] also proposed a multi-energy network coordination method with distributed
accelerated descent algorithm. One of the selected studies proposed a novel multi-agent
simulation framework for the multi-energy economy system. Zhu et al. [134] introduced a
novel energy–economy system simulation approach based on the Java Agent Development
Framework (JADE). This simulation framework enables the modeler to define the simu-
lation time step based on the demand with the compatibility of different simulation time
steps. The summary of regional-level energy system management is shown in Table 8.
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Table 8. Review summary of articles in regional energy system.

Source Year Energy Carrier Storage Type Focused Topic Approach Platform
Electricity Heating Cooling Gas Hydrogen EV

Durana et al. [120] 2014 X X X None Multi-energy flow
calculation

Gauss–Seidel
algorithm Anylogic

Li et al. [130] 2016 X X X X
Electricity
storage

IES reliability
evaluation with
agent-based modeling

K-1 algorithm to
evaluate fault
occurrence

Anylogic

Skarvelis-Kazakos
et al. [123] 2016 X X X X Electric storage Energy hub network

optimization
Java optimization
modeler JADE and JOM

Gao and Ai [116] 2018 X X X
Electricity
storage and
thermal storage

Multi-level
hierarchical control of
IES with multiple
micro-grids

Multi-energy
network control

PSCAD and
EMTDC

Zhang and Yu [117] 2019 X X X Gas storage
Real-time coordinated
control of multi-area
IES

Solve fast
Stackelberg
equilibrium with
Q-learning

MATLAB

Zhu et al. [134] 2020 X X X None

Novel simulation
framework with
multi-energy economy
coupled system

Linear
programming JADE

Loose et al. [122] 2020 X X None Unified multi-energy
network simulation Newton–Raphson Agent.Workbench

and JADE

Mohamed et al.
[126] 2020 X X X X Electric storage Smart island

management PDMM Not mentioned

Xi et al. [128] 2020 X X X X
Fly wheel
storage

Multi-energy network
automatic generation
control

DDQN-AD Not mentioned

Zhang et al. [124] 2021 X X X None Multi-energy network
control

Adaptive dual and
consensus
algorithm

Not mentioned

Farshidian and
Ghahnavieh [125] 2021 X X X Electric storage Multi-EH planning GAMS GAMS
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Table 8. Cont.

Source Year Energy Carrier Storage Type Focused Topic Approach Platform
Electricity Heating Cooling Gas Hydrogen EV

Kou et al. [132] 2021 X X X
Electric storage
and gas storage

Reliability evaluation
of multi-energy
network

ADMM MATLAB and
MOSEK

Kou et al. [133] 2021 X X X None Multi-energy network
coordination

Distributed
accelerated
descent

MATLAB

Wang and Zhang
[129] 2021 X X X Electric storage Multi-EH

coordination DDPG Python
TensorFlow
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5.2. Agent-Based Modeling Applications

ABM is a growing research field to study the complex adaptive system by simulating
the behavior and co-evolution of system components (agents). The characteristics of agents
in ABM are similar to that of MASs, as agents in both systems are able to behave based on
rationality. The difference between ABM and MASs is the modeling objective. The modeling
objective of MASs focus on the technological implementation of distributed information
processing, such as distributed system control. On the other hand, the modeling objective of
ABM primarily focuses on studying the interactions of agents and the emergence patterns.
Therefore, ABM is a valuable method for studying the energy system social-technology
transition. The ABM has been used to simulate stochastic consumer behaviors and policy-
making research in selected studies.

5.2.1. Behavior Simulations

Energy demands are usually estimated from historical data and computer model-
ing [135]. When historical data is unavailable, demand estimation relies on computer
simulation. However, the computer-simulated demand may significantly differ from actual
consumption. Hong et al. [136] argued that this mismatch resulted from uncertainties of
human behaviors. Turner and Frankel [137] reported that estimated energy usage in the
design stage has a root-mean-square error of 18% compared to actual measured energy
usage in a 62-building cluster. Moreover, Eguaras-Martínez et al. [138] showed that simula-
tions including consumer behaviors might differ up to 30% from simulations excluding
consumer behaviors. Thus, human behavior integration is an important aspect of energy
system modeling. Pfenninger et al. [139] regarded human behavior integration as one
of the four challenges of energy system modeling in the 21st century. Thus, agent-based
modeling shows a promising way to simulate random occupant behavior. Chen et al. [140]
developed an agent-based simulation model for stochastic heat pump usage in a residential
area. Such a model utilizes technical information (household layout, family members, as
well as heat pump location and quantities) and social information (occupant profiles and
usage rules, and interaction rules of heat pumps) for stochastic behavior simulation. Case
study results showed that the simulated results were consistent with actual usage data
(obtained from surveys), and simulation accuracy can be improved significantly with a
larger sample size. Chingcuanco and Miller [141] developed an urban energy consumption
model integrated with agent-based modeling. It was shown that agent-based modeling
is able to capture both short-term and long-term decisions of firms and households. Tian
et al. [142] combined the deep learning model and ABM for household energy consumption
simulation, considering spatial and temporal aggregation. The deep learning model was
pre-trained with household behavioral data, such as appliance usage patterns, dwelling
type, and energy bills. The deep learning model generated the agent behavioral proba-
bility distributions based on the input variables. Individual household agents’ behaviors
during the day were further aggregated at the regional level and in monthly and yearly
time intervals.

Furthermore, researchers combined the behavioral simulations in ABM with the op-
timization model as a holistic modeling method. Zhang et al. [143] proposed a holistic
combined optimization approach for integrated energy systems, including demand sim-
ulation with ABM and system optimization with the MILP model. The novelty of this
approach is the inclusion of occupant behavior simulations, where random behaviors of
heterogeneous energy consumers and interactions among them are considered. ABM is
used for modeling end-users and energy consumption appliances by considering different
consumption activities, behavioral rules, and user preferences. Zhang et al. conclude
that occupant behaviors contribute to demand uncertainties considerably, in which the
cooling and heating demands showed great variance. Chakrabarti et al. [144] combined
agent-based modeling for EV demand simulation and district energy system optimization
with MILP. Each EV was considered an agent traveling around to fulfill its objective.
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5.2.2. Policymaking

The studies in policymaking adopt the ABM to simulate the co-evolution of the
social-technological systems, examining the exogenous factors (policy, regulation, energy
prices) that affect the systems. Since this review article focuses on agent-based method
applications in MESs, Section 5.2.2 covers how researchers implement ABM in the energy
system transitions towards MESs by answering the following questions. Readers could
refer to the reference for detailed policy implications.

Jackson [43] analyzed the utility stand-by rate effect on adopting micro-combined heat
and power (micro-CHP) generation units in the US. The utility standby rate is the infras-
tructure cost for the utility grid to offer backup services when a micro-CHP outage occurs.
The agents (building owners) consider investing in micro-CHP when the knowledge about
micro-CHP reaches the threshold level. The knowledge will increase with the installation of
micro-CHP in the neighborhood. Faber, Valente, and Janssen [145] also explore households’
adoption of micro-CHP in the Netherlands with ABM. The model specifically investigated
the competition of the market share of micro-CHP and incumbent condensing boilers. The
market share dynamics was simulated with supply side: micro-CHP agents and incumbent
condensing boiler agents; and demand side: individual consumers agents. The consumer
agents will make a decision to adopt either type of technology with minimal cost. In
addition, the exogenous effect, such as natural gas prices, electricity prices, and policy inter-
ventions on micro-CHP adoption, were explored. Grubic et al. [146] investigated how the
adoption of multiple micro-generation technologies affects the consumption of water, gas,
gasoline, electricity, CO2 emissions, and electricity generation cost. The micro-generation
technologies investigated in this study included battery EV, PV, solar thermal water heating,
rainwater harvesting, greywater recycling, and waste heat recovery. The behaviors of
household agents were modeled with state charts, in which agent states transit from one to
another. The quasi-rational approach was adopted to determine whether agents transition
to another state.

Sorda, Sunak, and Madlener [147] investigated the spatial-temporal diffusion of agri-
cultural biogas-fueled CHP plants in Germany with Geographic Information Systems
(GISs). The spatial ABM includes two types of agents. The first type of agent is orga-
nizations: federal government agents, bank agents, electricity utility agents, and plant
manufacturer agents, which only provide information to the system. The second type of
agent performs the investment calculation that results in investment decisions, including
substrate supplier, heat consumer, decision maker, and district. The substrate supplier
agents calculate the availability of biogas production in communities. The heat agents
calculate the heat potential of communities and determine the earnings and costs with heat
demand. The calculated results from the substrate supplier agent and heat consumer agent
are sent to the decision-making agents. The decision-making agents communicate with the
organization agents to obtain financial information such as bank loan availability, interest
rates, and the bio-gas plant cost. The decision-making agent then calculates the net present
value (NPV) of the associated investment and decides to invest if the NPV is positive. The
district agents rank the decision-making agents of communities based on the availability
of substrate potentials. Schnuelle et al. [148] also modeled the energy system transition in
Germany with a focus on the adoption of power-to-fuel technologies. The power-to-fuel
technologies refer to the conversion of electricity to hydrogen for hydrogen-based synthetic
fuels. The ABM model treated the German energy system as a single MES where each
energy carrier was simulated as a sub-system which has its own supply, price, and trade
volume. This model included three agent classes: customers, operators, and subsidizers.
The operator agents are the key agent class, as this agent class drives the investment and
installation of power-to-fuel technologies. The decision-making process of operator agents
was based on rational choice theory [149].

Allen and Liz [150] modeled the UK energy system with ABM to explore the possible
pathways to achieve an 80% reduction of CO2 emissions by 2050. The agents decide to
adopt generation technologies based on calculating the attractivity index, which considers
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the relative importance of carbon reduction and the financial cost. Walzberg et al. [151]
investigated how smart home appliances could contribute to the rebound effect with ABM.
The rebound effect is the phenomenon that the introduction of cost-efficient technology
could lead to an increase in the demand. The ABM model simulated the household agents’
behavioral changes in the adoption of smart home appliances with stochastic electricity
load profiles. The decision-making process of household agents in this ABM was based on
the social-psychological model by Byrka et al. [152]. Then et al. [153] investigated the effect
of building owners’ retrofitting on the gas and electricity demand and the district network
owners’ investment decisions on grids. The household agents make the retrofitting decision
to minimize the life-cycle cost of total expenditure with MILP. The district network owners
plan the closure, reactivation, construction, and reinforcement of gas or electricity grids
based on cash flow calculations.

Hodge et al. [154] proposed a multi-paradigm modeling framework to study the
new technologies’ impact on an energy system. The multi-paradigm framework was
based on the modulation of energy systems by dividing the energy system into a series
of sub-systems. The sub-systems could be modeled with various simulation techniques
depending on the sub-systems’ geographical aggregation level or time resolution level.
The modulation enables modelers to incorporate the multi-energy system with energy
carriers as sub-systems. In the case study of Hodge et al., California’s combined power
generation and natural gas model was studied to investigate the effects of natural gas
price fluctuation on gas-fired power generation plant operations. Agent-based modeling
is used to simulate the electricity generation units in California as the generation units
are heterogeneous. The simulation results showed that the framework provides valuable
information to policymakers to study the interaction of energy sub-systems, especially
when investigating the effect of new technologies.

6. Discussion of Agent-Based Method Applications

Section 5 has reviewed the research themes and characters of the selected studies.
Section 6 discusses how agent-based methods have been implemented to study MES transi-
tions, including how MASs are implemented in MES optimization, how ABM contributes
to the study of social-technological co-evolution of energy systems, and what are agent de-
velopment environments. Figure 8 provides a schematic overview of agent-based method
applications in the MES modeling and simulation in terms of spatial and temporal resolu-
tions, which demonstrates the applicability of agent-based methods to resolve a variety
of MES research questions. The ABM models on social-technical systems tend to have the
largest temporal resolution that span decades to capture the system co-evolution process.
The spatial resolution of the ABM varies depending on the system boundaries. Noticeably,
ABM can simulate the system on the national level, as shown by Allen and Varga [150].
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6.1. Agent-Based Optimization of MESs

This section discusses the agent-based optimization of MESs from an economic per-
spective, such as optimal dispatch, optimal design planning, and optimal multi-energy
power flow. The classic economic optimization problem can be solved with convex op-
timization techniques. Convex optimization techniques transfer the primal problem to
the Langrangian dual problem, then solve Karush–Kuhn–Tucker (KKT) optimality con-
ditions. [155]. However, four paradigm shifts are reshaping energy system optimization.
First, the dataset size is expanding significantly due to the increasing number of DER units.
Second, the data are becoming extremely high-dimensional since the IoT technologies, such
as smart meters, are able to measure detailed information about each data point. Third, the
dataset tends to be stored in a distributed manner, as the DER owners are distributed geo-
graphically. Fourth, the liberalization of the electricity market enables competitive bidding
and asking activities for energy production companies, retailers, and households in day-
ahead markets [62,156]. Decentralized optimization could be an optimization framework
that is suitable for future MESs.

The early systematic research in decentralized optimization can be dated back to the
1980s by two MIT professors, Bertseksas and Tsitsiklis, in their early publication [157] and
their book on numerical methods in distributed computing [158]. After nearly four decades
of development, MAS optimization is emerging as a framework to formulate and solve
optimization problems. In MAS formulation, each decision-making agent is responsible for
optimizing the local objective function, and the global objective function is the summation
of local objective functions. Moreover, the distributed optimization problem is also subject
to a list of constraints that depends on the scope of the energy system. An example of
decentralized optimization problem formulation with a multi-energy micro-grid focusing
on generation cost minimization is shown as follows:

min
N

∑
i=1

M

∑
j=1

Ci,j
(

gi,j
)

(1)

∀ Energy carrieri,
M

∑
j=1

gi,j = di (2)

∀gi,j : gmin
i,j ≤ gi,j ≤ gmax

i,j (3)

In the distributed optimization problem, gi,j represents the quantity of energy carrieri
generated by agentj where gi,j belongs to the set

{
gi,j

∣∣g ∈ R, i = 1, 2 . . . M; j = 1, 2, . . . N
}

such that the system contains M number of energy carriers and N number of generation
agents. The multi-energy generation quantity is a real value matrix denoted as G, where
G ∈ RM×N . For instance, if the electricity carrier is denoted as g1,∗, the generated electricity
vector in the system is the first-row vector of G, [g1,1, g1,2, . . . g1,M]. As a result, the total
electricity generated in the system is the element-wise summation of the electricity vector
∑M

j=1 g1,j. Ci,j(·) : R+ → R+ is the local objective function of energy carrieri generating
agentj. The global objective function is the summation of local objective functions, as
shown in (1). Depending on the nature of the problems, the objective function could be
an operation cost function [84,85,103,159] or investment cost function [68,69,73]. D is the
total system demand of energy carriers, where D = [d1, d2, . . . dM]T corresponding to the
M number of energy carriers in the system.

For a multi-energy system consisting of M number of energy carriers, the energy
balance constraint (2) should always be satisfied. The number of energy carriers considered
in the optimization problem depends on the configuration of the target energy system.
For example, Refs. [68,69] considered electricity and hydrogen carriers, and Refs. [86,130]
considered electricity and heating carriers in the optimization problem. Constraint (3)
indicates the capacity constraint of energy generation agents. For studies interested in
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optimizing regional network systems, the network constraints, such as transmission line
capacity, should be considered accordingly [156].

To solve the optimization problem, various optimization algorithms, such as Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA) were used by researchers, as
shown in Table 7. PSO is the most popular optimization technique in the review database.
PSO is a population-based heuristic search method invented by Kennedy and Eberhart [160].
The mathematical description of the particle movement is shown in Equations (4) and (5).

vi,t+1 = wvi,t + r1C1[pi,t − xi,t] + r2C2[gt − xi,t] (4)

xi,t+1 = xi + vi,t+1 (5)

where r1 and r2 in (4) are two random variables, ranging from 0 to 1; C1 and C2 in (5) are
the acceleration constants; vi,t and xi,t are the velocity and position of particle I at time t; pi,t
is the previous personal best position of particle i; and gt is the best position of all particles.

A particle is a solution in the search space. On initialization, the PSO algorithm
randomly generates a group of particles containing individual position and velocity infor-
mation. Then, particles evaluate their own best position with the all-particle best position
with a fitness function. After evaluation, each particle will move to its previous personal
best position (pi,t) or the global best position (gt) [161]. Readers could refer to Zhang, Wang,
and Ji [162] for state-of-the-art PSO studies, such as modification of PSO and hybridization
of PSO with other heuristic algorithms. The standard application of PSO with MASs in
multi-energy systems can be found in [67–69,73,97]. However, the standard PSO tends to
fall into local optimality due to insufficient search spaces. Li et al. [100] used the adaptive
weight chaotic PSO (ACPSO) to optimize the micro-grid. The idea of a chaotic search is to
iteratively generate a chaotic sequence if the solution did not change significantly under a
pre-defined number of iterations. Moreover, the adaptive weight technique balances the
global and local search abilities. The ACPSO shows better convergence than the standard
PSO. Another popular algorithm to solve the MES distributed optimization problem is
multi-agent reinforcement learning which will be discussed in Section 7.1.

With the decentralized optimization problem formulation and algorithms to solve
the problems, MASs are able to solve the MES optimization problem in a decentralized
way. Figure 9 shows three types of optimization architecture: centralized, decentralized,
and hybrid. The conventional centralized optimization architecture is shown on the left of
Figure 9, where a central computation agent is responsible for collecting the systemwide
information and performing optimization tasks. The advantage of using centralized control
is the comprehensive multi-objective optimization ability with available information [163].
However, the major shortcoming of centralized decision-making is its susceptibility to
single-point failure.

The decentralized optimization utilizes local agents to assess the operation signal of
individual DER units [103]. The IoT technologies equip local agents with computation and
communication abilities. The local agent performs the optimization of the local objective
and then updates the operation parameters with other local agents. The global optimum is
reached once all agents reach a consensus. Therefore, decentralized optimization architec-
ture does not require a central agent for optimization. As a result, the system becomes more
robust by reducing the risk of a single-point failure. Another advantage of the decentralized
architecture is the plug-and-play ability. Therefore, the system could scale smoothly by
adding more agents to the system. Moreover, decentralized control could protect local
privacy as the local agent will not share detailed information with the central agent.

In hybrid optimization schemes, an intermediary layer is introduced, where a group of
local agents reports state information to the respective intermediary agent. The hierarchical
organization of hybrid optimization facilitates the bidirectional information exchange
of micro-grid operation and upstream grids as well as the aggregation of micro-grid-
generated energy to upstream grids. The top layer central agent is responsible for updating
energy price and operation information from the upstream grid to the intermediary agents.
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Based on the central agent information, the intermediary and local agent perform the
optimization and send the optimization results to the top layer central agent. With the
micro-grid optimization results, the central agent will evaluate the feasibility of aggregating
the locally generated energy to the upstream grid, informing the subsidiary agents if such
a decision is made. Therefore, MAS-based management has the following four advantages:

(1) Flexibility: Intelligence and rationality enable the agent to learn and adapt to
system changes.

(2) Reliability (fault-tolerance): The decentralization brought by MAS makes the system
less susceptible to a single-point failure. If one agent fails, the communications among
agents are still intact.

(3) Scalability (extensibility): Due to the plug-and-play attribute of MAS, the system
could be extended with ease. Instead of redesigning the whole system, the modeler
can only design a class of agents and embed such agents into the system.

(4) Privacy protection: The fully decentralized control does not require an agent to
collect systemwide information. As a result, each agent can preserve the privacy of
classified information.
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6.2. MES Social-Technological Simulation with ABM

The previous Section 6.1 discussed the methodology to apply MASs in MES optimiza-
tion. This section discusses how the ABM could contribute to studying the multi-energy sys-
tem social-technical transitions. Figure 10 demonstrates the critical concept of co-evolution
of the social-technical system. The social entities, such as households and energy network
operators, were modeled as agents. The agents will decide whether to adopt a particular
technology based on rationality. Agents’ actions will alter the environment (technical sys-
tems), resulting in the system’s transition to the next state. ABM is a systematic approach
to investigating how exogenous factors (policies, regulations, energy prices) change the
system evolution in states. Based on the simulation results, the modeler could provide
valuation implications for designing the appropriate energy policies for policymakers.

6.3. Agent Development Environment

The agent-based method, in nature, is agent-oriented, which echoes the object-oriented
programming (OOP) languages. In OOP language, the computation work is carried out
with a series of objects with pre-defined attributes (instance parameters) and behaviors
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(methods). Thus, the agent-based methods could be carried out in various OOP languages,
including Java, C, C++, and Python.
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Java Agent Development Framework (JADE) is a popular development environment
for building MASs that follow Foundation for Intelligent Physical Agents (FIPA) specifica-
tion with Agent Communication Language (ACL) [26]. JADE offers developers a series of
agent services such as an agent management system, directory facilitator, and agent com-
munication channel [164]. To develop a MAS application with JADE, developers can define
the subclass agent attributes by extending the superclass Agent in the jade.core package and
agent behaviors by extending the superclass Behaviour in the jade.core.behaviours package.
Agents communicate with each other on the java runtime environment through send-
ing/receiving the JAVA objects named ACLMessage. The complete guide for developing
MAS with JADE can be found in the JADE handbook [165].

Anylogic is another popular platform where the model is Java-based [166]. Any-
logic provides a convenient modeling environment for agent-based modeling due to its
Java-based GUI. Python also offers a ABM modeling library called Mesa [167]. MAT-
LAB Simulink is a powerful software environment for carrying out heavy computational
simulations. The Simulink S-function [168] enables developers to write Simulink blocks
in an object-orient way with C or C++. MACSimJX [169] is an open-source package in
MAS-enabled smart energy system research. MACSimJX serves as a wrapper between
MATLAB Simulink and JADE, integrating the high computation capability of MATLAB
and the multi-threading of JADE. For a comprehensive review of agent development tools,
readers could refer to the review paper on agent-based modeling and simulation tools by
Abar et al. [170].

7. Future Research Directions

Section 7 highlights two key future research directions after evaluating the existing
literature: multi-agent reinforcement learning implementation for MES management and
synchronization among agents in agent-based control.

7.1. Multi-Agent Reinforcement Learning Applications

Reinforcement learning is a machine learning domain that focuses on optimal se-
quential decision making, akin to dynamic programming, by Bellman [171]. The building
block of reinforcement learning is the Markov Decision Process (MDP). The theory of MDP
was developed in the optimal control field to solve the problem of sequential decision
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making under uncertainty [172–175]. The MDP is established on the decision-making agent
and environment, which are exceptionally similar to the concepts discussed in Section 2.
Agents and environment interact over a sequence of discrete time steps. Agents take ac-
tions upon prior knowledge and environmental information. Then, the environment gives
numerical feedback, named rewards, to agents based on the actions that agents took [88].
Mathematically speaking, at each time step t, an agent receives the description of the
environment information state St ∈ S . Based on the state information received, the agent
selects an action At ∈ A(S). In the next time step t + 1, the agent receives a numerical
reward Rt+1 ∈ R ⊂ R in new environment state St+1. Then, the sequence of an MDP
is S0, A0, R1, S1, A1, R2, S2, A2, . . . The reward Rt and environment state St are random
variables that depend on the previous state and agent action. The objective of agents is
to formulate the optimal policy to maximize the total reward within the considered time
period. The Q-learning method is the most widely used value-based method to obtain the
optimal policy because of its simplicity [176,177]. The main idea of Q-learning is to use the
previous action value (Q-value) as the input for the subsequent iteration.

Game theory is an effective method to solve the problem with energy market trading.
In 2020, He et al. [178] reviewed the application of game theory in the integrated energy
system, in which multi-energy commodity trading was considered. The implementation
of game theory-based multi-agent systems included optimal component sizing [71,73]
and optimal operation [69,101,117]. In these game models, the agents are designed with
complete information so that they are aware of systemwide information. Thus, Liu, Li, and
Ge [101] highlighted the future research direction to study game models with incomplete
information for MAS applications in multi-energy trading. In MAS applications in MES
optimization, Zhang et al. [117], Smadi et al. [85], and Liu, Li, and Ge [101] adopted the
Q-learning technique in their studies. However, the Q-learning method is criticized as
having slow convergence [179] and the curse of dimensionality [180]. Thus, Claessens
et al. [112] used batch reinforcement learning with fitted Q-iteration [181] in combination
with an extremely randomized tree algorithm [182]. In future research, more advanced
learning algorithms (such as deep learning [128,183]) are expected to be incorporated into
energy system optimization.

7.2. Synchronization in Agent-Based Control

Synchronization is an active research topic in MAS control, where agents send and
receive control signals with minimal time-varying delays. In the context of MES control,
renewable DER production, in nature, is stochastic. The stochastic distributions of solar
radiation and wind profiles lead to an intermittent production signal. If the DER produc-
tion fails to synchronize, it will cause disturbances to the electric network [184]. With
a systematic review of the existing literature, there is a very limited discussion on the
synchronization coordination of agents in the MES systems. Therefore, this research gap
demonstrates good potential for future research.

8. Conclusions

The next generation of energy systems are distributed, multi-energy carriers integrated
and smart due to the penetration of DER and IoT technologies. The agent-based methods,
including MASs and ABM, could potentially facilitate the energy system transformation
to the next generation. This article aimed to systematically review the MAS and ABM
applications in multi-energy system transitions. This review showed that the number of
publications related to agent-based methods has been increasing in recent years, indicating
that both MASs and ABM are gaining popularity among researchers.

This review summarizes and discusses the key research themes identified in the
selected articles. In energy system management, MASs have been applied in operation
control, economic dispatch, and optimal planning in different spatial resolution levels,
including building, district, and regional energy systems. The distributed decision-making
ability of MASs provides an energy system with a high level of flexibility, scalability, and
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reliability. As a result, MASs are a viable method to improve system performance. Moreover,
the energy system is becoming increasingly complex due to the increased penetration of
new energy generation, conversion, and storage technologies. ABM was a promising
method to study the system emergence of social-technical systems. The various research
themes demonstrated the agility of agent-based methods as a research methodology.

There is potential for future research to investigate the multi-agent reinforcement learn-
ing applications in energy systems. This rapidly developing artificial intelligence/machine
learning technique has promising implementation in system control and design optimiza-
tion. Implementing and improving such techniques in energy systems could lead to
valuable results. Furthermore, future research could investigate the synchronization of the
agent-based control for MES. However, there are limitations to this review. Agent-based
methods are gaining popularity among researchers so articles have continued to be pub-
lished on related topics. Thus, this review has not been able to cover the publications on
the topic after 2021. Additionally, this review highlighted the energy system optimizations
from the economic perspective in Section 6. Other aspects of energy system control, such
as frequency control and fault analysis are beyond the scope of the discussion section of
this review.
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